
On Evolvability: The Swapping Algorithm,

Product Distributions, and Covariance

Dimitrios I. Diochnos1 György Turán1,2

1 Dept. of Mathematics, Statistics, and Computer Science,

University of Illinois at Chicago, Chicago IL 60607, USA
2 Research Group on Artificial Intelligence of the

Hungarian Academy of Sciences, University of Szeged

Abstract

Valiant recently introduced a learning theoretic framework for evolution, and showed that his swap-

ping algorithm evolves monotone conjunctions efficiently over the uniform distribution. We continue

the study of the swapping algorithm for monotone conjunctions. A modified presentation is given for

the uniform distribution, which leads to a characterization of best approximations, a simplified analysis

and improved complexity bounds. It is shown that for product distributions a similar characterization

does not hold, and there may be local optima of the fitness function. However, the characterization

holds if the correlation fitness function is replaced by covariance. Evolvability results are given for

product distributions using the covariance fitness function, assuming either arbitrary tolerances, or a

non-degeneracy condition for the distribution and a size bound on the target.

Key words: learning, evolution.

1 Introduction

A model combining evolution and learning was introduced recently by Valiant [14]. It assumes that some
functionality is evolving over time. The process of evolution is modelled by updating the representation
of the current hypothesis, based on its performance for training examples. Performance is measured by
the correlation of the hypothesis and the target. Updating is done using a randomized local search in a
neighborhood of the current representation. The objective is to evolve a hypothesis with a close to optimal
performance.

As a paradigmatic example, Valiant [14] showed that monotone conjunctions of Boolean variables with
the uniform probability distribution over the training examples are evolvable. Monotone conjunctions are
a basic concept class for learning theory, which has been studied from several different aspects [7, 8, 10].
Valiant’s algorithm, which is referred to as the swapping algorithm in this paper, considers mutations
obtained by swapping a variable for another one, and adding and deleting a variable1, and chooses randomly
among beneficial mutations (or among neutral ones if there are no beneficial mutations).

Valiant also established a connection between the model and learning with statistical queries (Kearns
[7], see also [8]), and studied different versions such as evolution with and without initialization. Valiant
noted that concept learning problems have been studied before in the framework of genetic and evolutionary
algorithms (e.g., Ros [11]), but his model is different (more restrictive) in its emphasis on fitness functions
which depend on the training examples only through their performance, and not on the training instances
themselves. His model excludes, e.g., looking at which bits are on or off in the training examples.

Feldman [2, 3] gave general results on the model and its different variants, focusing on the relationship
to statistical queries. He showed that statistical query algorithms of a certain type can be translated

1These mutations may be viewed as swapping a variable with the constant 1.

1

into evolution algorithms. The translation, as noted by Feldman, does not lead to the most efficient
or natural2 evolution algorithms in general. This is the case with monotone conjunctions: even though
their evolvability follows from Feldman’s result, it is still of interest to find simple and efficient evolution
procedures for this class. Michael [9] showed that decision lists are evolvable under the uniform distribution
using the Fourier representation.

In general, exploring the performance of simple evolution algorithms is an interesting direction of
research; hopefully, leading to new design and analysis techniques for efficient evolution algorithms. The
swapping algorithm, in particular, appears to be a basic evolutionary procedure (mutating features in and
out of the current hypothesis) and it exhibits interesting behavior. Thus its performance over distributions
other than uniform deserves more detailed study.

In this paper we continue the study of the swapping algorithm for evolving monotone conjunctions.
A modified presentation of the algorithm for the uniform distribution is given, leading to a simplified
analysis and an improved complexity bound (Theorem 4.4). We give a simple characterization of best
approximations by short hypotheses, which is implicit in the analysis of the algorithm.

We then consider the swapping algorithm for product distributions. Product distributions generalize
the uniform distribution, and they are studied in learning theory in the context of extending learnability
results from the uniform distribution, usually under non-degeneracy conditions (see, e.g. [4, 5, 6, 12]). We
show that the characterization of best approximations does not hold for product distributions in general,
and that the fitness function may have local optima.

It is shown that the picture changes if we replace the correlation fitness function with covariance.
(Using fitness functions other than correlation has also been considered by Feldman [3] and Michael [9];
the fitness functions discussed in those papers are different from covariance.) In this case there is a
characterization of best approximations similar to the uniform distribution with correlation. This leads to
two positive results for the evolvability of monotone conjunctions under product distributions.

Theorem 6.3 shows that in the unbounded-precision model of evolution, the swapping algorithm using
covariance as the fitness function, is an efficient algorithm for monotone conjunctions over arbitrary product
distributions. Thus this result applies to a very simply defined (though clearly not realistic) evolution
model, and analyzes a very simple and natural evolution algorithm (swaps using covariance) over a whole
class of distributions (product distributions without any restrictions). Therefore, it may be of interest
as an initial example motivating further models and algorithms, such as the introduction of short and
long hypotheses in order to work with polynomial sample size estimates of performances. Theorem 6.4
shows that the swapping algorithm works if the target is short and the underlying product distribution is
µ-nondegenerate.

The paper is structured as follows. Section 2 has an informal description of the swapping algorithm.
As we are focusing on a single algorithm and its variants, we do not need to define the evolution model
in general. The description of the swapping algorithm and some additional material given in Section 3
contain the details of the model that are necessary for the rest of the paper. Section 4 contains the analysis
of the swapping algorithm for the case of uniform distribution. The performance of the swapping algorithm
for product distributions is discussed in Section 5. In Section 6 we turn to the swapping algorithm using
covariance as fitness function. Finally, Section 7 contains some further remarks and open problems.

2 An Informal Description of the Swapping Algorithm

Given a set of Boolean variables x1, . . . , xn, we assume that there is an unknown target c, a monotone
conjunction of some of these variables. The possible hypotheses h are of the same class. The truth values
true and false are represented by 1 and −1. The performance of a hypothesis h is

PerfUn
(h, c) =

1

2n

∑

x∈{0,1}n

h(x) · c(x), (1)

2Of course, we do not use the term ‘natural’ here to suggest any actual connection with evolutionary processes in nature.

2

called the correlation of h and c. Here Un denotes the uniform distribution over {0, 1}n. The evolution
process starts with an initial hypothesis h0, and produces a sequence of hypotheses using a random walk
type procedure on the set of monotone conjunctions.

Each hypothesis h is assigned a fitness value, called the performance of h. The walk is performed by
picking randomly a hypothesis h ′ from the neighborhood of the current hypothesis h which seems to be
more fit (beneficial) compared to h, or is about as fit (neutral) as h. Details are given in Section 3.

Some care is needed in the specification of the probability distribution over beneficial and neutral
hypotheses. Moreover, there is a distinction between short and long conjunctions, and the neighborhoods
they induce. Valiant uses a threshold value q = O (log(n/ε)) for this distinction. Section 4.2 has details.

Valiant showed that if this algorithm runs for O(n log(n/ε)) stages, and evaluates performances us-
ing total sample size O((n/ε)6) and different tolerances for short, resp. long conjunctions, then with
probability at least 1 − ε it finds a hypothesis h with PerfUn

(h, c) > 1 − ε.

3 Preliminaries

The neighborhood N of a conjunction h is the set of conjunctions that arise by adding a variable, removing
a variable, or swapping a variable with another one, plus the conjunction itself3. The conjunctions that
arise by adding a variable form the neighborhood N+, the conjunctions that arise by dropping a variable
form the neighborhood N−, and the conjunctions that arise by swapping a variable form the neighborhood
N+−. In other words we have N = N− ∪N+ ∪N+− ∪ {h}. As an example, let our current hypothesis be
h = x1 ∧ x2, and n = 3. Then, N− = {x1, x2}, N+ = {x1 ∧ x2 ∧ x3}, and N+− = {x3 ∧ x2, x1 ∧ x3}. Note
that |N| = O(n2) in general.

Similarity between two conjunctions h and c in an underlying distribution Dn is measured by the
performance function4 PerfDn

(h, c) which is evaluated approximately, by drawing a random sample S and
computing 1

|S|

∑

x∈S h(x) · c(x). The goal of the evolution process is to evolve a hypothesis h such that:

Pr [PerfDn
(h, c) < PerfDn

(c, c) − ε] < δ. (2)

The accuracy parameter ε and the confidence δ are treated as one in [14].
Given a target c, we split the neighborhood in 3 parts by the increase in performance that they offer.

There are beneficial, neutral, and deleterious mutations. In particular, for a given neighborhood N and
real constant t (tolerance) we are interested in the sets

{

Bene = N ∩
{

h ′ | PerfDn

(

h ′, c
)

> PerfDn
(h, c) + t

}

Neut = N ∩
{

h ′ | PerfDn

(

h ′, c
)

> PerfDn
(h, c) − t

}

\ Bene.
(3)

A mutation is deleterious if it is neither beneficial nor neutral.
The size (or length) |h| of a conjunction h is the number of variables it contains. Given a target

conjunction c and a size q, we will be interested in the best size q approximation of c.

Definition 3.1 (Best q-Approximation). A hypothesis h is called a best q-approximation of c if |h| 6 q

and ∀h ′ 6= h, |h ′| 6 q : PerfDn

(

h ′, c
)

6 PerfDn
(h, c) .

Note that the best approximation is not necessarily unique.
In this paper the following performance functions are considered; the first one is used in [14] and the

second one is the covariance of h and c5:

PerfDn
(h, c) =

∑

x∈{0,1}n

h(x)c(x)Dn(x) = E [h · c] = 1 − 2 · Pr [h 6= c] (4)

Cov [h, c] = PerfDn
(h, c) − E [h] · E [c] . (5)

3As h will be clear from the context, we write N instead of N(h).
4See the end of this section for the specific performance functions considered in this paper. For simplicity, we keep the

notation Perf for a specific performance function.
5A related performance function, not considered here, is the correlation coefficient.

3

4 Monotone Conjunctions under the Uniform Distribution

Given a target conjunction c and a hypothesis conjunction h, the performance of h with respect to c can
be found by counting truth assignments. Let

h =

m
∧

i=1

xi ∧

r
∧

ℓ=1

yℓ and c =

m
∧

i=1

xi ∧

u
∧

k=1

wk. (6)

Thus the x’s are mutual variables, the y’s are redundant variables in h, and the w’s are undiscovered, or
missing variables in c. Variables in the target c are called good, and variables not in the target c are called
bad.

The probability of the error region is (2r + 2u − 2)2−m−r−u and so

PerfUn
(h, c) = 1 − 21−m−u − 21−m−r + 22−m−r−u. (7)

For a fixed threshold value q, a conjunction h is short (resp., long), if |h| 6 q (resp., |h| > q). The
following lemma and its corollary show that if the target conjunction is long then every long hypothesis
has good performance, as both the target and the hypothesis are false on most instances.

Lemma 4.1 (Performance Lower Bound). If |h| > q and |c| > q + 1 then PerfUn
(h, c) > 1 − 3 · 2−q.

Corollary 4.2. Let q > lg(3/ε). If |h| > q, |c| > q + 1 then PerfUn
(h, c) > 1 − ε.

4.1 Properties of the Local Search Procedure

Local search, when switching to h ′ from h, is guided by the quantity

∆ = PerfUn

(

h ′, c
)

− PerfUn
(h, c) . (8)

We analyze ∆ using (7). The analysis is summarized in Figure 1, where the node good represents good
variables and the node bad represents bad variables. Note that ∆ depends only on the type of mutation
performed and on the values of the parameters m,u and r; in fact, as the analysis shows, it depends on
the size of the hypothesis |h| = m + r and on the number u of undiscovered variables.

Comparing h ′ ∈ N+ with h. We introduce a variable z in the hypothesis h. If z is good, ∆ = 2−|h| > 0.
If z is bad, ∆ = 2−|h|(1 − 21−u).

Comparing h ′ ∈ N− with h. We remove a variable z from the hypothesis h. If z is good, ∆ = −21−|h| <

0. If z is bad, ∆ = −21−|h|(1 − 21−u).

Comparing h ′ ∈ N+− with h. Replacing a good with a bad variable gives ∆ = −21−|h|−u. Replacing
a good with a good, or a bad with a bad variable gives ∆ = 0. Replacing a bad with a good variable gives
∆ = 22−|h|−u.

Correlation produces a perhaps unexpected phenomenon already in the case of the uniform distribution:
adding a bad variable can result in ∆ being positive, 0 or negative, depending on the number of undiscovered
variables.

Now we turn to characterizing the best bounded size approximations of concepts, implicit in the
analysis of the swapping algorithm. The existence of such characterizations seems to be related to efficient
evolvability and so it may be of interest to formulate it explicitly. Such a characterization does not hold
for product distributions in general, as noted in the next section. However, as shown in Section 6, the
analogous characterization does hold for every product distribution if the fitness function is changed from
correlation to covariance.

4

good bad

(a) u > 2

badgood

(b) u = 1

good bad

(c) u = 0

Figure 1: Arrows pointing towards the nodes indicate additions of variables and arrows pointing away from
the nodes indicate removals of variables. Note that this is consistent with arrows indicating the swapping
of variables. Thick solid lines indicate ∆ > 0, simple lines indicate ∆ = 0, and dashed lines indicate ∆ < 0.
Usually Figure 1a applies. When only one good variable is missing we have the case shown in Figure 1b.
Once all good variables are discovered, Figure 1c applies; hence two arrows disappear. Note that an arrow
with ∆ > 0 may correspond to a beneficial or neutral mutation, depending on the value of the tolerance t.

Theorem 4.3 (Structure of Best Approximations). The best q-approximation of a target c is c if |c| 6 q,
or any hypothesis formed by q good variables if |c| > q.

Proof. The claim follows directly from the definitions if |c| 6 q. Let |c| > q. Let h be a hypothesis
consisting of q good variables. Then both deleting a variable or swapping a good variable for a bad one
decrease performance. Thus h cannot be improved among hypotheses of size at most q. If h has fewer
than q variables then it can be improved by adding a good variable. If h has q variables but it contains
a bad variable then its performance can be improved by swapping a bad variable for a good one. Hence
every hypothesis other than the ones described in the theorem can be improved among hypotheses of size
at most q.

4.2 Evolving Monotone Conjunctions under the Uniform Distribution

The core of the algorithm for evolving monotone conjunctions outlined in Section 2 is composed by the
Mutator function, presented in Algorithm 1. The role of Mutator is, given a current hypothesis h, to
produce a new hypothesis h ′ which has better performance than h if Bene is nonempty, or else a hypothesis
h ′ with about the same performance as h, in which case h ′ arises from h by a neutral mutation. Hence,
during the evolution, we have g calls to Mutator throughout a sequence of g generations. We pass some
slightly different parameters in the Mutator from those defined in [14], to avoid ambiguity. Hence, Mutator
receives as input q, the maximum allowed size for the approximation, sM,1, the sample size used for all
the empirical estimates of the performance of each conjunction of size up to q, sM,2 the sample size
used for conjunctions of length greater than q, and the current hypothesis h. We view conjunctions as
objects that have two extra attributes, their weight and the value of their performance. GetPerformance
returns the value of the performance, previously assigned by SetPerformance. The performance of the
initial hypothesis has been determined by another similar call to the SetPerformance function with the
appropriate sample size. Weights are assigned via SetWeight. Hence, SetWeight assigns the same weight
to all members of {h}∪N−∪N+ so that they add up to 1/2, and the same weight to all the members of N+−

so that they add up to 1/2. Finally, RandomSelect computes the sum W of weights of the conjunctions in
the set that it has as argument, and returns a hypothesis h ′ from that set with probability wh′/W, where
wh′ is the weight of h ′.

Note that the neighborhoods and the tolerances are different for short and long hypotheses, where a
hypothesis h is short if |h| 6 q, and

q =

⌈

lg
3

ε

⌉

. (9)

5

Algorithm 1: The Mutator Function under the Uniform Distribution

Input: q ∈ N
∗, samples sM,1, samples sM,2, a hypothesis h, a target c.

Output: a new hypothesis h ′

if |h| > 0 then Generate N− else N− ← ∅;1

if |h| < q then Generate N+ else N+ ← ∅;2

if |h| 6 q then Generate N+− else N+− ← ∅;3

vb ← GetPerformance(h);4

Initialize Bene, Neutral to ∅;5

if |h| 6 q then t← 2−2q else t← 21−q; /* set tolerance */6

for x ∈ N+,N−,N+− do7

SetWeight(x, h, N+, N−, N+−);8

if |x| 6 q then SetPerformance(x, c, sM,1); /* sM,1 examples */9

else SetPerformance(x, c, sM,2); /* sM,2 examples */10

vx ← GetPerformance(x);11

if vx > vb + t then Bene ← Bene ∪ {x};12

else if vx > vb − t then Neutral ← Neutral ∪ {x};13

SetWeight(h, h, N+, N−, N+−);14

Neutral ← Neutral ∪ {h};15

if Bene 6= ∅ then return RandomSelect(Bene);16

else return RandomSelect(Neutral);17

Theorem 4.4. For every target conjunction c and every initial hypothesis h0 it holds that after O
(

q + |h0| ln
1
δ

)

iterations, each iteration evaluating the performance of O (nq) hypotheses, and each performance being

evaluated using sample size O
(

(

1
ε

)4 (

lnn + ln 1
δ

+ ln 1
ε

)

)

per iteration, equation (2) is satisfied.

Proof. The analysis depends on the size of the target and the initial hypothesis.

Short Initial Hypothesis and Short Target. Note first that for any hypothesis h and for any target
c such that |h| = m + r 6 q and |c| = m + u 6 q, for the non-zero values of the quantity ∆ it holds
that |∆| > 21−m−r−u > 21−(m+r)−(m+u) = 21−(|h|+|c|) > 21−2q. Tolerance for short hypotheses is t =
1
2
21−2q = 2−2q. Hence as long as the estimate of the performance is within t of its exact value, beneficial

mutations are identified as beneficial. Therefore it is sufficient to analyze the signs of ∆ along the arrows
in Figure 1. Note that deleting a good variable is always deleterious, and so u is non-increasing.

If there are at least two undiscovered variables (i.e., u > 2, corresponding to Figure 1a), then beneficial
mutations can only add or swap variables. Each swap increases the number of good variables, and so after
|c| − 1 many swaps there is at most one undiscovered variable. Hence, as long as u > 2, there can be at
most q − |h0| additions and at most |c| − 1 swaps.

If there is one undiscovered variable (i.e., u = 1, corresponding to Figure 1b), then, in 1 step, the first
beneficial mutation brings this variable into the hypothesis, and all variables become discovered.

If all variables are discovered (i.e., u = 0 , corresponding to Figure 1c) then beneficial mutations are
those which delete bad variables from h0. After we get to the target, there are no beneficial mutations,
and the only neutral mutation is the target itself, hence there is no change. Thus the number of steps
until getting to the target is at most q − |c|.

Summing up the above, the total number of steps is at most 2q − |h0| 6 2q.

Short Initial Hypothesis and Long Target. As long as |h| < q, we have u > 2, corresponding to
Figure 1a. Therefore adding any variable is beneficial. Note that replacing a bad variable by a good one
may or may not be so, depending on the size of c. The same analysis as above implies that after at most
2q beneficial mutations we reach a hypothesis of size q.

6

If |c| > q+2 then u > 2 continues to hold, and so all beneficial or neutral mutations will keep hypothesis
size at q. However, by Corollary 4.2, all those hypotheses have performance at least 1 − ε.

If |c| = q + 1 then after reaching level q there is one undiscovered variable, corresponding to Figure
1b. Swaps of bad variables for good ones are beneficial. Combining these mutations with the ones needed
to reach level q, we can bound the total number of steps until reaching a hypothesis of q good variables
by 2q (using the same argument as above). After that, there are only neutral mutations swapping a good
variable with another good one, and again all those hypotheses have performance at least 1 − ε.

As a summary, if we start from a short hypothesis and all the empirical tests perform as expected,
then, we are always at a good hypothesis after 2q iterations. This will not be the case when we start from
a long hypothesis.

Long Initial Hypothesis. For long hypotheses the neighborhood consists of hypotheses obtained by
deleting a variable, and the hypothesis itself. We set the tolerance in such a way that every hypothesis
in the neighborhood is neutral. This guarantees that with high probability in O

(

|h0| ln
1
δ

)

iterations we
arrive at a hypothesis of size at most q, and from then on we can apply the analysis of the previous two
cases. The model assumes that staying at a hypothesis is always a neutral mutation, hence it is possible
to end up in a hypothesis of size bigger than q.

Computing sample sizes is done by standard Chernoff bound arguments and the details are omitted.

5 Monotone Conjunctions under Product Distributions Using

Correlation

A product distribution over {0, 1}n is specified by the probabilities p = (p1, . . . ,pn), where pi is the
probability of setting the variable xi to 1. The probability of a truth assignment (a1, . . . ,an) ∈ {0, 1}n is
∏n

i=1 pai

i · (1 − pi)
1−ai . For the uniform distribution Un the probabilities are p1 = . . . = pn = 1/2. We

write Pn to denote a fixed product distribution, omitting p for simplicity.
Let us consider a target c and a hypothesis h as in (6). Let index (z) be a function that returns the set of

indices of the participating variables in a hypothesis z. We define the sets M = index (h)∩ index (c) ,R =

index (h) \ M, and U = index (c) \ M. We can now define

M =
∏

i∈M

pi, R =
∏

ℓ∈R

pℓ, and U =
∏

k∈U

pk.

Finally, set |M| = m, |R| = r, and |U| = u. Then (7) generalizes to

PerfPn
(h, c) = 1 − 2M(R + U − 2RU). (10)

We impose some conditions on the pi’s in the product distribution.

Definition 5.1 (Nondegenerate Product Distribution). A product distribution Pn given by p = (p1, . . . ,pn)

is µ-nondegenerate if

• min{pz, 1 − pz} > µ for every variable z

• the difference of any two members of the multiset {p1, 1 − p1, . . . ,pn, 1 − pn} is zero, or has absolute
value at least µ.

The following Lemma and its Corollary are analogous to Lem. 4.1 and Cor. 4.2.

Lemma 5.2 (Performance Lower Bound). Let a hypothesis h such that |h| > q − 1 and a target c such
that |c| > q + 1. Then, PerfPn

(h, c) > 1 − 6.2 · e−µq.

Corollary 5.3. Let q > 1
µ

ln
(

6.2
ε

)

, |h| > q − 1, |c| > q + 1 ⇒ PerfUn
(h, c) > 1 − ε.

7

?

bad

bad

bad

good

good

good

?

(a) U < 1/2

good

bad

bad

bad

good

good

(b) U = 1/2

bad

good

good

good

bad

bad

(c) U > 1/2

Figure 2: The style and the directions of arrows have the same interpretation as in Figure 1. The
middle layer represents variables that have the same probability of being satisfied under the distribution;
i.e. pgood = pbad. A node x that is one level above another one y indicates higher probability of satisfying
the variable x; i.e. px > py. Here we distinguish the three basic cases for U; for two arrows in the first
case we have a ? to indicate that ∆ can not be determined by simply distinguishing cases for U.

5.1 Properties of the Local Search Procedure

We want to generalize the results of Section 4.1 by looking at the quantity

∆ = PerfPn

(

h ′, c
)

− PerfPn
(h, c) (11)

which corresponds to (8). We use (10) for the different types of mutations.
The signs of ∆ depend on the ordering of the probabilities pi. A variable xi is smaller (resp., larger)

than a variable xj if pi < pj (resp., xi > xj). If pi = pj then xi and xj are equivalent. Analyzing ∆, we draw
the different cases in Figure 2. However, when U < 1/2, two arrows can not be determined. These cases
refer to mutations where we replace a bad variable with a bigger good one, or a good variable with a smaller
bad one. Both mutations depend on the distribution; the latter has ∆ = −2MR(pin/pout −1+2U(1−pin)),
where out is a good variable and in is the bad smaller variable. One application of this equation is
that the Structure Theorem 4.3 does not hold under product distributions. The other application is the
construction of local optima; example follows.

Example 1. Let Pn be a distribution such that p1 = p2 = 1/3, and the rest of the n − 2 variables are
satisfied with probability 1/10. Set the target c = x1 ∧ x2. A hypothesis h formed by q bad variables has
performance PerfPn

(h, c) = 1− 2Pr [error region] < 1− 2/9 = 7/9. Note that, for the nonzero values of ∆,
it holds |∆| > 2µq+2. Hence, by setting the tolerance t = µq+2, and the accuracy on the empirical tests on
conjunctions of size at most q, equal to ǫM = t = µq+2, all the arrows in the diagrams can be determined
precisely.

Starting from h0 = ∅, there are sequences of beneficial mutations in which the algorithm inserts a bad
variable in each step, e.g. h0 = ∅ h1 = x3 . . . hq =

∧q+2

ℓ=3 xℓ. This is a local optimum, since
swapping a bad variable with a good one yields ∆ < 0. Note that µ = 1/10,q = ⌈10 ln(62)⌉ = 42, and for
ε = 1/10 the algorithm is stuck in a hypothesis with PerfPn

(hq, c) < 1 − ε.

Under the setup of the example above, the algorithm will insert q bad variables in the first q steps,

with probability Γ =
∏q−1

r=0

(

1 − 2
n−r

)

=
(n−q)(n−q−1)

n(n−1)
. Requiring n >

⌈

2q
δ

⌉

we have Γ > 1 − δ. Hence,

starting from the empty hypothesis, the algorithm will fail for any ε < 2/10, with probability 0.9, if we
set n > 840.

8

5.2 Special Cases

Although for arbitrary targets and arbitrary product distributions we can not guarantee that the algorithm
will produce a hypothesis h such that (2) is satisfied, we can however, pinpoint some cases where the
algorithm will succeed with the correct setup. These cases are targets of size at most 1 or greater than q,
and heavy targets; i.e. targets that are satisfied with probability at least 1/2.

6 Covariance as a Fitness Function

The discussion in the previous section shows that there are problems with extending the analysis of the
swapping algorithm from the uniform distribution to product distributions. In this section we explore the
possibilities of handling product distributions with a different fitness function, covariance, given by (5).

Using the same notation as in (6), and with M,R, and U representing the sets of indices as in the
previous section, the first term is given by (10). Furthermore,

{

E [h] = −1 + 2 ·
∏

i∈M pi ·
∏

ℓ∈R pℓ = −1 + 2MR

E [c] = −1 + 2 ·
∏

i∈M pi ·
∏

k∈U pk = −1 + 2MU
(12)

Thus from (10) and (12) we get
Cov [h, c] = 4MRU (1 − M) . (13)

We use (13) to examine the difference ∆ = Cov
[

h ′, c
]

− Cov [h, c] .

Comparing h ′ ∈ N+ with h. We introduce a variable z in the hypothesis h. If z is good, then
∆ = 4M2RU (1 − pz) > 0. If z is bad, then ∆ = (pz − 1) Cov [h, c] 6 0. We have equality if m = 0;
i.e. M = 1.

Comparing h ′ ∈ N− with h. We remove a variable z from the hypothesis h. If z is good, then
∆ = −4M2RU(1/pz − 1) < 0. If z is bad, then ∆ = (1/pz − 1)Cov [h, c] > 0. We have equality if m = 0;
i.e. M = 1.

Comparing h ′ ∈ N+− with h. We swap a variable out with a variable in.
If out is good and in is good, then ∆ = 4M2RU(1 − pin/pout).
If pout 6 pin, then ∆ 6 0, with ∆ = 0 if pout = pin. If pout > pin ⇒ ∆ > 0.
If out is good and in is bad, then ∆ = 4MRU · ((pin −1)+M · (1−pin/pout)). We now examine the quantity
κ = (pin − 1) + M · (1 − pin/pout):
pout 6 pin: Then (1 − pin/pout) 6 0, and (pin − 1) < 0. Therefore ∆ < 0.
pout > pin: Note M 6 pout. Hence, κ < pin − 1 + 1 − pin/pout = pin(1 − 1/pout) < 0.
If out is bad and in is bad, then ∆ = (pin/pout − 1) · Cov [h, c] and Cov [h, c] > 0:
pout 6 pin: In this case, ∆ > 0, and ∆ = 0 when m = 0, or pout = pin.
pout > pin: In this case ∆ 6 0, and ∆ = 0 when m = 0.
If out is bad and in is good, then ∆ = 4MRU(1/pout − 1 + M(1 − pin/pout)). We examine the quantity
κ = 1/pout − 1 + M(1 − pin/pout):
pout < pin: Note M 6 1. Hence, κ > 1/pout − 1 + 1 − pin/pout = (1 − pin)/pout > 0.
pout > pin: In this case pin/pout 6 1⇒ κ > 0⇒ ∆ > 0.

The effects of the different mutations are summarized in Figure 3. Compared to Figure 2, it is remark-
ably simple and uniform, and can be summarized as follows. If there are some mutual variables (i.e. good)
in the hypothesis, then

• ∆ > 0 if a good variable is added, a bad variable is deleted, a bad variable is replaced by a good one,
a good variable is replaced by a smaller good one, and a bad variable is replaced by a larger bad one,

9

good

bad

bad

bad

good

good

(a) M = 1

bad

good

good

good

bad

bad

(b) M < 1

Figure 3: The style and the directions of arrows have the same interpretation as in the previous figures.
Similarly, the hierarchy of nodes on levels has the same interpretation. Some arrows are missing in the
left picture since there are no good variables in the hypothesis; i.e. M = 1.

• ∆ < 0 if a good variable is deleted, a bad variable is added, a good variable is replaced by a bad one,
a good variable is replaced by a larger good one, and a bad variable is replaced by a smaller bad one,

• ∆ = 0 if a good variable is replaced by an equivalent good one, and a bad variable is replaced by an
equivalent bad one.

If there are no mutual variables in the hypothesis, then

• ∆ > 0 if a good variable is added, or a good variable replaces a bad one.

• ∆ = 0 if a bad variable is added, deleted, or replaced by a bad one.

Note that the beneficiality or neutrality of a mutation is not determined by these observations; it also
depends on the tolerances. Nevertheless, these properties are sufficient for an analogue of Theorem 4.3 on
the structure of best approximations to hold for product distributions and the covariance fitness function.

Theorem 6.1 (Structure of Best Approximations). The best q-approximation of a target c, such that
|c| > 1, is c itself if |c| 6 q, or any hypothesis formed by q good variables, such that the product

∏q
i=1 pi

is minimized if |c| > q.

As mentioned earlier, the existence of characterizations of best approximations is related to evolvability.
This relationship is now illustrated for product distribution and the covariance fitness function. First we
introduce an idealized version of evolution algorithms, where beneficiality depends on the precise value of
the performance function.

Definition 6.2 (Unbounded-Precision Evolution Algorithm). An evolution algorithm is unbounded-
precision if, instead of (3) it uses

{

Bene = N ∩
{

h ′ | PerfDn

(

h ′, c
)

> PerfDn
(h, c)

}

Neut = N ∩
{

h ′ | PerfDn

(

h ′, c
)

= PerfDn
(h, c)

} , (14)

or, equivalently, arbitrary tolerance to determine which hypotheses are beneficial, neutral or deleterious.
All other parts of the definition are unchanged.

Consider the following unbounded-precision evolution algorithm: starting from an arbitrary initial
hypothesis, apply beneficial mutations as long as possible. Then beneficial mutations can add a good
variable, delete a bad variable, replace a bad variable by a good one, replace a good variable by a smaller
good one or replace a bad variable by a larger bad one. The amortized analysis argument of Theorem 6.4
in the next section shows that the number of steps is O(n2). Hence the following result holds.

10

Theorem 6.3. The swapping algorithm using the covariance fitness function is an efficient evolution
algorithm for monotone conjunctions over product distributions.

6.1 Evolving Short Monotone Conjunctions under µ-Nondegenerate Product

Distributions

The problem with applying the unbounded-precision algorithm to the bounded-precision model is that the
presence of the U factor in ∆ may make the performance differences superpolynomially small. If we assume
that the product distribution is non-degenerate and the target is short then this cannot happen, and an
analysis similar to Theorem 4.4 shows that we indeed get an efficient evolution algorithm. In Section 7 we
give some remarks on possibilities for handling long targets. We set

q = O

(

1

µ
ln

1

ε

)

.

Theorem 6.4. Let Pn be a µ-nondegenerate product distribution. The swapping algorithm, using the
covariance fitness function, evolves non-empty short (1 6 |c| 6 q) monotone conjunctions starting from
an initial hypothesis h0 in O

(

nq + |h0| ln
1
δ

)

iterations, each iteration examining the performance of O (nq)

hypotheses, and each performance being evaluated using sample size

O

(

(

1

µ

)4(
1

ε

)(4/µ) ln(1/µ)(

lnn + ln
1

δ
+ ln

1

µ
+ ln

1

ε

)

)

.

Proof. The analysis of the proof is similar to that of Theorem 4.4.

Short Initial Hypothesis. Again, we are interested in the non-zero values of ∆ so that, given repre-
sentative samples, we can characterize precisely all the mutations. It holds that |∆| > 4µ2q+2. Therefore,
we set the tolerance t = 2µ2q+2, and require accuracy for the empirical estimates ǫM = t = 2µ2q+2.

Without loss of generality, we are in the state of Figure 3b, otherwise, in 1 step a good variable appears
in the hypothesis, and we move from Figure 3a to Figure 3b. Throughout the evolution, implicitly, we
have two arrays; one with good variables, and one with bad variables. The array of bad variables shrinks
in size, while the array of good variables expands in size. Due to mutations that swap good with good
variables, and bad with bad variables, each entry of those arrays can take at most n different values, since
the entries of the bad array increase in value, while the entries of the good array decrease in value; i.e. we
have O (nq) such mutations overall. Mutations that change the parameters m, r increase the number of
good variables or decrease the number of bad variables, hence we can have at most O (q) such mutations.

Long Initial Hypothesis. The arguments are similar to those in Theorem 4.4, and in O
(

|h0| ln
1
δ

)

stages the algorithm forms a short hypothesis of size q. Then, we apply the analysis above.

7 Further Remarks

We are currently working on completing the results of Section 6, by handling the case of long targets. The
problem with long targets is that the term U appearing in ∆ can be small. This may lead to the increase
in fitness being smaller than the tolerance. The following observation may provide a starting point. It may
happen that there are no beneficial mutations, but all mutations are neutral. In this case the evolution
process is similar to a random walk on the set of short hypotheses. However, most short hypotheses
have maximal size. Therefore, after sufficiently many steps in the random walk, the hypothesis will have
maximal size with high probability. Such hypotheses have good performance, and so the evolution process
leads to a good hypothesis with high probability.

The evolvability of monotone conjunctions for more general classes of distributions, using the swapping
algorithm with the covariance fitness function, or using some other simple evolutionary mechanism, is an

11

important open problem [14]. There is a similar swapping-type learning algorithm for decision lists, where
a single step exchanges two tests in the list [13, 1]. Can such an algorithm be used in the evolution model?
A positive answer could give an alternative to Michael’s Fourier-based approach [9].

In summary, it appears that from the perspective of learning theory, one of the remarkable features of
Valiant’s new model of evolvability is that it puts basic, well-understood learning problems in a new light
and poses new questions about their learnability. One of these new questions is the performance of basic,
simple evolution mechanisms, like the swapping algorithm for monotone conjunctions. The results of this
paper suggest that the analysis of these mechanisms may be an interesting challenge.

References

[1] Jorge Castro and José L. Balcázar. Simple PAC Learning of Simple Decision Lists. In ALT ’95, pages
239–248, London, UK, 1995. Springer-Verlag.

[2] Vitaly Feldman. Evolvability from learning algorithms. In STOC ’08, pages 619–628, New York, NY,
USA, 2008. ACM.

[3] Vitaly Feldman. Robustness of Evolvability. In COLT 2009, 2009.

[4] Merrick L. Furst, Jeffrey C. Jackson, and Sean W. Smith. Improved learning of AC0 functions. In
COLT ’91, pages 317–325, 1991.

[5] Thomas Hancock and Yishay Mansour. Learning monotone ku DNF formulas on product distribu-
tions. In COLT ’91, pages 179–183, 1991.

[6] Adam Tauman Kalai and Shang-Hua Teng. Decision trees are PAC-learnable from most product
distributions: a smoothed analysis. CoRR, abs/0812.0933, 2008.

[7] Michael Kearns. Efficient noise-tolerant learning from statistical queries. J. ACM, 45(6):983–1006,
1998.

[8] Michael J. Kearns and Umesh V. Vazirani. An introduction to computational learning theory. MIT
Press, Cambridge, MA, USA, 1994.

[9] Loizos Michael. Evolvability via the Fourier Transform, 2009.

[10] Rüdiger Reischuk and Thomas Zeugmann. A Complete and Tight Average-Case Analysis of Learning
Monomials. In STACS’99, pages 414–423, 1999. Springer.

[11] Johannes P. Ros. Learning Boolean functions with genetic algorithms: A PAC analysis. In FGA,
pages 257–275, San Mateo, CA, 1993. Morgan Kaufmann.

[12] Rocco A. Servedio. On learning monotone DNF under product distributions. Inf. Comput., 193(1):57–
74, 2004.

[13] Hans-Ulrich Simon. Learning decision lists and trees with equivalence-queries. In EuroCOLT ’95,
pages 322–336, London, UK, 1995. Springer-Verlag.

[14] Leslie G. Valiant. Evolvability. In Ludek Kucera and Antońın Kucera, editors, MFCS, vol. 4708 of
LNCS, pages 22–43, 2007. Springer.

12

	Introduction
	An Informal Description of the Swapping Algorithm
	Preliminaries
	Monotone Conjunctions under the Uniform Distribution
	Properties of the Local Search Procedure
	Evolving Monotone Conjunctions under the Uniform Distribution

	Monotone Conjunctions under Product Distributions Using Correlation
	Properties of the Local Search Procedure
	Special Cases

	Covariance as a Fitness Function
	Evolving Short Monotone Conjunctions under -Nondegenerate Product Distributions

	Further Remarks

