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Abstract. This is a rough historical account of some uses of the Lefschetz Principle in fixed point theory
and index theory. The Lefschetz Principle states that the alternating sum of the traces on cohomology (a

global and rigid invariant) is equal to the alternating sum of the traces on the underlying cochain complex

(a local and far less rigid invariant). The original Lefschetz Theorem for compact polyhedra then follows
easily. The Lefschetz Principle extends readily to index theory and general fixed point theory on compact

manifolds, where it is more commonly known as the heat equation method. We outline the proofs of the

Atiyah-Singer Index Theorem and the Atiyah-Bott Fixed Point Theorem using this method.

Some Bott Magic? “No! Just physics!”

The above photo was taken at the Bott house on Martha’s Vinyard, probably in the summer of 1983, and
probably by Paul Schweitzer, SJ. Pictured with the Master are the author in the middle, and Lawrence
Conlon (a Bott student). Note the charcoal starter, home made from a stove pipe and complete with floppy
wooden handles. Someone asked Raoul if it worked by magic. His answer was typical of the man–succinct
and to the point.

This is an expanded write up of the talk I gave at the conference “A Celebration of Raoul Bott’s Legacy in
Mathematics”, held June 9-13, 2008, at the Centre de Recherches Mathématiques, Université de Montréal.
Its purpose was to illustrate some of the magic that Raoul Bott worked in mathematics. It covers some very
deep results, so time constraints dictated that proofs be outlined only in the broadest terms. They should
not be taken literally. Readers interested in the details of the proofs should consult the references.
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1. Lefschetz Fixed Point Theorem

The classical Lefschetz Fixed Point Theorem gives a cohomological criterion for a continuous map to have
a fixed point. In its simplest form its proof is almost obvious once the Lefschetz Principle is proven. The
material in this section follows closely a lecture given by Raoul Bott in 1984.

Theorem 1.1 (Lefschetz Fixed Point Theorem). Let X be a compact polyhedron, and f : X → X a
continuous map. Set

L(f) =
∑
k

(−1)k tr
(
f∗ : Hk(X)→ Hk(X)

)
.

If L(f) 6= 0, then f has a fixed point.

Since the map f∗ only depends on the homotopy class of f , L(f) is a homotopy invariant. Also note
that L(f) is a generalization of the Euler number χ(X) of X, since L(I) = χ(X), where I : M → M is the
identity map.

A good example to keep in mind is the antipodal map A : S2 → S2, which has no fixed points, so L(A)
must be zero. In particular, tr

(
A∗ : H0(S2) → H0(S2)

)
= 1, since S2 is connected, and because A is

orientation reversing, tr
(
A∗ : H2(S2)→ H2(S2)

)
= −1, so indeed L(A) = 0.

Proof. Our method of proof is to assume that f has no fixed points and then show that L(f) = 0. The
most naive approach would be to attempt to show that all the individual tr

(
f∗ : Hk(X) → Hk(X)

)
are

zero. As the example above shows, this is a vain hope, but it does contain the essential idea of the proof,
once we realize that the reason it doesn’t work is that the spaces Hk(X) are too small. If we are willing to
expand the domain of the f∗ the proof becomes obvious. To do this we need

Proposition 1.2 (The Lefschetz Principle).

L(f) =
∑
k

(−1)k tr
(
f∗ : Ck(X)→ Ck(X)

)
.

Here we are using simplicial cochains Ck(X) to compute the cohomology of X, and we may use simplices
as small as we like to do so. Since f has no fixed points and X is compact, f must move points at least a fixed
positive distance, say δ. Then we use simplices which have diameter less than δ/100 and we approximate f
by a simplicial map g so that pointwise g is within δ/10 of f . We may assume that δ is so small that g is
homotopic to f , so we may as well assume that g = f . Because f moves points at least δ and our simplices
are at most δ/100 in diameter, it is impossible for f to map any simplex to itself, so it is immediate that for
all k, tr

(
f∗ : Ck(X)→ Ck(X)

)
= 0. �

Proof of The Lefschetz Principle. Denote by Zk the cocycles in Ck = Ck(X), and by Bk the
coboundaries. Then we have the following commutative diagrams of finite dimensional vector spaces.

(∗)

0 −→ Zk −→ Ck −→ Bk+1 −→ 0

0 −→ Zk −→ Ck −→ Bk+1 −→ 0
? ? ?

(∗∗)

0 −→ Bk −→ Zk −→ Hk −→ 0

0 −→ Bk −→ Zk −→ Hk −→ 0
? ? ?

where all the vertical maps are restriction of f∗. Note that the rows of both diagrams are short exact
sequences. Thus for all k,

tr
(
f∗ |Zk

)
+ tr

(
f∗ |Bk+1

)
= tr

(
f∗ |Ck

)
and

tr
(
f∗ |Bk

)
+ tr

(
f∗ |Hk

)
= tr

(
f∗ |Zk

)
.
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We may combine all this information as follows. For t ∈ R, set

Bt =
∑
k

tk tr
(
f∗ |Bk

)
, Ct =

∑
k

tk tr
(
f∗ |Ck

)
, Ht =

∑
k

tk tr
(
f∗ |Hk

)
,

and
Zt =

∑
k

tk tr
(
f∗ |Zk

)
.

Then (∗) gives the equation

Ct = Zt +
1
t
Bt,

while (∗∗) gives
Ht = Zt −Bt.

Subtracting we get

Ct −Ht =
1 + t

t
Bt,

and setting t = −1 gives
C−1 = H−1,

which is the Lefschetz Principle. �
This seemingly simple theorem has many wonderful and varied applications. We give but a few.

Corollary 1.3. Let X be a compact, contractible polyhedron, and f : X → X a continuous map. Then f
has a fixed point.

Compactness is essential here, as the map x→ x+ 1 of R to itself has no fixed point.

Corollary 1.4 (Brouwer Fixed Point Theorem). Any continuous map of the closed unit disc in Rn must
have a fixed point.

Corollary 1.5. Let X be a compact polyhedron with χ(X) 6= 0. Then any flow on X has a fixed point.

Corollary 1.6. For all k > 0, there is no continuous map f : S2k → S2k so that x ⊥ f(x) for all x ∈ S2k.

For a smooth manifold M , the Lefschetz Theorem can be refined. At each fixed point x of f , we have the
self map f∗,x : TMx → TMx. A fixed point x is non-degenerate provided that the determinant

det(1− f∗,x) 6= 0.

Such fixed points are isolated. The graph of f is transversal to the diagonal ∆M of M ×M if and only if all
of its fixed points are non-degenerate. If f is transversal, then compactness of M implies that there are only
a finite number of fixed points. Then the Lefschetz number of f is the sum of the signs of the determinents
of the linear maps (1− f∗,x), that is

Theorem 1.7 (H. Hopf). Suppose that f : M → M is a smooth map of a compact smooth manifold whose
graph is transversal to the diagonal ∆M ⊂M ×M . Then

L(f) =
∑

f(x)=x

det(1− f∗,x)
|det(1− f∗,x)|

.

A wonderful generalization of this to holomorphic vector fields was given by Bott in [B67a], see also
[B67b]. Let M a compact, complex n dimensional manifold. Denote by cj the j-th Chern polynomial, and
by cj(M) ∈ H2j(M) the j-th Chern class of M . Suppose that Y a holomorphic vector field on M with
isolated non-degenerate zeros. In local coordinates Y can be written as

Y (z) =
∑
k

ak(z)∂/∂zk.

For z ∈M , set

Az =
[∂ak
∂z`

(z)
]
.
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The fact that Y has non-degenerate zeros is equivalent to the fact that at any zero z of Y , det(Az) 6= 0. Since
cn(Az) is a multiple of det(Az), this is also equivalent to cn(Az) 6= 0. Now let j1, . . . , j` be non-negative
integers with j1 + ...+ j` ≤ n, and set

CJ = cj1 · · · cj` .

Theorem 1.8 (Bott). ∫
M

CJ(M) =
∑

Y (z)=0

CJ(Az)
cn(Az)

.

As the proof does not use the Lefschetz Principle, we will omit it. The reader should note that if

j1 + · · ·+ j` < n, then the right hand side vanishes, e.g.
∑

Y (z)=0

1
cn(Az)

= 0.

2. Index Theory

Our next application of the Lefschetz Principle occurs in index theory. The Atiyah-Singer Index Theorem
[ASI] was one of the watershed results of the last century. For an elliptic differential operator on a compact
manifold, this theorem establishes the equality of the analytical index of the operator (the dimension of
the space of solutions of the operator minus the dimension of the space of solutions of its adjoint) and
the topological index (which is defined in terms of characteristic classes associated to the operator and the
manifold it is defined over). It subsumes many other important theorems (e. g. the Signature Theorem, the
Riemann-Roch Theorem) as special cases, and it has many far reaching extensions: to families of operators;
to operators on covering spaces; to operators defined along the leaves of foliations; and to operators defined
purely abstractly.

In order to state the theorem, we need some notation. Let M be closed, oriented, n-dim, Riemannian
manifold, and let E0, E1, . . . , Ek be Hermitian vector bundles defined over M . For each i suppose that we
have a first order differential operator di : C∞(Ei) −→ C∞(Ei+1), and that di+1◦di = 0. To say that each di
is a first order differential operator means that at each point of M there is a coordinate chart U, x1, . . . , xn,
so that the Ei are trivial over U , and with respect to these trivializations, di may be written as

di = Ai0(x) +
n∑
i=1

Aij(x)∂/∂xj ,

where the Aij(x) are dimEi by dimEi+1 matrices. So we may think of the Aij(x) as linear maps between
the finite dimensional spaces Aij(x) : Ei,x → Ei+1,x.

For each co-tangent vector ξ = (ξ1, ..., ξn) ∈ T ∗Mx, we may form the linear map

σ(di, ξ) =
n∑
i=1

ξjA
i
j(x) : Ei,x → Ei+1,x,

where the reader should note that we have discarded Ai0(x), the order zero part of di. Then (E, d) =
({Ei}, {di}) is an elliptic complex provided that for each non-zero ξ, the symbol sequence

0 −→ E0,x
σ(d0,ξ)−→ E1,x

σ(d1,ξ)−→ · · · σ(dk−2,ξ)−→ Ek−1,x
σ(dk−1,ξ)−→ Ek,x −→ 0

is exact. This means that the complex (E, d) defines a K-theory class σ(E, d) ∈ K∗(T ∗M). Using the
Riemannian structure on M , we can (and will) identify the tangent bundle TM and the co-tangent bundle
T ∗M .

2.1. Two examples. We briefly recall two classical examples of elliptic complexes, namely the de Rham and
the Signature complexes. There are two other classical elliptic complexes, the Dolbeault and Spin complexes.
The Dolbeault complex is briefly discussed in Section 3. For a discussion of the Spin complex, and more
complete discussions of the other complexes, the reader is referred to [ASIII, BGV92, Gi84, LM89]. As
explained in those references, many more elliptic complexes can be constructed out of these four complexes
by twisting them by an arbitrary Hermitian bundle over M .
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• The de Rham Complex.
The de Rham complex of a manifold M consists of the C valued exterior differential forms. So in this

case, Ei = ∧iT ∗M ⊗ C, that is the i-th exterior power of the complexified cotangent bundle, and di is just
the usual exterior derivative. The symbol maps are then σ(di, ξ) = ∧ξ, and it is a classical result that the
symbol sequence is exact for any non-zero ξ. The index of this complex is just the Euler number of M , a
fairly simple invariant.

• The Signature Complex.
A far more interesting invariant is provided by the signature complex. For this, we assume that M is

oriented, that its dimension is even, say n = 2`, and we choose a Riemannian metric on M . Recall (see for
instance [W]) that we then have a bundle map ∗ from ∧iT ∗M ⊗ C to ∧n−iT ∗M ⊗ C, which satisfies

∗2 = (−1)i(n−i).

If we define the map
τ =
√
−1

i(i−1)+`∗ : ∧iT ∗M ⊗ C→ ∧n−iT ∗M ⊗ C,
then one sees easily that τ2 = 1. Thus τ is an involution on the bundle

E =
n⊕
i=0

∧iT ∗M ⊗ C,

so E splits as the sum of the ±1 eigenspaces of τ ,

E = E+ ⊕ E−.
The adjoint d∗ : C∞(∧iT ∗M ⊗ C)→ C∞(∧i−1T ∗M ⊗ C) of the exterior derivative d is just d∗ = − ∗ d∗. If
we set D = d+ d∗, then it is not difficult to show that Dτ = −τD, so D : C∞(E)→ C∞(E) maps C∞(E+)
to C∞(E−), and vice-versa. The signature complex then is

D+ : C∞(E+)→ C∞(E−).

It is called the signature complex because the index of D+ is the signature of the quadratic form on H`(M ; R)
given by the cup product (which is in fact zero if ` is odd). See again [ASIII, BGV92, Gi84, LM89].

Returning now to our general situation of the elliptic complex (E, d), we set Hi(E, d) = ker di/ image di−1.
The facts that M is compact and (E, d) is elliptic imply that dimHi(E, d) <∞. We then define

Ind(E, d) =
k∑
i=0

(−1)i dimHi(E, d).

Recall, see [MS89], that associated to any manifold such as M , there is a characteristic cohomology
class, the Todd class, Td(TM ⊗ C) ∈ H∗(TM ; R), and that there is a natural map, the Chern character,
ch : K∗(T ∗M)→ H∗(T ∗M ; R) = H∗(TM ; R).

Theorem 2.1 (Atiyah-Singer).

Ind(E, d) = (−1)n
∫

T M

Td(TM ⊗ C)ch
(
σ(E, d)

)
.

Proof. The original proof of Atiyah and Singer outlined in [AS63] is based on cobordism theory, and a proof
along these lines appeared in [P65]. The proof in [ASI] uses psuedodifferential operators and K-theory,
techniques which generalize to many interesting cases. The proof outlined below, given by Atiyah, Bott, and
Patodi in [ABP73] and independently by Gilkey in [Gi73], is based on the heat equation, which is a variation
of the zeta-function argument due to Atiyah and Bott.

Using the metrics on M and the Ei, define the adjoint maps

d∗i−1 : C∞(Ei) −→ C∞(Ei−1).

The associated Laplacians are given by

∆i = di−1d
∗
i−1 + d∗i di : C∞(Ei) −→ C∞(Ei).
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The ∆i are self adjoint, non-negative operators. The ellipticity of (E, d) and the compactness of M imply
that the ∆i have some very nice properties. In particular they have discrete, real eigenvalues 0 = λ0 <
λ1 < λ2 < · · · , which march off to infinity rather quickly. In addition the eigenspaces Ei(λj) ⊂ C∞(Ei)

associated to λj are finite dimensional, and L2(Ei) =
∞⊕
j=0

Ei(λj). Thus we may think of ∆i as the infinite

diagonal matrix

∆i = Diag(0, . . . , 0, λ1, . . . , λ1, λ2, . . . , λ2, . . .),
where each λi occurs only a finite number of times. The associated heat operator is the infinite diagonal
matrix

e−t∆i = Diag(1, . . . , 1, e−tλ1 , . . . , e−tλ1 , e−tλ2 , . . .).
The λi go to infinity so fast that this operator is of trace class, that is

tr e−t∆i =
∞∑
j=0

e−tλj dimEi(λj) <∞.

One of the fundamental steps in the heat equation proof of the index theorem is the following.

Proposition 2.2 (The Heat Equation Lefschetz Principle). For all t > 0,

Ind(E, d) =
k∑
i=0

(−1)itr e−t∆i .

Proof. It is a fairly routine calculation to prove that for each positive λj , the sequence

0 −→ E0(λj)
d0−→ E1(λj)

d1−→ · · · dk−1−→ Ek(λj) −→ 0,

is exact. So for all λj > 0,
k∑
i=0

(−1)i dimEi(λj) = 0.

Thus we have that for all t > 0 (recall λ0 = 0),

k∑
i=0

(−1)itr e−t∆i =
k∑
i=0

 ∞∑
j=0

(−1)ie−tλj dimEi(λj)

 =

∞∑
j=0

e−tλj

[
k∑
i=0

(−1)i dimEi(λj)

]
=

k∑
i=0

(−1)i dimEi(λ0).

Now Hodge Theory tells us that Ei(λ0) ' Hi(E, d), so
k∑
i=0

(−1)i dimEi(λ0) =
k∑
i=0

(−1)i dimHi(E, d) = Ind(E, d).

�

The heat operator e−t∆i is much more than trace class. In fact it is a smoothing operator, so there is a
smooth section kit(x, y) of Hom(π∗2Ei, π

∗
1Ei) over M ×M , (where πj : M ×M →M are the projections), so

that for s ∈ C∞(Ei),

e−t∆i(s)(x) =
∫

M

kit(x, y)s(y)dy.

In particular, if ξij,` is an orthonormal basis of Ei(λj), we have

kit(x, y) =
∑
j,`

e−tλjξij,`(x)⊗ ξij,`(y),
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where the action of ξij,`(x)⊗ ξij,`(y) on s(y) is

ξij,`(x)⊗ ξij,`(y)(s(y)) = < ξij,`(y), s(y) > ξij,`(x),

and < ·, · > is the inner product on Ei,y. It follows fairly easily that

tr e−t∆i =
∫

M

tr
(
kit(x, x)

)
dx,

so we have that

Ind(E, d) =
k∑
i=0

(−1)i
∫

M

tr
(
kit(x, x)

)
dx =

∫
M

k∑
i=0

(−1)itr
(
kit(x, x)

)
dx,

which is independent of t. For t near zero, the heat operator is essentially a local operator and so is subject
to local analysis. It is a classical result, see for instance [BGV92] and [Gi84], that it has an asymptotic
expansion as t→ 0. In particular, for t near 0,

k∑
i=0

(−1)itr
(
kit(x, x)

)
∼

∑
j≥−n

tj/2aj(x),

where the aj(x) can be computed locally (that is, in any coordinate system and relative to any local framings)
from the ∆i. Each aj(x) is a complicated expression in the derivatives of the ∆i, up to a finite order which
depends on j. Now we have,

Ind(E, d) =
∫

M

k∑
i=0

(−1)tr
(
kit(x, x)

)
dx = lim

t→0

∑
j≥−n

tj/2
∫

M

aj(x) =
∫

M

a0(x),

since the quantity
∫

M

k∑
i=0

(−1)itr
(
kit(x, x)

)
dx is independent of t. It was the hope, first raised explicitly

by McKean and Singer [McS67], that there might be some “miraculous” cancellations in the complicated
expression for a0(x) that would yield the Atiyah-Singer integrand, that is there would be a local index
theorem. Atiyah-Bott-Patodi and Gilkey showed that this was indeed the case, at least for Dirac operators
twisted by Hermitian bundles. For a particularly succinct proof, which shows that the cancellations are not
at all “miraculous”, but rather natural, see [Ge88]. Standard arguments in K-theory, then lead directly to
the full Atiyah-Singer Index Theorem. �

In [ASIV], Atiyah and Singer proved the index theorem for families of compact manifolds. For a heat
equation proof of this result see [Bi86], and for a heat equation proof in the case of foliations, (a theorem
due to Connes [C94]), see [HL99].

We end this section with an outline of this extension to foliations. One major problem is that, in general,
a foliation F of a compact Riemannian manifold M will have both compact and non-compact leaves. This
introduces a number of difficulties, for example non-compact leaves can limit on compact ones, causing
fearsome problems with the transverse smoothness of the heat operators. Some of these difficulties can be
solved by working on the graph G of F instead of F itself. G is constructed by associating to each point in
M the holonomy cover of the leaf through that point, so G has a natural foliation Fs, and there is a natural
covering map G →M which takes leaves of Fs to leaves of F . The possible non-compactness of the leaves of
Fs causes problems with the spectrums of the leafwise Laplacians, since on even the simplest non-compact
manifold, namely R, the spectrum of the usual Laplacian is the interval [0,∞). Thus we can not think of the
heat operators as nice infinite dimensional diagonal matrices with entries going quickly to zero. However,
these heat operators are still smoothing, so have nice smooth Schwartz kernels when restricted to any leaf. If
G is Hausdorff, then it is almost (but not quite) a fiber bundle, and this implies that Duhamel’s formula for
the derivative of a family of heat kernels extends to heat kernels defined on the leaves of Fs, see [He95]. The
heat kernel we are interested in is e−B

2
t , where Bt is the Bismut superconnection obtained using the metric

on M scaled by the factor 1/t. Suppose that D : C∞c (E)→ C∞c (E) is a generalized Dirac operator defined



8 J. L. HEITSCH NOVEMBER 5, 2009

along the leaves of F , and ∇ is a connection on the bundle E over M . Then in simple cases, Bt =
√
tD+∇

pulled back to G by the natural map G →M .
One of the major results of [He95] is that the Schwartz kernel of e−B

2
t is smooth in all its variables, both

leafwise and in directions transverse to the leaves. This allows us to define a Chern character which takes
values in the “de Rham cohomology of the space of leaves of F .” This is in quotes because the space of leaves
is usually a badly behaved space, so has no de Rham cohomology in the usual sense. Fortunately, Haefliger
[H80] has defined a de Rham theory for foliations which plays this role rather well. The Chern character is
then defined using a (super) trace Trs on Schwartz kernels of leafwise smoothing operators, and this trace
takes values in the Haefliger forms.

The proof of the families index theorem for foliations then has three steps. The first is to show that
Trs(e−B

2
t ) is a closed Haefliger form and its cohomology class is independent of t, that is the Lefschetz

Principle still holds. This is the main result of [He95]. The fact that it is closed relies heavily on Duhamel’s
formula and the trace property of Trs, while the independence from the metric is a fairly standard argument.
The second step is to compute the limit as t → 0 of Trs(e−B

2
t ). The calculation for families of compact

manifolds in [Bi86] works just as well for foliations because the operator e−B
2
t becomes very Gaussian along

the diagonal as t→ 0, so the result is purely local, and locally the foliation case looks just like the compact
families case. Of course the final step is to compute the limit as t → ∞ of Trs(e−B

2
t ), which is the main

result of [HL99]. To do this, we adapt an argument of [BGV92], and split the spectrum of D into three
pieces, namely 0 and the intervals (0, t−a) and [t−a,∞), for judicious choice of a > 0. In [BGV92], they
are dealing with the compact families case, and so for t large enough, the spectrum in the interval (0, t−a)
is the empty set. We are not so lucky. To handle this interval, we must make some assumptions. The
first is that the spectral projections P0 onto the kernel of D, and Pt associated to the interval (0, t−a) are
transversely smooth, that is have Schwartz kernels which are differentiable in all directions, both leafwise
and transversely to the leaves of Fs. The second is that the “density” of the spectrum of D in the interval
(0, t−a) is not too great, in particular, we assume that Tr(Pt) is O(t−β) for sufficiently large β. The interval
[t−a,∞) is somewhat easier to handle as here Trs(e−B

2
t ) is decaying very rapidly as t →∞. Then a rather

lengthy and quite complicated argument shows that

lim
t→∞

Trs(e−B
2
t ) = Trs(e−(P0∇P0)2).

The proof is finished by noting that P0∇P0 is a “connection” on the “index bundle”, that is on the kernel
of D minus the cokernel of D, and that Trs(e−(P0∇P0)2) is just the Chern character of this index bundle.

For an extension of this result, which significantly reduces the assumptions needed by using a more
complicated operator of heat type, see [BHII].

3. Atiyah-Bott Fixed Point Theorem

Our final application of the Lefschetz Principle is to the proof of the very general Atiyah-Bott Fixed Point
Theorem, [AB67], for elliptic complexes.

Let (E, d) be an elliptic complex over a compact manifold M . An endomorphism T of (E, d) is a
collection of maps Ti : C∞(Ei)→ C∞(Ei), so that Ti+1 ◦di = di ◦Ti. Then each Ti induces T ∗i : Hi(E, d)→
Hi(E, d), and we set

L(T ) =
k∑
i=0

(−1)itr(T ∗i ).

We will be concerned only with the so-called geometric endomorphisms associated with a smooth map
f : M → M . Now the problem with f is that, in general, it does not induce a map from sections of Ei to
sections of Ei, but rather from Ei to the pull-back f∗Ei of Ei. To correct for this, we assume that we have
bundle maps Ai : f∗Ei → Ei so that if we define Ti : C∞(Ei)→ C∞(Ei) to be the composition

C∞(Ei)
f∗→ C∞(f∗Ei)

Ai→ C∞(Ei),

then Ti+1 ◦ di = di ◦ Ti. This is not a very strong restriction as the examples below will show.
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At a fixed point x of f , the fibers of f∗Ei and Ei agree, so Ai,x : f∗Ei,x = Ei,x → Ei,x has a trace.

Theorem 3.1 (Atiyah-Bott). Let (E, d) be an elliptic complex over the compact manifold M . Suppose that
the graph of f : M →M is transversal to the diagonal ∆M ⊂M ×M . Let T be a geometric endomorphism
associated to f , derived from bundle maps Ai : f∗Ei → Ei. Then

L(T ) =
∑

f(x)=x

∑k
i=0(−1)i tr(Ai,x)
|det(1− f∗,x)|

.

Proof. Recall the spectral decompositions L2(Ei) = ⊕jEi(λj) associated to the heat operators of the elliptic
complex (E, d), and denote by P ji , the projection of L2(Ei) onto the λj eigenspace Ei(λj). As λ0 = 0,
Ei(λ0) ' Hi(E, d), and we have the commutative diagram

Ei(λ0) Ei(λ0)

? ?

P 0
i TiP

0
i -

T ∗i -Hi(E, d) Hi(E, d)

Thus, for each i, tr (T ∗i ) = tr
(
P 0
i TiP

0
i

)
, so

L(T ) =
k∑
i=0

(−1)itr (T ∗i ) =
k∑
i=0

(−1)itr
(
P 0
i TiP

0
i

)
.

Once again we bring the Lefschetz Principle to bear in the form

Proposition 3.2 (General Fixed Point Lefschetz Principle). For all t > 0,

L(T ) =
k∑
i=0

(−1)itr
(
e−t∆iTie

−t∆i

)
.

Proof. The spectral projections P ji : L2(Ei)→ Ei(λj) satisfy P ji+1 di = di P
j
i , so for each positive eigenvalue

λj , we have the commutative diagram, with exact rows

0 −→ E0(λj)
d0−→ E1(λj)

d1−→ · · · dk−1−→ Ek(λj) −→ 0

0 −→ E0(λj)
d0−→ E1(λj)

d1−→ · · · dk−1−→ Ek(λj) −→ 0.
? ? ?

P j0T0P
j
0 P j1T1P

j
1 P jkTkP

j
k

Thus, for each λj > 0,
k∑
i=0

(−1)itr
(
P ji TiP

j
i

)
= 0.

As above, we then have
k∑
i=0

(−1)itr
(
e−t∆iTie

−t∆i

)
=

k∑
i=0

(−1)i
[ ∞∑
j=0

e−2tλj tr
(
P ji TiP

j
i

)]
=

∞∑
j=0

e−2tλj

[ k∑
i=0

(−1)itr
(
P ji TiP

j
i

)]
=

k∑
i=0

(−1)itr
(
P 0
i TiP

0
i

)
= L(T ).

�



10 J. L. HEITSCH NOVEMBER 5, 2009

Now tr
(
e−t∆iTie

−t∆i

)
= tr

(
Tie
−2t∆i

)
, so

L(T ) = lim
t→0

k∑
i=0

(−1)itr
(
e−t∆iTie

−t∆i

)
=

lim
t→0

k∑
i=0

(−1)itr
(
Tie
−2t∆i

)
= lim

t→0

k∑
i=0

(−1)itr
(
Tie
−t∆i

)
.

As t → 0, the Schwartz kernel kit(x, y) of e−t∆i becomes very Gaussian shaped along the diagonal ∆M ⊂
M×M . This means that given any neighborhood of ∆M , we may choose t so small that kit(x, y) is essentially
supported inside that neighborhood. This is what we meant in the previous section when we said that for
small t, e−t∆i is essentially a local operator. The operator Tie−t∆i also has smooth Schwartz kernel kT,it (x, y),
given by

kT,it (x, y) = Ai,xk
i
t(f(x), y).

Thus, as t→ 0, kT,it (x, y) becomes very Gaussian shaped along the graph of f , Gr(f) ⊂M ×M . Now,

tr
(
Tie
−t∆i

)
=
∫
M

tr
(
kT,it (x, x)

)
dx =

∫
∆M⊂M×M

tr
(
kT,it (x, x)

)
dx.

By taking t sufficiently small we may force the support of tr
(
kT,it (x, y)

)
to be essentially contained in any

neighborhood of the graph of f we choose. Thus, in order to compute

L(T ) =
k∑
i=0

(−1)i
[
lim
t→0

∫
∆M⊂M×M

tr
(
kT,it (x, x)

)
dx
]
,

we may restrict to any neighborhood of Gr(f) intersected with ∆M , provided that t is sufficiently small.
But a neighborhood of Gr(f) intersected with ∆M is just a neighborhood of the fixed points of f . The
theorem now follows by a direct local computation. �

This result has a large number of interesting and deep applications. For the classical complexes, it has
the following beautiful specializations. This material is taken from [AB68], and for details the reader should
consult that paper.

• The de Rham complex.
In this case, we immediately recover Theorem 1.7, the classical Hopf Theorem. This result extends to the

tensor product of the de Rham complex (∧T ∗M,d) with any flat vector bundle E over M . This yields the
elliptic complex (E⊗∧T ∗M, 1⊗ d). If f is a transversal map, and A : f∗E → E is a bundle map preserving
the flat structure, then the Lefschetz number of the resulting endomorphism T is

L(T ) =
∑

f(x)=x

tr(Ai,x)
( det(1− f∗,x)
|det(1− f∗,x)|

)
.

• The Signature complex.
Suppose that f is an isometry of a compact, oriented, Riemannian, 2n dimensional manifold M , and that

f is transversal to ∆M . Then at each fixed point x ∈ M , f∗,x : TMx → TMx is an isometry, so TMx

decomposes into an orthogonal direct sum of 2 dimensional sub-spaces,

TMx = E1 ⊕ E2 ⊕ · · · ⊕ En,
which are preserved by f∗,x. The action of f∗,x on Ei,x is given by rotation through the angle θxi , and the
collection θx1 , ..., θ

x
n is called a coherent system of angles for f∗,x. The Atiyah-Bott Theorem in this case takes

the form

L(f) =
∑

f(x)=x

i−n
n∏
k=1

cot(θxk/2).

As interesting applications of this result we have the following.
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Theorem 3.3 (Atiyah-Bott). Let M be a compact, connected, oriented manifold (of positive dimension),
and let f : M → M be an automorphism of prime power p` with p odd. Then f cannot have just one fixed
point.

Theorem 3.4 (Atiyah-Bott, Milnor). Let G be a compact Lie group of diffeomorphisms of a homology
sphere M with fixed points x and y. Assume that the action is free except at x and y. Then the induced
representations of G on TMx and TMy are isomorphic.

• The Spin complex.
Suppose that f is an isometry of a compact, oriented, Riemannian, 2n dimensional manifold M , and that

f is transversal to ∆M . For each fixed point x of f , denote by θx1 , ..., θ
x
n a coherent system of angles for f∗,x.

Suppose further that M admits a Spin structure, and that f admits a lifting f̂ to this Spin structure. The
Spin number Spin(f̂ ,M) is then given by

Spin(f̂ ,M) =
∑

f(x)=x

ε(f̂ , x)(i/2)n
∏
k

csc(θxk/2),

where ε(f̂ , x) = ±1, depending on the particular lifting f̂ .

• The Dolbeault complex.
For a compact, complex analytic manifold M , we actually have a family of elliptic complexes. The

complexified cotangent bundle T ∗M ⊗R C splits naturally into two complex sub-bundles,

T ∗M ⊗R C = T 1,0 ⊕ T 0,1.

In local holomorphic coordinates, T 1,0 is spanned by the dzi, while T 0,1 is spanned by the dz̄i, so T 1,0 has
a holomorphic structure, while T 0,1 has an anti-holomorphic structure. Set

∧p,q = ∧pT 1,0 ⊕ ∧qT 0,1.

The operator d⊗ 1 on C∞(∧∗T ∗M ⊗R C) = C∞(∧∗,∗) splits naturally as

d⊗ 1 = ∂ + ∂,

where ∂ maps C∞(∧p,q) to C∞(∧p+1,q), and ∂ maps C∞(∧p,q) to C∞(∧p,q+1). For each p = 1, ..., n =
dimC M ,

0 −→ C∞(∧p,0) ∂−→ C∞(∧p,1) ∂−→ · · · ∂−→ C∞(∧p,n) −→ 0,
is an elliptic complex. The cohomology groups of this complex are denoted Hp,∗(M). If f : M → M is
a holomorphic map, then f∗ commutes with ∂, so it induces fp,∗ : Hp,∗(M) → Hp,∗(M), and for each
p = 1, ..., n, we have the Lefschetz number L(fp,∗).

As a real vector space, T ∗Mx ' T 1,0Mx, so it has a complex structure. If A is any C linear map of T ∗Mx,
we may compute its C trace, trC(A) and C determinant detC(A). Suppose that f is transversal to ∆M .
At a fixed point x of f , f∗x : T ∗Mx → T ∗Mx is just such a C linear map (in fact an isomorphism), as is
∧pf∗x : ∧pT ∗Mx → ∧pT ∗Mx. With this in mind, the Atiyah-Bott fixed point formula now takes the form

L(fp,∗) =
∑

f(x)=x

trC(∧pf∗x)
detC(1− f∗x)

.

More generally, if E is any holomorphic vector bundle over M , there is the associated elliptic complex
(note that p = 0 here)

0 −→ C∞(E ⊗C ∧0,0) 1⊗∂−→ C∞(E ⊗C ∧0,1) 1⊗∂−→ · · · 1⊗∂−→ C∞(E ⊗C ∧0,n) −→ 0.

If f : M → M is a holomorphic map and A : f∗E → E is a holomorphic bundle map, then there is the
associated endomorphism T of this complex, and we have the Lefschetz number L(T ). If f is transversal to
∆M , then

L(T ) =
∑

f(x)=x

trC(Ax)
detC(1− f∗x)

,
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where for a fixed point x, Ax : f∗Ex = Ex → Ex.
As interesting applications of the Atiyah-Bott Dolbeault fixed point formula we have: any holomorphic

self map of a rational algebraic manifold must have a fixed point; when applied to S1 actions, it implies the
Weyl character formula; if S1 acts non-trivially on a spin manifold M , then the Â(M) = 0. This last is due
to Atiyah and Hirzebruch, [AH70], and uses the extension mentioned below.

Note that Theorem 3.1 extends to more general fixed point sets N . The map f∗,N : TM/TN → TM/TN
is required to satisfy det(I − f∗,N ) 6= 0. The identity map satisfies this (vacously), so this result contains
the Atiyah-Singer Index Theorem as a special case. For a discussion of the history of this result, see [Gi84],
and for its extension to foliations, see [HL90].

4. afterword

When I originally wrote this talk, my intention was to give the audience a feeling for some of the wonderful
mathematics of Raoul Bott in a way that was both informative and entertaining (and as close to his style
as I could). This necessitated a bit loose play, sometimes called “fictionalized history”, but nothing too
egregious, I hoped. I was honored to have Sir Michael Atiyah in the audience. At the end of the talk, he
murmured, “Very nice. But it didn’t happen quite that way.” My only defense was to reply, “But it makes
for such a good story this way.”
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