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Abstract. We prove that a leafwise homotopy equivalence between compact foliated manifolds induces a
well defined bounded operator between all Sobolov spaces of leafwise (for the natural foliations of the graphs

of the original foliations) differential forms with coefficients in a leafwise flat bundle. We further prove that

the associated map on the leafwise reduced L2 cohomology is an isomorphism which only depends on the
leafwise homotopy class of the homotopy equivalence.

1. Introduction

Let (M,F ) and (M ′, F ′) be smooth oriented foliations on closed oriented manifolds M and M ′ and let

f : (M,F ) −→ (M ′, F ′),

be an orientation-preserving leafwise homotopy equivalence. So, there exists an orientation-preserving leaf-
wise map g : (M ′, F ′) −→ (M,F ) such that g ◦ f and f ◦ g are homotopic to the identity maps through
leaf-preserving maps. Let E′ is be a leafwise flat Hermitian bundle over M ′, and set E = f∗(E′). We then
prove in the present paper the following results:

• (Theorem 3.3). f induces an isomorphism on the (reduced) Haefliger cohomologies of F and F ′.
• f induces a well defined leafwise map on the homotopy (and holonomy) groupoids of the foliations

which is leafwise uniformly proper for the induced (source and target) foliations of the groupoids.
This immediately implies that it induces a well defined map on the cohomology with compact sup-
ports of the homotopy (and holonomy) covers of each leaf of the foliation.

• (Theorem 3.9). For each x ∈ M , we may form the Sobolev spaces obtained from the differential
forms, with compact support and with coefficients in the pull back of E, on the monodromy (or
holonomy) covering space of the leaf of F through x. Similarly for x′ ∈M ′ and E′. Then we prove

that f induces a well defined uniformly bounded operator f̃∗ between such twisted leafwise Sobolov
spaces of the same Sobolev degree.

• (Theorem 3.12). Finally, we show that the uniformly bounded operator f̃∗ associated with the
leafwise flat Hermitian bundle E′ induces an isomorphism on reduced L2 cohomology, which is
compatible with twisted wedge products.

Regarding the induced map on Haefliger cohomologies, the result is classical and we outline the proof
for completeness. The situation for the induced operator on the leafwised twisted cohomologies is more
involved. When the foliations are for instance top dimensional each with one leaf and the bundles are
trivial line bundles, the obvious pull-back map defined by f on smooth forms yields an unbounded map
on the Sobolev forms of a given Sobolev degree which, in general, is not even a closable operator. Our
method to define an appropriate pull-back map in the general case of foliations with flat bundles relies on
two techniques and hence produces two definitions which eventually induce the same operator on Sobolev
cohomologies. The first one is reduction to the case of submersions [HiS92] and we show that the resulting
operator is Sobolev bounded and induces an operator between (reduced twisted) cohomologies which does
not depend on the reduction process. The second technique that we use exploits the Whitney isomorphism
and allows us to prove the compatibility with wedge products. Using these two descriptions of the induced
operator on twisted L2 cohomologies, we then prove the isomorphism property. The results in this paper are
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crucial in the differential geometric approach to the Baum-Connes Novikov conjecture for foliations, using
Haefliger cohomology and characteristic classes of transversely smooth idempotents, see [BH04, BH11].

2. Some notation

If V → N is a vector bundle over a manifold N , we denote the space of smooth sections by C∞(V ) or
by C∞(N ;V ) if we want to emphasize the base space of the bundle. The compactly supported sections
are denoted by C∞c (V ) or C∞c (N ;V ). The space of differential k forms on N is denoted Ak(N), and we
set A∗(N) = ⊕k≥0Ak(N). The space of compactly supported k forms is denoted Akc (N), and A∗c(N) =
⊕k≥0Akc (N). The tangent and cotangent bundles of N will be denoted TN and T ∗N .

Let M be a compact n-dimensional Riemannian manifold with oriented foliation F of dimension p and
codimension q. We denote a leaf of F by L. The leaf through the point x ∈M is denoted Lx, so dimLx = p.
We will be working on the homotopy groupoids (also called the monodromy groupoids) of our foliations, but
our results extend to the holonomy groupoid, as well as any groupoids between these two extremes. Recall
that the homotopy groupoid G of F consists of equivalence classes [γ] of paths γ : [0, 1] → M such that
the image of γ is contained in a leaf of F . Two such paths are equivalent if they are in the same leaf and
homotopy equivalent (with endpoints fixed) in that leaf. The source and range maps s, r : G →M are given
by s([γ]) = γ(0) and r([γ]) = γ(1). These give rise to the two natural transverse foliations Fs and Fr whose

leaves are respectively L̃x = s−1(x), and L̃x = r−1(x), for each x ∈M . Note that r : L̃x → Lx is the simply
connected covering of L. We will work with the foliation Fs.

The basic open sets defining of the manifold structure of G are given as follows. Let U be a finite good
cover of M by foliation charts as defined in [HL90]. Given U and V in this cover and a leafwise path γ
starting in U and ending in V , we define (U, γ, V ) to be the set of equivalence classes of leafwise paths
starting in U and ending in V which are homotopic to γ through a homotopy of leafwise paths whose end
points remain in U and V respectively. It is easy to see, using the holonomy defined by γ from a transversal
in U to a transversal in V , that if U, V ' Rp×Rq, then (U, γ, V ) ' Rp×Rp×Rq. Note that the intersection

of any leaf L̃x and any basic open set (U, γ, V ) consists of at most one plaque of the foliation Fs in (U, γ, V ),

i.e. each L̃x passes through any (U, γ, V ) at most once.
The (reduced) Haefliger cohomology of F , [Ha80] is given as follows. For each Ui ∈ U , let Ti ⊂ Ui be a

transversal and set T =
⋃
Ti. We may assume that the closures of the Ti are disjoint. LetH be the holonomy

pseudogroup induced by F on T . Give Akc (T ) the usual C∞ topology, and denote the exterior derivative
by dT : Akc (T ) → Ak+1

c (T ). The usual Haefliger cohomology is defined using the quotient of Akc (T ) by the
vector subspace Lk generated by elements of the form α − h∗α where h ∈ H and α ∈ Akc (T ) has support
contained in the range of h. The (reduced) Haefliger cohomology uses the quotient of Akc (T ) by the closure

Lk of Lk. This closure is taken in the following sense. Lk consists of all elements in ω ∈ Akc (T ), so that
there are sequences {ωn}, {ω̂n} ⊂ Lk with ||ω−ωn|| → 0 and ||dT (ω)− ω̂n)|| → 0. The norm || · || is the sup

norm, that is ||ω|| = supx∈T ||ω(x)||x, where || · ||x is the norm on (∧kT ∗T )x. Set Akc (M/F ) = Akc (T )/Lk.
The exterior derivative dT induces a continuous differential dH : Akc (M/F ) → Ak+1

c (M/F ). Note that
Akc (M/F ) and dH are independent of the choice of cover U . In this paper, the complex {Ac(M/F ), dH} and
its cohomology H∗c(M/F ) will be called, respectively, the Haefliger forms and Haefliger cohomology of F .

3. Leafwise maps

Let M and M ′ be compact Riemannian manifolds with oriented foliations F and F ′. Let f : M →M ′ be
a smooth leafwise homotopy equivalence which preserves the leafwise orientations. (We need only assume
transverse smoothness, and leafwise continuity. A standard argument then allows f to be approximated by
a smooth map.) Let g : M ′ → M be a leafwise homotopy inverse of f . Then there are leafwise homotopies
h : M × I →M and h′ : M ′ × I →M ′ with I = [0, 1], so that for all x ∈M,x′ ∈M ′

h(x, 0) = x, h(x, 1) = g ◦ f(x), h′(x′, 0) = x′, and h′(x′, 1) = f ◦ g(x′).

We begin by recalling two results on such leafwise maps from [HL91].
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Lemma 3.1 (Lemma 3.17 of [HL91]). Given finite coverings of M and M ′ by foliation charts, there is a
number N such that for each plaque Q of M ′, there are at most N plaques P of M such that f(P )∩Q 6= ∅.

Thus f is leafwise uniformly proper and so induces a well defined map f∗ : H∗c(L
′
f(x);R)→ H∗c(Lx;R). In

general this map does not extend to the leafwise L2 forms, as shown by simple examples.

Lemma 3.2 (Lemma 3.16 of [HL91]). For any finite cover of M by foliation charts there is a number N
such that for each plaque P of M , there are at most N plaques Q such that h(Q× I) ∩ P 6= ∅.

Note that this lemma implies that there is a global bound on the leafwise distance that h moves points,
i. e. there is a global bound on the leafwise lengths of all the curves {γx |x ∈M}, where γx(t) = h(x, t).

We remark that since f is a homotopy equivalence between M and M ′, the dimensions of M and M ′ are
the same.

Theorem 3.3. f induces an isomorphism f∗ : H∗c(M
′/F ′)→ H∗c(M/F ) with inverse g∗.

Proof. The map f induces a map f̂ on transversals. In particular, suppose that U and U ′ are foliation charts
of M and M ′ respectively, and that f(U) ⊂ U ′. If T and T ′ are transversals of U and U ′, then f induces

the map f̂ : T → T ′.

Lemma 3.4. f̂ : T → T ′ is an immersion.

Proof. Being an immersion is a local property, so by reducing the size of our charts if necessary, we may
assume that g(U ′) ⊂ U1, where U1 is a foliation chart for F with transversal T1. Then ĝ : T ′ → T1. The

leafwise homotopy h induces a map ĥ : T → T1. In particular this is the map induced on transversals by the

map x→ h(x, 1). Since h is continuous and leafwise, it is easy to see that ĥ = hγ where hγ is the holonomy

along the leafwise path γx(t) = h(x, t), where x ∈ T . Thus ĥ is locally invertible. Since h is a homotopy of

gf to the identity, the composition, ĥ−1ĝf̂ : T → T is the identity, so f̂ must be an immersion. �

Since ĝ must also be an immersion, it follows immediately that the codimensions of F and F ′ are the
same, and so the dimensions of F and F ′ are also the same.

To construct the map f∗ : H∗c(M
′/F ′) → H∗c(M/F ), we proceed as follows. Let U and U ′ be finite good

covers of M and M ′ respectively. We may assume that for each U ∈ U , we have chosen a U ′ ∈ U ′ so that

f(U) ⊂ U ′ and that the induced map on transversals f̂ : T → T ′ is a diffeomorphism onto its image. Let

α′ ∈ H∗c(M
′/F ′). Since f is onto, we may choose a Haefliger form φ′ =

∑
U∈U

φ′U in α′ so that φ′U has support

in f̂(T ) where T is a transversal in U . We then define f̂∗(α′) to be the class of the Haefliger form
∑
U∈U

f̂∗(φ′U ).

The question of whether f̂∗ is well defined reduces to showing the following.

Lemma 3.5. Suppose that U1 and U2 are foliation charts on M with transversals T1 and T2. Suppose further

that φ′ is a Haefliger form on M ′ with support contained in f̂(T1) ∩ f̂(T2). Then as Haefliger forms on M ,

[f̂ |T1 ]∗(φ′) = [f̂ |T2 ]∗(φ′).

Proof. Set f̂i = f̂ |Ti. By writing φ′ as a sum of Haefliger forms and reducing the size of their supports, we
may assume that the support of φ′ is contained in a transversal T ′, that ĝ(T ′) is contained in a transversal
T of M , and that the holonomy maps hi : Ti → T determined by the paths γi(t) = h(xi, t), for xi ∈ Ti, are

defined on the supports of f̂∗i (φ′), respectively. Further, we may suppose that all the maps f̂1, f̂2, h1, h2 and

ĝ |T ′ are diffeomorphisms onto their images. Since h is a homotopy of gf to the identity, f̂1 = ĝ−1 ◦ h1 and

f̂2 = ĝ−1 ◦ h2, so f̂∗1 (φ′) = h∗1 ◦ (ĝ−1)∗(φ′) and f̂∗2 (φ′) = h∗2 ◦ (ĝ−1)∗(φ′). Thus f̂∗1 (φ′) = h∗1 ◦ (h−1
2 )∗(f̂∗2 (φ′)),

so as Haefliger forms f̂∗1 (φ′) = f̂∗2 (φ′). �

It now follows easily that the induced map on Haefliger cohomology f∗ : H∗c(M
′/F ′) → H∗c(M/F ) is an

isomorphism with inverse g∗. �
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We now show that f induces a well defined map on the homotopy groupoids of F and F ′. Given [γ] ∈ G,
set f̌([γ]) = [f ◦γ]. Recall that f̌ is leafwise uniformly proper if for any C0, there is C1 so that if the leafwise
distance from f̌(z0) to f̌(z1) is less than C0, then the leafwise distance from z0 to z1 is less than C1.

Lemma 3.6. f̌ : G → G′ is a well defined smooth leafwise map, which is leafwise uniformly proper.

Proof. That f̌ is well defined and smooth is clear. Similarly, set ǧ([γ′]) = [g ◦ γ′].
Let U be a finite good cover of M . Since M is compact, there is a bound m(P ) on the diameter of

any plaque in the cover U . Then m(P ) is also a bound for any plaque of Fs in the corresponding cover
of G. Let U ′ be a finite good cover of M ′, such that for each U ′ ∈ U ′ there is U ∈ U so that g(U ′) ⊂ U .
Given (U ′, γ′, V ′) in the cover of G′ corresponding to U ′, choose U, V ∈ U with g(U ′) ⊂ U and g(V ′) ⊂ V .
If we set γ = g ◦ γ′, then ǧ(U ′, γ′, V ′) ⊂ (U, γ, V ). Because U ′ is a good cover, there is ε > 0 so that if

z′0, z
′
1 ∈ L̃′ with the leafwise distance dL̃′(z

′
0, z
′
1) < ε, then there is a (U ′, γ′, V ′) with z′0, z

′
1 ∈ (U ′, γ′, V ′),

so ǧ(z′0), ǧ(z′1) ∈ (U, γ, V ). Since ǧ(L̃′) ∩ (U, γ, V ) consists of at most one plaque of ǧ(L̃′), it follows that

dL̃(ǧ(z′0), ǧ(z′1)) < m(P ). Thus if z′t is a path in L̃′ of length less than C, then ǧ ◦ z′t is a path in ǧ(L̃′) of
length less than m(P )C/ε.

Suppose that f(x) = x′ and let A′ ⊂ L̃′x′ have diameter dia(A′) ≤ C. Let z0, z1 ∈ L̃x with f̌(zi) = z′i ∈ A′,
and choose a path z′t in L̃′x′ of length less than C between z′0 and z′1. Then ǧ ◦ z′t is a path in L̃gf(x) of length

less than m(P )C/ε. Composition on the right by the path γx(t) = h(x, t) is an isometry from L̃gf(x) to L̃x.

So (ǧ ◦ z′t) · γx is a path in L̃x of length less than m(P )C/ε. Thus

dL̃x
([(ǧ ◦ z′0) · γx], [(ǧ ◦ z′1) · γx]) ≤ m(P )C/ε.

By Lemma 3.2, the path γy has length bounded by say B, for all y ∈ M . Set yi = r(zi), and note that
[γ−1
yi · (ǧ ◦ z

′
i) · γx] = zi, since h is a leafwise homotopy equivalence between g ◦ f and the identity. As

dL̃x
(zi, [(ǧ ◦ z′i) · γx]) = dL̃x

([γ−1
yi · (ǧ ◦ z

′
i) · γx], [(ǧ ◦ z′t) · γx]) ≤ length(γyi) ≤ B,

we have
dL̃x

(z0, z1) ≤ 2B +m(P )C/ε.

Thus dia(f̌−1(A′)) ≤ 2B +m(P ) dia(A′)/ε, and f̌ is leafwise uniformly proper. �

Thus f̌ induces a well defined map f̌∗ : H∗c(L̃
′
f(x);R) → H∗c(L̃x;R). As noted above, in general this map

does not induce a well defined map on leafwise L2 forms. We will use two different constructions to deal
with this problem. First we adapt the construction of the L2 pull-back map of Hilsum-Skandalis in [HiS92]
to our setting. This has the advantage that it is transversely smooth. However, the properties of this map
are not obvious, so we will also use the construction in [HL91], which is based on results of Dodziuk, [D77].
We assume the reader is familiar with the theory of Sobolev spaces of sections of a vector bundle over a
manifold.

Suppose that E′ →M ′ is a complex Hermitian bundle over M ′ which is leafwise flat, and set E = f∗(E′).
We denote also by E its pull back by r to G. The context should make it clear which bundle we are using.
We do not assume that the leafwise flat structure on E preserves the inner product on E. We will denote

by A∗c(Fs, E) the field of spaces over M given by A∗c(Fs, E)x = A∗c(L̃x, E), the differential forms on L̃x with

compact support and with coefficients in E | L̃x. For a ∈ Z, we denote by W ∗a (Fs, E) the field of Hilbert

spaces over M given by W ∗a (Fs, E)x = W ∗a (L̃x, E), the a-th Sobolev space of differential forms on L̃x with

coefficients in E | L̃x. Just as it does for the leafwise L2 forms, the compactness of M implies that these
spaces do not depend on our choice of Riemannian structure.

Let i : M ′ ↪→ Rk be an imbedding of the compact manifold M ′ in some Euclidean space Rk, and identify
M ′ with its image. For x′ ∈ M ′ and t ∈ Rk, define p(x′, t) to be the projection of the tangent vector

Xt =
d

ds
| s=0(x′ + st) at x′ determined by t, to the leaf L′x′ in (M ′, F ′) ⊂ Rk. In particular, first project

Xt to TF ′x′ and then exponentiate it to L′x′ , thinking of L′x′ as a Riemannian manifold in its own right.
Since M ′ is compact, we may choose a ball Bk ⊂ Rk so small that the restriction of the smooth map
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pf = p ◦ (f, id) : M × Bk → M ′ to any pf : Lx × Bk → L′f(x) is a submersion. Lifting this map to the

groupoids, we get

pf : G ×Bk −→ G′,

which is a leafwise map if G × Bk is endowed with the foliation Fs × Bk. Note that pf : L̃x × Bk → L̃′f(x)

is the map induced on the coverings by pf : Lx ×Bk → L′f(x). In particular, pf ([γ], t) is the composition of

leafwise paths Pf (γ, t) and f ◦ γ,

pf ([γ], t) = [Pf (γ, t) · (f ◦ γ)],

where Pf (γ, t) : [0, 1]→ L′f(r(γ)) is

Pf (γ, t)(s) = pf (r(γ), st).

To see that this is a smooth map, let (U, γ, V )×Bk and (U ′, f ◦ γ, V ′) be local coordinate charts on G ×Bk
and G′, respectively, with coordinates (w, y, z, t) and (w′, y′, z′). Then in these coordinates,

pf (w, y, z, t) = (w′(f(w, y)), y′(f(w, y)), z′(pf (y, z, t))),

where the second pf is the map pf : V ×Bk → V ′.
The crucial fact about pf is that it has all the same essential properties of the projection π1 : G×Bk → G.

First note that, because f and f̌ are leafwise uniformly proper and M × Bk is compact, both the maps
denoted pf are also leafwise uniformly proper. Second, we may assume that the metric on each Lx × Bk

(respectively L̃x×Bk) is the product of a fiberwise metric for the submersion pf and the pull-back under pf
of the metric on L′f(x) (respectively L̃′f(x)). To see this, give L×Bk the product metric, using the standard

metric on Bk. The induced metric on L̃×Bk is then the product metric. The fibers of both submersions pf
inherit a Riemannian metric, and we denote by d volvert the canonical k form on both L × Bk and L̃ × Bk
whose restriction to the oriented fibers of pf is the volume form. Denote by ∗ the Hodge operator on both

L×Bk and L̃×Bk, and similarly for ∗′ on L′ and L̃′. Consider the sub-bundle p∗fT
∗F ′ ⊂ T ∗(F ×Bk) and

its orthogonal complement p∗fT
∗F ′
⊥

. Define a new metric on T ∗(F ×Bk) = p∗fT
∗F ′⊕p∗fT ∗F ′

⊥
(and so also

on T ∗(Fs × Bk)) by declaring that these sub-bundles are still orthogonal, and the new metric on p∗fT
∗F ′
⊥

is the same as the original, while the new metric on p∗fT
∗F ′ is the pullback of the metric on T ∗F ′. Denote

the leafwise Hodge operator of the new metric by ∗̂. As remarked above, this change of metric does not alter
any of our Sobolev spaces. In particular, note that for any non-zero α ∈ ∧`T ∗(F ×Bk) and any c ∈ R∗+,

0 <
cα ∧ ∗̂cα
cα ∧ ∗cα

=
α ∧ ∗̂α
α ∧ ∗α

,

so the compactness of the sphere bundle (∧`T ∗(F ×Bk)− {0})/R∗+ implies that there are 0 < C1 < C2, so

that for all α ∈ ∧`T ∗(F ×Bk),

C1 α ∧ ∗α ≤ α ∧ ∗̂α ≤ C2 α ∧ ∗α,
where we identify the oriented volume elements of L×Bk at a point with R∗+. This property is inherited by

the two induced metrics on T ∗(Fs ×Bk), so the two norms used to define the Sobolev spaces W `
a(Fs, E) are

comparable. Thus we can substitute the second metric for the first, or what is more notationally convenient,
assume that the first metric satisfies the same pull back property as the second.

Simple computations give two immediate consequences of this assumption. Namely, for any α1, α2 ∈
∧`T ∗F ′s,

3.7. p∗fα1 ∧ ∗p∗fα2 = d volvert ∧p∗f (α1 ∧ ∗′α2),

and

3.8. d volvert ∧p∗fα1 ∧ ∗(d volvert ∧p∗fα2) = d volvert ∧p∗f (α1 ∧ ∗′α2).

Denote by π2 : G × Bk → Bk the projection, and choose a smooth compactly supported k-form ω on
Bk whose integral is 1. We shall refer to such a form as a Bott form on Bk. Denote by eω the exterior
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multiplication by the differential k−form π∗2ω on G×Bk. For ξ ∈ A∗c(F ′s, E′), we define f (i,ω)(ξ) ∈ A∗c(Fs, E)
as

f (i,ω)(ξ) = (π1,∗ ◦ eω ◦ p∗f )(ξ).

The map pf : G ×Bk −→ G′ is a leafwise (for Fs ×Bk) submersion extending f̌ , so p∗f (ξ) is a leafwise form

on G ×Bk with coefficients in the bundle p∗fE
′. The map π1,∗ is integration over the fiber of the projection

π1 : G × Bk → G of such forms. In general, the fiber of p∗fE
′ is not constant on fibers of the fibration

π1 : G × Bk → G. To correct for this, we use the parallel translation given by the flat structure of p∗fE
′ to

identify all the fibers of p∗fE
′ | z ×Bk with (p∗fE

′)(z,0) = (f̌∗E′)z = (f∗E′)r(z). This is well defined because

the ball Bk ⊂ Rk is contractible, so parallel translation is independent of the path taken from (z, 0) to (z, t)
in z ×Bk.

Theorem 3.9. For any a ∈ Z, f (i,ω) extends to a bounded operator from W ∗a (F ′s, E
′) to W ∗a (Fs, E).

Proof. For αi ⊗ φi ∈ A∗c(Fs, E), where αi a leafwise differential form of compact support and φi is a section
of E, we set

(α1 ⊗ φ1) ∧ (α2 ⊗ φ2) = (φ1, φ2)α1 ∧ α2 and (α1 ⊗ φ1) ∧ ∗(α2 ⊗ φ2) = (φ1, φ2)α1 ∧ ∗α2,

where (·, ·) is the Hermitian metric on E. Similarly for F ′s and E′.
Since pf is leafwise uniformly proper,

C = sup
[γ′]∈G′

∫
p−1
f ([γ′])

d volvert < +∞.

Thanks to 3.7, we then have for any α⊗ φ ∈ A`c(L̃′f(x), E
′) = C∞c (L̃′;∧`T ∗L̃′f(x) ⊗ E

′),

‖p∗f ((α⊗ φ)f(x))‖20 =

∫
L̃x×Bk

(p∗fφ, p
∗
fφ)p∗fα ∧ ∗p∗fα =

∫
L̃x×Bk

(p∗fφ, p
∗
fφ)d volvert ∧p∗f (α ∧ ∗′α)∫

L̃′
f(x)

[ ∫
p−1
f ([γ′])

d volvert

]
(φ, φ)α ∧ ∗′α ≤ C

∫
L̃′

f(x)

(φ, φ)α ∧ ∗′α = C‖α⊗ φ‖20.

This inequality extends to all ξ ∈ A`(2)(L̃
′
f(x), E

′) = W `
0 (L̃′f(x), E

′), so p∗f extends to a uniformly bounded

(i.e. independent of x) operator from W `
0 (L̃′f(x), E

′) to W `
0 (L̃x × Bk, p∗fE′), that is p∗f defines a bounded

operator from W `
0 (F ′s, E

′) to W `
0 (Fs ×Bk, p∗fE′).

Choose a sub-bundle Ĥ ⊂ TF ⊕TBk so that for each Lx, it is a horizontal distribution for the submersion

pf : Lx ×Bk → L′f(x). The map (r× id)∗ : TFs ⊕ TBk → TF ⊕ TBk is an isomorphism on each fiber, so Ĥ

determines a sub-bundle H of TFs ⊕ TBk, and H | L̃x × Bk is a horizontal distribution for the submersion

pf : L̃x × Bk → L̃′f(x). Choose a finite collection of leafwise vector fields Ŷ1, . . . , ŶN on M ′ which generate

C∞(TF ′) over C∞(M ′). Lift these to leafwise (for F ′s) vector fields Y1, . . . , YN on G′, and lift these latter

to sections of H, denoted X1, . . . , XN . If Xvert is a vertical vector field on L̃ × Bk with respect to pf ,

then iXvert ◦ p∗f = 0. Modulo such vector fields, the Xi generate T L̃ ⊕ TBk over C∞(L̃ × Bk). In addition

iXj
◦ p∗f = p∗f ◦ iYj

. Thus for any ξ ∈ A`c(L̃′f(x), E
′), any YK = Yk1

∧ · · · ∧ Yk` , and any j1, . . . , jm, with

ji ∈ {1, . . . , N},
‖iXj1

d · · · iXjm
d(p∗f (ξ)(YK))‖0 = ‖p∗f (iYj1

d · · · iYjm
d(ξ(YK))‖0

≤
√
C‖iYj1

d · · · iYjm
d(ξ(YK))‖0.

A classical argument then shows that for any a ≥ 1, p∗f extends to a uniformly bounded operator from

W `
a(L̃′f(x), E

′) to W `
a(L̃x ×Bk, p∗fE′), that is a bounded operator from W `

a(F ′s, E
′) to W `

a(Fs ×Bk, p∗fE′).
The operator eω maps W `

a(L̃x × Bk, p∗fE′) to W k+`
a (L̃x × Bk, p∗fE′) and is uniformly bounded, since ω

and all its derivatives are bounded. Thus for a ≥ 0, eω ◦ p∗f is a bounded operator from W `
a(F ′s, E

′) to

W k+`
a (Fs ×Bk, p∗fE′).
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For the case of s < 0, we dualize the argument above. Denote by pf,∗ integration of fiber compactly

supported forms along the fibers of the submersion pf . We claim that for any α ∈ Ak+`
c (L̃x ×Bk),

3.10. pf,∗α ∧ ∗′pf,∗α ≤ C pf,∗(α ∧ ∗α),

where as above we identify the oriented volume elements of L̃′f(x) at a point with R∗+. Any such α may be

written as α = α1 + α2, where pf,∗(α2) = 0 and α1 = d volvert ∧α3, with α3 ∈ C∞c (p∗f (∧`T ∗L̃′f(x))). Then

pf,∗(α ∧ ∗α) = pf,∗(α1 ∧ ∗α1) + pf,∗(α2 ∧ ∗α2) + pf,∗(α1 ∧ ∗α2) + pf,∗(α2 ∧ ∗α1).

The last two terms are zero, since α1 ∧ ∗α2 = 0 as d volvert ∧ ∗α2 = 0, and pf,∗(α2 ∧ ∗α1) = 0 since α2 ∧ ∗α1

does not contain d volvert. Thus

pf,∗(α ∧ ∗α) = pf,∗(α1 ∧ ∗α1) + pf,∗(α2 ∧ ∗α2) ≥ pf,∗(α1 ∧ ∗α1).

But,

pf,∗α1 ∧ ∗′pf,∗α1 = pf,∗α ∧ ∗′pf,∗α,
so we need only prove 3.10 for α = d volvert ∧α3, with α3 ∈ C∞c (p∗f (∧`T ∗L̃′f(x))).

Choose a finite collection of sections β1, . . . , βr of ∧`T ∗F ′, so that βi ∧ ∗′βj = 0 if i 6= j, and the βi
generate C∞(∧`T ∗F ′) over C∞(M ′). Denote also by βi the lift of these sections to sections of ∧`T ∗F ′s.
Then α = d volvert ∧α3 may be written as

α =
∑
i

gi d volvert ∧p∗fβi,

where the gi are smooth compactly supported functions on L̃x ×Bk. Now,

pf,∗α ∧ ∗′pf,∗α =
∑
i

pf,∗(gi d volvert)βi ∧ ∗′
∑
j

pf,∗(gj d volvert)βj =
∑
i

[pf,∗(gi d volvert)]
2βi ∧ ∗′βi.

Thanks to 3.8,

pf,∗(α ∧ ∗α) = pf,∗(
∑
i

(gi d volvert ∧p∗fβi) ∧ ∗
∑
j

(gj d volvert ∧p∗fβj)) =

pf,∗(
∑
i,j

gigj d volvert ∧p∗f (βi ∧ ∗′βj)) =
∑
i

pf,∗(g
2
i d volvert)βi ∧ ∗′βi ≥

∑
i

[pf,∗(gi · 1 d volvert)]
2

pf,∗(1 d volvert)
βi ∧ ∗′βi ≥

1

C

∑
i

[pf,∗(gi d volvert)]
2βi ∧ ∗′βi =

1

C
pf,∗α ∧ ∗′pf,∗α,

proving 3.10. Note that the second to last inequality is just Cauchy-Schwartz.

Thus for all α ∈ Ak+`
c (L̃x ×Bk),

‖pf,∗α‖20 =

∫
L̃′

f(x)

pf,∗α ∧ ∗′pf,∗α ≤ C

∫
L̃′

f(x)

pf,∗(α ∧ ∗α) = C

∫
L̃x×Bk

α ∧ ∗α = C ‖α‖20.

Using the facts that pf,∗ commutes with the de Rham differentials, pf,∗ ◦ iXvert = 0 and iYj ◦pf,∗ = pf,∗ ◦ iXj ,
it is easy to deduce, just as for p∗f , that for any a ≥ 0, pf,∗ ◦ eω extends to a uniformly bounded operator

(say with bound Ca) from W `
a(L̃x × Bk, p∗fE′) to W `

a(L̃′f(x), E
′). Now suppose that ξ′ ∈ W `

a(L̃′f(x), E
′) for

some a < 0, and recall that ‖(eω ◦ p∗f )(ξ′)‖a is given by

‖(eω ◦ p∗f )(ξ′)‖a = sup
ξ

|〈ξ′, (pf,∗ ◦ eω)(ξ)〉)|
‖ξ‖−a

≤ sup
ξ

‖ξ′‖a‖(pf,∗ ◦ eω)(ξ)‖−a
‖ξ‖−a

≤ Ca‖ξ′‖a,

where the supremums are taken over all ξ ∈W `
−a(L̃x×Bk, p∗fE′). Thus for any a < 0 (and so for all a ∈ Z),

eω ◦p∗f is a uniformly bounded operator from W `
a(L̃′f(x), E

′) to W k+`
a (L̃x×Bk, p∗fE′), so eω ◦p∗f is a bounded

operator from W `
a(F ′s, E

′) to W `
a(Fs ×Bk, p∗fE′).
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For all a ∈ Z, the image of eω ◦ p∗f consists of π1-fiber compactly supported distributional forms. The

argument above for pf,∗ applied to π1,∗ shows that it is uniformly bounded as a map from Im(eω ◦ p∗f ) ⊂
W k+`
a (L̃x×Bk, p∗fE′) to W `

a(L̃x, E). Thus for all a ∈ Z, f (i,ω) extends to a bounded operator from W `
a(F ′s, E

′)

to W `
a(Fs, E). �

We now consider the action of f (i,ω) on the leafwise reduced L2 cohomology of the foliations Fs and F ′s,
denoted H∗(2)(Fs, E), and H∗(2)(F

′
s, E

′). H∗(2)(Fs, E) is the field of Hilbert spaces over M , where for x ∈ M ,

H∗(2)(Fs, E)x = H∗(2)(L̃x, E), the reduced L2 cohomology of L̃x with coefficients in the leafwise flat bundle E.

Recall that A∗c(L̃x, E) is the space of differential forms on L̃x with compact support and with coefficients

in E | L̃x. Because of the flatness of E | L̃x, the usual exterior derivative extends to dk : Ak(L̃x, E) →
Ak+1
c (L̃x, E), which further extends to dk,(2) : W k

0 (L̃x, E) → W k+1
0 (L̃x, E) on the L2 completions. Then

Hk
(2)(L̃x, E) is the kernel of dk,(2) modulo the closure of the image of dk−1,(2). Similarly for F ′s and E′. As ω is

closed, eω commutes with de Rham differentials. The image of eω ◦ p∗f is contained in the π1-fiber compactly

supported forms, so f (i,ω) = π1,∗ ◦ eω ◦ p∗f commutes with de Rham differentials. It follows immediately

that the extension of f (i,ω) to the L2 forms also commutes with the closures of the de Rham differentials,

so f (i,ω) induces a well defined map f̃∗ : H∗(2)(F
′
s, E

′) −→ H∗(2)(Fs, E). As remarked above, the properties of

this map (using this definition) are not immediately obvious, e.g. its independence of i and ω. To deal with
this problem, we now switch our point of view to that in [HL91], and give another construction of the map

f̃∗.

Let K =
⋃
L̃

KL̃ be a bounded leafwise triangulation of Fs (see [HL91]) induced from a bounded leafwise

triangulation to F . Then KL̃ is a triangulation of the leaf L̃, so that the volumes and diameters of the
simplices of dimension ≥ 1 are uniformly bounded away from zero. These triangulations vary measurably
transversely. A simplicial k-cochain ϕ on KL̃ with coefficients in E assigns to each k-simplex σ of KL̃ an
element ϕ(σ) ∈ Eσ, the fiber of E over the barycenter of σ. To define the co-boundary map δ, we identify
Eσ with the fibers of E over the barycenters of the simplices in the boundary of σ using the flat structure
of E. This is well defined since σ is contractible. Denote by Ck(p)(KL̃, E) the space of simplicial k-cochains

ϕ on KL̃ with coefficients in E such that∑
σ k-simplex of KL̃

(ϕ(σ), ϕ(σ))p/2 < +∞.

The homology of the complex (C∗(p)(KL̃, E), δ) is the `p cohomology of the simplicial complex KL̃ with

coefficients in E. It is denoted H∗4,p(L̃, E). Denote by A∗(p)(L̃, E) the Lp forms on L̃ with coefficients in E.

The classical Whitney and de Rham maps extend to well defined chain morphisms

W : C∗(p)(KL̃, E)→ A∗(p)(L̃, E) and

∫
: A∗(p)(L̃, E)→ C∗(p)(KL̃, E),

which induce bounded isomorphisms in cohomology (which are inverses of each other), with bounds inde-

pendent of L̃, for p = 1, 2. See [HL91] for p = 2, and [GKS88] for p = 1. As above, to define these maps, we
use the classical definitions coupled with the fact that for any point x ∈ σ, the flat structure of E |σ gives a
natural isomorphism between Ex and Eσ.

Let fK,K′ : KL̃ → K ′
L̃′

be an oriented leafwise simplicial approximation of f̌ as in [HL91]. It is uniformly

proper, so it defines a pull-back map f∗4 on `p cochains with coefficients in E′, which commutes with the

coboundaries. The induced map on cohomology is also denoted f∗4. Set f∗D = W ◦ f∗4 ◦
∫

Proposition 3.11. f̃∗ = f∗D : H∗(2)(F
′
s, E

′) −→ H∗(2)(Fs, E).

Proof. As Bk is a finite CW-complex, the map pf induces the well defined map

p∗f,4 : H∗∆,2(L̃′, E′)→ H∗4,2(L̃×Bk, p∗fE′).
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Denote by β the simplicial k cocycle
∫
ω on Bk, and by π2 : L̃×Bk → Bk a simplicial approximation (after

suitable subdivisions) of the projection. We choose the subdivision fine enough so that the cup product by
the bounded k cocycle π∗2β induces the well defined map

[β]∪ : H∗∆,2(L̃×Bk, p∗fE′)→ H∗+k4,2,c(L̃×B
k, p∗fE

′),

where H∗∆,2,c(L̃×Bk, p∗fE′) denotes the `2 simplicial cohomology of cochains which are zero on any simplex

that intersects the boundary of L̃×Bk, that is “fiber compactly supported” cocycles. Cap product with the
fundamental cycle [Bk] of Bk gives the map

∩[Bk] : H∗+k∆,2,c(L̃×B
k, p∗fE

′)→ H∗4,2(L̃, E).

Denote by H∗(2),c(L̃ × Bk, p∗fE′) the cohomology of L2 forms which are zero on some neighborhood of the

boundary L̃ × Bk. Note that H∗4,2(L̃ × Bk, p∗fE′) is a module over H∗4,2(L̃ × Bk), H∗(2)(L̃ × Bk, p∗fE′) is a

module over H∗(2)(L̃ × Bk), and ∩[Bk] : H∗+k∆,2,c(L̃ × Bk, p∗fE′) → H∗4,2(L̃, E) is defined. Then the following
diagram commutes.

H∗∆,2(L̃′, E′)

?

H∗(2)(L̃
′, E′)

W

p∗f,4-

-
p∗f

H∗∆,2(L̃×Bk, p∗fE′)

?

H∗(2)(L̃×Bk, p∗fE′)

W

[β]∪
-

-
[ω]∧

H∗+k∆,2,c(L̃×Bk, p∗fE′)

?

H∗+k(2),c(L̃×B
k, p∗fE

′)

W

∩[Bk]
-

-
π1,∗

H∗∆,2(L̃, E)

?

H∗(2)(L̃, E).

W

Since pf is a smooth submersion, it defines the bounded operator p∗f : H∗(2)(L̃
′, E′) → H∗(2)(L̃ × Bk, p∗fE′),

and W ◦ p∗f,4 = p∗f ◦W by the naturality of the Whitney map. The square in the middle commutes because

W is compatible with cup and wedge products in cohomology and W [β] = [ω]. Finally the RHS square is
commutative because W is compatible with cap products, and integration over the fibers of π1 is exactly
cap product by the fundamental class in homology of Bk.

The bottom line of this diagram is f̃∗, so we need only show that

W ◦ ∩[Bk] ◦ [β] ∪ ◦ p∗f,4 ◦W−1 = f∗D = W ◦ f∗4 ◦
∫
.

As W−1 =
∫

, this reduces to showing that

∩[Bk] ◦ [β] ∪ ◦ p∗f,4 = f∗4.

The zero section i : L̃ ↪→ L̃×Bk induces

i∗4 : H∗∆,2(L̃×Bk, p∗fE′)→ H∗4,2(L̃, E),

and the projection π1 : L̃×Bk → L̃ induces

π∗1,4 : H∗∆,2(L̃, E)→ H∗∆,2(L̃×Bk, p∗fE′).
These maps satisfy

π∗1,4 ◦ i∗4 = idH∗∆,2(L̃×Bk,p∗fE
′) .

Thus we have
([β]∪) ◦ p∗f,4 = ([β]∪) ◦ π∗1,4 ◦ i∗4 ◦ p∗f,4 = ([β]∪) ◦ π∗1,4 ◦ f∗4.

By the Thom Isomorphism Theorem, ([β]∪) ◦ π∗1,4 : H∗∆,2(L̃, E)→ H∗+k∆,2,c(L̃×Bk, p∗fE′) is an isomorphism

whose inverse is precisely ∩[Bk]. �

Theorem 3.12. The map f̃∗ : H∗(2)(F
′
s, E

′) −→ H∗(2)(Fs, E) on leafwise reduced L2 cohomology induced by

f (i,ω) does not depend on the choices of i and ω. If f1 and f2 are leafwise homotopy equivalent, then f̃∗1 = f̃∗2 .

If g : (M ′, F ′) → (M,F ) is a leafwise homotopy inverse for f , then g̃∗ ◦ f̃∗ = id and f̃∗ ◦ g̃∗ = id, so f̃∗ is
an isomorphism, with inverse g̃∗.
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Proof. For any choice of i and ω, f̃∗ = f∗D, so they are all the same. The other properties of f̃∗ follow from
these same properties for f∗D which are easy to prove using classical arguments. �

4. An Application

The results of this paper are crucial for the proof of the main theorem of [BH11], that the higher harmonic
signature, σ(F,E), of a 2` dimensional oriented Riemannian foliation F of a compact Riemannian manifold
M , twisted by a leafwise flat complex bundle E over M , is a leafwise homotopy invariant. This result has
important consequences for the Novikov conjecture for groups and for the Baum-Connes Novikov conjecture
for foliations. See [BH11] for the details.

Recall that σ(F,E) is defined as follows. Assume that E admits a non-degenerate possibly indefinite
Hermitian metric which is preserved by the leafwise flat structure. Recall the generalized deRham operator

dk,(2) : W k
0 (L̃x, E) → W k+1

0 (L̃x, E). The metric on L̃x and the leafwise flat bundle E determine leafwise

adjoints for the dk,(2), so also leafwise Laplacians ∆E
x , and Hodge ∗ operators on the W ∗0 (L̃x, E). The Hodge

operator determines an involution which commutes with ∆E
x , so it splits as a sum ∆E

x = ∆E,+
x + ∆E,−

x , in

particular in dimension `, ∆E
x,` = ∆E,+

x,` + ∆E,−
x,` . Consider the bundles Ker(∆E,±

` ) = ∪x∈M Ker(∆E,±
x,` ) over

M , whose fibers are the (in general, infinite dimensional) Hilbert spaces Ker(∆E,+
x,` ) and Ker(∆E,−

x,` ). We

assume that these bundles are smooth, that is the Schwartz kernels of the projections of W `
0 (L̃x, E) onto the

Ker(∆E,±
x,` ) vary smoothly in x. This is true in many cases: if the preserved metric on E is positive definite;

if E is a bundle associated to the normal bundle of the foliation; if E is a trivial bundle, so for the untwisted

leafwise signature operator. There is a Chern-Connes character cha for the Ker(∆E,±
` ) which takes values in

the Haefliger cohomology of F , [BH08]. The higher harmonic signature of F is defined as

σ(F,E) = cha(Ker(∆E,+
` ))− cha(Ker(∆E,−

` )).

The main theorem of [BH11] is the following.

Theorem 4.1. Suppose that M is a compact Riemannian manifold, with an oriented Riemannian foliation
F of dimension 2`, and that E is a leafwise flat complex bundle over M with a (possibly indefinite) non-
degenerate Hermitian metric which is preserved by the leafwise flat structure. Assume that the bundles

Ker(∆E,±
` ) are smooth. Then σ(F,E) is a leafwise homotopy invariant.
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