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Abstract. These lectures review the classical Hirzebruch signature theorem, and show how it extends to

the signature defined on Riemannian foliations using leafwise differential forms with coefficients in a leafwise

U(p, q)-flat complex bundle. We give background on all the concepts needed to make this extension.

1. Introduction

This is a write up of a mini-course given at the conference Géometrie Non Commutative et Physique, which
was held at the Université de Kenitra in Morocco in April 2009. I would like to express here my warmest
thanks for the invitation to speak at the conference, and for the wonderful hospitality of the organizers.

The purpose of the lectures was to introduce the rich circle of ideas surrounding the classical signature
theorem of Hirzebruch, as well as their extension foliations, which is in the realm of non-commutative
theory. In particular, they were to serve as a gentle introduction to the results obtained with Moulay-Tahar
Benemeur, which appear in the paper [BH09], and whose complexity may be daunting to the uninitiated.
In that paper, we prove that the higher harmonic signature, that is the signature defined using harmonic
forms rather than cohomology, of a even dimensional oriented Riemannian foliation of a compact manifold M ,
twisted by a leafwise U(p, q)-flat complex bundle over M , is a leafwise homotopy invariant. Rather than being
just an integer, this signature is a cohomology class, which may have non-trivial terms in dimensions greater
than zero, hence the name higher signature. Its relation to the classical signature is akin to the relationship
of the families index theorem to the index theorem on compact manifolds, or more correctly, the Connes
index theorem for foliations, [C94], to the index theorem on compact manifolds. As such, it requires a good
understanding of non-commutative theory, in particular the theory of foliations, and the non-commutative
structures associated to it. In addition to the classical elements of foliation theory (Haefliger cohomology,
homotopy groupoid, leafwise operators), we also introduce new concepts (transversely smooth idempotents,
Chern-Weil theory and the Chern-Connes character for such idempotents), needed for the statement and
proof of the theorem. This result also has important consequences for the classical Novikov conjecture for
groups, and for the Baum-Connes Novikov conjecture for foliations. For the sake of simplicity, we give just
two such applications here.

For the most part, results are only stated without proof, although we do give a brief outline of the proof of
our foliation signature theorem. We refer the reader to [BH09] for the details of this theorem and its proof,
and more background on the work of others on these questions. In addition, the reader should see [C94] and
[HiS92] for another approach to the homotopy invariance of the higher signatures for foliations.

2. Notation and Review

Throughout this paper M denotes a smooth compact oriented manifold without boundary. The tangent
bundle of M is denoted by TM , and its dual bundle by T ∗M . If E → M is a vector bundle over M , we
denote the space of smooth sections by C∞(E) or by C∞(M ;E). The fiber of E over x ∈M is denoted Ex.
The space of differential k forms on M is denoted Ωk(M), and we set Ω∗(M) = ⊕k≥0Ωk(M). The de Rham
exterior derivative is denoted d (or dM ) and more specifically dk : Ωk(M) → Ωk+1(M). Recall that the de
Rham cohomology of M is given by Hk(M ; R) = Ker(dk)/ Im(dk−1). Each Hk(M ; R) is finite dimensional,
since M is compact, and satisfies Poincaré duality, since M is oriented. That is, if the dimension of M is n,
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then Hk(M ; R) ' Hn−k(M ; R), and this duality may be realized as follows. If we choose a metric on T ∗M , we
can use it to construct an isomorphism ∗ : ∧kT ∗M → ∧n−kT ∗M , which extends to ∗ : Ωk(M)→ Ωn−k(M),
as follows. Given x ∈M , choose an oriented orthonormal basis ω1, ..., ωn of T ∗Mx. Then ω1 ∧ · · · ∧ ωn is a
well defined n-form on M , which is denoted dvol. Now define ∗ : ∧kT ∗Mx → ∧n−kT ∗Mx to be the unique
linear map such that ∗(ωi1 ∧ · · · ∧ ωik) = ωj1 ∧ · · · ∧ ωjn−k

where ωi1 ∧ · · · ∧ ωik ∧ ωj1 ∧ · · · ∧ ωjn−k
= dvol.

Note that ∗2 6= I in general, a defect that we will address below. Recall that each class α ∈ Hk(M ; R) has
a unique representative ω so that dω = 0 and d ∗ ω = 0. These are the harmonic k forms. The mapping
ϕ(α) = ϕ([ω]) = [∗ω] then defines an isomorphism ϕ : Hk(M ; R) ' Hn−k(M ; R). It is not difficult to see
that the pairing S : Hk(M ; R)⊗Hn−k(M ; R)→ R given by

S([ω1], [ω2]) = < [M ], [ω1] ∪ [ω2] > =
∫
M

ω1 ∧ ω2

is non-degenerate, since S(α,ϕ(α)) 6= 0 whenever α 6= 0. Here [M ] ∈ Hn(M ; Z) is the fundamental class
determined by M .

We now briefly recall the construction of characteristic classes for real and complex bundles.

Definition 2.1. A connection on a bundle E →M is a linear map ∇ : C∞(E⊗∧T ∗M)→ C∞(E⊗∧T ∗M),
of degree one, satisfying

∇(ξ ⊗ ω) = ∇ξ ∧ ω + ξ ⊗ dω.

Lemma 2.2. Connections always exist.

Proof. Let {Ui} be a finite open cover of M so that E |Ui is trivial. On each Ui, choose a local framing
ξi1, ..., ξ

i
k, and denote by ∇i the local connection on E |Ui determined by the requirement that ∇i(ξij) = 0

for all j. Choose a partition of unity {ϕi} subordinate to the cover {Ui}. For ξ ∈ C∞(E), define ∇(ξ) =∑
i ϕi∇i(ξ |Ui), and extend to all of C∞(E ⊗ ∧T ∗M) by requiring that ∇(ξ ⊗ ω) = ∇ξ ∧ ω + ξ ⊗ dω. �

The curvature of ∇ is the order two map θ = ∇2.

Lemma 2.3. For ξ ∈ C∞(E) and ω ∈ Ω∗(M), θ(ξ ⊗ ω) = (θξ) ∧ ω.

Proof. It is not difficult to show that ∇ is a local operator, and locally we may write ∇ξ = ξ1⊗ω1 (actually
as a finite sum of such sections) where ξ1 is a local section of E and ω1 is a local one form. Then

θ(ξ ⊗ ω) = ∇2(ξ ⊗ ω) = ∇(∇(ξ ⊗ ω)) = ∇(∇ξ ∧ ω + ξ ⊗ dω) =

∇(ξ1 ⊗ ω1 ∧ ω + ξ ⊗ dω) = ∇ξ1 ⊗ ω1 ∧ ω + ξ1 ⊗ d(ω1 ∧ ω) +∇ξ ∧ dω =
∇ξ1 ⊗ ω1 ∧ ω + ξ1 ⊗ dω1 ∧ ω − ξ1 ⊗ ω1 ∧ dω +∇ξ ∧ dω = (∇2ξ) ∧ ω = (θξ) ∧ ω.

�

Thus the curvature operator θ is not just a local operator, but actually a pointwise operator. If ξ1, ..., ξk
is a local framing of E, we may write

θ(ξi) =
∑
j

ξj ⊗ θij

where the θij are smooth local two forms on M . A simple calculation shows that the local matrix of two
forms θ = [θij ] is well defined up to conjugation by elements of Glk(R). So, for example, tr(θ) is a globally
well defined 2 form on M ! To generalize this observation, we use the equation

det(I − λ

2iπ
θ) = 1 + λc1(θ) + λ2c2(θ) + · · ·+ λkck(θ),

to define the Chern forms associated to the curvature θ. Each cj(θ) is a globally well defined closed 2j form
on M , whose cohomology class [cj(θ)] depends only on E. The constant 1/2iπ insures that these cohomology
classes are in fact integral classes. For real bundles, the c2j+1(θ) are exact, so [c2j+1(θ)] = 0 in H4j+2(M ; R).

Definition 2.4. Suppose that E is a real bundle over M . The j th Pontrjagin class of E is pj(E) = [c2j(θ)] ∈
H4j(M ; R).



HIGHER SIGNATURE 3

We want to construct certain linear combinations of the Pontrjagin classes of TM which are central to the

Hirzebruch Signature Theorem. So consider the even series
k∏
j=1

xj
tanh(xj)

, which may be written as a series in

the elementary symmetric functions σi of the variables x2
1, ..., x

2
k. That is, we define the series Lk(y1, ..., yk)

by the requirement that

Lk(σ1, ..., σk) =
k∏
j=1

xj
tanh(xj)

.

If the dimM = 4`, we set

L(TM) = L`(p1(TM), ..., p`(TM)) ∈ H4`(M ; R).

It turns out that
∫
M

L(TM), which, a priori, is only a real number, is in fact an integer, and it is a very

important topological invariant of M . More on this in the next section.
If E is a complex bundle, we get the same results, except that now the c2j+1(θ) are not necessarily exact.

Definition 2.5. For a complex bundle E, the j th Chern class of E is cj(E) = [cj(θ)] ∈ H2j(M ; R).

An important invariant of complex bundles is their Chern character. In particular, define Ck(y1, ..., yk)
by the requirement that

Ck(σ1, ..., σk) =
k∑
j=1

exj ,

where σi is the i th elementary symmetric function in the variables x1, ..., xk.

Definition 2.6. The Chern character of a complex bundle E is ch(E) = Ck(c1(E), ..., ck(E)).

Note that the Chern character of E can also be expressed as ch(E) = [tr(exp(−θ/2iπ))]. This observation
will be important for us later.

Denote by K(M) the complex K-theory of M , that is formal differences of equivalence classes of complex
bundles. Given an element β in K(M), write it as β = [E1] − [E2]. Then ch(β) = ch(E1) − ch(E2) is
well-defined. A fundamental theorem involving the Chern character is

Theorem 2.7. ch : K(M)⊗ R→ H2∗(M ; R) is an isomorphism of algebras.

Examples of C bundles over the torus T2 with non-trival Chern characters.

Realize T2 as the square I2 = {(x, y) ∈ R2 | 0 ≤ x, y ≤ 1}, with opposite edges identified. Now consider
the C bundle En over T2 defined as follows. On I2 × C identify (0, y, z) with (1, y, z), and identify (x, 0, z)
with (x, 1, e2πinxz). Denote by U0 the open subset of T2 determined by {(x, y) ∈ I2 | 14 < y < 3

4}, and by
U1 the open subset determined by {(x, y) ∈ I2 | y < 1

3 or y > 2
3}. Choose a point z0 ∈ C. On U0 define the

local section of En by σ(x, y) = z0, and define the local connection form by ∇0σ = 0. On U1 define the
local section by γ(x, y) = z0 if y < 1

3 and γ(x, y) = e2πinxz0 if y > 2
3 , and define the local connection form

by ∇1γ = 0. Let ϕ : R → R be a smooth non-negative function with ϕ = 1 on [1/3, 2/3], and ϕ = 0 on
[0, 1/4] and [3/4, 1]. Set ∇ = ϕ(y)∇0 + (1 − ϕ(y))∇1. On the set determined by {(x, y) ∈ I2 | 0 ≤ y < 2

3},
we have the framing of En given by the section σ(x, y) = z0 and ∇(σ) = 0 so θ = 0 on this set. On the set
determined by {(x, y) ∈ I2 | y ≥ 2

3}, we have the framing of En given by the restriction of the section γ. Now
we compute

∇(γ) = ϕ∇0(γ) + (1− ϕ)∇1(γ) = ϕ∇0(γ) =

ϕ∇0(e2πinxσ) = ϕσ ⊗ d(e2πinx) = ϕσ ⊗ 2πine2πinxdx = γ ⊗ ϕ2πindx,

so
θ(γ) = ∇2(γ) = ∇(γ) ∧ ϕ2πindx+ γ ⊗ d(ϕ2πindx) = 0 + (dϕ/dy)2πindy ∧ dx.



4 J. L. HEITSCH FEBRUARY 3, 2010

So, on 0 ≤ y < 2/3, θ = 0 and c1(θ) = 0, while on y ≥ 2/3, θ = (dϕ/dy)2πindy ∧ dx, and

c1(θ) =
−1
2πi

(dϕ/dy)2πindy ∧ dx = −n(dϕ/dy)dy ∧ dx.

Thus ∫
T2
c1(En) = −

∫ 1

0

[∫ 1

2/3

n(dϕ/dy)dy
]
dx = n,

provided we choose the orientation dy ∧ dx on T2. Thus, ch(En) = 1 + n[dy ∧ dx], in particular, the bundles
En, n ∈ Z are all distinct.

An interesting extension involving these ideas is the following. Realize the two sphere S2 as two copies of
the unit disc in the complex plane, S2 = D2 ∪S1 D2, which are identified on their boundaries (= S1) by the
map z → 1/z. Denote by En the C bundle over S2 which is given as follows.

En = (D2 × C) ∪S1 (D2 × C),

where the gluing map along S1×C is (z, w)→ (1/z, znw). Then prove that
∫

S2
c1(En) = n where S2 is given

its natural orientation as a complex manifold.

3. The Classical Signature

In this section, we recall the Hirzebruch Signature Theorem [H66], which is a special case of the Atiyah-
Singer Index Theorem [AS68]. Associated to every compact oriented manifold M without boundary of
dimension 4`, there is a profound integer invariant σ(M) defined as follows. The pairing S : H2`(M ; R) ⊗
H2`(M ; R)→ R,

S([ω1], [ω2]) = < [M ], [ω1] ∪ [ω2] > =
∫
M

ω1 ∧ ω2,

which is now a non-degenerate symmetric pairing, since the dimension of M is divisible by 4. It is a classical
result that for any non-degenerate symmetric pairing of a finite dimensional vector space H, the space H
may be written as H = H+ ⊕H−, where the pairing is ± definite on H±. The spaces H± are not unique,
but their dimensions are. The signature of M , σ(M), is defined by

Definition 3.1. σ(M) = dim H2`
+ (M ; R) − dim H2`

− (M ; R).

The Hirzebruch Signature Theorem states the following.

Theorem 3.2. Suppose that M is a compact oriented manifold of dimension 4`. Then the signature σ(M)
of M is an oriented homotopy invariant, and

σ(M) =
∫
M

L(TM).

Proof. If f : M → N is an oriented homotopy equivalence, it induces isomorphisms

f∗ : H∗(N ; R)→ H∗(M ; R) and f∗ : H∗(M ; Z)→ H∗(N ; Z),

where f∗ is an algebra isomorphism, and f∗([M ]) = [N ]. Thus

S(f∗[ω1]), f∗[ω2]) =
∫
M

f∗(ω1) ∧ f∗(ω2) =
∫
M

f∗(ω1 ∧ ω2) =∫
f∗(M)

ω1 ∧ ω2 =
∫
N

ω1 ∧ ω2 = S([ω1], [ω2]).

So σ(M) is an oriented homotopy invariant. Now for the formula.
First we fix the problem that ∗2 6= I. Denote by τ the involution of Ω∗(M), which on Ωp(M) is given by

τ = (−1)p∗. As τ2 = I, we get the splitting

Ω∗(M) = Ω∗+(M)⊕ Ω∗−(M)
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where Ω∗± = ±1 eigenspaces of τ . The metric on M induces an inner product (·, ·) on Ω∗(M) which is

given by (α, β) =
∫
M

α ∧ ∗β. Using this inner product, we may form the adjoint d∗ : Ω∗(M) → Ω∗(M)

of d : Ω∗(M) → Ω∗(M), and a simple computation shows that d∗ = − ∗ d∗. Now consider the operator
d + d∗ : Ω∗(M) → Ω∗(M), which anti-commutes with τ , so it reverses the splitting Ω∗+(M) ⊕ Ω∗−(M).
The operator D+ = d + d∗ : Ω∗+(M) → Ω∗−(M) is the signature operator of M . It is an elliptic operator,
which implies that dim Ker(D+) and dim Coker(D+) are finite, so we may form the index of D+, Ind(D+) =
dim Ker(D+)−dim Coker(D+) ∈ Z. The famous Atiyah-Singer Index Theorem [AS68] tells us that the index
of any elliptic operator may be computed by integration over M of the product of certain characteristic classes
of TM with the Chern character of an auxiliary bundle constructed out of the operator (the so-called symbol
bundle of the operator). In the case of the signature operator, the formula reduces to

Ind(D+) =
∫
M

L(TM).

Thus we need only show that σ(M) = Ind(D+).
Recall that the harmonic forms on M , here denoted H, are given by H = Ker(∆) ⊂ Ω∗(M), where

∆ = (d + d∗)2. It is not difficult to show that ω ∈ H if and only if dω = d∗ω = 0. The harmonic
forms are isomorphic to the cohomology of M , that is each cohomology class on M has a unique harmonic
representative. The operator D− = d + d∗ : Ω∗−(M) → Ω∗+(M) is also elliptic, and in fact is the adjoint
of D+. So dim Ker(D−) = dim Coker(D+). Now Ker(D±) = H ∩ Ω∗± = H±. So we have Ind(D+) =
dimH+ − dimH−. Since both D± anti-commute with τ , ∆τ = τ∆, and τ restricts to the involution
τ : H → H. Thus H± = ±1 eigenspaces of τ |H. For 0 ≤ k < 2`, τ : Vk = Hk⊕H4`−k → H4`−k⊕Hk = Vk,
and H+ ∩ Vk = (1 + τ)Hk ' Hk ' (1− τ)Hk = H− ∩ Vk. So the Vk contribute nothing to Ind(D+), that is
dim(H+∩Vk) and dim(H−∩Vk) cancel out when we compute Ind(D+). Thus Ind(D+) = dimH2`

+ −dimH2`
− ,

where H2`
± = ±1 eigenspaces of τ in H2` ' H2`(M ; R). Now suppose 0 6= ω ∈ H2`

+ . Then ω = τ(ω) =
(−1)2` ∗ ω = ∗ω, and

S(ω, ω) =
∫
M

ω ∧ ω =
∫
M

ω ∧ ∗ω > 0.

For 0 6= ω ∈ H2`
− , ω = −τ(ω) = − ∗ ω, and

S(ω, ω) =
∫
M

ω ∧ ω = −
∫
M

ω ∧ ∗ω < 0.

Thus S is positive definite on H2`
+ , and negative definite on H2`

− , so

σ(M) = dimH2`
+ − dimH2`

− = Ind(D+) =
∫
M

L(TM).

�

The reader may wonder where the product
∏`
j=1 xj/tanh(xj) comes from in the definition of L(TM),

that is what property does it have that makes it useful to us. The answer is that the coefficient of x2` in
(x/ tanh(x))2`+1 is 1. To see why we need this, consider the even dimensional complex projective space
CP2`, which as a real manifold has dimension 4`. We orient it by using the complex structure on TCP2`.
The cohomology of CP2` is the truncated polynomial algebra

H∗(CP2`; R) = R[x]/{x2`+1 = 0},

where x is a 2-dimensional class which satisfies
∫

CP2`

x2` = 1. It follows immediately that σ(CP2`) = 1.

Now the signature defines an algebra homomorphism from the oriented cobordism ring to the integers,
and any such homomorphism is completely determined by the values it takes on the CP2`, since modulo
torsion, these manifolds generate the oriented cobordism ring. In addition any such homomorphism must

be of the form [M4`] →
∫
M

K`(p1(TM), ..., p`(TM)), where K`(y1, ..., y`) is some polynomial. Because the
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homomorphism is multiplicative, these K` must have special properties. In particular, if we write formally
1 + p1(TM) + · · ·+ p`(TM) =

∏k
i=1(1 + x2

i ), where the xi have degree 2, then there is some series f(y) so

that
∫
M

K`(p1(TM), ..., p`(TM)) =
∫
M

k∏
i=1

f(x2
i ). Now, 1 + p1(TCP2`) + · · ·+ p`(TCP2`) = (1 + x2)2`+1, so

we need a series f(y) so that the coefficient of x2` in [f(x2)]2`+1 equals 1. The series f(y) =
√
y/ tanh(

√
y)

is such a series.
The functions Lk are quite complicated in general, and their coefficients are non-integer rational numbers.

For instance

L4 =
1

14175

(
381p4 − 71p3p1 − 19p2

2 + 22p2p
2
1 − 3p4

1

)
.

This has very interesting applications. As a simple case consider L1(p1), which equals 1
3p1. We have

immediately that for any compact, orientable, 4 dimensional manifold M4,
∫
M

p1(TM) is an integer divisible

by 3, since σ(M) =
∫
M

1
3
p1(TM) ∈ Z.

For more on all of this, see [H66] and [M74].

4. Background on Foliations

The manifold M now may have arbitrary dimension, say n. A foliation F on M of dimension 4` is a
partition of M into disjoint submanifolds, each of dimension of 4`, so that locally they are diffeomorphic to
a product T ×D4`, where T (the transversal) is diffeomorphic to Dn−4`, and Dk is the unit disk in Rk. The
connected submanifolds defining the foliation are called its leaves. We assume that F is Riemannian, which
means that there is a metric on M so that the distance between leaves is constant. Since the foliation is
locally trivial, M can be covered by a finite number of foliation charts, typically denoted U , which look as
follows. The horizontal lines are the leaves of F . Note that they are a fixed distance apart. This does not
happen in general foliations.

U ' T × D4` T ' Dn−4`

D4`

We extend the Hirzebruch Signature Theorem to such structures. In particular, we prove the following.

Theorem 4.1. Suppose that M is a compact manifold with oriented Riemannian foliation F of dimension
4`. Then the leafwise signature σ(F ) of F is an oriented leafwise homotopy invariant, and

σ(F ) =
∫
F

L(TF ).

Although the theorem looks very much like the classical signature theorem, this similarity is deceptive.
There are a number of new concepts which need to be introduced and explained.

Holonomy and Local Integration
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We will need the holonomy maps determined by F , as well as the local integration over F . Suppose we
have two foliation charts Ui and Uj and a leaf L of F which passes through both of them. Choose a path γ
in L, which starts on Ti and ends on Tj . Then we have the following picture.

Ui ' Ti ×D4`

Uj ' Tj ×D4`

L • •
γ

z hγ(z)

Ti Tj

hγ -

The holonomy map hγ has domain a subset of Ti and range a subset of Tj . Hueristically, it is obtained
by sliding the transversal Ti along the path γ, keeping the points of Ti in their leaves, until we arrive at Tj .
Then hγ is a diffeomorphism, and the set of all such maps defines the holonomy pseudogroup H. For each
hγ , we have the map h∗γ : Ωkc (Tj ∩ hγ(Ti)) → Ωkc (Ti), where Ωkc denotes the smooth k forms with compact
support.

Finally, given ωi ∈ Ω4`+k
c (Ui), we get

∫
ωi ∈ Ωkc (Ti), which is just the intergration of the form ωi over

the fibers of the fibration Ui ' Ti × D4` → Ti.

Haefliger Cohomology
The invariant σ(F ) lives in the “cohomology” of the leaf space of F . The quotation marks appear since

the leaf space of a foliation is usually a rather badly behaved space, so we can’t use the usual cohomology
of spaces. Instead we use the so-called Haefliger cohomology, [Ha80].

Choose a finite open cover of M by foliation charts {Ui} for F , and choose transversals Ti ⊂ Ui so that
T =

⋃
Ti is disjoint union. In Ωkc (T ), consider the closed subspace Ak = span{α− h∗γα}, hγ ∈ H, the

holonomy pseudogroup. Set
Ωkc (M/F ) = Ωkc (T )/Ak.

The de Rham operator d : Ωkc (T )→ Ωk+1
c (T ) induces a well defined operator dH : Ωkc (M/F )→ Ωk+1

c (M/F ).
The Haefliger cohomology of F is the cohomology of this complex, and is denoted H∗c(M/F ). It is independent
of all choices made in defining it. If F given by a fibration M → B, then H∗c(M/F ) = H∗(B; R).

Integration over F

We can now define the integration over the foliation F , which is a map
∫

F

: Ω4`+k(M) → Ωkc (M/F ),

which commutes with the de Rham differentials. In particular, given ω ∈ Ω4`+k(M), write ω =
∑
i

ωi, where

ωi ∈ Ω4`+k
c (Ui). Then integrate ωi along the fibers of Ui → Ti to get

∫
ωi ∈ Ωkc (Ti). The Haefliger

differential form
∫

F

ω ∈ Ωkc (M/F ) is then defined to be the class of
∑
i

∫
ωi, which is well defined. As

dH ◦
∫
F

=
∫
F

◦ d, we get the well defined induced map in cohomology
∫

F

: H4`+k(M)→ Hk
c (M/F ).
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Homotopy groupoid G of F
In general, the foliation F does not define a fibration with M as total space (consider the one dimensional

foliation of the two dimensional torus given by parallel lines with irrational slope). To overcome this defect,
we work on another space, the homotopy groupoid G of F , where this problem disappears. The points of
G are equivalence classes of leafwise paths in M , where two paths are equivalent if they are homotopic in
their leaf, with the end points of the homotopy fixed. Then G is a fiber bundle over M , with the projection
s : G → M given by s

(
[γ]
)

= γ(0). Denote by Fs the foliation of G whose leaves are the fibers of s, that
is L̃x = s−1(x). Denote by r : G → M the map given by r

(
[γ]
)

= γ(1). Then r : L̃x → Lx is the simply
connected cover of Lx, where Lx is the leaf of F containing the point x ∈M . For each point x ∈M we have
the element x ∈ G, which is the class of constant path at x. So, x → x gives a diffeomorphism between M
and the space of units G0 ⊂ G. Thus we may consider M as a submanifold of G.

Connections on Transversely Smooth Idempotents
Consider Ω∗(2)(Fs)→M , which is the bundle of L2 differential forms on leaves of Fs. Thus the fiber over

x ∈M is the (infinite dimensional) space (Ω∗(2)(Fs))x = L2(L̃x;∧T ∗L̃x).

An operator A : Ω∗(2)(Fs) → Ω∗(2)(Fs) assigns to each x ∈ M , an operator Ax : L2(L̃x;∧T ∗L̃x) →
L2(L̃x;∧T ∗L̃x). If Ax is a sufficiently nice operator, it has a smooth Schwartz kernel KA

x , which assigns
to each pair of points y, z ∈ L̃x, an operator KA

x (y, z) ∈ Hom((∧T ∗L̃x)z, (∧T ∗L̃x)y), so that for any ξ ∈
L2(L̃x;∧T ∗L̃x),

A(ξ)(y) =
∫

eLx

KA
x (y, z)ξ(z) dz.

We say that A is transversely smooth if all the derivatives of KA
x with respect to x define operators on

L2(L̃x;∧T ∗L̃x) which are smoothing and are bounded independently of x. Recall that an operator Ax
on L2(L̃x;∧T ∗L̃x) is smoothing if it extends to an operator from any Sobolev space W k associated to
L2(L̃x;∧T ∗L̃x) to any other Sobolev space. Roughly speaking, for k ∈ Z+, W k consists of all sections of
∧T ∗L̃x, with the property that all their derivatives up to order k are L2 sections. For negative k, W k is
the dual of W−k. Smoothing implies that Ax is bounded (but the bound might depend on x), and that all
the derivarives of its Schwartz kernel KA

x (y, z) with respect to y and z define smoothing operators. A good
example of such an operator is the orthogonal projection onto the harmonic forms in L2(L̃x;∧T ∗L̃x).

Any connection ∇ : C∞(∧T ∗F ⊗∧T ∗M)→ C∞(∧T ∗F ⊗∧T ∗M) on ∧T ∗F , induces a connection ∇Fs on
∧T ∗Fs, that is

∇Fs : C∞(∧T ∗Fs ⊗ ∧T ∗G)→ C∞(∧T ∗Fs ⊗ ∧T ∗G).
Denote by ν∗s ⊂ T ∗G the dual normal bundle of Fs, and note that ν∗s = s∗(T ∗M), so there is a natural
inclusion and action of Ω∗(M) on C∞(∧ν∗s ). Denote by pν : ∧T ∗G → ∧ν∗s , the projection. Suppose that
ρ : Ω∗(2)(Fs)→ Ω∗(2)(Fs) is an idempotent, that is for all x ∈M , ρ2

x = ρx.

Definition 4.2. A connection ∇ on ρ is a G invariant operator on Ω∗(2)(Fs) ⊗ C
∞(∧ν∗s ) of degree one, so

that
(1) for ξ ∈ Ω∗(2)(Fs) and ω ∈ Ωk(M), ∇(ω ⊗ ξ) = ∇ξ ∧ ω + ξ ⊗ dMω;
(2) ∇ can be written as

∇ = ρ
(
pν∇Fs + A

)
ρ,

where A a transversely smooth G invariant leafwise operator on Ω∗(2)(Fs)⊗ C
∞(∧ν∗s ).

Connections always exist, since we may take ∇ = ρ
(
pν∇Fs

)
ρ. We need the inclusion of the operator A

in the definition to insure that the pull-back of a connection is also connection.
The notion of G invariance for ∇ means that ∇ | L̃x1 = ∇ | L̃x2 , where x1, x2 ∈ L, and similarly for A.

As in the classical case, we call θ = ∇2 the curvature of ∇, and we can use it to construct a Chern-Connes
character of the idempotent ρ. All powers θk of θ are transversely smooth G invariant leafwise operators,
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and we denote their Schwartz kernels by Kθk

x (y, z). Recall that for each x ∈M , x is the class of the constant
path at x. Then for each k, and each x ∈M , Kθk

x (x, x) is a linear operator on a finite dimensional space and
so has a well-defined trace, tr(Kθk

x (x, x)). In fact, property (1) of 4.2 and the proof of Lemma 2.3 show that
θk is an Ω∗(M) equivariant operator, so we can take its equivariant trace, and interpret tr(Kθk

x (x, x)) as a
2k form on M . With a little more work, we can see that tr(Kθk

x (x, x)) is actually a normal form for F , that
is a section of C∞(∧2kν∗). Denote by dx the volume form on the leaves of F . Thus x → tr(Kθk

x (x, x))dx
gives a well defined 4`+ 2k differential form on M .

Definition 4.3. Set Tr(θk) =
∫
F

tr(Kθk

x (x, x))dx ∈ Ω2k
c (M/F ).

In complete analogy with the classical case, we have

Proposition 4.4. Tr(exp(−θ/2iπ)) is a closed Haefliger form, whose Haefliger class [Tr(exp(−θ/2iπ))] is
independent of ∇.

Recall that the Chern character of a complex bundle E can be expressed as ch(E) = [tr(exp(−θ/2iπ))],
which inspires the following definition. Note that we have used R valued forms here, but we could have just
as well used C valued forms, and that for the twisted case (see below), the twisting bundle is in fact a C
bundle.

Definition 4.5. cha(ρ) = [Tr(exp(−θ/2iπ))] ∈ H∗c(M/F ).

5. The Higher Harmonic Signatures for Foliations

All the structures we considered in the classical case of the signature of a compact manifold extend to
the leaves of the foliation Fs. In particular, on each leaf we have the involution τ , which gives an involution
on Ω∗(2)(Fs), so this bundle splits as Ω∗(2)(Fs) = Ω∗+(Fs) ⊕ Ω∗−(Fs). The leafwise operator D = d + d∗

reverses this splitting, and leafwise Laplacian ∆ = D2 preserves the splitting. Denote by Ker(∆) the bundle
over M whose fiber over x is Ker(∆x) ⊂ L2(L̃x;∧T ∗L̃x), and by ρx : L2(L̃x;∧T ∗L̃x) → Ker(∆x) the
orthogonal projection. The amalgamation of the ρx then defines the operator ρ : Ω∗(2)(Fs) → Ω∗(2)(Fs), the
projection onto the leafwise harmonic forms. Denote by ρ± : Ω∗(2)(Fs)→ Ker(∆±2`) = Ker(∆) ∩Ω2`

± (Fs), the
projection onto the plus and minus leafwise harmonic forms in the middle dimension. So for each x ∈ M ,
(ρ±)x : L2(L̃x;∧T ∗L̃x) → (Ker(∆±2`))x = Ker(∆x) ∩ L2

±(L̃x,∧2`T ∗L̃x). Generalizing an unpublished result
of Gong and Rothenberg, [GR97], we have

Theorem 5.1. The projections ρ± are transversely smooth.

Definition 5.2. The Higher Harmonic Signature σ(F ) of (M,F ) is the Haefliger class

σ(F ) = cha(ρ+)− cha(ρ−).

To see that this is an extension of the classical case, suppose that the foliation F consists of a single leaf,
namely the entire manifold M , and for simplicity assume that M is simply connected. Then G = M×M , and
for each x ∈M , ρ±,x is just projection onto the H2`

± , the ± harmonic forms on M in the middle dimension.
Then, since the co-dimension of F is zero, we need only consider the k = 0 term in Tr(exp(−∇2/2iπ)), so

cha(ρ±) =
∫
F

tr(K∇
0

x (x, x))dx =
∫
M

tr(K±(x, x))dx,

where K± are the Schwartz kernels of the projections ρ±. It is a fairly easy calculation to show that∫
M

tr(K±(x, x))dx = dim(H2`
± ).

A leafwise homotopy equivalence between foliated manifolds (M,F ) and (M ′, F ′) is a smooth map f :
M → M ′ which takes leaves to leaves, so that there is a smooth map g : M ′ → M , which takes leaves to
leaves, and smooth maps H : M × [0, 1]→M ′ and H ′ : M ′ × [0, 1]→M , which take a leaf ×[0, 1] to a leaf,
so that H(x, 1) = x, H(x, 0) = g ◦ f(x), H ′(x′, 1) = x′, and H(x′, 0) = f ◦ g(x′). The equivalence is oriented
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if both foliations are oriented, and f and g preserve the orientations. If f is such a map, then f induces the
isomorphism on Haefliger cohomology f∗ : H∗c(M

′/F ′)→ H∗c(M/F ).

Recall the First Main Theorem

Theorem 5.3. Suppose that M is a compact manifold with oriented Riemannian foliation F of dimension
4`. Then the leafwise signature σ(F ) of Fs is an oriented leafwise homotopy invariant, and

σ(F ) =
∫
F

L(TF ).

Now consider the space C∞c (G; Hom(∧T ∗Fs)), where the fiber of Hom(∧T ∗Fs) over an element [γ] ∈ G
consists of all linear homomorphisms from ∧T ∗Fs(γ) to ∧T ∗Fr(γ), and note that we may identify (∧T ∗Fs)[γ]
with ∧T ∗Fr(γ). If A ∈ C∞c (G; Hom(∧T ∗Fs)), it defines a leafwise operator on ∧T ∗Fs, which is G invariant,
bounded, and smoothing. For ξ ∈ L2(L̃x;∧T ∗L̃x), and [γ] ∈ L̃x,

A(ξ)([γ]) =
∫

eLx

A(γγ−1
1 )ξ(γ1).

As above, the operator D defines D+ : Ω∗+(Fs) → Ω∗−(Fs), which we call the leafwise signature operator.
On each leaf, D+ is elliptic, and it is G invariant and invertible modulo C∞c (G; Hom(∧T ∗Fs)), so by a now
classical procedure, [C81], it has an index class

Ind∞c (D+) ∈ K0(C∞c (G; Hom(∧T ∗Fs))).
In [BH08], we constructed a Chern-Connes character also denoted cha : K0(C∞c (G; Hom(∧T ∗Fs))) →
H∗c(M/F ), and we showed that

Theorem 5.4.

cha(Ind∞c (D+)) =
∫
F

L(TF ).

Recent results of Azzali, Goette, and Schick [AGS], improving results of [HL99] and [BH08] immediately
give the following.

Theorem 5.5. Suppose that M is a compact manifold with oriented Riemannian foliation F of dimension
4`. Then

cha(Ind∞c (D+)) = σ(F ).

Thus we have that σ(F ) =
∫
F

L(TF ), and it only remains to show that σ(F ) is a leafwise homotopy

invariant, that is, if f : (M,F ) → (M ′, F ′) is an oriented leafwise homotopy equivalence, then f∗(σ(F ′)) =
σ(F ). An outline of the proof of this is in Section 7.

Second Main Theorem
We can extend the First Main Theorem to the higher harmonic signature of an even dimensional oriented

Riemannian foliation F of a compact manifold M with coefficients in a leafwise U(p, q)-flat complex bundle.
In particular, suppose that the dimesnion of F is 2`, and let E be a complex bundle over M , which restricted
to any leaf of F is flat, i.e. a leafwise flat bundle. Assume that E admits a non-degenerate possibly indefinite
Hermitian metric, i.e. a U(p, q) structure, which is preserved by the leafwise flat structure. The bundle E |L
pulls back to a flat bundle (also denoted E) on each L̃x, and it determine leafwise Laplacians ∆E and Hodge ∗
operators on the differential forms on L̃x with coefficients in E. The Hodge operator determines an involution
on forms with coefficients in E which commutes with ∆E , so ∆E splits as a sum ∆E = ∆E,+ + ∆E,−, in
particular in dimension `, ∆E

` = ∆E,+
` + ∆E,−

` . We assume that the projection onto Ker(∆E
` ) is transversely

smooth, which implies that the projections ρE± onto Ker(∆E,+
` ) and Ker(∆E,−

` ) are transversely smooth.
This is true whenever the leafwise parallel translation on E defined by the flat structure is a bounded map,
in particular whenever the preserved metric on E is positive definite. It is satisfied for important examples,
e.g., the examples of Lusztig [Lu72] which proved the Novikov conjecture for free abelian groups, and it



HIGHER SIGNATURE 11

is always true whenever E is a bundle associated to the normal bundle of the foliation. Of course, the
smoothness assumption is fulfilled for the (untwisted) leafwise signature operator, since this is Theorem 5.1.

Definition 5.6. The higher harmonic signature of F twisted by E is

σ(F,E) = cha(ρE+)− cha(ρE−).

Our Second Main Theorem is the following.

Theorem 5.7. Suppose that M is a compact manifold, with oriented Riemannian foliation F of dimension
2`, and that E is a leafwise flat complex bundle over M with a (possibly indefinite) non-degenerate Hermitian
metric which is preserved by the leafwise flat structure. Assume that the projection onto Ker(∆E

` ) for the
associated foliation Fs of the homotopy groupoid of F is transversely smooth. Then σ(F,E) is a leafwise
homotopy invariant.

The proof of this theorem is essentially the same as for the First Main Theorem, with some complications
introduced because of the auxiliary bundle E.

Note that Theorem 5.7 does not give a formula for σ(F,E) in terms of characteristic classes. The bundle
E splits as E = E+ ⊕ E−, where the metric is ± definite on E±. The splitting isn’t unique, but the
isomorphism classes of the bundles E± are. We have the following [BH08].

Conjecture 5.8.

σ(F,E) =
∫
F

L(TF )
(

ch(E+)− ch(E−)
)
.

In [HL99], and improved in [BH08], this conjecture was proven for certain foliations with nice spectra.
In [AGS], Azzali, Goette, and Schick prove it for globally flat E. We expect that their proof will extend to
leafwise flat E.

6. Applications

We briefly state two applications of Theorem 5.7. For more results of this form, see [BH09].
First recall the famous conjecture of Novikov.

Conjecture 6.1 (Novikov). Suppose that N is a compact manifold with universal cover Ñ , and that f :

N → Bπ1N classifies the π1N bundle Ñ → N . Then for any x ∈ H∗(Bπ1N ; Q),
∫
N

L(TN)f∗(x) is a

homotopy invariant.

Theorem 5.7 implies this conjecture for π1N = Zn and for all surface groups. The original proofs were
given by Lusztig [Lu72]. In addition, Theorem 5.7 implies this conjecture for any cohomology class in
H∗(Bπ1N ; Q) of the form ch(E+)− ch(E−), where E+ ⊕ E− is a U(p, q) flat bundle over Bπ1N .

Baum and Connes have extended the Novikov conjecture to the case of foliations.

Conjecture 6.2 (Baum-Connes). Suppose that F is a foliation of a compact manifold M and that f : M →

BG is a classifying map for F . Then for any x ∈ H∗(BG; Q),
∫
F

L(TF )f∗x is a leafwise homotopy invariant.

Theorem 5.7 implies this for conjecture for any cohomology class in H∗(BG; Q) of the form ch(E+) −
ch(E−), where E+ ⊕ E− is a U(p, q) flat bundle over BG.
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7. Outline of the Proof of the First Main Theorem

Suppose that f : M,F →M ′, F ′ is an oriented leafwise homotopy equivalence between oriented Riemann-
ian foliations. We must show that f∗(σ(F ′)) = σ(F ). In fact we show more. Denote by ρ′± the idempotents
used in the definition of σ(F ′). Then we show that f∗(cha(ρ′±)) = cha(ρ±). As the two proofs are identical,
we concentrate on the case of ρ′+.

Since we are working on the homotopy groupoids, we extend f to a leafwise map f̃ : G, Fs → G′, F ′s by
setting f̃([γ]) = [f̃ ◦ γ]. Our first step is to use f̃∗ to pull back the idempotent ρ′+ to an idempotents ρf+.
There are two problems with this simple definition of f̃ which prevent us from doing this.

First, it might be the case that f̃∗ does not induce a map on L2 leafwise forms. To see what can go wrong,
it is an instructive exercise to construct an oriented leafwise homotopy equivalence of an irrational constant
slope foliation of the two torus to itself which does not take leafwise L2 forms to L2 forms. To solve this
problem, we adapt the method of Hilsum-Skandalis [HiS92], which essentially says that we can “fatten up”
f̃ to a map, also denoted f̃ , which is a leafwise submersion. Once we have done this, a good deal of analysis
shows that the new f̃ induces bounded maps on all leafwise Sobolev spaces.

The second problem we encounter is that the action of the Hilsum-Skandalis f̃∗ on the algebra of forms, or
more correctly the leafwise cohomology algebra, is not so obvious. To solve this problem, we use the results of
[HL91] (à la Dodziuk [D77]) to construct another f̃∗, which passes through the leafwise simplicial cohomology
of Fs and does have the algebraic properties we require. We then show that on leafwise cohomology the
Heitsch-Lazarov f̃∗ is the same as the Hilsum-Skandalis f̃∗.

Now we are in a position to define the pull-back of the transversely smooth idempotent ρ′+. Denote by
ρ2`

the projection to the leafwise harmonic forms in dimension 2`, that is to Ker(∆2`).

Definition 7.1. Let g : M ′, F ′ →M,F be a homotopy inverse for f . Set
ρf+ = f̃∗ρ′+g̃

∗ρ2`
.

Proposition 7.2. The map ρf+ is a transversely smooth idempotent.

Proof. To see that ρf+ is an idempotent, note that

(ρf+)2 = f̃∗ρ′+g̃
∗ρ2`

f̃∗ρ′+g̃
∗ρ2`

.

Here we are actually working on cohomology, since ρ2` and ρ′+ have image in the harmonic forms. But on
cohomology (so also on the harmonic forms) g̃∗ and f̃∗ are inverses of each other, so g̃∗ρ2`

f̃∗ρ′+ = ρ′+, and

(ρf+)2 = f̃∗ρ′+ρ
′
+g̃
∗ρ2`

= f̃∗ρ′+g̃
∗ρ2`

= ρf+.

Next, we need to show that ρf+ and all its transverse derivatives take any leafwise Sobolev space to
any other leafwise Sobolev space. As the idempotents ρ2`

and ρ′+ are transversely smooth, they do take any
leafwise Sobolev space to any other leafwise Sobolev space. Now, f̃∗ and g̃∗ are bounded maps on all leafwise
Sobolev k spaces, so we have that ρf+ takes any leafwise Sobolev space to any other leafwise Sobolev space.

To see that the transverse derivatives of ρf+ take any leafwise Sobolev space to any other leafwise Sobolev
space, we need to relate the transverse derivatives on G′ to those on G. Recall the projections pν : ∧T ∗G →
∧ν∗s , and p′ν : ∧T ∗G′ → ∧ν′∗s. The transverse derivatives are computed by using the transverse de Rham
operators dν = pνdG and d′ν = p′νdG′ , coupled with interior product with transverse vector fields. Here we
have denoted by dG and dG′ the usual de Rham operators on G and G′. Denote by ds and d′s the leafwise de
Rham operators for Fs and F ′s. The crucial lemma is the following.

Lemma 7.3.
dν f̃

∗ − f̃∗d′ν = f̃∗d′s − dsf̃∗ and d′ν g̃
∗ − g̃∗dν = g̃∗ds − d′sg̃∗.

This lemma allows us to transform questions about transverse derivatives into questions about tangential
derivatives. Since the operators ds and d′s are the leafwise de Rham operators, they take any leafwise Sobolev
k space to the leafwise Sobolev k− 1 space. Then a good deal of functional analysis shows that since we are
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composing with transversely smooth operators, which take any leafwise Sobolev space to any other leafwise
Sobolev space, the transverse derivatives of the ρf+ take any leafwise Sobolev space to any other leafwise
Sobolev space, and so finishes the proof. �

Proposition 7.4.
f∗ cha(ρ′+) = cha(ρf+).

Proof. Given any connection ∇′ on ρ′+, we can define the pull-back connection ∇ = f̃∗(∇′) on ρf+ (more or
less in the usual way, but of course with complications). This is where the use of the transversely smoothing
operator A in the definition of a connection comes into play. It is not necessarily true that the pull-back
of a connection on ρ′+ is the compression of a connection on ∧T ∗Fs to the pulled back bundle ρf+. Then
θ = f̃∗(θ′) and Tr(θk) = f∗Tr(θ′k) for all k, which gives the result. �

The following is a standard result for Chern-Connes characters defined on idempotents.

Proposition 7.5. If et, 0 ≤ t ≤ 1, is a smooth family of G invariant transversely smooth idempotents, then
cha(e0) = cha(e1).

Proposition 7.6.
cha(ρf+) = cha(ρ2`

ρf+).

Proof. A simple computation shows that (1− t)ρ2`
ρf+ + tρf+ is a family of idempotents. As both ρ2`

ρf+ and
ρf+ are transversely smooth, we are done. �

The last major result we need is the following.

Proposition 7.7.
cha(ρ2`

ρf+) = cha(ρ+).

Proof. The proof of this proposition involves a good deal of heavy functional analysis, which is used to show
the following two results. First, we show that the restriction of ρ+ to Im(ρ2`

ρf+) is an isomorphism onto
Im(ρ+) with uniformly bounded inverse, which we denote ρ−1

+ : Im(ρ+)→ Im(ρ2`
ρf+). Second, we show that

ϕ+ = ρ−1
+ ◦ ρ+ : Ω2`

(2)(Fs)→ Im(ρ2`
ρf+)

is a transversely smooth idempotent.

To finish the proof of the proposition, and so also the First Main Theorem, we need two easy results. Since
the transversely smooth idempotents ϕ+ and ρ2`

ρf+ have the same image, tϕ+ + (1 − t)ρ2`
ρf+ is a smooth

family of transversely smooth idempotents, and we have

cha(ρ2`
ρf+) = cha(ϕ+).

Finally, since ϕ+ is projection onto Im(ρ2`
ρf+) along Ker(ρ+), we have ϕ+ρ+ = ϕ+ and ρ+ϕ+ = ρ+. Thus,

tϕ+ + (1− t)ρ+ is a smooth family of transversely smooth idempotents, and

cha(ϕ+) = cha(ρ+).

�
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