
Nearest neighbor representations of Boolean functions ∗

Péter Hajnal† Zhihao Liu‡ György Turán§

Abstract Lower and upper bounds are given for the number of prototypes required for various
nearest neighbor representations of Boolean functions.

1. Introduction

A nearest neighbor representation of a classification of a set of points in Rn is given by a set of
prototypes such that each point belongs to the same class as the prototype closest to it. More gen-
erally, for a k-nearest neighbor representation, the class containing a point is determined by taking
the most frequent class label among the k closest prototypes. Nearest neighbor representations are
much studied and used in computational geometry, machine learning and pattern recognition (see,
for example, Mulmuley [8], Mitchell [7] and Duda et al. [3]).

In general, one tries to use as few prototypes as possible. This leads to questions about the smallest
number of prototypes representing a given classification. We consider the special case, suggested
by Kasif [6], of binary classifications of the n-dimensional hypercube. A binary classification of
the hypercube can be viewed as a Boolean function, and therefore we use this terminology in the
rest of the paper. The minimal number of prototypes needed to represent a Boolean function is
a complexity measure which is related to other, well-studied complexity measures such as linear
decision tree complexity or threshold circuit complexity. Prototypes may be restricted to belong
to the set itself, and thus one obtains two versions of the problem. In related work, Wilfong [11]
considered the computational complexity of finding a minimal set of prototypes for planar point
sets, and Baum [1] considered a probabilistic version for the whole space Rn.

We prove several bounds for the nearest neighbor complexities of Boolean functions. In Section 3
we consider the case when the prototypes are Boolean, and give examples where this restriction

∗A preliminary version of this paper, Z. Liu: The nearest neighbor rule representation of Boolean functions, was

presented at the Intel Science Talent Search in 2002.
†University of Szeged, Bolyai Institute
‡California Institute of Technology
§University of Illinois at Chicago, and Research Group on Artificial Intelligence of the Hungarian Academy of

Sciences at the University of Szeged. This material is based upon work supported by the National Science Foundation

under grants CCR-0100336 and CCF-0431059.

1

leads to a large increase in the number of prototypes. It is shown in Section 4 that the trivial upper
bound of 2n for the number of prototypes can be improved asymptotically for every function, and
an exponential lower bound is proved for almost all functions. We then prove, in Section 5, lower
bounds for an explicit function, the mod 2 inner product. The lower bound is linear for the nearest
neighbor representation, and almost linear for the k-nearest neighbor representation. There are
many related open problems. Some of these are mentioned in Section 6.

2. Preliminaries

The Euclidean distance in Rn (resp., the Hamming distance in {0, 1}n) is denoted by d(x, y) (resp.,
dH(x, y)); for x ∈ {0, 1}n it holds that d(x, y) =

√
dH(x, y). The componentwise partial order

on {0, 1}n is denoted by x ≤ y. If x ≤ y then we also say that x is covered by y. For a vector
x = (x1, . . . , xn) ∈ {0, 1}n, we write x(i) for the vector obtained from x by switching its i’th
component, and we write |x| for its weight, i.e., the number of its 1 components. Switching a
component 1 in x to 0 we get a lower neighbor of x.

Let f : {0, 1}n → {0, 1} be a Boolean function. Points x with f(x) = 1 (resp., f(x) = 0) are called
positive (resp., negative).

A nearest neighbor (NN) representation of f is a pair of disjoint subsets (P, N) of Rn, such that
for every x ∈ {0, 1}n it holds that

• if x is positive then there is a y ∈ P such that d(x, y) < d(x, z) for every z ∈ N ,

• if x is negative then there is a y ∈ N such that d(x, y) < d(x, z) for every z ∈ P .

The points in P (resp., N) are called positive (resp., negative) prototypes. The size of the repre-
sentation is |P ∪ N |. The nearest neighbor complexity, NN(f), of f is the minimum of the sizes
of the representations of f . A nearest neighbor representation is Boolean if P ∪N ⊆ {0, 1}n, i.e.,
if the prototypes are Boolean vectors. The minimum of the sizes of the Boolean nearest neighbor
representations is denoted by BNN(f).

Similarly, a k-nearest neighbor (k-NN) representation of f is a pair of disjoint subsets (P,N) of Rn,
such that for every x ∈ {0, 1}n it holds that

• x is positive iff at least k
2 of the k points in P ∪N closest to x belong to P .

For definiteness, it is assumed that for every x, the k smallest distances of x from the prototypes
are all smaller than the other |P ∪N |−k distances from the prototypes. The case k = 1 is the same
as the nearest neighbor representation. The size of the representation is again |P ∪ N |. The k-
nearest neighbor complexity, k−NN(f), of f is the minimum of the sizes of the k-nearest neighbor
representations of f .

2

3. Boolean nearest neighbors

It follows from the definitions by letting all points in {0, 1}n be prototypes that for every n-variable
Boolean function

NN(f) ≤ BNN(f) ≤ 2n. (1)

The n-variable parity function shows that the second inequality can be an equality, and there can
be an exponential gap between the general and Boolean nearest neighbor complexities.

Proposition 1. a) For every n-variable symmetric function f it holds that NN(f) ≤ n + 1.

b) BNN(x1 ⊕ · · · ⊕ xn) = 2n.

Proof For part a), let y` = (`
n , . . . , `

n), for ` = 0, . . . , n. If x ∈ {0, 1}n has weight w then a direct
calculation shows that d(x, yw) < d(x, y`) for every ` 6= w. Thus P = {y` : f(1`0n−`) = 1} and
N = {y` : f(1`0n−`) = 0} is a NN representation of size n + 1.

For part b), consider a NN representation of the parity function and let p be a positive prototype.
If y is a neighbor of p then y is negative, but there is a positive prototype at distance 1 from y.
Hence y must itself be a negative prototype. Repeating this argument it follows that every point
is a prototype. 2

A Boolean function f is a threshold function if there are weights w1, . . . , wn ∈ Rn and a threshold
t ∈ Rn such that for every x ∈ {0, 1}n it holds that f(x) = 1 iff w1x1 + . . .+wnxn ≥ t. The special
case when w1 = . . . = wn = 1 is denoted by THt

n. In particular, when t = n
2 , we get the n-variable

majority function MAJn(x).

Theorem 2. a) For every threshold function f it holds that NN(f) = 2.

b) If n is odd then BNN(MAJn) = 2 and if n is even then BNN(MAJn) ≤ n
2 + 2.

c) BNN
(
TH

n/3
n

)
= 2Ω(n).

Proof Part a) follows by taking a single positive, resp. negative, prototype, on a line perpendicular
to the hyperplane defining the threshold function, at equal distances from the hyperplane.

Part b) is obtained for odd n by taking the all 0, resp. all 1, vectors as prototypes. In the even
case let the all 0 vector be the single negative prototype, and let select arbitrary n

2 + 1 vectors of
weight n − 1 as positive prototypes. Then every vector x of weight n

2 shares a 0 component with
some positive prototype. Their distance is n

2 − 1, and so this prototype is closer to x than the all
0 vector. It is easy to check that if x has weight different from n

2 , then the prototype closest to it
has the right label.

For part c), let t = dn
3 e and consider the sets of Boolean prototypes P,N ⊆ {0, 1}n for THt

n.
Let x be a vector of weight t, and p be a positive prototype closest to x. We claim that x ≤ p.

3

Otherwise assume that xi = 1, pi = 0 and consider y = x(i), with closest negative prototype q.
Then dH(x, p) = dH(y, p)+1 > dH(y, q)+1. On the other hand dH(x, p) < dH(x, q) ≤ dH(y, q)+1,
a contradiction.

It follows similarly that if y is a vector of weight t − 1 and q is a negative prototype closest to y

then q ≤ y. This implies that for every vector x of weight t there is a negative prototype q such
that q ≤ x (a prototype closest to a lower neighbor of x will have this property). Thus for every
vector x of weight t it holds that dH(x, q) ≤ t for some negative prototype q. This means that if p

is a positive prototype closest to x then dH(x, p) < t and so |p| < 2t.

Consider now the set of vectors of weight t. Each is covered by a positive prototype of weight less
than 2t. Each such positive prototype can cover at most

(
2t
t

)
vectors of weight t. Hence we need

at least (
n
t

)
(
2t
t

) = 2Ω(n)

positive prototypes. 2

The argument of part c) generalizes to every function THt
n, where |t− n

2 | ≥ δn for any fixed δ > 0.

4. General bounds

The first bound shows that the upper bound of (1) for nearest neighbor complexity can be improved
asymptotically by a factor of 1

n .

Theorem 3. For every n-variable Boolean function

NN(f) ≤ (1 + o(1))
2n+2

n
.

Proof A set Ba ⊆ {0, 1}n is a ball of radius one if it consists of a vector a ∈ {0, 1}n (the center of
the ball) and all its neighbors. A set Sa ⊆ {0, 1}n is a sphere of radius one if it consists of all the
neighbors of a vector a ∈ {0, 1}n.

Lemma 4. Let A be a subset of a sphere S of radius one with |A| = ` ≥ 3, and let cA = 1
|A|

∑
x∈A x

be the centroid of A. Then

a) d(cA, x) < 1 for every x ∈ A,

b) d(cA, x) ≥ 1 for every x such that x 6∈ A and x is different from the center of S.

Proof Assume w.l.o.g. that S consists of the unit vectors, and A consists of the first ` unit vectors.
Then cA = (1

` , . . . ,
1
` , 0, . . . , 0), where the first ` coordinates are nonzero. If x ∈ A then

d(cA, x) =
(

`− 1
`

)2

+ (`− 1)
(

1
`

)2

=
`− 1

`
< 1.

4

If x 6∈ A and x is different from the center of S then if x has a 1 component in the last n − `

coordinates then d(cA, x) ≥ 1. Otherwise x has at least two 1’s in the first ` coordinates and so as
` ≥ 3 it holds that

d(cA, x) ≥ 2
(

`− 1
`

)2

+ (`− 2)
(

1
`

)2

= 2− 3
`
≥ 1.2

Partition {0, 1}n into subsets A1, . . . , As such that each Ai is a subset of some ball Bi of radius
one with center ai, and let A1

i (resp. A0
i) be the set of points x 6= ai in Ai with f(x) = 1 (resp.,

f(x) = 0). In each Ai pick the following prototypes:

• if |A1
i | ≥ 3 then let cA1

i
be a positive prototype, otherwise let A1

i be a set of positive prototypes,

• if |A0
i | ≥ 3 then let cA0

i
be a negative prototype, otherwise let A0

i be a set of negative
prototypes,

• if the center ai ∈ Ai then let ai be a prototype with label f(ai).

The correctness of this set of prototypes follows from Lemma 4. The theorem then follows from
the result that {0, 1}n can be covered with (1 + o(1))2n

n balls of radius one (Kabatyansky and
Panchenko [5], see also Cohen et al. [2], generalizing Hamming codes). 2

As the next result shows, almost all n-variable functions have exponential complexity.

Theorem 5. For almost all n-variable Boolean functions

NN(f) >
2n/2

n
.

Proof Consider a set of prototypes p1, . . . , pm for some function f . By slightly perturbing the
points if necessary, it may be assumed w.l.o.g. that d(x, pi) 6= d(x, pj) for every x ∈ {0, 1}n

and 1 ≤ i < j ≤ m. The distances d(x, pi) and d(x, pj) can be compared by considering the
hyperplane Hpi,pj going through the midpoint of the segment pipj , perpendicular to the segment,
and determining on which side of the hyperplane x lies. If for another set of prototypes q1, . . . , qm

(again, without ties), the hyperplanes Hqi,qj determine the same dichotomy of {0, 1}n as Hpi,pj for
every 1 ≤ i < j ≤ m, then q1, . . . , qm are prototypes for the same function f .

Hyperplanes can realize at most 2n2
dichotomies of x (see, e.g., Kailath et al. [10]) and thus m

prototypes can realize at most
2n2 (m

2) (2)

n-variable Boolean functions. If a function can be realized with less than m prototypes then it can
also be realized with m prototypes. A direct calculation shows that for m = 2n/2

n the quantity (2)
is o

(
22n)

. 2

5

One actually gets the same bound for k-nearest neighbors as well. The only difference in the proof
is that a set of m prototypes can represent m different functions for different values of k. Thus the
upper bound (2) has to be multiplied by m, but the same bound remains valid.

Theorem 6. For almost all n-variable Boolean functions f it holds that for every k

k −NN(f) >
2n/2

n
.2

5. Bounds for an explicit function

In this section we give a lower bound for the nearest neighbor and the k-nearest neighbor complex-
ities of a specific function. The mod 2 inner product function of 2n variables is defined by

IPn(x1, . . . , xn, y1, . . . , yn) = (x1 ∧ y1)⊕ . . .⊕ (xn ∧ yn).

The first part of the theorem applies to the nearest neighbor complexity, and the second part applies
to the k-nearest neighbor complexity for all possible values of k.

Theorem 7. a) NN(IPn) ≥ n
2 + 1,

b) mink k −NN(IPn) ≥ (1− o(1)) n
log n .

Proof For part a), we first formulate a general connection between nearest neighbor complexity
and the complexity of computing a function by linear decision trees.

A linear decision tree over the variables x1, . . . , xn is a binary tree, where each inner node is labeled
by a linear test of the form w1x1 + . . . + wnxn : t, for some w1, . . . , wn, t ∈ R, the edges leaving the
node are labelled ≤ and >, and the leaves are labeled 0 and 1. For an input vector x ∈ {0, 1}n,
the function value computed by the tree is the label of the leaf reached by following the path
corresponding to the results of the tests for x. The linear decision tree complexity, LDT (f), of a
function f is the minimum of the depths of linear decision trees computing f .

Lemma 8. For every Boolean function f it holds that LDT (f) ≤ NN(f)− 1.

Proof Consider a set of prototypes p1, . . . , pm for f . Given x ∈ {0, 1}n, the standard algorithm for
finding the minimum of the numbers d(x, pi) cycles through the pi’s and keeps track of the current
minimum. A comparison, as in the proof of Theorem 5, corresponds to the evaluation of a linear
test. Thus we obtain a linear decision tree for f of depth m− 1. 2

In view of the lemma, the lower bound of part a) is implied by the following lower bound of Gröger
and Turán [4].

Lemma 9. LDT (IPn) ≥ n
2 . 2

6

For part b), we need a variation on Lemma 8 which relates linear decision tree complexity to k-
nearest neighbor complexity. Compared to Lemma 8, the difference in the proof of the following
lemma is that instead of a minimum finding algorithm one has to use a sorting algorithm to sort
the distances d(x, pi). Once the distances d(x, pi) are sorted, we can determine the classification
provided by the k-nearest neighbor representation, and thus we obtain a linear decision tree for the
function.

Lemma 10. For every Boolean function f and every k it holds that

LDT (f) ≤ (1 + o(1)) · k −NN(f) · log(k −NN(f)).2

Part b) then follows directly from Lemmas 9 and 10. 2

6. Remarks and open problems

It would be interesting to prove an exponential lower bound for the nearest neighbor complexity
of an explicitly defined function. It follows by an argument similar to the one in Lemma 8 that if
a function can be represented with m prototypes then it can be computed by a threshold circuit
of depth 3 and size O(m2), where the gates on the bottom level are threshold gates, gates on the
middle level are ∧ gates and the final gate is an ∨ gate. These circuits have a simple geometric
interpretation: they correspond to a separation of the true and false points by a union of polyhedra.
A related class of circuits, where the final gate is a parity gate instead of an ∨ gate, is discussed
in Regan [9]. There are no exponential lower bounds known for the depth 3 threshold circuit
complexity of an explicitly defined function (see, e.g., Siu et al. [10] for a survey of threshold
circuit complexity), not even in the special case mentioned above, as far as we know. Thus a lower
bound for the nearest neighbor complexity could be of interest for threshold circuits as well.

Another question is whether the upper bound n + 1 in Proposition 1 is optimal for the parity
function (it is, for n = 2, 3). The gap between the upper bound of Theorem 3 and the lower bound
of Theorem 5 should be narrowed. The relationship between nearest neighbor complexity and k-
nearest neighbor complexity is open. Finally, other versions of nearest neighbor complexity could
also be studied, for example, weighted versions (see, e.g. [3]) and other metrics.

Acknowledgement We would like to thank Simon Kasif for suggesting the problem discussed in
this paper.

References

[1] E. B. Baum: When are k-nearest neighbor and backpropagation accurate for feasible-sized
sets of examples?, in: Computational Learning Theory and Natural Learning Systems, Vol. I:

7

Constraints and Prospects, S. J. Hanson, G. A. Drastal, R. L. Rivest eds., 415-442. MIT Press,
1994.

[2] G. Cohen, I. Honkala, S. Litsyn, A. Lobstein: Covering Codes. North - Holland Math. Library,
Vol. 54, Elsevier, 1997.

[3] R. O. Duda, P. E. Hart, D. G. Stork: Pattern Classification, 2nd ed. Wiley, 2001.

[4] H. - D. Gröger, Gy. Turán: On linear decision trees computing Boolean functions, 18. ICALP
(1991), 707-718. Springer LNCS 510.

[5] G. A. Kabatyansky, V. I. Panchenko: Packing and covering of Hamming spaces with balls of
unit radius, Probl. Inf. Trans. 24 (1988), 3-16.

[6] S. Kasif, personal communication, 2000.

[7] T. M. Mitchell: Machine Learning. McGraw-Hill, 1997.

[8] K. Mulmuley: Computational Geometry: An Introduction Through Randomized Algorithms.
Prentice Hall, 1993.

[9] K. Regan: Polynomials and Combinatorial Definitions of Languages, in: Complexity Theory
Retrospective II, L. Hemaspaandra and A. Selman, eds., 261-293. Springer, 1997.

[10] K. - Y. Siu, V. Roychowdhury, T. Kailath: Discrete Neural Computation: A Theoretical
Foundation. Prentice Hall, 1995.

[11] G. Wilfong: Nearest neighbor problems, Int. J. of Comp. Geom. and Appl. 2 (1992), 383-416.

8

