
j. differential geometry

87 (2011) 389-467

THE TWISTED HIGHER HARMONIC SIGNATURE
FOR FOLIATIONS

Moulay-Tahar Benameur & James L. Heitsch

Abstract

We prove that the higher harmonic signature of an even dimen-
sional oriented Riemannian foliation F of a compact Riemannian
manifold M with coefficients in a leafwise U(p, q)-flat complex
bundle is a leafwise homotopy invariant. We also prove the leaf-
wise homotopy invariance of the twisted higher Betti classes. Con-
sequences for the Novikov conjecture for foliations and for groups
are investigated.
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1. Introduction

In this paper, we prove that the higher harmonic signature, σ(F,E),
of a 2ℓ dimensional oriented Riemannian foliation F of a compact Rie-
mannian manifold M , twisted by a leafwise flat complex bundle E over
M , is a leafwise homotopy invariant. We also derive important conse-
quences for the Novikov conjecture for foliations and for groups. We
assume that E admits a non-degenerate possibly indefinite Hermitian
metric which is preserved by the leafwise flat structure. As explained in
[G96], this includes the leafwise O(p, q)-flat and the leafwise symplectic-
flat cases. We assume that the projection onto the twisted leafwise har-
monic forms in dimension ℓ is transversely smooth. This is true when-
ever the leafwise parallel translation on E defined by the flat structure
is a bounded map, in particular whenever the preserved metric on E
is positive definite. It is satisfied for important examples, e.g. the ex-
amples of Lusztig [Lu72] which proved the Novikov conjecture for free
abelian groups, and it is always true whenever E is a bundle associated
to the normal bundle of the foliation. In particular, the smoothness
assumption is fulfilled for the (untwisted) leafwise signature operator.

Any metric on M determines a metric on each leaf L of F , so also
on all covers of L. The bundle E |L can be pulled back to a flat bundle
(also denoted E) on any cover of L. These leafwise metrics and the
leafwise flat bundle E determine leafwise Laplacians ∆E and Hodge ∗
operators on the differential forms on L with coefficients in E |L, as
well as on all covers of L. The Hodge operator determines an involution
which commutes with ∆E, so ∆E splits as a sum ∆E = ∆E,+ +∆E,−,

in particular in dimension ℓ, ∆E
ℓ = ∆E,+

ℓ + ∆E,−
ℓ . To each leaf L of

F we associate the formal difference of the (in general, infinite dimen-

sional) spaces Ker(∆E,+
ℓ ) and Ker(∆E,−

ℓ ) on L̃, the simply connected
cover of L. We assume that the Schwartz kernel of the projection

onto Ker(∆E
ℓ ) = Ker(∆E,+

ℓ )⊕Ker(∆E,−
ℓ ) varies smoothly transversely.

Roughly speaking, transverse smoothness means that the Ker(∆E,±
ℓ ) are

“smooth bundles over the leaf space of F”. There is a Chern-Connes
character cha for such bundles which takes values in the Haefliger coho-
mology of F , [BH08]. The higher harmonic signature of F is defined
as

σ(F,E) = cha(Ker(∆E,+
ℓ ))− cha(Ker(∆E,−

ℓ )).

Our main theorem is the following.

Theorem 9.1. Suppose that M is a compact Riemannian manifold,
with an oriented Riemannian foliation F of dimension 2ℓ, and that E
is a leafwise flat complex bundle over M with a (possibly indefinite)
non-degenerate Hermitian metric which is preserved by the leafwise flat
structure. Assume that the projection onto Ker(∆E

ℓ ) for the associated
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foliation Fs of the homotopy groupoid of F is transversely smooth. Then
σ(F,E) is a leafwise homotopy invariant.

In particular, suppose that M ′, F ′, and E′ satisfy the hypothesis of
Theorem 9.1, and that f :M →M ′ is a leafwise homotopy equivalence,
which is leafwise oriented. Set E = f∗(E′) with the induced leafwise
flat structure and preserved metric. Then f induces an isomorphism f∗

from the Haefliger cohomology of F ′ to that of F , and

f∗(σ(F ′, E′)) = σ(F,E).

A priori, σ(F,E) depends on the metric on M . However, it is an imme-
diate corollary of Theorem 9.1 that it is independent of this metric since
the identity map is a leafwise homotopy equivalence between (M,F ; g0)
and (M,F ; g1). In general, σ(F,E) depends on the flat structure and
the metric on E, in particular on the splitting of E = E+ ⊕ E− into
positive (resp. negative) definite sub bundles.

Our techniques also give the leafwise homotopy invariance of the
twisted higher Betti classes. When the twisting bundle E is trivial,
this extends (in the Riemannian case) the main theorem of [HL91].

Theorem 10.6 Suppose that M is a compact Riemannian mani-
fold, with an oriented Riemannian foliation F of dimension p. Let E
be a leafwise flat complex bundle over M with a (possibly indefinite)
non-degenerate Hermitian metric which is preserved by the leafwise flat
structure. Assume that the projection onto Ker(∆E) for the associated
foliation Fs of the homotopy groupoid of F is transversely smooth. Then
the twisted higher Betti classes βj(F,E), 0 ≤ j ≤ p, are leafwise homo-
topy invariants.

We now give some background to place the results of this paper in
context.

Let M and M ′ be closed oriented manifolds with oriented foliations
F and F ′. Let ϕ : (M ′, F ′)→ (M,F ) be an oriented, leafwise oriented,
leafwise homotopy equivalence. Denote the homotopy groupoid of F by
G, and let f : M → BG be a classifying map for F . The BC (Baum-
Connes) Novikov conjecture predicts that for every x ∈ H∗(BG;R),

∫

M
L(TF ) ∪ f∗x =

∫

M ′

L(TF ′) ∪ (f ◦ ϕ)∗x.

It is easy to check that this conjecture reduces to the case where the
leaves have even dimension. In the case of a foliation with a single
closed leaf with fundamental group Γ and denoting by f : M → BΓ a
classifying map for the universal cover ofM , the BC Novikov conjecture
reduces to the classical Novikov conjecture

∫

M
L(TM) ∪ f∗x =

∫

M ′

L(TM ′) ∪ (f ◦ ϕ)∗x, ∀x ∈ H∗(BΓ;R).
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A powerful approach to the Novikov conjecture was initiated by Kas-
parov in [K88]. He actually proves a stronger version of the Novikov
conjecture, namely the injectivity of the famous Baum-Connes map
[KS03, HgK01, La02]. See [T99] for a proof of this injectivity for
a large class of foliations, including hyperbolic foliations. Note that it
is still an open question whether the Baum-Connes map is rationally
injective for Riemannian foliations.

A second approach to the Novikov conjecture was initiated by Connes
and his collaborators [CM90] and uses cyclic cohomology and the ho-
motopy invariance of the Miscenko symmetric signature in the K-theory
of the reduced group C∗-algebra [K88, M78]. This method proved
successful, [CGM93], for the largest known class of groups, including
Gromov-hyperbolic groups. For foliations, the homotopy invariance of
the corresponding Miscenko class in theK-theory of the C∗-algebra of G
was explained in [BC00, BC85] and proved independently in [KaM85]
and [HiS92]. It reduces the BC Novikov conjecture to an extension
problem in the K-theory of foliations, together with a cohomological
longitudinal index formula. The extension problem was first solved by
Connes for certain cocycles in [C86] by using a highly non trivial an-
alytic breakthrough. For general cocycles, the extension problem is
a serious obstacle and many efforts have been made in this direction
[Cu04, CuQ97, LMN05, N97, P95, Me]. See also the recent [Ca]
for an alternative approach.

The present paper was inspired by a third method mainly due to
Lusztig [Lu72], and to ideas of Gromov [G96]. It relies on the fact
that for discrete groups having enough finite dimensional U(p, q) rep-
resentations, the even cohomology of the classifying space BΓ is gen-
erated by U(p, q) flat K-theory classes. The main theorem needed in
this approach is the oriented homotopy invariance of the twisted sig-
nature by such K-theory classes. This approach has been extended in
[CGM90, CGM93] to cover all the known cases, using the concept of
groups having enough almost representations and almost flat K-theory
classes.

Recall that in non-commutative geometry, the index of an elliptic
operator is usually defined as a certain C∗-algebra K theory class con-
structed out of the operator itself, without reference to its kernel or cok-
ernel. In the special (commutative) sub-case of a fibration, the Chern
character of this operator K theory class coincides with the Chern char-
acter of the index bundle determined by the operator. In the (non-
commutative) case of foliations, this equality is not known in general.
See [BH08], where conditions are given for it to hold, as well as [N97]
and the recent [AGS]. For the signature operator, and its twists by
leafwise almost flat K-theory classes, the C∗-algebra K-theory index is
well known to be a leafwise homotopy invariant of the foliation [HiS92].
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However, in order to deduce explicit results on the BC Novikov conjec-
ture for foliations, one needs to define a Chern-Connes character of this
C∗-algebra K-theory class and to compute it. Our approach to this
problem is to use the index bundle of the twisted leafwise signature op-
erator, whose Chern-Connes character in Haefliger cohomology is well
defined as soon as the bundle is. It is therefore a natural problem to
prove directly the homotopy invariance of the Chern-Connes character
of the leafwise signature index bundle and its twists by leafwise (almost)
flat K-theory classes.

Our program to attack the BC Novikov conjecture for foliations con-
sists of three steps.

• Given a K-theory class y = [E+] − [E−] over BG, prove that

the characteristic number

∫

M
L(TF ) ∪ f∗ ch(y) equals the higher

leafwise harmonic signature twisted by f∗y.
• Prove that the higher leafwise harmonic signature twisted by leaf-
wise almost flat K-theory classes of the ambient manifold is a
leafwise oriented, leafwise homotopy invariant.
• Prove that complex bundles E = E+ ⊕ E−, such that [f∗E+] −
[f∗E−] is a leafwise almost flat K-theory class, generate the K-
theory of BG.

It is clear that solving these three problems for a class of foliations
implies the BC Novikov conjecture for that class. The first step was
partially completed in our previous papers [BH04, BH08], where we
proved this equality under certain assumptions, which were subsequently
removed in [AGS], provided the bundle E+ ⊕ E− is globally flat. We
conjecture that the result is still true under the far less restrictive as-
sumption that E+⊕E− is only leafwise flat. The second step is the goal
of the present paper, when the coefficient bundle E has a leafwise flat
structure and the foliation is Riemannian. See [BH] for further results
on this question.

Our results so far on the third step rely on deep but now classi-
cal results of Gromov [G96], and allow us to prove, for instance, the
BC Novikov conjecture, without extra assumptions, for the subring of
H∗(BG;R) generated by H1(BG;R) and H2(BG;R). Again see the
forthcoming paper [BH].

We now briefly describe the contents of each section. Section 2 con-
tains notation and some review. In Section 3, we recall the Chern-
Connes character for transversely smooth idempotents, which takes val-
ues in the Haefliger cohomology of the foliation. In Section 4, we define
the twisted higher harmonic signature, and prove that if the parallel
translation using the flat structure on E is bounded, then the projec-
tion to the twisted harmonic forms is transversely smooth. Section 5
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contains two important concepts essential to the proof of our main the-
orem, namely the notion of a “smooth bundle over the space of leaves
of F”, and the extension to such bundles of the classical Chern-Weil
theory of characteristic classes. This allows us to compare the charac-
teristic classes of such bundles on different manifolds. Section 6 contains
results on leafwise homotopy equivalences. Outlines of the proofs are
given in the Appendix. In general, leafwise homotopy equivalences do
not behave well on Sobolev spaces. To overcome this problem, we use a
construction, due to Hilsum-Skandalis [HiS92], which produces smooth
bounded maps between Sobolev spaces. We then use the Whitney iso-
morphism between simplicial and smooth cohomology to get control of
the leafwise cohomologies. In Section 7, we prove that the pull-backs
under leafwise homotopy equivalences of certain smooth bundles over
the space of leaves are still smooth bundles. Section 8 extends the no-
tion of pulled-back connections. Section 9 contains the proof of the
main theorem. In Section 10, we prove the equality between the twisted
higher harmonic signature and the Chern-Connes character of the index
bundle of the twisted leafwise signature operator. We explain how our
methods extend to prove Theorem 10.6. We also conjecture a coho-
mological formula for the twisted higher harmonic signature, which is
already known to be true in some cases. See [H95, HL99, BH08] and
the forthcoming [AGS]. Finally, in Section 11 we show how our results
lead to important consequences for the Novikov conjecture for foliations
and for groups.

Acknowledgments. We are indebted to J. Alvarez-Lopez, A. Connes,
J. Cuntz, Y. Kordyukov, J. Renault, J. Roe, G. Skandalis, D. Sullivan,
and K. Whyte for many useful discussions. We would also like thank
the referee for several very useful suggestions.

2. Notation and review

Throughout this paper M denotes a smooth compact Riemannian
manifold of dimension n, and F denotes an oriented Riemannian fo-
liation of M of dimension p = 2ℓ and codimension q. So n = p + q.
The tangent bundle of F is denoted by TF , its normal bundle by ν,
and its dual normal bundle by ν∗. We assume that the metric on M ,
when restricted to ν, is bundle like, so the holonomy maps of ν and ν∗

are isometries. A leaf of F is denoted L. We denote by U a finite good
cover of M by foliation charts as defined in [HL90].

If V → N is a vector bundle over a manifold N , we denote the space
of smooth sections by C∞(V ) or by C∞(N ;V ) if we want to emphasize
the base space of the bundle. The compactly supported sections are de-
noted by C∞

c (V ) or C∞
c (N ;V ). The space of differential k forms on N
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is denoted Ak(N), and we set A∗(N) = ⊕k≥0Ak(N). The space of com-
pactly supported k forms is denoted Ak

c (N), and A∗
c(N) = ⊕k≥0Ak

c (N).
The de Rham exterior derivative is denoted d or dN . The tangent and
cotangent bundles of N will be denoted TN and T ∗N .

We will freely use the notation and constructions of [BH08] in this
paper (very briefly recalled below), with two notable differences. In
constructing the (reduced) Haefliger cohomology of F , [Ha80], we use
the quotient of Ak

c (T ), where T is a complete transversal for F , by the

closure Lk of Lk taken in the following sense. (The reader should note
that in previous papers, we said that we used the C∞ topology to take

this closure, but in fact we used the one given here.) Lk consists of all
elements in ω ∈ Ak

c (T ), so that there are sequences {ωn}, {ω̂n} ⊂ Lk

with ||ω − ωn|| → 0 and ||dT (ω) − ω̂n|| → 0. The norm || · || is the
sup norm, that is ||ω|| = supx∈T ||ω(x)||x, where || · ||x is the norm on

(∧kT ∗T )x.
The reader should note that this cohomology appears as a quotient

in the general computation of cyclic homology for foliations carried
out in [BN94]. It is worth pointing out that since F is Riemann-
ian and transversely oriented, H∗

c(M/F ) is well behaved and is eas-
ily computed in specific examples. In particular, it is finite dimen-
sional, Hausdorff, has twisted duality, and is invariant by foliation ho-
motopies (which are weaker than leafwise homotopies). This is because
H∗

c(M/F ) is related to H∗
b(M,F ), the basic cohomology of F , that is

the cohomology of the transverse forms which are invariant under holo-
nomy. For transversely oriented Riemannian foliations of codimension

q, Hk
c (M/F ) ≃ Hq−k

b (M,F ), and the latter has all these properties. See
[KT83, EHS85, EH86].

The second exception is that we will be working on the homotopy
groupoids (also called the monodromy groupoids) of our foliations, but
our results extend to the holonomy groupoid, as well as any groupoids
between these two extremes. Recall that the homotopy groupoid G of
F consists of equivalence classes of paths γ : [0, 1] → M such that the
image of γ is contained in a leaf of F . Two such paths γ1 and γ2 are
equivalent if they are in the same leaf and homotopy equivalent (with
endpoints fixed) in that leaf.

For Riemannian foliations, G is a Hausdorff dimension 2p+q manifold,
in fact a fibration, and we have the usual basic open sets defining its
manifold structure denoted (U, γ, V ), where U, V ∈ U and γ is a leafwise
path starting in U and ending in V .

As the bundle TF is oriented, just as in the original case [Ha80],
there is a continuous open surjective linear map, called integration over
the leaves,

∫

F
: Ap+k(M) −→ Ak

c (M/F )



396 M.-T. BENAMEUR & J.L. HEITSCH

which commutes with the exterior derivatives dM and dH , and so induces

the map

∫

F
: Hp+k(M ;R)→ Hk

c (M/F ).

We also have the source and range maps s, r : G → M and the two
natural transverse foliations Fs and Fr whose leaves are respectively

L̃x = s−1(x), and L̃x = r−1(x), for each x ∈ M . Note that r : L̃x → L
is the simply connected covering of L. We will work with the foliation

Fs. Note that the intersection of any leaf L̃x and any basic open set
(U, γ, V ) consists of at most one plaque of the foliation Fs in (U, γ, V ),

i.e. each L̃x passes through any (U, γ, V ) at most once.
There is a canonical lift of the normal bundle ν of F to a bundle

νG ⊂ TG so that TG = TFs ⊕ TFr ⊕ νG , and r∗νG = ν and s∗νG = ν.
The metric g0 on M induces a canonical metric g0 on G as follows. The
bundles TFs, TFr, and νG and are mutually orthogonal. So the normal
bundle νs of TFs is νs = TFr ⊕ νG . On TFr, g0 is s∗

(
g0|TF

)
, on TFs

it is r∗
(
g0|TF

)
, and on νG it is r∗

(
g0|ν

)
, which, since F is Riemannian

and the metric on ν is bundle-like, is the same as s∗
(
g0|ν

)
.

We denote by E a leafwise flat complex bundle over M . This means
that there is a connection ∇E on E over M which, when restricted
to any leaf L of F , is a flat connection, i.e. its curvature (∇E)

2 |L =
(∇E |L)2 = 0. This is equivalent to the condition that the parallel
translation defined by ∇E |L, when restricted to contractible loops in
L, is the identity. We assume that E admits a (possibly indefinite) non-
degenerate Hermitian metric, denoted {·, ·}, which is preserved by the
leafwise flat structure. This means that if φ1 and φ2 are local leafwise
flat sections of E, then their inner product {φ1, φ2} is a locally constant
function on each leaf. More generally, it is characterized by the fact
that for general sections φ1 and φ2, and for any vector field X tangent
to F ,

X{φ1, φ2} = {∇E,Xφ1, φ2}+ {φ1,∇E,Xφ2}.
We denote also by E its pull back by r to a leafwise (for the foliation
Fs) flat bundle on G along with its invariant metric and leafwise flat
connection. The context should make it clear which bundle we are
using. A splitting of E is a decomposition E = E+ ⊕ E− (of E on
M) into an orthogonal sum of two sub-bundles so that the metric is ±
definite on E±. Splittings always exist and any two are homotopic. The
splitting defines an involution γ of E. If φ is a local section of E with
φ = φ+ + φ− where φ± is a local section of E±, then γφ = φ+ − φ−. If
we change the sign of the metric on E−, we obtain a positive definite
Hermitian metric on E− and so also on E over both M and G. In
general, this new metric on E, denoted (·, ·), is not preserved by the flat
structure.

Example 2.1. Assume that the codimension of F is even, say q = 2k.
Set E = ∧kν∗ ⊗ C. The bundles ν and ν∗ have natural flat structures
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along the leaves given by the holonomy maps (which define flat local
sections). Since the metric on ν is bundle-like, the induced volume form
on ν∗ is invariant under the holonomy of F . Denote by ∗ν the Hodge ∗
operator on ∧∗ν∗, and also its extension to E. Given two elements φ1
and φ2 of Ex, set

{φ1, φ2} =
√
−1k

2

∗ν (φ1 ∧ν φ2),
where ∧ν : E⊗E → ∧2kν∗⊗C. We leave it to the reader to check that
E and {·, ·} satisfy the hypothesis of Theorem 9.1.

3. Chern-Connes character for transversely smooth
idempotents

We will need the “transverse differential” ∂ν and the graded trace Tr
used in [BH08].

Consider the connection ∇ on ∧T ∗Fs⊗E given by ∇ = r∗(∇F ⊗∇E)
where ∇F is a connection on ∧T ∗F defined by a connection on T ∗F .
Then ∇ is an operator of degree one on C∞(∧T ∗G⊗∧T ∗Fs⊗E), where
on decomposable sections ω⊗φ, with ω ∈ C∞(∧kT ∗G), ∇(ω⊗φ) = dω⊗
φ+(−1)kω∧∇φ. The foliation Fs has dual normal bundle ν∗s = s∗(T ∗M),
and ∇ defines a quasi-connection ∇ν acting on C∞(∧ν∗s ⊗ ∧T ∗Fs ⊗ E)
by the composition

C∞(∧ν∗s ⊗ ∧T ∗Fs ⊗ E)
i−→ C∞(∧T ∗G ⊗ ∧T ∗Fs ⊗E)

∇−→

C∞(∧T ∗G ⊗ ∧T ∗Fs ⊗E)
pν−→ C∞(∧ν∗s ⊗ ∧T ∗Fs ⊗ E),

where i is the inclusion and pν is induced by the projection pν : T ∗G →
ν∗s determined by the decomposition TG = TFs ⊕ νs.

Denote by ∂ν : End(C∞(∧ν∗s ⊗ ∧T ∗Fs ⊗ E)) → End(C∞(∧ν∗s ⊗
∧T ∗Fs ⊗ E)) the linear operator given by the graded commutator

∂ν(H) = [∇ν ,H].

Recall: that (∂ν)
2 is given by the commutator with the curvature θν =

(∇ν)2 of ∇ν ; that θν is a leafwise differential operator which is at worst
order one; and that the derivatives of all orders of its coefficients are
uniformly bounded, with the bound possibly depending on the order of
the derivative. See [BH08].

Now, suppose that H is an A∗(M)-equivariant bounded leafwise
smoothing operator on ∧ν∗s ⊗ ∧T ∗Fs ⊗ E. If H is such an operator,
we can write it as

H = H[0] +H[1] + · · · +H[n],

where H[k] is homogeneous of degree k, that is, for all j,

H[k] : C
∞(∧jν∗s ⊗ ∧T ∗Fs ⊗ E)→ C∞(∧j+kν∗s ⊗ ∧T ∗Fs ⊗E).
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Recall that any X ∈ C∞(∧kTM) defines a section, denoted X̂ , of
∧kνs. For such X, iX̂H[k] is a bounded leafwise smoothing operator
on ∧T ∗Fs ⊗E. For any vector field Y on M , set

∂Yν (iXH[k]) = iŶ (∂ν(iX̂H[k])),

which (if it exists) is an operator on ∧T ∗Fs ⊗ E.

Definition 3.1. An A∗(M) equivariant bounded leafwise smoothing
operator H on ∧ν∗s ⊗ ∧T ∗Fs ⊗ E is transversely smooth provided that
for any X ∈ C∞(∧kTM) and any vector fields Y1, ..., Ym on M , the
operator

∂Y1
ν ...∂Ym

ν (iXH[k])

is a bounded leafwise smoothing operator on ∧T ∗Fs ⊗ E.

If the leafwise parallel translation along E is a bounded map, then the
projection onto the leafwise harmonic forms with coefficients in E (for
the foliation Fs) is transversely smooth. See Theorem 4.4 below. Since
∂ν is a derivation, it is immediate that the composition of transversely
smooth operators is transversely smooth. It is also easy to prove that
the Schwartz kernel of any transversely smooth operator is a smooth
section in all variables, see [BH08].

The trace of H is the Haefliger form Tr(H) given by

Tr(H) =

∫

F
tr(H(x))dx =

∫

F
i∗(tr(H | i(M)))dx,

where x is the class of the constant path at x, tr(H(x)) is the A∗(M)-
equivariant trace of the Schwartz kernel of H at x and so belongs to
∧T ∗Mx, and dx is the leafwise volume form associated with the fixed
orientation of the foliation F . Tr is a graded trace which satisfies
Tr ◦∂ν = dH ◦Tr. See [BH04] and [BH08].

If K is a bounded leafwise smoothing operator on ∧T ∗Fs⊗E, we may
extend it to an A∗(M) equivariant bounded leafwise smoothing operator
on ∧ν∗s ⊗ ∧T ∗Fs ⊗ E by using the natural A∗(M) module structure of
C∞(∧ν∗s ⊗ ∧T ∗Fs ⊗ E).

The proof of Lemma 4.5 of [BH08] extends easily to give the follow-
ing.

Lemma 3.2. Suppose that A is an A∗(M)-equivariant leafwise dif-
ferential operator of finite order on ∧ν∗s ⊗ ∧T ∗Fs ⊗ E, and that the
derivatives of all orders of its coefficients are uniformly bounded, with
the bound possibly depending on the order of the derivative. Suppose
that K is a bounded leafwise smoothing operator on ∧T ∗Fs ⊗ E, and
extend it to an A∗(M)-equivariant bounded leafwise smoothing operator
on ∧ν∗s⊗∧T ∗Fs⊗E. Then AK and KA are A∗(M)-equivariant bounded
leafwise smoothing operators on ∧ν∗s ⊗∧T ∗Fs ⊗E. If K is transversely
smooth, so are AK and KA.
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Note that operators A which are the pull backs of operators on M ,
such as θν and τ , satisfy the hypothesis of Lemma 3.2. Using Lemma
3.2, it is easy to show that being transversely smooth is independent of
the choice of ∇ν .

Finally, we need the concept of G invariant A∗(M)-equivariant op-
erators. Suppose that H = H[0] + H[1] + · · · + H[n] is an A∗(M)-
equivariant bounded leafwise smoothing operator acting on the sections
of ∧ν∗s ⊗ ∧T ∗Fs ⊗ E. Then H is G invariant provided it satisfies two
requirements.

(1) For any X = X1 ∧ · · · ∧ Xk ∈ C∞(∧kTM) with some Xj ∈
C∞(TF ), i

X̂
H[k] = 0.

This means that H[k] defines an operator H[k] : C
∞(∧jν∗G ⊗∧T ∗Fs ⊗

E)→ C∞(∧j+kν∗G ⊗ ∧T ∗Fs ⊗ E), and that for k > q, H[k] = 0.

Each γ ∈ L̃y
x ≡ L̃x ∩ L̃y, defines an action Wγ : C∞(L̃x,∧∗ν∗G ⊗

∧T ∗Fs ⊗ E)→ C∞(L̃y,∧∗ν∗G ⊗∧T ∗Fs ⊗ E) given by

[Wγξ](γ
′) = ξ(γ′γ), γ′ ∈ L̃y.

Let y′ = r(γ′), and note that [Wγξ](γ
′) ∈ (∧∗ν∗G⊗∧T ∗Fs⊗E)γ′ , which we

identify with ∧∗ν∗y⊗(∧T ∗F⊗E)y′ , while ξ(γ
′γ) ∈ (∧∗ν∗G⊗∧T ∗Fs⊗E)γ′γ ,

which we identify with ∧∗ν∗x ⊗ (∧T ∗F ⊗ E)y′ . To effect this action,
we identify ∧∗ν∗x with ∧∗ν∗y using the holonomy along γ. The second
requirement of H is:

(2) For any γ ∈ L̃y
x,

(γ ·H)y ≡Wγ ◦Hx ◦W−1
γ = Hy,

where Hx is the action of H on ∧∗ν∗G ⊗ ∧T ∗Fs ⊗E | L̃x.
Essentially then, H is G invariant means that it defines the same

operator on each L̃ ⊂ s−1(L) for each leaf L of F . Note that ∂ν preserves
G invariant A∗(M)-equivariant transversely smooth operators.

In [BH08], we defined a Chern-Connes character cha(e) ∈ Hk
c (M/F )

for any G invariant transversely smooth idempotent e. The essential
result needed was Lemma 4.13 of that paper, which we state for further
reference.

Lemma 3.3. Let H and K be G invariant A∗(M)-equivariant trans-
versely smooth operators acting on the sections of ∧ν∗s ⊗ ∧T ∗Fs ⊗ E.
Then

Tr([H,K]) = 0.

Lemma 3.3 and the proof of Theorem 4.1 of [BH04] immediately imply

Theorem 3.4. Let e be a G invariant transversely smooth idempo-
tent. Then cha(e) depends only on e. In addition, if et, 0 ≤ t ≤ 1, is a
smooth family of such idempotents, then

cha(e0) = cha(e1).
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Lemma 3.5. Two G invariant transversely smooth idempotents which
have the same image, have the same Chern-Connes character.

Proof. Suppose that e0 and e1 are two such idempotents. Then e0 ◦
e1 = e1 and e1 ◦ e0 = e0, and the family et = te1 + (1− t)e0 is a smooth
family of G invariant transversely smooth idempotents connecting e0 to
e1. Theorem 3.4 then gives the result. q.e.d.

4. The twisted higher harmonic signature

We now define the twisted higher harmonic signature σ(F,E).
Denote by A∗

c(Fs, E) the graded algebra of leafwise (for Fs) differ-
ential forms on G with coefficients in E which have compact support
when restricted to any leaf of Fs. A Riemannian structure on F induces
one on Fs. As usual there is the leafwise Riemannian Hodge operator
∗, which gives an inner product on each Ak

c (Fs, E). In particular, if α1

and α2 are leafwise R valued k forms and φ1 and φ2 are sections of E,
then

〈α1 ⊗ φ1, α2 ⊗ φ2〉(x) =
∫

L̃x

(φ1, φ2)α1 ∧ ∗α2 =

∫

L̃x

{φ1, γφ2}α1 ∧ ∗α2.

We denote by A∗
(2)(Fs, E) the field of Hilbert spaces over M which is

the leafwise L2 completion of these differential forms under this inner
product, i.e.

A∗
(2)(Fs, E)x = L2(L̃x;∧T ∗Fs ⊗ E).

This is a continuous field of Hilbert spaces, see [C79]. Because M is

compact, the spaces L2(L̃x;∧kT ∗Fs ⊗ E) do not depend on our choice
of metrics. However, the inner products on these spaces do depend on
the metrics, as do the Hilbert norms, denoted ‖ · ‖0.

If E is the one dimensional trivial bundle with the trivial flat struc-
ture, then A∗

(2)(Fs, E) is just the leafwise L2 forms (now with coefficients

in C) for the foliation Fs and is denoted A∗
(2)(Fs,C).

The leafwise de Rham differential on G extends to a closed operator
on A∗

(2)(Fs,C) which coincides with the lifted one from the foliation

(M,F ) and it is denoted by ds. The leafwise formal adjoint of ds with
respect to the Hilbert structure is well defined and is denoted by δs, and
δs = − ∗ ds∗. Denote by ∆ the Laplacian given by ∆ = (ds + δs)

2 =
dsδs + δsds, and denote by ∆k its action on Ak

(2)(Fs,C). The leafwise

∗ operator also gives the leafwise involution τ on A∗
(2)(Fs,C), where as

usual,

τ =
√
−1k(k−1)+ℓ ∗

on Ak
(2)(Fs,C), and it is easy to check that δs = −τdsτ , so τ(ds + δs) =

−(ds + δs)τ , and ∆τ = τ∆.
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These operators extend to A∗
(2)(Fs, E) as follows. Since the operators

are all leafwise, local and linear, we need only define them for local

sections of the form α ⊗ φ, where α is a local k form on L̃ and φ is a

local section of E | L̃. Then

ds(α⊗ φ) = dsα⊗ φ+ (−1)kα ∧∇L̃
Eφ, ∗̂(α⊗ φ) = ∗α⊗ γφ, and

τ̂(α⊗ φ) = τα⊗ γφ,
where ∇L̃

E is ∇E restricted to L̃, so ∇L̃
Eφ is a local section of T ∗L̃⊗ E.

We define the wedge product α∧∇L̃
Eφ (as a local section of ∧k+1T ∗L̃⊗E)

in the obvious way.

Lemma 4.1. We have

δs = −∗̂ ds ∗̂ = −τ̂ ds τ̂ .
Note that d2s = 0, so also δ2s = 0 since ∗̂ 2 = ±1.
Proof. Consider two sections α1 ⊗ φ1 and α2 ⊗ φ2, and set

Q(α1 ⊗ φ1, α2 ⊗ φ2)(x) =

∫

L̃x

{φ1, φ2}α1 ∧ α2,

(and extend to all of A∗
(2)(Fs, E) by linearity). Then

〈α1 ⊗ φ1, α2 ⊗ φ2〉 = Q(α1 ⊗ φ1, ∗̂(α2 ⊗ φ2)).
Now suppose that α1 is a local k− 1 form on L̃, α2 is a local k form on

L̃, and φ1 is flat. If φ2 is an arbitrary section of E, set {φ1, α2 ⊗ φ2} =
α2{φ1, φ2}. (Note that α2 is C valued). As {·, ·} is preserved by the flat

structure and φ1 is flat, it follows that on L̃, ∇L̃
E{φ1, φ2} = {φ1,∇L̃

Eφ2}.
Acting on functions on L̃, ds = ∇L̃

E, so

ds{φ1, φ2} = {φ1,∇L̃
Eφ2}.

Then

〈ds(α1 ⊗ φ1), α2 ⊗ φ2〉 =

∫

L̃x

{φ1, γφ2}dsα1 ∧ ∗α2 =

(−1)k
∫

L̃x

α1 ∧ ds({φ1, γφ2} ∗ α2),

while
〈α1 ⊗ φ1,−∗̂ ds ∗̂(α2 ⊗ φ2)〉 =

(−1)Q(α1⊗φ1, ∗̂2ds ∗̂(α2⊗φ2)) = (−1)kQ(α1⊗φ1, ds ∗̂(α2⊗φ2)) =

(−1)kQ(α1 ⊗ φ1, (ds ∗ α2)⊗ γφ2 + (−1)k ∗ α2 ∧∇L̃
Eγφ2) =

(−1)k
∫

L̃x

α1 ∧ (ds ∗ α2){φ1, γφ2}+ (−1)kα1 ∧ ∗α2 ∧ {φ1,∇L̃
Eγφ2} =

(−1)k
∫

L̃x

α1 ∧ ds(∗α2{φ1, γφ2}) = (−1)k
∫

L̃x

α1 ∧ ds({φ1, γφ2} ∗ α2).

q.e.d.
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Denote by ∆E the Laplacian given by ∆E = (ds+δs)
2 = ds δs+δs ds,

and denote by ∆E
k its action on Ak

(2)(Fs, E). Note that τ̂ is still an

involution even at the bundle level, and that τ̂(ds + δs) = −(ds + δs)τ̂
and ∆E τ̂ = τ̂∆E still hold.

As usual, the space of twisted harmonic forms Ker(∆E) is related
to the leafwise cohomology of the twisted forms. The space of closed
L2 forms in A∗

(2)(Fs, E) is denoted by Z∗
(2)(Fs, E) and it is a Hilbert

subspace. The space of exact L2 forms in A∗
(2)(Fs, E) is denoted by

B∗
(2)(Fs, E), and we denote its closure by B

∗
(2)(Fs, E). We denote by

H∗
(2)(Fs, E) the leafwise reduced twisted L2 cohomology of the foliation,

that is

H∗
(2)(Fs, E) = Z∗

(2)(Fs, E)/B
∗
(2)(Fs, E).

Here is a well known Hodge result that we state for further use. See the
Appendix of [HL90]

Lemma 4.2. The field Ker(∆E
k ) is a subfield of Zk

(2)(Fs, E), and

Zk
(2)(Fs, E) = Ker(∆E

k )⊕B
k
(2)(Fs, E). Thus the restriction of the natural

projection Zk
(2)(Fs, E)→ Hk

(2)(Fs, E) induces an isomorphism

Ker(∆E
k ) ≃ Hk

(2)(Fs, E).

In addition

A∗
(2)(Fs, E) = Ker(ds + (ds)

∗)⊕ Im(ds)⊕ Im(δs).

That is, for each x ∈M ,

L2(L̃x;∧T ∗L̃x ⊗ (E | L̃x)) = Ker(dxs + δxs )⊕ Im(dxs )⊕ Im(δxs ).

We assume the projection Pℓ onto Ker(∆E
ℓ ) is transversely smooth. It

is a classical result that this projection is a bounded leafwise smoothing
operator, so what we are really assuming is a form of smoothness in
transverse directions. This condition holds in many important cases,
see the comments below after the statement of Theorem 4.4. Denote by
A∗

±(Fs, E) the ±1 eigenspaces of τ̂ , and by Ker(∆E±
ℓ ) the intersections

A∗
±(Fs, E)∩Ker(∆E

ℓ ). Denote by π± = 1
2(Pℓ±τ̂◦Pℓ), and note that these

are the projections onto Ker(∆E±
ℓ ), respectively. Since the operator τ̂

satisfies the hypothesis of Lemma 3.2, both π± are transversely smooth,
and their Chern-Connes characters cha(π±) are well defined Haefliger
cohomology classes.

Definition 4.3. Suppose that the projection Pℓ onto Ker(∆E
ℓ ) is

transversely smooth. The higher twisted harmonic signature σ(F,E) is
the difference

σ(F,E) = cha(π+)− cha(π−).
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To justify our claim that our assumption of transverse smoothness for
Pℓ holds in important cases, we have the following which is an extension
of a result due to Gong and Rothenberg, [GR97].

Theorem 4.4. Suppose that the leafwise parallel translation along E
is a bounded map. Then the projection P onto Ker(∆E) is transversely
smooth.

The conclusion of Gong-Rothenberg is that the Schwartz kernel of P
is smooth in all its variables.

For Riemannian foliations, P is always transversely smooth for the
classical signature operator (that is, with coefficients in the trivial one
dimensional bundle) for both the holonomy and the homotopy groupoid.
P is transversely smooth whenever the preserved metric on E is positive
definite. It is smooth in important examples, e.g. Lusztig [Lu72]. If
the leafwise parallel translation along E is a bounded map, P is also
transversely smooth using the holonomy groupoid, provided that the
flat structure on E over each holonomy covering has no holonomy (so

using the flat structure to translate a frame of a single fiber of E | L̃ to

all of L̃ trivializes E | L̃).
It is an open question whether the projection to the leafwise harmonic

forms has transversely smooth Schwartz kernel when F is not Riemann-
ian. It is satisfied for all foliations with compact leaves and Hausdorff
groupoid [EMS76, Ep76].

Since the paper [GR97] has not been published, we give their proof
here that P depends smoothly on x ∈ M , and then show how to get
transverse smoothness from it.

Proof. Let U ⊂M be a foliation chart and choose x0 ∈ U . Then there

is a diffeomorphism ϕU : U × L̃x0 ≃ s−1(U), and a bundle isomorphism

ψU : U×(E | L̃x0) ≃ E | s−1(U), covering ϕU and preserving the leafwise
flat structure. They are constructed as follows. The normal bundle
νs = TFr ⊕ νG ≃ s∗(TM) defines a local transverse translation for the
leaves of the foliation Fs. See [Hu93, W83]. We may assume that U is

the diffeomorphic image under expx0
of a neighborhood Û of 0 ∈ TMx0 .

Then for all x ∈ U , there is a unique X ∈ Û so that x = expx0
(X).

Define γx : [0, 1] → M to be γx(t) = expx0
(tX). Given x sufficiently

close to x0, for any z ∈ L̃x0 there is a unique path γ̂z(t) in G so that

γ̂z(0) = z, γ̂z(t) ∈ L̃γx(t), and γ̂
′
z(t) ∈ (νs)γ̂z(t). The transverse translate

Φx(z) of z to L̃x is just γ̂z(1). Φx is a smooth diffeomorphism from L̃x0

to L̃x, and we set ϕU (x, z) = Φx(z), which is a smooth diffeomorphism

from U × L̃x0 to s−1(U).

Since we are using the homotopy groupoid, each L̃ is simply con-

nected, so E | L̃x is a trivial bundle for each x ∈ M , and using the flat
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structure to translate a frame of a single fiber of E | L̃x to all of L̃x triv-

ializes E | L̃x. Choose a local orthonormal framing e1, ..., ek of E |U (on
M). This framing is also a local framing of E | i(U) (on G). Using the

leafwise flat structure of E to translate it along the L̃, we get a leafwise

flat framing es1, ..., e
s
k of E | s−1(U). For (x,

∑
j aje

s
j(z)) ∈ U × (E | L̃x0),

set

ψU

(
x,

∑

j

aje
s
j(z)

)
=

∑

j

aje
s
j(ϕU (x, z)).

That is, the image of φ ∈ Ez (where z ∈ L̃x0) under ψU (x, ·) is ob-

tained by first parallel translating φ along L̃x0 to Ei(x0), obtaining∑
j ajej(i(x0)), and then parallel translating

∑
j ajej(i(x)) along L̃x to

EϕU (x,z). It is clear that ψU covers ϕU and preserves the leafwise flat
structure.

There is a naturally defined bundle map

ΨU(x) : ∧T ∗L̃x0 ⊗ (E | L̃x0)→ ∧T ∗L̃x ⊗ (E | L̃x)

for each x ∈ U , which on a decomposable element α ⊗ φ ∈ (∧T ∗L̃x0 ⊗
(E | L̃x0))z is given by

ΨU (x)(α ⊗ φ) = ((Φ−1
x )∗α)⊗ ψU (x, φ).

We also denote by ΨU the induced map

ΨU(x) : C
∞
c (L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0))→ C∞

c (L̃x;∧T ∗L̃x ⊗ (E | L̃x)).

ΨU (x) is invertible, commutes with the extended de Rham operators,
and depends smoothly on x. Note that Φ−1

x is a diffeomorphism of
uniformly bounded dilation (as is Φx). If the leafwise parallel translation
along E is a bounded map, then the map ψU is a bounded map, and
ΨU extends to the following commutative diagram,

L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0))

?

L2(L̃x;∧T ∗L̃x ⊗ (E | L̃x))

ΨU(x)

dx0
s
-

-
dxs

L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0))

?

L2(L̃x;∧T ∗L̃x ⊗ (E | L̃x)).

ΨU (x)

4.5.

So ΨU (x)(Ker(dx0
s )) ⊂ Ker(dxs ) and ΨU (x)(Im(dx0

s )) ⊂ Im(dxs ). By
Lemma 4.2, we have

L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0)) = Ker(dx0
s + δx0

s )⊕ Im(dx0
s )⊕ Im(δx0

s ),

and

L2(L̃x;∧T ∗L̃x ⊗ (E | L̃x)) = Ker(dxs + δxs )⊕ Im(dxs )⊕ Im(δxs ).
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With respect to these decompositions, we may write

ΨU(x) =




Ψ11(x) 0 Ψ13(x)

Ψ21(x) Ψ22(x) Ψ23(x)

0 0 Ψ33(x)



.

It follows immediately that Ψ22(x) : Im(dx0
s ) → Im(dxs ) is an invert-

ible map which depends smoothly on x. Let Rx0 : L2(L̃x0 ;∧T ∗L̃x0 ⊗
(E | L̃x0))→ Im(dx0

s ) be the orthogonal projection. Define

R̃x = Ψ22(x)Rx0Ψ
−1
U (x), which equals ΨU (x)Rx0Ψ

−1
U (x),

since Ψ22(x)Rx0 = ΨU(x)Rx0 . Then R̃x is an idempotent which varies

smoothly in x, and has image Im(dxs ). However, it might not be an
orthogonal projection. Set

Qx = I + (R̃x − R̃∗
x)(R̃

∗
x − R̃x).

Then Qx is an invertible self adjoint operator which depends smoothly

on x, and the orthogonal projection Rx : L2(L̃x;∧T ∗L̃x ⊗ (E | L̃x)) →
Im(dxs ) is just

Rx = R̃x R̃
∗
xQ

−1
x ,

so Rx depends smoothly on x.

Let τx be the Hodge type operator such that δxs = ±τ−1
x d̂xs τx , where

d̂xs is the differential associated with the antidual bundle E
∗
of E. The

operator τ−1
x maps Im(d̂xs ) onto Im(δxs ). Set Ŝx = τ−1

x S̃xτx, where S̃x
is the operator for d̂xs corresponding to the operator R̃x for dxs . The

argument above, with E replaced by its antidual E
∗
, shows that S̃x,

so also Ŝx, is an idempotent depending smoothly on x. Note that Ŝx
has image Im(δxs ). As above, we get that the orthogonal projection

Sx : L2(L̃x;∧T ∗L̃x ⊗ (E | L̃x))→ Im(δxs ) depends smoothly on x. Thus
the orthogonal projection P = I − (Rx + Sx) depends smoothly on x.

We now show that P is transversely smooth. To do this, we view ev-

erything on U × L̃x0, using ϕU , and ψU . Thanks to Diagram 4.5, we are

reduced to considering the operator dx0
s : L2(L̃x0 ;∧T ∗L̃x0⊗(E | L̃x0))→

L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0)) acting over each point x ∈ U , that is the

twisted leafwise de Rham operator on the foliation U × L̃x0 . We use φU
and ψU to pull back the structures on s−1(U) and we use the same no-
tation to denote these pull backs. In particular, we have the connection
∇ and the normal bundle νs used to define ∂ν . The leafwise projection
Px onto the twisted leafwise harmonics depends on the leafwise metrics

on L̃x0 and E | L̃x0 , which vary with x ∈ U .
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First we prove that we may assume that the normal bundle νs is the

bundle TU ⊂ T (U × L̃x0). Denote the operator corresponding to ∂ν
constructed using TU by ∂U . Given a (bounded) vector field Y on U ,

we have two lifts, Ŷ to νs and Ŷ0 to TU . The difference Ŷ − Ŷ0 is

tangent to the fibers L̃x0 , so the difference of the operators ∂Yν − ∂YU =
[∇Ŷ −∇Ŷ0

, ·] = [∇Ŷ−Ŷ0
, ·] is the commutator with a leafwise differential

operator of order one, whose coefficients and all their derivatives are
uniformly bounded, with the bound possibly depending on the order of

the derivative. For s ∈ Z, we denote byWs =W ∗
s (L̃x0 , E) the usual s-th

Sobolev space which is the completion of C∞
c (L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0))

under the usual s-th Sobolev norm. Then Υ(Y ) := ∇Ŷ −∇Ŷ0
defines a

bounded leafwise operator from anyW ∗
s toW ∗

s−1, and both Υ(Y )Px and
PxΥ(Y ) are bounded leafwise smoothing operators since Px is leafwise
smoothing. As

∂Yν Px = ∂YU Px + [Υ(Y ), Px],

∂Yν Px is a bounded leafwise smoothing operator if and only ∂YU Px is.

By a simple induction argument using the fact that ∂Y2
U Υ(Y1) has

the same properties as Υ(Y1), we have that ∂Y1
ν Px, ∂

Y2
ν ∂Y1

ν Px, . . . are

bounded leafwise smoothing operators if and only if ∂Y1
U Px, ∂

Y2
U ∂Y1

U Px, . . .
are. Thus we may assume that νs = TU .

Next we show that we may use any connection we please, provided it
is in the same bounded geometry class as ∇. Suppose that ∂0 is another
derivation constructed from the connection ∇0 in the same bounded
geometry class as ∇. Then ∂Yν − ∂Y0 = [∇ν

Y −∇
0,ν
Y , ·], and ∇ν

Y −∇
0,ν
Y is

a leafwise differential operator of order zero, whose coefficients and all
their derivatives are uniformly bounded, with the bound possibly de-
pending on the order of the derivative. So ∇ν

Y −∇
0,ν
Y defines a bounded

operator from any Sobolev space Ws to itself. Proceeding just as we did
above, we have that ∂Y1

ν Px, ∂
Y2
ν ∂Y1

ν Px, . . . are bounded leafwise smooth-

ing operators if and only if ∂Y1
0 Px, ∂

Y2
0 ∂Y1

0 Px, . . . are. Thus, we are

reduced to showing that ∂Ym

0 ...∂Y1
0 (P ) is a bounded leafwise smoothing

operator.
The connection we choose is that pulled back from Lx0 under the

obvious map U × L̃x0 → Lx0 . We leave it to the reader to show that
this is in the same bounded geometry class as ∇. Now we can choose
coordinates on U so we may think of U = Dn with coordinates, x1, ..., xn,
and x0 = (0, ..., 0). When we do,

∂
∂/∂xim

0 ...∂
∂/∂xi1
0 Px = ∂mPx/∂xim ...∂xi1 .

Thus we are reduced to considering a smooth family of smoothing op-

erators Px acting on the space of sections of ∧T ∗L̃x0 ⊗ (E | L̃x0). The
parameter x determines the metric gx we use on this space, and Px is
the associated projection onto the twisted harmonic sections. Note that
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the associated Sobolev spaces W ∗
s are the same for all the gx since these

metrics are all in the same bounded geometry class. The norms on W ∗
s

do depend on the parameter x. However they are all comparable, so
we may assume that we have a single norm || · ||s on each W ∗

s , which is
independent of x.

Denote ∂m/∂xim ...∂xi1 by ∂mim...i1
. We need to prove that for all s

and k ≥ 0, ∂mim...i1
Px defines a bounded map from W ∗

s to W ∗
s+k. Given

K :W ∗
s →W ∗

s+k, denote the s, s+ k norm of K by ||K||s+k,s. Then

||K||s+k,s = ||(1 +∆)(s+k)/2K(1 + ∆)−s/2||0,0,

where ∆ is the Laplacian associated to the metric on ∧T ∗L̃x0⊗(E | L̃x0).
Since the norms associated to different metrics are comparable, we may
use any metric gx with associated Laplacian ∆x we like. Now Px =
(1 + ∆x)

(s+k)/2Px(1 + ∆x)
−s/2, so

∂iPx = ∂i((1 + ∆x)
(s+k)/2Px(1 + ∆x)

−s/2) =

∂i(1 + ∆x)
(s+k)/2Px(1 + ∆x)

−s/2 + (1 + ∆x)
(s+k)/2∂iPx(1 + ∆x)

−s/2+

(1 + ∆x)
(s+k)/2Px∂i(1 + ∆x)

−s/2,

which gives

(1 +∆x)
(s+k)/2∂iPx(1 + ∆x)

−s/2 =

∂iPx−∂i(1+∆x)
(s+k)/2Px(1+∆x)

−s/2−(1+∆x)
(s+k)/2Px∂i(1+∆x)

−s/2.

So,

||∂iPx||s+k,s = ||(1 + ∆x)
(s+k)/2∂iPx(1 +∆x)

−s/2||0,0 =

||∂iPx − ∂i(1 + ∆x)
(s+k)/2Px(1 + ∆x)

−s/2−
(1 + ∆x)

(s+k)/2Px∂i(1 + ∆x)
−s/2||0,0 ≤

||∂iPx||0,0 + ||∂i(1 + ∆x)
(s+k)/2Px(1 + ∆x)

−s/2||0,0 +

||(1 + ∆x)
(s+k)/2Px∂i(1 + ∆x)

−s/2||0,0.
Now for any r, (1 + ∆x)

r/2 and ∂i(1 + ∆x)
r/2 are leafwise differential

operators of order r, whose coefficients and all their derivatives are
uniformly bounded, with the bound possibly depending on the order of
the derivative, but independent of x. So they define bounded operators
from W ∗

s to W ∗
s−r for any s, with bound independent of x. Since Px is

leafwise smoothing, it defines a bounded operator from any W ∗
r to any

W ∗
s whose bound is also independent of x, since

||Px||s,r = ||(1 + ∆x)
−s/2Px(1 + ∆x)

−r/2||0,0 = ||Px||0,0 ≤ 1,

Thus we have

||∂i(1 + ∆x)
(s+k)/2Px(1 + ∆x)

−s/2||0,0 ≤

||∂i(1 + ∆x)
(s+k)/2||0,s+k ||Px||s+k,−s ||(1 + ∆x)

−s/2||−s,0
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is bounded independently of x. Similarly ||(1 + ∆x)
(s+k)/2Px∂i(1 +

∆x)
−s/2||0,0 is bounded independently of x. Thus ∂iPx :W ∗

s →W ∗
s+k is

bounded if and only if ∂iPx : W ∗
0 →W ∗

0 is.

Now for any m and any r, ∂mim...i1
(1 +∆x)

r/2 is also a leafwise differ-
ential operator of order r, whose coefficients and all their derivatives are
uniformly bounded, with the bound possibly depending on the order of
the derivative, but independent of x. Using this fact, a straightforward
induction argument shows that ∂mim...i1

Px : W ∗
s → W ∗

s+k is bounded if
and only if ∂mim...i1

Px :W ∗
0 →W ∗

0 is.

Now we have (working on W ∗
0 = L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0))) that

Px = I − (Rx + Sx), where Rx is the orthogonal projection Rx :

L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0)) → Im(dx0
s ) ⊂ L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0))

obtained using the metric gx. At the point x, Rx0 also has image

Im(dx0
s ), but Rx0 might not be an orthogonal projection using the metric

gx. As above Rx is given by

Rx = Rx0 R
∗x
x0
Q−1

x ,

where
Qx = I + (Rx0 −R∗x

x0
)(R∗x

x0
−Rx0),

and R∗x
x0

is the adjoint of Rx0 constructed using the metric gx. Since

I = QxQ
−1
x and ∂iI = 0, we have that

∂iQ
−1
x = −Q−1

x (∂iQx)Q
−1
x ,

and a boot-strapping argument shows that ∂mim...i1
(Q−1

x ) is bounded if
∂mim...i1

Qx is. It follows that ∂mim...i1
Rx is bounded if ∂mim...i1

Rx0 and
∂mim...i1

R∗x
x0

are bounded. As ∂iRx0 = 0 for all i, we are reduced to
considering R∗x

x0
.

We may write the metric gx as gx(u, v) = gx0(Gxu, v) where Gx is
a nonnegative self-adjoint (invertible) operator with respect to gx0 , as
is its inverse. Since gx is the pull back of a family of metrics defined
on the compact manifold M , Gx is smooth in all its variables, and
it and all its derivatives are uniformly bounded, and the same is true
for the inverse G−1

x . Thus for all m, both ∂mim...i1
Gx and ∂mim...i1

G−1
x

define bounded operators on L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0)) (since they
are order zero differential operators). For any bounded operator A on

L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0)), the adjoint of A with respect to gx is

A∗x = G−1
x A∗Gx,

where A∗ is the adjoint with respect to gx0 . It follows immediately that
for all m, ∂mim...i1

R∗x
x0

= ∂mim...i1
(G−1

x R∗
x0
Gx) is a bounded operator on

W ∗
0 = L2(L̃x0 ;∧T ∗L̃x0 ⊗ (E | L̃x0)), since ∂iR

∗
x0

= 0 for all i. Thus for
all m, ∂mim...i1

Rx is a bounded operator on W ∗
0 .

It remains to show that for all m, ∂mim...i1
Sx is a bounded operator on

W ∗
0 . To do this we may proceed as we did above, using the operators
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S̃x and Ŝx. We need only observe that the Hodge type operator τx
has the same properties that Gx does. Thus for all m, ∂mim...i1

Px =
−(∂mim...i1

Rx+∂
m
im...i1

Sx) is a bounded operator onW ∗
0 , and we conclude

that Px is transversely smooth.
q.e.d.

Proposition 4.6. If P is transversely smooth, then the projections
onto A∗

±(Fs, E) ∩ (Ker(∆E
k ) ⊕ Ker(∆E

p−k)), k 6= ℓ, and Ker(∆E±
ℓ ) are

transversely smooth.

Proof. Denote by Pk the projection onto Ker(∆E
k ). It is immedi-

ate that P is transversely smooth if and only if all the Pk are trans-
versely smooth. For k 6= ℓ, the projection onto A∗

±(Fs, E)∩ (Ker(∆E
k )⊕

Ker(∆E
p−k)) is given by π±k = Pk ± τ ◦Pk, (since Pk ◦ τ ◦Pk = 0 in those

cases), and the projection onto Ker(∆E±
ℓ ) is given by π± = 1

2(Pℓ±τ◦Pℓ).
As the operator τ satisfies the hypothesis of Lemma 3.2, and each Pk is
transversely smooth, so is each τ ◦ Pk, so all of the projections are also
transversely smooth. q.e.d.

5. Connections, curvature, and the Chern-Connes character

We now give an alternate construction of the Chern-Connes charac-
ters cha(π+) and cha(π−) using “connections” and “curvatures” defined
on “smooth sub-bundles” of A∗

(2)(Fs, E).

Definition 5.1. A smooth subbundle of A∗
(2)(Fs, E) over M/F is a

G invariant transversely smooth idempotent π0 acting on A∗
(2)(Fs, E).

Example 5.2. 1) Any idempotent in the algebra of superexpo-
nentially decaying operators on ∧T ∗Fs⊗E, defined in [BH08], is a
smooth subbundle of A∗

(2)(Fs, E) over M/F . So any smooth com-

pactly supported idempotent is a smooth subbundle of A∗
(2)(Fs, E)

over M/F .
2) The Wassermann idempotent of the leafwise signature operator,

as defined for instance in [BH08], is a very important special case
of (1) above. In this case we take E =M × C.

3) A paradigm for such a smooth subbundle is given by projection
onto the kernel of a leafwise elliptic operator acting on A∗

(2)(Fs, E)

(induced from a leafwise elliptic operator on F ). In particular,
the projections π+ and π−.

Definition 5.3. The space C∞
2 (∧T ∗Fs ⊗ E) consists of all elements

ξ ∈ C∞(G;∧T ∗Fs⊗E)∩A∗
(2)(Fs, E) such that for any quasi-connection

∇ν and any vector fields Y1, ..., Ym on M ,

∇ν
Y1
...∇ν

Ym
(ξ) ∈ C∞(G;∧T ∗Fs ⊗ E) ∩ A∗

(2)(Fs, E),

where ∇ν
Yi

= iŶi
∇ν .
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Note that if ξ ∈ C∞(G;∧T ∗Fs⊗E), ∇ν
Y1
...∇ν

Ym
(ξ) is automatically in

C∞(G;∧T ∗Fs⊗E), and that if ξ ∈ C∞
2 (∧T ∗Fs⊗E), then∇ν

Y1
...∇ν

Ym
(ξ) ∈

C∞
2 (∧T ∗Fs⊗E). Note also that C∞

c (G;∧T ∗Fs⊗E) ⊂ C∞
2 (∧T ∗Fs⊗E).

Proposition 5.4. If H is a transversely smooth operator on ∧T ∗Fs⊗
E, then H maps C∞

2 (∧T ∗Fs ⊗ E) to itself.

Proof. Let ξ ∈ C∞
2 (∧T ∗Fs ⊗ E). As H is transversely smooth, it

follows easily that Hξ ∈ C∞(G;∧T ∗Fs ⊗E) ∩A∗
(2)(Fs, E). Fix a quasi-

connection ∇ν and let Y be a vector field on M . Then

∇ν
Y (Hξ) = ∇ν

YHξ −H∇ν
Y ξ +H∇ν

Y ξ = (∂Yν H)ξ +H(∇ν
Y ξ),

which is in C∞(G;∧T ∗Fs ⊗ E) ∩ A∗
(2)(Fs, E), since H and ∂Yν H are

transversely smooth and ξ and ∇ν
Y ξ are in C

∞
2 (∧T ∗Fs⊗E). An obvious

induction argument now shows that Hξ ∈ C∞
2 (∧T ∗Fs ⊗ E). q.e.d.

Let π0 be a smooth subbundle of A∗
(2)(Fs, E) over M/F .

Definition 5.5. A C∞ section of π0 is an element ξ ∈ C∞
2 (∧T ∗Fs ⊗

E) which satisfies π0ξ = ξ. The set of all smooth sections is denoted
C∞(π0).

C∞(π0) is a C∞(M) module, with (f · ξ)([γ]) = f(s(γ))ξ([γ]). In
addition, C∞(π0) = π0(C

∞
2 (∧T ∗Fs ⊗ E)) ⊃ π0(C

∞
c (G;∧T ∗Fs ⊗ E)).

Definition 5.6. C∞(∧T ∗M ;π0) is the set of all smooth sections of
∧T ∗M with coefficients in C∞(π0), and C

∞
c (∧T ∗M ;∧T ∗Fs ⊗ E) is the

set of all smooth sections of ∧T ∗M with coefficients in C∞
c (G;∧T ∗Fs ⊗

E).

There are natural actions of A∗(M) on both C∞(∧T ∗M ;π0) and
C∞
c (∧T ∗M ;∧T ∗Fs ⊗ E), and under these actions

C∞(∧T ∗M ;π0) ≃ A∗(M)⊗̂C∞(M)C
∞(π0),

and

C∞
c (∧T ∗M ;∧T ∗Fs ⊗ E) ≃ A∗(M)⊗̂C∞(M)C

∞
c (G;∧T ∗Fs ⊗E),

with the right completions. Thus π0 : C∞
c (G;∧T ∗Fs ⊗ E) → C∞(π0)

extends to the A∗(M) equivariant map

π0 : C
∞
c (∧T ∗M ;∧T ∗Fs ⊗ E)→ C∞(∧T ∗M ;π0).

A local invariant element is a local section ξ of A∗
(2)(Fs, E) defined

on an open subset U ⊂ M so that for any leafwise path γ1 in U ,
ξ([γ]) = ξ([γγ1]) for all γ with s(γ) = r(γ1). Local invariant elements
are common. In particular, any locally defined element ξ ∈ A∗

(2)(Fs, E)

defines local invariant elements. Suppose that ξ is defined on a foliation
chart U ⊂M for F , and let Px be the plaque in U containing the point
x. Given y ∈ Px, let γy be a path in Px starting at x and ending at y.
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Define ξ̃y ∈ L2(L̃y;∧T ∗Fs ⊗E) by ξ̃y([γ]) = ξx([γγy]). Then ξ̃ is a local
invariant element of A∗

(2)(Fs, E) defined along Px. By restricting ξ to a

transversal T in a foliation chart U and then extending invariantly to ξ̃
we obtain local invariant elements of A∗

(2)(Fs, E) defined over U . One

can of course extend this construction from chart to chart as far as one
likes, for example along any path γ : [0, 1] → L in a leaf L. If γ is a
closed loop, the section at 1 will not agree in general with the section at
0, so one does not in general obtain global invariant sections this way.

Definition 5.7. A connection ∇ on π0 is a linear map

∇ : C∞(∧T ∗M ;π0)→ C∞(∧T ∗M ;π0)

of degree one, so that

1) for ω ∈ Ak(M) and ξ ∈ C∞(π0),

∇(ω ⊗ ξ) = dMω ⊗ ξ + (−1)kω ∧ ∇ξ;
2) for local invariant ξ ∈ C∞(π0) and X ∈ C∞(TF ), ∇Xξ = 0, i. e.
∇ is flat along F ;

3) ∇ is invariant under the right action of G;
4) the leafwise operator ∇π0 − π0∇νπ0 : C

∞
c (∧T ∗M ;∧T ∗Fs ⊗ E)→

C∞(∧T ∗M ;π0) is transversely smooth.

The usual proof shows that since ∇ satisfies (1), it is local in the
sense that ∇ξ(x) depends only on ξ |U where U is any open set in M
with x ∈ U .

For ∇ to be invariant under the right action of G means the following.
Let γ be a leafwise path in M from x = s(γ) to y = r(γ). Let ξ be
a local invariant section of π0 defined on a neighborhood of the path
γ. For X ∈ νx, we may use the natural flat structure on ν to parallel
translate X to γ∗(X) ∈ νy. Then we require,

∇Xξ = (Rγ)
−1∇γ∗(X)ξ = Rγ−1∇γ∗(X)ξ,

where the isomorphism Rγ : L2(L̃s(γ);∧T ∗Fs⊗E)→ L2(L̃r(γ);∧T ∗Fs⊗
E) is given by Rγ(ξ)([γ1]) = ξ([γ1γ]). Note that this condition does not
depend on the choice of normal bundle ν because the ambiguity involves
things of the form ∇Y ξ where Y ∈ TF . But this is zero because ∇ is
flat along F .

To see that ∇π0− π0∇νπ0 is a leafwise operator, let ω ∈ Ak(M) and
ξ ∈ C∞

c (G;∧T ∗Fs ⊗ E). Then

(∇π0−π0∇νπ0)(ω⊗ξ) = π0(∇−∇ν)π0(ω⊗ξ) = π0(∇−∇ν)(ω⊗π0(ξ)) =

π0

(
dMω⊗π0(ξ)+(−1)kω∧∇π0(ξ)−dMω⊗π0(ξ)−(−1)kω∧∇νπ0(ξ)

)
=

(−1)kπ0
(
ω ∧ (∇−∇ν)π0(ξ)

)
= (−1)kω ∧ (∇π0 − π0∇νπ0)ξ,

so ∇π0 − π0∇νπ0 is a leafwise operator.
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Next we show that C∞
c (∧T ∗M ;∧T ∗Fs ⊗ E) is in the domain of

π0∇νπ0. Identify C
∞
c (∧T ∗M ;∧T ∗Fs⊗E) with the subspace C∞

c (∧ν∗s ⊗
∧T ∗Fs ⊗ E)) of C∞(∧ν∗s ⊗ ∧T ∗Fs ⊗ E)). Now ∂ν(π0) = [∇ν , π0], and
(by assumption) it is transversely smooth. Thus we have

∇νπ0 = π0∇ν + ∂ν(π0),

so
π0∇νπ0 = π0∇ν + π0∂ν(π0).

The domain of the operator on the right contains C∞
c (∧ν∗s⊗∧T ∗Fs⊗E).

Lemma 5.8. π0∇ν is a connection on π0.

Proof. As π0 commutes with the action of A∗(M) on C∞(∧T ∗M ;π0),
to show that π0∇ν maps the space C∞(∧T ∗M ;π0) to itself, we need only
show that for any local section ξ ∈ C∞(π0) and any local vector field X
on M ,

(π0∇νξ)(X) = π0(iX̂∇
νξ) = π0(∇ν

Xξ)

is in C∞(π0), where X̂ is the lift of X to νs. As ξ ∈ C∞(π0), it is in
C∞
2 (∧T ∗Fs ⊗ E) and π0(ξ) = ξ, so ∇ν

Xπ0ξ = ∇ν
Xξ ∈ C∞

2 (∧T ∗Fs ⊗ E).
As π0 is transversely smooth, iX̂∂ν(π0)(ξ) ∈ C∞

2 (∧T ∗Fs ⊗ E). Since
π0∇ν = ∇νπ0+∂ν(π0), we have (π0∇νξ)(X) ∈ C∞

2 (∧T ∗Fs⊗E). Finally,
as π20 = π0, π0(π0(∇ν

Xξ)) = π0(∇ν
Xξ). Thus (π0∇νξ)(X) ∈ C∞(π0), and

π0∇ν maps C∞(∧T ∗M ;π0) to itself.
The operator π0∇ν satisfies (1) because π0 commutes with the action

of A∗(M) on C∞(∧T ∗M ;π0). In particular, for ω ∈ Ak(M) and ξ ∈
C∞(π0), we have

π0∇ν(s∗ω ⊗ ξ) = π0ρν(r
∗(∇F ⊗∇E)(s

∗ω ⊗ ξ)) =

π0ρν

(
dG(s

∗ω)⊗ ξ + (−1)ks∗ω ∧ r∗(∇F ⊗∇E)ξ
)

=

π0ρν(s
∗dMω ⊗ ξ) + (−1)kπ0ρν(s∗ω ∧ r∗(∇F ⊗∇E)ξ) =

s∗dMω⊗π0ξ+(−1)ks∗ω∧π0ρνr∗(∇F⊗∇E)ξ = dMω⊗ξ+(−1)kω∧π0∇νξ.

To show that π0∇ν satisfies (2), let X ∈ TFx, ξ be a local invariant

section of π0 defined near x, and [γ] ∈ L̃x. The fact that ξ is invariant

means that there is a section ξ̂ of ∧T ∗F⊗E defined in a neighborhood of

r(γ) so that ξ = r∗ξ̂ in a neighborhood of [γ]. Recall that νs = TFr⊕νG .
Since X ∈ TFx, X̂ ∈ TFr and r∗(X̂) = 0. Now

π0∇ν
Xξ = π0(r

∗(∇F ⊗∇E)X̂(ξ)),

but at [γ],
(
r∗(∇F ⊗∇E)X̂(ξ)

)
[γ] = (∇F ⊗∇E)r∗(X̂ [γ])ξ̂ = (∇F ⊗∇E)0ξ̂ = 0,

so π0∇ν
Xξ = 0.

We leave it to the reader to check that π0∇ν satisfies (3) of Definition
5.7, which is a straight forward computation, using the fact that for
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X ∈ νx and [γ] ∈ L̃x, r∗(X̂[γ]) = γ∗(X), the parallel translate of X
along γ to νr(γ).
π0∇ν obviously satisfies (4). q.e.d.

Remark 5.9. If ∇̂ν is another partial connection, then the difference

∇̂ν −∇ν is a leafwise operator which satisfies the hypothesis of Lemma

3.2, so π0∇̂νπ0 − π0∇νπ0 = π0(∇̂ν −∇ν)π0 is transversely smooth and

π0∇̂ν is also a connection on π0. So, as in the classical case, the space
of connections is an affine space whose linear part is composed of trans-
versely smooth operators.

Now suppose that ∇ is any connection on π0. Define the curvature θ
of ∇ to be

θ = ∇2.

The usual computation shows that θ is a pointwise operator, that is

Lemma 5.10. For any ω ∈ A∗(M) and any ξ ∈ C∞(π0),

∇2(ω ⊗ ξ) = ω ∧ ∇2(ξ).

Denote by C∞(∧T ∗M ;A∗
(2)(Fs⊗E)) the space of all smooth sections

of ∧T ∗M with coefficients in A∗
(2)(Fs⊗E). Smoothness means that the

section is smooth when viewed as a section of ∧ν∗s ⊗∧T ∗Fs⊗E over G.
Extend ∇ to an operator on C∞(∧T ∗M ;A∗

(2)(Fs ⊗ E)) by composing

it with the obvious extension of π0 to C∞(∧T ∗M ;A∗
(2)(Fs ⊗ E)). The

curvature of∇◦π0 is given by (∇◦π0)2 = ∇◦π0◦∇◦π0 = ∇◦∇◦π0 = θ◦
π0, since π0 ◦∇ = ∇. We will also denote these new operators by ∇ and
θ. Note that although ∇ is an operator which differentiates transversely
to the foliation Fs, the operator θ is a purely leafwise operator thanks
to Lemma 5.10. Also note that

θ = π0θ = θπ0.

Lemma 5.11. θ is transversely smooth.

Proof. Set A = π0∇π0 − π0∇νπ0, a transversely smooth operator.
Then

θ = (π0∇π0)2 = π0∇νπ0∇νπ0 + π0∇νπ0Aπ0 + π0Aπ0∇νπ0 +A2.

As A is transversely smooth, so is A2. Since π0A = Aπ0 = A, the terms

π0∇νπ0Aπ0 + π0Aπ0∇νπ0 = π0∇νAπ0 + π0A∇νπ0 =

π0[∇ν , A]π0 = π0∂ν(A)π0,

which is transversely smooth. Now ∇νπ0 = π0∇ν + ∂ν(π0), so

π0∇νπ0∇νπ0 = π0(∇ν)2π0 + π0∂ν(π0)∇νπ0 =

π0θ
νπ0 + π0∂ν(π0)π0∇ν + π0∂ν(π0)∂ν(π0).
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The curvature θν = (∇ν)2 satisfies the hypothesis of Lemma 3.2. As
π0 is transversely smooth, it follows from Lemma 3.2 that π0θ

νπ0 is
transversely smooth. Using the facts that ∂ν is a derivation and π0 is an
idempotent, it is a simple exercise to show that π0∂ν(π0)π0 = 0. Finally,
π0∂ν(π0)∂ν(π0) is the composition of transversely smooth operators, so
transversely smooth. Thus θ is transversely smooth. q.e.d.

Set

π0e
−θ/2iπ = π0 +

[n/2]∑

k=1

(−1)kθk
(2iπ)kk!

,

and consider the Haefliger form Tr(π0e
−θ/2iπ). (Note that 2iπ is the

complex number.)

Theorem 5.12. The Haefliger form Tr(π0e
−θ/2iπ) is closed and its

cohomology class does not depend on the connection used to define it.

Proof. The zero-th order term of Tr(π0e
−θ/2iπ) is Tr(π0), and since

π0 is a uniformly bounded leafwise smoothing operator, we have (see
[BH08])

dH Tr(π0) = Tr(∂ν(π0)) = Tr(∂ν(π
2
0)) =

2Tr(π0∂ν(π0)) = 2Tr(π0∂ν(π0)π0) = 0,

since π0 is a (G invariant transversely smooth) idempotent.

Lemma 5.13. For k > 0, dH Tr(θk) = 0.

Proof. First note that for k > 0,

[∇, θk] = [∇,∇2k] = ∇ ◦∇2k −∇2k ◦ ∇ = 0.

Also note that ∇ = π0∇νπ0 + A, where A satisfies the hypothesis of
Lemma 3.3, as does θk. Thus

0 = Tr([∇, θk]) = Tr([π0∇νπ0 +A, θk]) =

Tr([π0∇νπ0, θ
k]) = Tr(π0∇νθk − θk∇νπ0) =

Tr((π0 − 1)∇νθk +∇νθk − θk∇ν − θk∇ν(π0 − 1)) =

Tr((π0 − 1)∇νθk)− Tr(θk∇ν(π0 − 1)) + Tr([∇ν , θk]).

Note that the three terms are well defined since the three operators are
A∗(M)-equivariant. As θ = π0θ = θπ0, θ

k = π0θ
kπ0, and we have

Tr((π0 − 1)∇νθk) = Tr((π0 − 1)∇νπ0θ
kπ0) =

Tr((π0 − 1)π0∇νθkπ0) + Tr((π0 − 1)∂ν(π0) θ
kπ0) = 0,

since both terms are zero. The first term is zero because (π0−1)π0 = 0.
The second term is zero because both (π0 − 1)∂ν(π0) θ

k and π0 are G
invariant and transversely smooth, so by Lemma 3.3

Tr((π0 − 1)∂ν(π0) θ
kπ0) = Tr(π0(π0 − 1)∂ν(π0) θ

k) = 0.
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Similarly,
Tr(θk∇ν(π0 − 1)) = 0.

Thus
0 = Tr([∇ν , θk]) = Tr(∂ν(θ

k)).

It follows easily from Lemma 6.3 of [BH08] that dH Tr(θk) = Tr(∂ν(θ
k)),

so we have the Lemma. q.e.d.

To complete the proof of Theorem 5.12, we note that a standard
argument in the theory of characteristic classes shows that

Lemma 5.14. The Haefliger class of Tr(π0e
−θ/2iπ) does not depend

on the choice of connection ∇ on π0.

q.e.d.

Definition 5.15. The Chern-Connes character cha(π0) of the trans-
versely smooth idempotent π0 is the cohomology class of the Haefliger
form Tr(π0e

−θ/2iπ), that is

cha(π0) = [Tr(π0e
−θ/2iπ)].

Remark 5.16. In [H95], [BH04], and [BH08] we defined Chern-
Connes characters for various objects. It is clear from the results of those
papers that the definition given here is consistent with those definitions.
In particular, if ∇ = π0∇ν is a connection on π0 constructed from a con-
nection ∇F⊗∇E on ∧T ∗F⊗E, then the material in Section 5 of [BH08]
(which shows that the definitions of [H95] and [BH04] coincide) along
with the comment after Definition 3.11 of [BH08] shows that the Chern-
Connes character given here for π0 and the Chern-Connes character for
π0 given in [BH08] are the same. Thus all three constructions of cha(π0)
yield the same Haefliger class.

Remark 5.17. Note that in Sections 3 and 5 we may replace the
bundle ∧T ∗Fs ⊗ E by any bundle on G induced by r from a bundle on
M , and the results are still valid.

Before leaving this section, we record some facts we will need later. In
particular, we show that any connection ∇ is local in the sense that for
X transverse to F and any local invariant section ξ of π0, ∇Xξ depends
only on ξ restricted to any transversal T with X tangent to T . See
Corollary 5.21 below.

Lemma 5.18. Let U be a coordinate chart for F . There is a count-
able collection of smooth local invariant sections of π0 on U which spans
C∞(π0) |U as a module over C∞(U).

Proof. Let T be a transversal in U . The set s−1(T ) is covered by
a countable collection of coordinate charts of the form (U, γ, V ). In

each chart, choose a countable collection of smooth sections {ξV,γi } of
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∧T ∗Fs⊗E with support in (U, γ, V )∩s−1(T ) so that for any section ξ of
A∗

(2)(Fs, E), ξ | (U, γ, V )∩s−1(T ) may be written as a linear combination

(over the functions on s(U, γ, V ) ∩ T ) of the {ξV,γi }. Now extend the
elements of this set to local invariant sections over U , also denoted

{ξV,γi }. The collection of sections of C∞(π0) |U

S =
⋃

V,γ,i

π0(ξ
V,γ
i ),

then spans C∞(π0) |U as a module over C∞(U), and the π0(ξ
V,γ
i ), are

locally invariant sections over U .
q.e.d.

As a consequence, we deduce the following.

Corollary 5.19. If two connections ∇ and ∇̂ on π0 agree on local
invariant sections, then they are the same.

Note that the bundle E = r∗E is flat (in fact trivial) along the leaves
of the other foliation Fr of G, since its leaves are just r−1(x) for x ∈M .
Denote by dr the obvious differential associated to ∧T ∗Fr⊗E. Given a
local section ξ ∈ C∞

2 (∧T ∗Fs ⊗ E), we may view drξ as a local element
of C∞(∧T ∗M ;∧T ∗Fs⊗E). Note that d2rξ = 0, and ξ is locally invariant
if and only if drξ = 0. Note that for ξ ∈ C∞(π0) and X ∈ C∞(TF ),
∇Xξ = drξ(X). To see this, write ξ =

∑
j gjξj , where ξj ∈ Ak

(2)(Fs, E)

are local invariant elements and the gj are smooth local functions on
M . Then Conditions (1) and (2) of Definition 5.7 give

∇Xξ =
∑

j

dMgj(X)ξj =
∑

j

dF gj(X)ξj =

∑

j

dF gj(X)ξj + gjdrξj(X) = drξ(X).

Let U be a foliation chart for F with transversal T , and ∇ a connec-
tion on π0. Then on U , ∇ is the pull back of ∇ restricted to π0 | T .
More specifically, for X tangent to T and ξ ∈ C∞(π0 | T ), with local

invariant extension ξ̃ to C∞(π0 |U), define

∇T
Xξ ≡ ∇X ξ̃.

We may assume that U ≃ Rp × T with coordinates (x, t) and plaques
Rp × t. Denote by ρ : U → T the projection. Let x ∈ U and X ∈ TMx

and set Tx = x × T . Write X = XF + ρ∗(X) where XF ∈ TFx and
ρ∗(X) is tangent to Tx. Let ξ ∈ C∞(π0 |U) and define the pull back
connection ρ∗(∇T ) by

ρ∗(∇T )Xξ = drξ(XF ) +∇T
ρ∗(X)(ξ |Tx) = drξ(XF ) +∇ρ∗(X)(̃ξ |Tx),
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and extend to C∞(∧T ∗U ;π0) by using (1) of Definition 5.7 and the fact
that C∞(∧T ∗U ;π0) ≃ A∗(U)⊗C∞(U) C

∞(π0 |U).

Denote the curvature (∇T )2 of ∇T by θT .

Proposition 5.20. ∇ |U = ρ∗(∇T ) and θ |U = ρ∗(θT ).

Proof. Let ξ ∈ C∞(π0 |U) and suppose that X ∈ TF , so XF = X
and ρ∗(X) = 0. Then

ρ∗(∇T )Xξ = drξ(X) = ∇Xξ.

Next suppose that ξ is local invariant and X is tangent to Tx, so XF = 0
and ρ∗(X) = X. Then

ρ∗(∇T )Xξ = ∇ρ∗(X)(̃ξ |Tx) = ∇Xξ,

since (̃ξ |Tx) = ξ as ξ is local invariant. Thus ∇ |U and ρ∗(∇T ) agree
on local invariant sections, so they are equal.

For the second equation, writing ρ∗(∇T ) = dr +∇T , we have

θξ = d2rξ +∇Tdrξ + dr∇T ξ + (∇T )2ξ = (∇T )2ξ,

since d2r = 0 and ∇T ◦ dr = −dr ◦∇T . But, with the notation ρ∗(∇T ) =
dr +∇T , (∇T )2ξ = ρ∗(θT )ξ. q.e.d.

The following is immediate.

Corollary 5.21. ∇ is local in the sense that for X transverse to F
and any local invariant section ξ of π0, ∇Xξ depends only on ξ |T where
T is any transversal with X tangent to it.

6. Leafwise maps

In this section we collect some results for leafwise homotopy equiva-
lences. Outlines of the proofs are in the Appendix.

Let M and M ′ be compact Riemannian manifolds with oriented fo-
liations F and F ′. The results of this section do not require F or F ′

to be Riemannian. Let f : M → M ′ be a smooth leafwise homotopy
equivalence which preserves the leafwise orientations. (We need only
assume transverse smoothness, and leafwise continuity. A standard ar-
gument then allows f to be approximated by a smooth map.) Suppose
that E′ →M ′ is a leafwise flat complex bundle over M ′ which satisfies
the hypothesis of Theorem 9.1, and set E = f∗(E′). Let g : M ′ → M
be a homotopy inverse of f .

Proposition 6.1. f induces an isomorphism f∗ : H∗
c(M

′/F ′) →
H∗

c(M/F ) on Haefliger cohomology with inverse g∗.

Define f̌ : G → G′ by f̌([γ]) = [f ◦ γ]. Recall that f̌ is leafwise
uniformly proper if for any C0, there is C1 so that if the leafwise distance
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from f̌(z0) to f̌(z1) is less than C0, then the leafwise distance from z0
to z1 is less than C1.

Proposition 6.2. f̌ is smooth and leafwise uniformly proper.

Thus f̌ induces a well defined map on compactly supported leafwise
forms, but in general it does not induce a well defined map on leafwise
L2 forms. To deal with this problem we adapt the construction of
Hilsum-Skandalis, [HiS92], to our setting.

Let i : M ′ →֒ Rk be an imbedding of the compact manifold M ′ in
some Euclidean space Rk, and identify M ′ with its image. For x′ ∈M ′

and t ∈ Rk, define p(x′, t) to be the projection of the tangent vectorXt =
d

ds
| s=0(x

′ + st) at x′ determined by t, to the leaf L′
x′ in (M ′, F ′) ⊂ Rk.

In particular, first project Xt to TF ′
x′ and then exponentiate it to L′

x′ ,
thinking of L′

x′ as a Riemannian manifold in its own right. Since M ′ is

compact, we may choose a ball Bk ⊂ Rk so small that the restriction of
the smooth map pf = p ◦ (f, id) :M ×Bk →M ′ to any pf : Lx×Bk →
L′
f(x) is a submersion. Lifting this map to the groupoids, we get

pf : G ×Bk −→ G′,
which is a leafwise map if G×Bk is endowed with the foliation Fs×Bk.

Note that pf : L̃x × Bk → L̃′
f(x) is the map induced on the coverings

by pf : Lx × Bk → L′
f(x). In particular, pf ([γ], t) is the composition

of leafwise paths pf ([γ], t) = [Pf (γ, t) · (f ◦ γ)], where Pf (γ, t)(s) =
pf (r(γ), st). It is easy to see that pf is a smooth map.

Denote by π2 : G × Bk → Bk the projection, and choose a smooth
compactly supported k-form ω on Bk whose integral is 1. We shall
refer to such a form as a Bott form on Bk. Denote by eω the exterior
multiplication by the differential k−form π∗2ω on G × Bk. For ξ ∈
A∗

c(F
′
s, E

′), we define f (i,ω)(ξ) ∈ A∗
c(Fs, E) as

f (i,ω)(ξ) = (π1,∗ ◦ eω ◦ p∗f )(ξ).
The map pf : G × Bk −→ G′ is a leafwise (for Fs × Bk) submersion

extending f̌ , so p∗f (ξ) is a leafwise form on G × Bk with coefficients

in the bundle p∗fE
′. The map π1,∗ is integration over the fiber of the

projection π1 : G ×Bk → G of such forms. In general, the fiber of p∗fE
′

is not constant on fibers of the fibration π1 : G×Bk → G. To correct for
this, we use the parallel translation given by the flat structure of p∗fE

′

to identify all the fibers of p∗fE
′ | z × Bk with (p∗fE

′)(z,0) = (f̌∗E′)z =

(f∗E′)r(z). This is well defined because the ball Bk ⊂ Rk is contractible.
For s ∈ Z, denote by W ∗

s (Fs, E) the field of Hilbert spaces over M

given byW ∗
s (Fs, E)x =W ∗

s (L̃x, E), the s-th Sobolev space of differential

forms on L̃x with coefficients in E | L̃x. Just as it does for the leafwise
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L2 forms, the compactness ofM implies that these spaces do not depend
on our choice of Riemannian structure. Note that W ∗

s ⊂W ∗
s1 if s ≥ s1,

and set

W ∗
∞(Fs, E) =

⋂

s∈Z

W ∗
s (Fs, E) and W ∗

−∞(Fs, E) =
⋃

s∈Z

W ∗
s (Fs, E).

Equip W ∗
∞(Fs, E) with the induced locally convex topology.

Proposition 6.3. For any s ∈ Z, f (i,ω) extends to a bounded operator
from W ∗

s (F
′
s, E

′) to W ∗
s (Fs, E).

As ω is closed, eω commutes with de Rham differentials. The image
of eω ◦ p∗f is contained in the π1-fiber compactly supported forms, so

f (i,ω) = π1,∗ ◦ eω ◦ p∗f commutes with de Rham differentials. It follows

immediately that the extension of f (i,ω) to the L2 forms also commutes
with the closures of the de Rham differentials, so f (i,ω) induces a well

defined map f̃∗ : H∗
(2)(F

′
s, E

′) −→ H∗
(2)(Fs, E) on leafwise reduced L2

cohomology.

Proposition 6.4. f̃∗ : H∗
(2)(F

′
s, E

′) −→ H∗
(2)(Fs, E) does not depend

on the choices of i and ω. f̃∗ is an isomorphism with inverse g̃∗, so if

f1 and f2 are leafwise homotopy equivalent, then f̃∗1 = f̃∗2 .

Recall the definition of the pairing Q from the proof of Lemma 4.1.

Proposition 6.5. If ξ′1 and ξ′2 are closed L2 sections of ∧ℓL̃′
f(x)⊗E′,

then

Qx(f̃
∗(ξ′1), f̃

∗(ξ′2)) = Q′
f(x)(ξ

′
1, ξ

′
2).

7. Induced bundles

We assume again that F and F ′ are Riemannian foliations. The

restriction of f̃∗ gives isomorphisms from Ker(∆E′

ℓ ), Ker(∆E′+
ℓ ), and

Ker(∆E′−
ℓ ) to their images which we denote by

Im f̃∗ = f̃∗(Ker(∆E′

ℓ )), Im f̃∗+ = f̃∗(Ker(∆E′+
ℓ )),

and

Im f̃∗− = f̃∗(Ker(∆E′−
ℓ )),

respectively. We use similar notation for the map g̃∗ : W ∗
−∞(F,E) →

W ∗
−∞(F ′, E′).
Note that for x ∈ M , gf(x) 6= x in general, which creates technical

problems. To deal with this, choose a leafwise homotopy equivalence
h : M × I → M between the identity map on M and gf . Recall the
smooth leafwise path γx from x to gf(x) given by γx(t) = h(x, t). It
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determines the isometry Rx : L̃gf(x) → L̃x given by Rx([γ]) = [γ · γx].
For any Sobolev space W ∗

s (L̃x, E), Rx determines the isometry

R∗
x : W ∗

s (L̃x, E)→W ∗
s (L̃gf(x), E).

In particular for s = 0, it gives the isometry

R∗
x : L2(L̃x;∧T ∗Fs ⊗ E)→ L2(L̃gf(x);∧T ∗Fs ⊗ E).

We shall also consider the smooth leafwise paths γ′x′ from x′ ∈ M ′ to
fg(x′) given by γ′x′(t) = h′(x′, t), where h′ is a fixed leafwise homotopy
between the identity of M ′ and fg. Given x ∈ M , define the isometry

R′
x : L̃′

f(x) → L̃′
f(x) to be

R′
x[γ

′] = [γ′ · f(γx)−1 · γ′f(x)].
This induces the isometry

R′∗ : L2(L̃′
f(x);∧T ∗F ′

s ⊗ E′)→ L2(L̃′
f(x);∧T ∗F ′

s ⊗ E′).

Note that the composition

R′
x ◦ f̌ ◦Rx ◦ ǧ : L̃′

f(x) → L̃′
f(x)

is homotopic to the identity map, since for [γ′] ∈ L̃′
f(x),

R′
x ◦ f̌ ◦Rx ◦ ǧ([γ′]) = [fg(γ′) ·f(γx) ·f(γx)−1 ·γ′f(x)] = [fg(γ′) ·γ′f(x)].

Set

At(γ′) = (γ′
−1
r(γ′) | [0,t]) · fg(γ′) · γ′f(x).

Then A0(γ′) = fg(γ′) · γ′f(x), and A1(γ′) = γ′−1
r(γ′) · fg(γ′) · γ′f(x). Now

s(A1(γ′)) = s(γ′) and r(A1(γ′)) = r(γ′), and h′ provides a leafwise
homotopy between A1(γ′) and γ′, so they define the same element in

L̃′
f(x). Thus A

t induces a homotopy from R′
x ◦ f̌ ◦Rx ◦ ǧ to the identity

map. For x ∈M , consider the composition

(P ′
ℓ g̃

∗R∗
xPℓf̃

∗R′∗
x P

′
ℓ)f(x) : L

2(L̃′
f(x);∧T ∗F ′

s⊗E′)→ L2(L̃′
f(x);∧T ∗F ′

s⊗E′).

Since R′
x ◦ f̌ ◦ Rx ◦ ǧ : L̃′

f(x) → L̃′
f(x) is homotopic to the identity and

P ∗
ℓ is the identity on cohomology, it follows that (P ′

ℓ g̃
∗R∗

xPℓf̃
∗R′∗

x P
′
ℓ)f(x)

induces the identity on cohomology, which is naturally isomorphic to
Ker(∆E′

ℓ )f(x) = Im(P ′
ℓ)f(x). So its restriction

(P ′
ℓ g̃

∗R∗
xPℓf̃

∗R′∗
x P

′
ℓ)f(x) : Ker(∆E′

ℓ )f(x) → Ker(∆E′

ℓ )f(x)

is the identity.

We now show that Im f̃∗+ is a smooth sub-bundle of Aℓ
(2)(Fs, E) over

M/F . Set

πf+ = f̃∗R′∗π′+g̃
∗R∗Pℓ.
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Then for each x ∈M ,

(πf+)x : L2(L̃x;∧T ∗Fs ⊗ E)→ L2(L̃x;∧T ∗Fs ⊗ E)

is bounded and leafwise smoothing since π′+ and Pℓ are, and R′∗
x , R

∗
x,

f̃∗ and g̃∗ are bounded maps. We leave it to the reader to show that

πf+ is G invariant using the equality

[gf(γ) · γx] = [γy · γ]
for any γ ∈ G with s(γ) = x and r(γ) = y. As above, this equality holds
since the two paths start and end at the same points and a leafwise ho-
motopy between them can be constructed using the leafwise homotopy
equivalence h.

We extend πf+ to an A∗(M) equivariant operator on ∧ν∗s ⊗∧T ∗Fs⊗E
in the usual way.

Proposition 7.1. πf+ : Aℓ
(2)(Fs, E)→ Im f̃∗+ is a transversely smooth

idempotent.

Proof. First we have,

(πf+)
2 = f̃∗R′∗π′+g̃

∗R∗Pℓf̃
∗R′∗π′+g̃

∗R∗Pℓ =

f̃∗R′∗π′+P
′
ℓ g̃

∗R∗Pℓf̃
∗R′∗P ′

ℓπ
′
+g̃

∗R∗Pℓ =

f̃∗R′∗(π′+)
2g̃∗R∗Pℓ = f̃∗R′∗π′+g̃

∗R∗Pℓ = πf+,

since π′+ = π′+P
′
ℓ = P ′

ℓπ
′
+, and for each x ∈M ,

(P ′
ℓ g̃

∗R∗Pℓf̃
∗R′∗P ′

ℓ)f(x) : Ker(∆E′

ℓ )f(x) → Ker(∆E′

ℓ )f(x)

is the identity map, and Ker(∆E′

ℓ ) ⊃ Im(π′+).

As Pℓ is transversely smooth, we need only show that f̃∗R′∗π′+g̃
∗R∗

is transversely smooth.
Let ∇E and∇E′ be the leafwise flat connections on E and E′ and∇F ′

and ∇F be the Riemannian connections on T ∗F ′ and T ∗F , respectively.
Denote by ∇ν and ∇′ν the quasi-connections on C∞(∧ν∗s ⊗∧T ∗Fs⊗E)
and C∞(∧ν ′∗s ⊗∧T ∗F ′

s⊗E′) constructed from ∇F ⊗∇E, and ∇F ′⊗∇E′ ,
respectively.

Now supposeH is any G invariant operator of degree zero on ∧T ∗Fs⊗
E, e.g. H = f̃∗R′∗π′+g̃

∗R∗. If X ∈ C∞(TF ), then since H and ∇ν are

G invariant, ∂Xν (H) = 0. A vector field Y on M is a Γ vector field
provided that for any X ∈ C∞(TF ), [X,Y ] ∈ C∞(TF ). If Y ∈ C∞(ν)
is a Γ vector field, it is invariant under the parallel translation defined
by F , so ∂Yν (H) is G invariant. Globally defined Γ vector fields rarely
exist. The restriction of a global vector field to an open subset will be
called a local extendable vector field. Such local vector fields have all
their derivatives bounded. Any local Γ vector field may, after a slight
reduction in its domain of definition, be extended to a global vector field.
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Finally, a bounded function (onM) times a bounded leafwise smoothing
operator yields a bounded leafwise smoothing operator. With this in
mind, the problem of showing that such an H is transversely smooth
may be recast as follows (with the proof left to the reader).

Lemma 7.2. Suppose H is a degree zero G invariant A∗(M) equi-
variant (homogeneous of degree 0) bounded leafwise smoothing operator
on ∧ν∗s ⊗ ∧T ∗Fs ⊗ E. Then H is transversely smooth if and only if
for all local extendable Γ vector fields Y1, ..., Ym ∈ C∞(ν), the operator
∂Y1
ν ...∂Ym

ν (H) is a bounded leafwise smoothing operator on ∧T ∗Fs ⊗ E.

Note that f̃∗R′∗π′+g̃
∗R∗∇ν makes sense as f̃∗R′∗π′+g̃

∗R∗ is a well de-
fined A∗(M) equivariant operator on ∧ν∗s ⊗ ∧T ∗Fs ⊗ E. Note further
that the expression R∗∇ν does not make sense in general. However,
restricted to any sufficiently small transverse submanifold, gf is a dif-
feomorphism onto its image, so (gf)−1 is well defined on this image.
This makes it possible to prove the following.

Lemma 7.3. Suppose Y ∈ νx, and denote by h∗(Y ) ∈ νgf(x) the
parallel translate of Y along γx. Then

f̃∗R′∗π′+g̃
∗R∗∇ν

Y = f̃∗R′∗π′+g̃
∗∇ν

h∗(Y )R
∗.

If Y ′ ∈ ν ′f(x), then f̃∗R′∗∇′ν
Y ′π′+g̃

∗R∗ = f̃∗∇′ν
h′

∗
(Y ′)R

′∗π′+g̃
∗R∗, where

h′∗(Y
′) ∈ ν ′f(x) is the parallel translate of Y ′ along f(γx)

−1 · γ′f(x).

Proof. Let (Ux, γ, V ) and (Ugf(x), γγ
−1
x , V ) be local charts containing

[γ] ∈ L̃x, and [γγ−1
x ] ∈ L̃gf(x), respectively. To compute f̃∗π′+g̃

∗R∗∇ν
Y ,

we may restrict our attention to s−1(T ), where T is any submanifold of
M which has Y tangent to it. We may assume that T ⊂ Ux, and gf
restricted to T is a diffeomorphism onto its image gf(T ), which is also a
transverse submanifold, with gf(T ) ⊂ Ugf(x). Now s−1(T )∩(Ux, γ, V ) ≃
V and s−1(gf(T )) ∩ (Ugf(x), γγ

−1
x , V ) ≃ V , and the diffeomorphisms

with V are just given by the restriction of the target map r. In addition,
(
∇ν

Y | s−1(T )
)
◦ r∗ = r∗ ◦

(
(∇F ⊗∇E)

ν
Yγ

)

and
(
∇ν

h∗(Y ) | s−1(gf(T ))
)
◦ r∗ = r∗ ◦

(
(∇F ⊗∇E)

ν
h∗(Y )

γγ
−1
x

)
,

where (∇F ⊗∇E)
ν is the quasi-connection on ∧T ∗F ⊗ E over M con-

structed using the normal bundle ν of F , Yγ is the parallel translation
of Y along γ, and h∗(Y )γγ−1

x
is the parallel translation of h∗(Y ) along

γγ−1
x . So Yγ = h∗(Y )γγ−1

x
. The restriction of R,

RT : s−1(gf(T ))→ s−1(T )
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is well defined, since (gf)−1 is well defined on gf(T ). In fact it is a
diffeomorphism which locally is just r−1 ◦ r. RT induces the map on
leafwise differential forms

R∗
T : C∞(s−1(T );∧T ∗Fs ⊗ E)→ C∞(s−1(gf(T ));∧T ∗Fs ⊗ E),

which extends to the operator

R∗
T : C∞(s−1(T );∧T ∗(s−1(T ))⊗ E)→

C∞(s−1(gf(T ));∧T ∗(s−1(gf(T )))⊗ E).

It is clear that R∗
T∇ν

Y is a well defined map, and since locally RT =
r−1 ◦ r, we have R∗

T∇ν
Y = ∇ν

h∗(Y )R
∗
T . But R∗

T is just the restriction of

R∗ to s−1(T ), so R∗∇ν
Y = ∇ν

h∗(Y )R
∗.

The second statement is proved in the same way. q.e.d.

Proposition 7.4. The operators f̃∗∇′ν − ∇ν f̃∗ and g̃∗∇ν − ∇′ν g̃∗

are leafwise differential operators (By a leafwise differential operator
from L′ to L, it is sometimes meant, here and in the sequel, operators

generated locally by ρ′ 7→ f∗( ∂ρ
′

∂x′

i
) where the x′is are leafwise coordinates

on L′.), whose composition with a bounded leafwise smoothing operator
is again a bounded leafwise smoothing operator.

Proof. We will only do the proof for f̃∗ as the proof for g̃∗ is the same.
Let ω ⊗ α ⊗ φ ∈ C∞

c (∧ν ′∗s ⊗ ∧T ∗F ′
s ⊗ E′), with ω ∈ s∗Ak(M ′), α ∈

C∞
c (G′;∧T ∗F ′

s), and φ ∈ C∞
c (G′;E′). Then

d′s(ω ⊗ α⊗ φ) = (−1)kω ⊗ d′s(α⊗ φ).
Now

f̃∗∇′ν(ω ⊗ α⊗ φ) =
f̃∗(dM ′ω ⊗ α⊗ φ+ (−1)kω ⊗∇ν

F ′α⊗ φ+ (−1)kω ⊗ α⊗∇ν
E′φ) =

dMf
∗ω ⊗ f̃∗α⊗ f̃∗φ+ (−1)kf∗ω ⊗ f̃∗∇ν

F ′α⊗ f̃∗φ+
(−1)kf∗ω ⊗ f̃∗α⊗ f̃∗∇ν

E′φ.

On the other hand,

∇ν f̃∗(ω ⊗ α⊗ φ) =
dMf

∗ω ⊗ f̃∗α⊗ f̃∗φ+ (−1)kf∗ω ⊗∇ν
F f̃

∗α⊗ f̃∗φ+
(−1)kf∗ω ⊗ f̃∗α⊗∇ν

E f̃
∗φ.

Thus
(f̃∗∇ν′ −∇ν f̃∗)(ω ⊗ α⊗ φ) =

(−1)kf∗ω ⊗
(
(f̃∗∇ν

F ′ −∇ν
F f̃

∗)α⊗ f̃∗φ+ f̃∗α⊗ (f̃∗∇ν
E′ −∇ν

E f̃
∗)φ

)
,

which contains no differentiation of ω, so f̃∗∇′ν − ∇ν f̃∗ is indeed a

leafwise operator, as are its individual components f̃∗∇ν
F ′ −∇ν

F f̃
∗ and

f̃∗∇ν
E′ −∇ν

E f̃
∗.
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Next consider the leafwise operator f̃∗∇ν
F ′ − ∇ν

F f̃
∗ on C∞(∧T ∗F ′

s).
Set

dν = pνdG and d′ν = pν′dG′ .

In local coordinates, we may write ∇ν
F ′ and ∇ν

F as pν′(dG′ + ΘF ′) and
pν(dG + ΘF ), respectively, where ΘF ′ and ΘF are leafwise differential
operators (of order zero) with coefficients in T ∗G′ and T ∗G. Then we
have

f̃∗∇ν
F ′ −∇ν

F f̃
∗ = f̃∗pν′(dG′ +ΘF ′)− pν(dG +ΘF )f̃

∗ =

f̃∗d′ν − dν f̃∗ + f̃∗pν′ΘF ′ − pνΘF f̃
∗.

Lemma 7.5. f̃∗d′ν − dν f̃
∗ and g̃∗dν − d′ν g̃

∗ are leafwise operators,
with

f̃∗d′ν − dν f̃∗ = −f̃∗d′s + dsf̃
∗ and g̃∗dν − d′ν g̃∗ = −g̃∗ds + d′sg̃

∗.

Proof. Again we prove this only for f̃∗d′ν − dν f̃∗. As f̃∗∇ν
F ′ −∇ν

F f̃
∗

and f̃∗pν′ΘF ′ − pνΘF f̃
∗ are leafwise operators, so is f̃∗d′ν − dν f̃∗.

On G × Bk we have the foliation Fs × Bk with all its baggage. In
particular, we use the product metric on G × Bk, and we have the
transverse derivative dBν . Local charts on G × Bk are given by subsets
of the form (U, γ, V ) × Bk, where (U, γ, V ) is a local chart for G. It is
clear that in these local coordinates, dν and dBν have exactly the same
form. It is then obvious from the definitions of π1,∗ and eω that

dν(π1,∗ ◦ eω) = (π1,∗ ◦ eω)dBν and ds(π1,∗ ◦ eω) = (π1,∗ ◦ eω)dBs ,
where dBs is the leafwise derivative associated to the foliation Fs × Bk.

As f̃∗ = π1,∗ ◦ eω ◦ p∗f , to prove that f̃∗d′ν − dν f̃∗ = −f̃∗d′s + dsf̃
∗, we

need only prove that

p∗fd
′
ν − dBν p∗f = −p∗fd′s + dBs p

∗
f .

This is purely a local question, and the usual proof shows that we need
only prove it for compactly supported functions on G′.

Denote by p′s the projection p′s : TG′ → TF ′
s determined by the

splitting TG′ = ν ′s ⊕ TF ′
s, and by pBF : T (G × Bk) → T (Fs × Bk) and

pBν : T (G × Bk) → νB, the projections determined by the splitting
T (G × Bk) = νB ⊕ T (Fs × Bk). Let φ ∈ C∞

c (G′). If X ∈ T (Fs × Bk),
then pBν (X) = 0 and pf ∗X ∈ TF ′

s, so p
′
νpf ∗(X) = 0. Thus

(p∗fd
′
νφ− dBν p∗fφ)(X) = p∗f ((d

′
νφ)pf ∗(X)) − (dG×Bkp∗fφ)p

B
ν (X) =

p∗f ((dG′φ)p′νpf ∗(X)) = 0.

Next, suppose X ∈ νB , the normal bundle to Fs × Bk, and note that
pf ∗X is not necessarily in ν ′s. Then

(p∗fd
′
νφ)(X) = p∗f ((d

′
νφ)(pf ∗X)) = p∗f ((dG′φ)(p′νpf ∗X)) =
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p∗f ((dG′φ)(pf∗X))− p∗f ((dG′φ)(p′spf ∗X)) =

(dG×Bkp∗fφ)(X) − p∗f ((d′sφ)(pf ∗X)) =

(dG×Bkp∗fφ)(p
B
ν X)− p∗f ((d′sφ)(pf ∗X)) = (dBν p

∗
fφ− p∗fd′sφ)(X).

So

(p∗fd
′
ν − dBν p∗f )φ = (−p∗fd′sφ)pBν = (−p∗fd′sφ)(I − pBF ) =
−p∗fd′sφ+ (p∗fd

′
sφ)p

B
F = −p∗fd′sφ+ dBs p

∗
fφ,

since, restricted to T (Fs ×Bk), p∗fd
′
sφ = dBs p

∗
fφ.

Thus f̃∗d′ν − dν f̃∗ = −f̃∗d′s + dsf̃
∗. q.e.d.

So

f̃∗∇ν
F ′ −∇ν

F f̃
∗ = dsf̃

∗ − f̃∗d′s + f̃∗pν′ΘF ′ − pνΘF f̃
∗,

a leafwise differential operator (of order at most one).

Finally, consider f̃∗∇ν
E′ − ∇ν

E f̃
∗ acting on C∞

c (E′). In local coordi-
nates, and with respect to local framings of E′ and E, we may write
∇E′ = dG′ + ΘE′ and ∇E = dG + ΘE, where ΘE′ and ΘE are leafwise
differential operators (of order zero) with coefficients in T ∗G′ and T ∗G.
Then

f̃∗∇ν
E′ −∇ν

E f̃
∗ = f̃∗pν′∇E′ − pν∇E f̃

∗ =

f̃∗pν′(dG′ +ΘE′)− pν(dG +ΘE)f̃
∗ =

f̃∗d′ν−dν f̃∗+ f̃∗pν′ΘE′−pνΘE f̃
∗ = −f̃∗d′s+dsf̃∗+ f̃∗pν′ΘE′−pνΘE f̃

∗,

since the proof of Lemma 7.5 above extends to show that f̃∗d′ν−dν f̃∗ =
−f̃∗d′s + dsf̃

∗, with respect to the local framings. So

f̃∗∇ν
E′ −∇ν

E f̃
∗ = dsf̃

∗ − f̃∗d′s + f̃∗pν′ΘE′ − pνΘE f̃
∗,

is also a leafwise differential operator (of order at most one).
Now observe that if we use coordinates on G′ and G and framings of

E′ and E coming from coordinates on M ′ and M , and framings of E′

and E over M ′ and M , all of whose derivatives are uniformly bounded,

then dsf̃
∗ − f̃∗d′s + f̃∗pν′ΘF ′ − pνΘF f̃

∗ and dsf̃
∗ − f̃∗d′s + f̃∗pν′ΘE′ −

pνΘE f̃
∗ are (at worst) order one differential operators which have all

of their derivatives uniformly bounded. Thus f̃∗∇ν′ −∇ν f̃∗ and all its
derivatives define bounded operators fromW ∗

s (F
′, E′) toW ∗

s−1(F,E) for
each s, and so their compositions with a bounded leafwise smoothing
operator are again bounded leafwise smoothing operators. q.e.d.

Note that the proof above also proves that the composition of Υf =

f̃∗∇′ν − ∇ν f̃∗ or Υg = g̃∗∇ν − ∇′ν g̃∗ with a transversely smooth op-
erator is again a transversely smooth operator. By virtue of Lemma
7.2, we will be using only local extendable Γ vector fields Y1, ..., Ym in

proving that f̃∗R′∗π′+g̃
∗R∗ is transversely smooth. Thus Lemma 7.3
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becomes f̃∗R′∗π′+g̃
∗R∗∇ν = f̃∗R′∗π′+g̃

∗∇νR∗ and f̃∗∇′νR′∗π′+g̃
∗R∗ =

f̃∗R′∗∇′νπ′+g̃
∗R∗. Then

∂ν(f̃
∗R′∗π′+g̃

∗R∗) = [∇ν , f̃∗R′∗π′+g̃
∗R∗] =

∇ν f̃∗R′∗π′+g̃
∗R∗ − f̃∗R′∗π′+g̃

∗R∗∇ν =

f̃∗R′∗∇′νπ′+g̃
∗R∗ − f̃∗R′∗π′+∇′ν g̃∗R∗ −ΥfR

′∗π′+g̃
∗ − f̃∗R′∗π′+ΥgR

∗.

So

7.6. ∂Y1
ν (f̃∗R′∗π′+g̃

∗R∗) =

i
Ŷ1
f̃∗R′∗∂ν′(π

′
+)g̃

∗R∗ − (i
Ŷ1
Υf )R

′∗π′+g̃
∗R∗ − f̃∗R′∗π′+(iŶ1

Υg)R
∗.

By assumption, ∂ν′(π
′
+) is a bounded leafwise smoothing operator,

so i
Ŷ1
f̃∗R′∗∂ν′(π

′
+)g̃

∗R∗ is also. The operators i
Ŷ1
Υf , and i

Ŷ1
Υg are

leafwise operators which have all their derivatives bounded, so their
composition with a bounded leafwise smoothing operator (e.g. R′∗π′+g̃

∗)
is again a bounded leafwise smoothing operator. Thus for any local

extendable Γ vector field Y1 on M , ∂Y1
ν (f̃∗R′∗π′+g̃

∗R∗) is a bounded
leafwise smoothing operator.

To continue the induction argument, we need the following.

Lemma 7.7. Let Y ∈ C∞(ν) be a local extendable Γ vector field.
Then there is a bounded vector field Z ′ on G′ so that for any ([γ], t) ∈
G ×Bk,

iŶ ([γ],t)p
∗
f = p∗f iZ′(pf ([γ],t)).

Given this, then at ([γ], t) ∈ G ×Bk we have

iŶ1
p∗fR

′∗∂ν′(π
′
+)([γ], t) = iŶ1([γ],t)

p∗fR
′∗∂ν′(π

′
+) =

p∗f (R
′∗iZ′

1(pf ([γ],t))
∂ν′(π

′
+)) = p∗f (R

′∗iZ′

1
∂ν′(π

′
+)pf ([γ], t)).

That is, i
Ŷ1
p∗fR

′∗∂ν′(π
′
+) = p∗fR

′∗iZ′

1
∂ν′(π

′
+), so

i
Ŷ1
f̃∗R′∗∂ν′(π

′
+)g̃

∗R∗ = f̃∗R′∗iZ′

1
∂ν′(π

′
+)g̃

∗R∗.

Lemma 7.8. If ρ is a transversely smooth operator on A∗
(2)(F

′
s, E

′)

and Z ′ is a bounded vector field on G′, then iZ′∂ν′(ρ) is a transversely
smooth operator.

Proof. Since iZ′∂ν′(ρ) = ipν′ (Z′)∂ν′(ρ), we may assume that Z ′ =∑
j gjX̂

′
j, where X

′
j is a finite local basis for the vector fields on M ′

and the gj are smooth functions which are globally bounded along with

all their derivatives. Then iZ′∂ν′(ρ) =
∑

j gjiX̂′

j
∂ν′(ρ) =

∑
j gj∂

X′

j

ν′ (ρ),

which is clearly transversely smooth since the gj and all their derivatives
are globally bounded. q.e.d.
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Using Equation 7.6, we have

∂Y2
ν ∂Y1

ν (f̃∗R′∗π′+g̃
∗R∗) =

∂Y2
ν

(
f̃∗R′∗iZ′

1
∂ν′(π

′
+)g̃

∗R∗ − (iŶ1
Υf )R

′∗π′+g̃
∗R∗ − f̃∗R′∗π′+(iŶ1

Υg)R
∗
)
.

Repeating the argument above we get

∂Y2
ν (f̃∗R′∗iZ′

1
∂ν′(π

′
+)g̃

∗R∗) =

iŶ2
f̃∗R′∗∂ν′(iZ′

1
∂ν′(π

′
+))g̃

∗R∗ − (iŶ2
Υf )R

′∗iZ′

1
∂ν′(π

′
+)g̃

∗R∗−
f̃∗R′∗iZ′

1
∂ν′(π

′
+)(iŶ2

Υg)R
∗ =

f̃∗R′∗iZ′

2
∂ν′(iZ′

1
∂ν′(π

′
+))g̃

∗R∗ − (iŶ2
Υf )R

′∗iZ′

1
∂ν′(π

′
+)g̃

∗R∗−
f̃∗R′∗iZ′

1
∂ν′(π

′
+)(iŶ2

Υg)R
∗,

which is bounded and leafwise smoothing since iZ′

1
∂ν′(π

′
+) is transversely

smooth.
As ∂Y2

ν is a derivation, we have

∂Y2
ν ((i

Ŷ1
Υf )R

′∗π′+g̃
∗R∗) =

∂Y2
ν (iŶ1

Υf )(R
′∗π′+g̃

∗R∗) + (iŶ1
Υf )∂

Y2
ν (R′∗π′+g̃

∗R∗).

The operators ∂Y2
ν (iŶ1

Υf ) and iŶ1
Υf composed with bounded leafwise

smoothing operators produce bounded leafwise smoothing operators.
As R′∗π′+g̃

∗R∗ and ∂Y2
ν (R′∗π′+g̃

∗R∗) are bounded leafwise smoothing
operators, this term is a bounded leafwise smoothing operator. Similarly
for the third term.

Now a straight forward induction argument finishes the proof, modulo
the proof of Lemma 7.7.

Proof. To prove Lemma 7.7, we “factor through the graph”. In par-
ticular, consider the map pf,G : G × Bk → G × Bk × G′ given by
pf,G(γ, t) = (γ, t, pf (γ, t)) which is a diffeomorphism onto its image.

Denote by F ′
G,s the foliation of G ×Bk×G′ whose leaves are of the form

L̃×Bk× L̃′, and denote by E′
G the pull back of E′ under the projection

G × Bk × G′ → G′. We want to construct a transversely smooth idem-
potent π′+,G which will play the role of π′+. However, π′+,G will not be

acting on A∗
(2)(F

′
G,s, E

′
G) over M ×M ′, but rather on the space denoted

A∗
(2)(F

′
G,s,∧T ∗F ′

s ⊗ E′
G) over M ×M ′, which associates to each (x, x′)

the Hilbert space L2(L̃′
x′ ;∧T ∗F ′

s ⊗ E′). Then

(π′+,G)(x,x′) := (π′+)x′ : L2(L̃′
x′ ;∧T ∗F ′

s ⊗ E′)→ L2(L̃′
x′ ;∧T ∗F ′

s ⊗ E′)

is well defined, and it is obvious that π′+,G is a transversely smooth

idempotent and has image Ker(∆E′+
ℓ ).

To define the action p̃∗f,G of p̃f,G on A∗
(2)(F

′
G,s,∧T ∗F ′

s ⊗E′
G), we may

consider this space as a subspace of all the forms on G×Bk×G′ by using
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the pull back of the projection G ×Bk ×G′ → G′. When we do so, p̃∗f,G
is just the usual induced map, and on each fiber L2(L̃′

f(x);∧T ∗F ′
s ⊗E′)

it equals p∗f .
Next define

g̃∗G : A∗
(2)(Fs, E)→ A∗

(2)(F
′
G,s,∧T ∗F ′

s ⊗ E′
G)

to be

(g̃∗G)g(x′) := (g̃∗)g(x′) : L
2(L̃g(x′);∧T ∗Fs ⊗ E)→ L2(L̃′

x′ ;∧T ∗F ′
s ⊗ E′),

for each x′ ∈M ′.
Finally, the action of R′∗ on A∗

(2)(F
′
s, E

′) extends easily to an action

on A∗
(2)(F

′
G,s,∧T ∗F ′

s ⊗ E′
G).

Then p∗f,GR
′∗π′+,Gg̃

∗
GR

∗ = p∗fR
′∗π′+g̃

∗R∗, and we may work with G ×
Bk × G′, F ′

G,s, p
∗
f,G, g̃

∗
G, and π′+,G in place of G′, F ′, p∗f , g̃

∗, and π′+,
respectively. As pf,G is a diffeomorphism onto its image, we may push

forward vector fields such as the Ŷi on G (which are bounded because F
is Riemannian) to bounded vector fields Z ′

i on G ×Bk × G′. Note that
these vector fields are only defined along the image of pf,G, but this is
sufficient for our purposes, since things of the form

f̃∗R′∗iZ′

2
∂ν′(iZ′

1
∂ν′(π

′
+))g̃

∗R∗ − (i
Ŷ2
Υf )R

′∗iZ′

1
∂ν′(π

′
+)g̃

∗R∗−

f̃∗R′∗iZ′

1
∂ν′(π

′
+)(iŶ2

Υg)R
∗,

are still well defined. q.e.d.

This completes the proof that πf+ : Aℓ
(2)(Fs, E) → Im f̃∗+ is a trans-

versely smooth idempotent. q.e.d.

The same argument shows that Im f̃∗−, and Im f̃∗ determine smooth

bundles over M/F , denoted πf− and πf respectively. In fact, we may
use the proof above to prove.

Proposition 7.9. If ρ is a transversely smooth operator on ∧ν ′∗s ⊗
F ′
s ⊗ E′, then f̃∗R′∗ρ g̃∗R∗ is a transversely smooth operator on ∧ν∗s ⊗
Fs ⊗ E.

8. Induced connections

Let ∇′ = π′+∇′νπ′+ be the connection on π′+ = Ker(∆E′+
ℓ ), deter-

mined by the quasi-connection ∇′ν on ∧ℓT ∗F ′
s⊗E′. We now prove that

∇′ induces a connection ∇ on πf+.

Lemma 8.1. If ξ′ is a local invariant section of π′+, then f̃
∗(ξ′) is a

local invariant section of πf+.
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Proof. Recall that for ([γ], t) ∈ G ×Bk, pf ([γ], t) = [Pf (γ, t) · (f ◦ γ)],
the composition of the leafwise paths Pf (γ, t) and f ◦γ, where Pf (γ, t) :
[0, 1]→ L′

f(s(γ)) is the leafwise path given by

Pf (γ, t)(s) = pf (r(γ), st).

Then

f̃∗(ξ′)([γγ1]) = π1,∗ ◦ eω((p∗f ξ′)([γγ1], t)) =

π1,∗ ◦ eω(p∗f (ξ′(Pf (γγ1, t) · (f ◦ γγ1)))) =

π1,∗◦eω(p∗f (ξ′(Pf (γ, t)·(f◦γ)·(f◦γ1)))) = π1,∗◦eω(p∗f (ξ′(Pf (γ, t)·(f◦γ)))),
since ξ′ is local invariant. But this last equals

π1,∗ ◦ eω(p∗fξ′([γ], t)) = f̃∗(ξ′)([γ]).

q.e.d.

Lemma 8.2. Any local invariant section ξ of πf+ induces a local

invariant section f̃−∗ξ of π′+.

Proof. Let T be a transversal in M on which ξ is defined. We may
assume that T is so small that f |T is a diffeomorphism onto its image

T ′. Then (f̃∗)−1 : Im f̃∗+ → Ker(∆E′+
ℓ ) is well defined over T , and in

fact is given by the map R′∗P ′
ℓ g̃

∗R∗ |T . To see this, note that over

T ′ the map R′∗P ′
ℓ g̃

∗R∗f̃∗ : Ker(∆E′

ℓ ) → Ker(∆E′

ℓ ) is the identity map,

since it induces the identity map on cohomology, and that Ker(∆E′+
ℓ ) ⊂

Ker(∆E′

ℓ ). For simplicity, we shall denote R′∗P ′
ℓ g̃

∗R∗ |T by f̃−∗. For
x′ ∈ T ′, define

(f̃−∗ξ)(x′) ≡ f̃−∗(ξ(f−1(x′))).

This gives a well defined smooth section on T ′. Extend it to a local
invariant section on a neighborhood of T ′. We leave it to the reader to
show that this construction is well defined, that is it does not depend
on the choice of T . q.e.d.

In order to define the induced connection ∇, we need only define it
on local invariant sections, and then extend it using (1) of Definition
5.7.

Definition 8.3. Let ξ be a local invariant section of πf+. Given
X ∈ TM , set X ′ = f∗(X). Define

∇X(ξ) = f̃∗(∇′
X′(f̃−∗ξ)).

Extend to ξ ∈ C∞(∧T ∗M ;πf+) by using (1) of Definition 5.7.

Proposition 8.4. ∇ is a connection on πf+.
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Proof. We need to check that the four conditions of Definition 5.7 are
satisfied.

5.7(1): For differential forms this is satisfied by definition, so we need
to check it for functions. Specifically, we need that for any local function
ω onM which is constant on plaques of F (i.e. local invariant functions),

and for any X ∈ TM and any local invariant section ξ of πf+,

∇X(ωξ) = dMω(X)ξ + ω∇Xξ.

If X ∈ TF , this is trivially true since both sides are zero. Now suppose
that X is transverse to F , with X ′ = f∗(X), and let T be a transversal
of F with X tangent to T . We may assume that T is so small that f
restricted to T is a diffeomorphism onto its image T ′, a transversal of
F ′, with inverse f−1 : T ′ → T . The vector X ′ is tangent to T ′, and
thanks to Corollary 5.21, we have

∇X(ωξ) = f̃∗(∇′
X′(f̃−∗(ωξ))) = f̃∗(∇′

X′((ω ◦ f−1)f̃−∗ξ)) =

f̃∗
[
X ′(ω ◦ f−1)f̃−∗ξ + (ω ◦ f−1)∇′

X′ f̃−∗ξ
]
=

(X ′(ω ◦ f−1) ◦ f)f̃∗f̃−∗ξ + ωf̃∗(∇′
X′ f̃−∗ξ) =

(Xω)ξ + ω∇Xξ = dMω(X)ξ + ω∇Xξ.

5.7(2): If X ∈ TF then X ′ ∈ TF ′, and as f̃−∗ξ is local invariant,

∇′
X′(f̃−∗ξ) = 0, so ∇X(ξ) = f̃∗(∇′

X′(f̃−∗ξ)) = 0 and ∇ is flat along F .

5.7(3): The fact that ∇ is G−invariant is a simple exercise which is left
to the reader.

5.7(4): We need to show that

A = ∇πf+ − πf+∇νπf+ : C∞
c (∧T ∗M ;∧T ∗Fs ⊗ E)→ C∞(∧T ∗M ;πf+)

is transversely smooth. Now πf+ = f̃∗R′∗π′+g̃
∗R∗Pℓ and ∇ = f̃∗∇′f̃−∗ =

f̃∗∇′R′∗P ′
ℓ g̃

∗R∗ = f̃∗π′+∇′νπ′+R
′∗P ′

ℓ g̃
∗R∗. Using the proof of Proposi-

tion 7.4, we have that, modulo transversely smooth operators,

A = f̃∗π′+∇′νπ′+R
′∗P ′

ℓ g̃
∗R∗f̃∗R′∗π′+g̃

∗R∗Pℓ−
f̃∗R′∗π′+g̃

∗R∗Pℓ∇ν f̃∗R′∗π′+g̃
∗R∗Pℓ =

f̃∗π′+∇′νπ′+R
′∗P ′

ℓ g̃
∗R∗f̃∗R′∗P ′

ℓπ
′
+g̃

∗R∗Pℓ−
f̃∗R′∗π′+g̃

∗R∗Pℓf̃
∗∇′νR′∗π′+g̃

∗R∗Pℓ =

f̃∗π′+∇′νπ′+R
′∗π′+g̃

∗R∗Pℓ − f̃∗R′∗π′+g̃
∗R∗Pℓf̃

∗∇′νR′∗π′+g̃
∗R∗Pℓ,

since P ′
ℓ g̃

∗R∗f̃∗R′∗P ′
ℓ is the identity on Im(P ′

ℓ) = Ker(∆E′

ℓ ) ⊃ Im(π′+).
Now R′∗π′+ = π′+R

′∗ and∇′νπ′+ = (∇′νπ′+)π
′
+ = π′+∇′νπ′++[∇′ν , π′+]π

′
+,

and [∇′ν , π′+] is transversely smooth since π′+ is. So using Proposi-
tion 7.9, we have that modulo transversely smooth operators,

f̃∗R′∗π′+g̃
∗R∗Pℓf̃

∗∇′νR′∗π′+g̃
∗R∗Pℓ =
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f̃∗R′∗π′+P
′
ℓ g̃

∗R∗Pℓf̃
∗π′+∇′νπ′+R

′∗g̃∗R∗Pℓ =

f̃∗π′+R
′∗P ′

ℓ g̃
∗R∗Pℓf̃

∗P ′
ℓπ

′
+∇′νπ′+R

′∗g̃∗R∗Pℓ = f̃∗π′+∇′νπ′+R
′∗g̃∗R∗Pℓ,

since R′∗P ′
ℓ g̃

∗R∗Pℓf̃
∗P ′

ℓ is also the identity on Im(P ′
ℓ). As π′+R

′∗ =
π′+π

′
+R

′∗ = π′+R
′∗π′+, A = 0 modulo transversely smooth operators,

that is, A is transversely smooth. q.e.d.

9. Leafwise homotopy invariance of the twisted higher
harmonic signature

In this section we prove our main theorem that the twisted higher
harmonic signature is a leafwise homotopy invariant.

Theorem 9.1. Suppose that M is a compact Riemannian manifold,
with an oriented Riemannian foliation F of dimension 2ℓ, and that E
is a leafwise flat complex bundle over M with a (possibly indefinite)
non-degenerate Hermitian metric which is preserved by the leafwise flat
structure. Assume that the projection onto Ker(∆E

ℓ ) for the associated
foliation Fs of the homotopy groupoid of F is transversely smooth. Then
σ(F,E) is a leafwise homotopy invariant.

Recall that the projection onto Ker(∆E
ℓ ) is transversely smooth: for

the (untwisted) leafwise signature operator; whenever E is a bundle
associated to the normal bundle of the foliation; and whenever the leaf-
wise parallel translation on E defined by the flat structure is a bounded
map, in particular whenever the preserved metric on E is positive def-
inite. Note also that these conditions are preserved under pull-back by
a leafwise homotopy equivalence.

Suppose that M ′, F ′, and E′ satisfy the hypothesis of Theorem 9.1,
and that f : M → M ′ is a leafwise homotopy equivalence, which pre-
serves the leafwise orientations. Set E = f∗(E′) with the induced leaf-
wise flat structure and preserved metric. Assume that the projections
to Ker(∆E

ℓ ) and Ker(∆E′

ℓ ) are transversely smooth. Then we need to
show that

cha(π±) = f∗(cha(π
′
±)).

We do this in two stages. The first is to prove

Theorem 9.2. cha(π±) = cha(π
f
±).

Proof. Recall that πf± = f̃∗R′∗π′±g̃
∗R∗Pℓ, and set

π̂f,t± = tπf± + (1− t)Pℓπ
f
±.

A simple computation, using the fact that πf±Pℓ = πf±, shows that the

π̂f,t± are idempotents, and as Pℓ and the πf± are transversely smooth, the

π̂f,t± are smooth families of transversely smooth idempotents. It follows

from Theorem 3.4 that cha(π̂
f,0
± ) = cha(π̂

f,1
± ). Since π̂f,1± = πf±, we need
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to show that cha(π̂
f,0
± ) = cha(π±). We will do only the + case as the

other case is the same. Set π̂f± = π̂f,0± .
Consider the pairings 〈 , 〉, and Q defined in Section 4. Note that

Q(dsα1, α2) = (−1)ℓ+1Q(α1, dsα2). Using a partition of unity and lin-
earity, proving this reduces to considering sections of compact support

of the form α = ω ⊗ φ, where ω ∈ C∞
c (L̃;∧T ∗L̃) and φ is a flat section

of E, where it is immediate. So B
ℓ
(2)(Fs, E) is totally isotropic under

the pairing Q, and it is orthogonal to Ker(∆E
ℓ ) under the pairing 〈 , 〉.

In addition, this equation implies that Q induces a well defined pairing

Q : Hℓ
(2)(Fs, E)⊗Hℓ

(2)(Fs, E)→ B(M),

where B(M) denotes the Borel C valued functions on M . It further
implies that Pℓ restricted to the cocycles Zℓ

(2)(Fs, E) preserves Q. The

subspaces Ker(∆E+
ℓ ) and Ker(∆E−

ℓ ) are orthogonal under both of the

pairings, since Q(τ̂α1, α2) = Q(α1, τ̂α2). As Ker(∆E
ℓ ) = Ker(∆E+

ℓ ) ⊕
Ker(∆E−

ℓ ), so also Zℓ
(2)(Fs, E) = Ker(∆E+

ℓ )⊕Ker(∆E−
ℓ )⊕Bℓ

(2)(Fs, E).

The kernels of both π̂f+ and π+ contain Ker(Pℓ), so we may restrict

our attention to Im(Pℓ) = Ker(∆E
ℓ ). The image of π̂f+ is Pℓ(Im(f̃∗+)).

Lemma 9.3. π+ : Pℓ(Im(f̃∗+))→ Ker(∆E+
ℓ ) is an isomorphism with

bounded inverse.

Proof. By Proposition 6.5, f̃∗ restricted to Ker(∆E′

ℓ ) takes the pairing
Q′ to the pairing Q. (Note that Q is ± definite on the Im(π±) if ℓ is
even, while it is

√
−1Q, which is ± definite on Im(π±) is ℓ is odd. We

will finesse this point.) Since Pℓ (restricted to the cocycles) preserves

the pairing Q, Q is positive definite on Pℓ(Im(f̃∗+)). Given 0 6= α ∈
Pℓ(Im(f̃∗+)), write it (uniquely) as α = α++α−, where α± ∈ Ker(∆E±

ℓ ).
Then

0 < Q(α,α) = 〈α+, α+〉 − 〈α−, α−〉 ≤ 〈α+, α+〉,
so π+(α) = α+ 6= 0 and π+ : Pℓ(Im(f̃∗+))→ Ker(∆E+

ℓ ) is one-to-one.

The above inequality also implies that π−1
+ is bounded, with bound√

2. The element α = π−1
+ (α+) and ||α||2 = 〈α,α〉 = 〈α+, α+〉 +

〈α−, α−〉 = ||α+||2 + ||α−||2. Since 0 < Q(α,α), ||α−||2 < ||α+||2,
so ||π−1

+ (α+)||2 = ||α||2 ≤ 2||α+||2.
Next we show that π+ is onto. Choose α ∈ Ker(∆E+

ℓ ) which is

orthogonal to π+(Pℓ(Im f̃∗+)). The subspaces Pℓ(Im f̃∗+) and Pℓ(Im f̃∗−)
are orthogonal under Q. Their direct sum is the space Ker(∆ℓ) of all

harmonic forms, since πf+ + πf− induces the identity on cohomology.

Write α = β+ + β−, with β± ∈ Pℓ(Im f̃∗±). Then

‖α‖2 = Q(α,α) = Q(α, β+) +Q(α, β−) =
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Q(α, π+β+) +Q(α, π−β+) +Q(α, β−) = Q(α, β−).

The last equality is a consequence of the facts that α is Q orthogonal

to π+(Pℓ(Im f̃∗+)) and that Ker(∆E+
ℓ ) and Ker(∆E−

ℓ ) are Q orthogonal.
Hence we have,

0 ≤ ‖α‖2 = Q(β+, β−) +Q(β−, β−) = Q(β−, β−) ≤ 0.

So, α = 0, and π+ is onto. q.e.d.

Consider the map π−1
+ : Ker(∆E+

ℓ ) → π+(Pℓ(Im f̃∗+)), and define ρ+
to be

ρ+ = π−1
+ ◦ π+ : Aℓ

(2)(Fs, E)→ Pℓ(Im(f̃∗+)).

Then ρ+ is an idempotent and has image Pℓ(Im f̃∗+), which equals Im π̂f+.
We claim that ρ+ is transversely smooth. If so, then cha(ρ+) is defined

and cha(ρ+) = cha(π̂
f
+), since they have the same image. Note that ρ+ is

the projection to Pℓ(Im(f̃∗+)) along Ker(π+). With this description, it is
immediate that ρ+◦π+ = ρ+ and π+◦ρ+ = π+ since π+ is the projection
to Ker(∆E+

ℓ ) along Ker(π+). As above, we may form the smooth family
of transversely smooth idempotents tρ+ + (1− t)π+ which connects ρ+
to π+. Again, it follows from Theorem 3.4 that cha(ρ+) = cha(π+), and

we have cha(π+) = cha(π
f
+). So to finish the proof we need only show

that ρ+ is transversely smooth.
Now

π̂f± = Pℓπ
f
± = Pℓf̃

∗R′∗π′±g̃
∗R∗Pℓ,

and recalling that P ′
ℓ g̃

∗R∗Pℓf̃
∗R′∗P ′

ℓ = P ′
ℓ and π′± = π′±P

′
ℓ = P ′

ℓπ
′
±, we

have

(π̂f±)
2 = π̂f± and π̂f±π̂

f
∓ = 0.

These idempotents are transversely smooth since Pℓ and the πf± are

transversely smooth. They also satisfy π̂f+ + π̂f− = Pℓ, and their kernels

both contain Ker(Pℓ). Finally, note that the Im(π̂f±) = Pℓ(Im(f̃∗±)).
Next set

A = π+ + π̂f−.

Lemma 9.4. The operator A and its adjoint At are transversely
smooth, and A is an isomorphism when restricted to Ker(∆E

ℓ ).

Proof. A is transversely smooth because both π+ and π̂f− are. As

At = (π+ + π̂f−)
t = π+ + (π̂f−)

t, we need only show that

(π̂f−)
t = PℓR

∗tg̃∗tπ′−R
′∗tf̃∗tPℓ

is transversely smooth. Now Pℓ and π′− are transversely smooth, and
R∗t = (R∗)−1 and R′∗t = (R′∗)−1 since they are both isometries. Now
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consider f̃∗t and g̃∗t restricted to the harmonic forms. Let α′ ∈ Im(P ′
ℓ)

and α ∈ Im(π+). Then

〈α′, f̃∗tα〉 = 〈f̃∗α′, α〉 = Q(f̃∗α′, ∗̂α) = Q(f̃∗α′, τ̂α) =

Q(f̃∗α′, α) = Q(f̃∗α′, f̃∗R′∗g̃∗R∗α) = Q′(α′, R′∗g̃∗R∗α) =

Q′(α′, π′+R
′∗g̃∗R∗α+ π′−R

′∗g̃∗R∗α) =

Q′(α′, τ̂π′+R
′∗g̃∗R∗α− τ̂π′−R′∗g̃∗R∗α) =

Q′(α′, ∗̂π′+R′∗g̃∗R∗α− ∗̂π′−R′∗g̃∗R∗α) =

〈α′, (π′+R
′∗g̃∗R∗ − π′−R′∗g̃∗R∗)α〉.

So on Im(π+), f̃
∗t = π′+R

′∗g̃∗R∗ − π′−R′∗g̃∗R∗. Similarly, on Im(π−),

f̃∗t = −π′+R′∗g̃∗R∗ + π′−R
′∗g̃∗R∗. Thus on Im(Pℓ),

f̃∗t = (π′+R
′∗g̃∗R∗−π′−R′∗g̃∗R∗)π+−(π′+R′∗g̃∗R∗−π′−R′∗g̃∗R∗)π− =

(π′+ − π′−)R′∗g̃∗R∗(π+ − π−).
Similarly, g̃∗t = (π+ − π−)R∗f̃∗R′∗(π′+ − π′−). As (π′+ − π′−)π′−(π′+ −
π′−) = π′−, R

∗ commutes with π±, R
′∗ commutes with π′±, and Pℓπ± =

π±, we have

(π̂f−)
t = (π+ − π−)f̃∗R′∗π′−g̃

∗R∗(π+ − π−),
which is transversely smooth.

Next, note that Q is positive definite on Im(π+) and Im(π̂f+), and

is negative definite on Im(π−) and Im(π̂f−). So Im(π±) ∩ Im(π̂f∓) =

{0}. Let α ∈ Ker(∆E
ℓ ) with A(α) = 0. Then π+(α) = −π̂f−(α) and

π+(α), π̂
f
−(α) ∈ Im(π+)∩ Im(π̂f−) = {0}. Thus α ∈ Ker(π+)∩Ker(π̂f−)∩

Ker(∆E
ℓ ) = Im(π−) ∩ Im(π̂f+) = {0}, so α = 0 and A is one-to-one.

Now A(Im(π̂f+)) = π+(Pℓ(Im(f̃∗+))) = Im(π+), so Im(π+) ⊂ Im(A).

Just as π+ maps Im(π̂f+) isomorphically to Im(π+), π− maps Im(π̂f−)

isomorphically to Im(π−). Given α ∈ Im(π−), let β ∈ Im(π̂f−) with
π−(β) = α, so β = π−(β) + π+(β) = α+ π+(β), that is α = β − π+(β).
Now A(β) = π+(β) + π̂f−(β) = π+(β) + β, since β ∈ Im(π̂f−). So β ∈
Im(A), since π+(β) ∈ Im(π+) ⊂ Im(A). Thus α = β − π+(β) ∈ Im(A),
and we have Im(π−) ⊂ Im(A). As A is linear and contains Im(π±), it
also contains Im(π+)⊕ Im(π−) = Ker(∆E

ℓ ), and A is onto. q.e.d.

Lemma 9.5. A−1, the inverse of A restricted to Ker(∆E
ℓ ), is a

bounded isomorphism of Ker(∆E
ℓ ).

Proof. A−1 is bounded if and only if there is a constant C > 0 so that
||A(α)|| ≥ C for all x ∈M and all α ∈ Ker(∆E

ℓ )x with ||α|| = 1. If not,

there are sequences xj ∈M and αj ∈ Ker(∆E
ℓ )xj

with ||αj || = 1, and

lim
j→∞

||A(αj)|| = lim
j→∞

||π+(αj) + π̂f−(αj)|| = 0,
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that is,

0 = lim
j→∞

π+(αj) + π̂f−(αj) = lim
j→∞

π+(αj) + π+(π̂
f
−(αj)) + π−(π̂

f
−(αj)) =

lim
j→∞

π+(αj + π̂f−(αj)) + π−(π̂
f
−(αj)).

This implies that limj→∞ π−(π̂
f
−(αj)) = 0. Now

0 ≥ Q(π̂f−(αj), π̂
f
−(αj)) = ||π+(π̂f−(αj))||2 − ||π−(π̂f−(αj))||2,

so limj→∞ π+(π̂
f
−(αj)) = 0, which gives that limj→∞ π̂f−(αj) = 0, so

also limj→∞ π+(αj) = 0. Since αj = π+(αj) + π−(αj), we have

lim
j→∞

(π−(αj)− αj) = 0,

in particular,

lim
j→∞

||π−(αj)|| = lim
j→∞

||αj || = 1.

NowQ(π−(αj), π−(αj)) = −||π−(αj)||2, so limj→∞Q(π−(αj), π−(αj)) =
−1. Since Q is continuous,

lim
j→∞

Q(αj , αj) = lim
j→∞

Q(π−(αj), π−(αj)) = −1.

The fact that limj→∞ π̂f−(αj) = 0 and αj = π̂f+(αj) + π̂f−(αj) implies
that

lim
j→∞

(π̂f+(αj)− αj) = 0,

and as above, the fact that Q(π̂f+(αj), π̂
f
+(αj)) ≥ 0 implies that

lim inf
j

Q(αj , αj) ≥ 0,

which contradicts that fact that limj→∞Q(αj , αj) = −1. q.e.d.

Now consider the map B = AtA, which is transversely smooth and
is an isomorphism when restricted to Ker(∆E

ℓ ). Denote by B−1 the
composition of maps:

B−1 : Aℓ
(2)(Fs, E)

Pℓ−→ Ker(∆E
ℓ )

B−1
ℓ−→ Ker(∆E

ℓ ),

where B−1
ℓ is the inverse of B restricted to Ker(∆E

ℓ ). Since ρ+ takes

values in Pℓ(Im(f̃∗+)) = Im(π̂f+), Aρ+ = π+, so Bρ+ = Atπ+, and ρ+ =

B−1Atπ+. Thus we are reduced to showing that B−1 is transversely
smooth.

Restricting once again to Ker(∆E
ℓ ), we have that the operator B is

positive, and A and A−1 are bounded operators, so the spectrum of B
on Ker(∆E

ℓ ) is contained in a bounded positive set [C0, C1], and since
B = PℓBPℓ, its total spectrum is contained in [C0, C1] ∪ 0. Thus, for
sufficiently large λ, 0 < ||Pℓ − B

λ || ≤ 1 − C0/λ < 1, and this estimate
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also holds for all Sobolev norms associated to Aℓ
(2)(Fs, E). So for large

λ,

B−1 =
1

λ

∞∑

n=0

(
Pℓ −

B

λ

)n
,

where
(
Pℓ − B

λ

)0
= Pℓ. For N ∈ Z+, set

DN =
1

λ

N∑

n=0

(
Pℓ −

B

λ

)n
,

where again
(
Pℓ− B

λ

)0
= Pℓ. Then DN is a uniformly bounded (over all

N) transversely smooth operator, and it converges to B−1 in all Sobolev
norms. Thus B−1 is a bounded leafwise smoothing operator.

Consider ∂Yν DN = 1
λ

∑N
n=0 ∂

Y
ν

((
Pℓ− B

λ

)n)
, where Y is a vector field

on M . For any integers k1, k2, and for N > 1,

||B−1 −DN ||k1,k2 ≤ 1

λ

∞∑

n=N+1

||∂Yν
((
Pℓ −

B

λ

)n)
||k1,k2 ≤

1

λ
||∂Yν

(
Pℓ −

B

λ

)
||k1,k2

∞∑

n=N+1

n||Pℓ −
B

λ
||n−1 ≤

1

λ
||∂Yν

(
Pℓ −

B

λ

)
||k1,k2

∞∑

n=N+1

n
(
1− C0

λ

)n−1
.

This converges to 0 asN →∞ as ||∂Yν
(
Pℓ−B

λ

)
||k1,k2 is finite since Pℓ−B

λ

is transversely smooth. Thus the transverse derivative ∂Yν DN converges
in all Sobolev norms, so limN→∞ ∂Yν DN exists, and it is bounded and
leafwise smoothing.

Proposition 9.6. ∂Yν B
−1 exists, in particular, ∂Yν DN converges in

all Sobolev norms to ∂Yν B
−1, so ∂Yν B

−1 is a bounded leafwise smoothing
operator.

Proof. As ∂Yν DN converges in all Sobolev norms, we only need prove
that ∂Yν B

−1 exists and that it equals limN→∞ ∂Yν DN .
Recall the situation in the proof of Theorem 4.4. For y close to

x in M , we have the smooth diffeomorphism Φy : L̃x → L̃y. Given

Y ∈ TMx, set γ(t) = expx(tY ). For z ∈ L̃x and t sufficiently small, say
|t| ≤ ǫ (which we assume from now on), we have the path t → γ̂z(t),
which covers γ(t) and has tangent vector in νs. So for |t| ≤ ǫ, the

diffeomorphism Φγ(t) : L̃x → L̃γ(t) exists. The vector Y defines the

transverse vector field Ŷ along L̃x, i. e. a smooth section of νs | L̃x, by

requiring s∗(Ŷ ) = Y . Then the operator ∂Yν (·) = [∇ν
Ŷ
, ·] can be realized
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as ∂/∂t(·) as follows. We may parallel translate all objects on L̃x to L̃γ(t)

(and vice-versa) along the paths γ̂z(t) using the connection ∇. We will
denote this parallel translation by Φt (and the reverse by Φ−1

t ). Thus

any section of ξ ∈ C∞
c (L̃x;∧ℓT ∗Fs ⊗ E) defines a section Φt(ξ) = ξt of

C∞
c (L̃γ(t);∧ℓT ∗Fs ⊗ E) given by

ξt(z) = Φt(ξ(Φ
−1
γ(t)(z))),

and ξt is smooth in t. Note that for such a local section, ∇Ŷ ξt = ∇ν
Ŷ
ξt

(as Ŷ ∈ νs) is defined and equals 0, since ξt is parallel translation along

integral curves of Ŷ for the connection ∇. In fact, if we set Y (t) = γ′(t),
then ∇Ŷ (t)ξt = ∇ν

Ŷ (t)
ξt = 0. Further note that Φγ(t) is a diffeomorphism

of bounded dilation and the induced action on E is also bounded, so
the local operators Φt and Φ−1

t are bounded when acting on sections of

C∞
c (L̃x;∧ℓT ∗Fs ⊗E), (respectively C∞

c (L̃γ(t);∧ℓT ∗Fs ⊗E). We denote

these bounds, which are uniform in t, by ||Φt|| and ||Φ−1
t || respectively.

Similarly, we may parallel translate operators such asDN from nearby

leaves to L̃x as follows. Given ξ1, ξ2 ∈ C∞
c (L̃x;∧ℓT ∗Fs ⊗ E), define the

operator DN,t on L̃x by

〈DN,t(ξ1), ξ2〉 = 〈Φ−1
t

(
DN,γ(t)(ξ1,t)

)
, ξ2〉.

This is well defined and smooth in t. Thus the operator
∂(DN,t)

∂t

∣∣∣
t=0

is

well defined as a map from C∞
c (L̃x;∧ℓT ∗Fs⊗E) to C∞(L̃x;∧ℓT ∗Fs⊗E).

Likewise, ∇Ŷ (DN,γ(t)(ξt)) is well defined for all ξ ∈ C∞
c (L̃x;∧ℓT ∗Fs⊗E),

and takes values in C∞(L̃x;∧ℓT ∗Fs ⊗ E). The fundamental relation-
ship between parallel translation and the connection ∇ translates to
the equation

9.7.
(∂(DN,t)

∂t

∣∣∣
t=0

)
(ξ) = ∇Ŷ (DN,γ(t)(ξt)).

In fact, for all t0 ∈ [−ǫ, ǫ],
(∂(DN,t)

∂t

∣∣∣
t=t0

)
(ξ) = Φ−1

t0

(
∇

Ŷ (t0)
(DN,γ(t)(ξt))

)
,

since Φ−1
t = Φ−1

t0 ◦Φ
−1
t,t0 , where Φ

−1
t,t0 is parallel translation from L̃γ(t) to

L̃γ(t0).

For ξ ∈ C∞
c (L̃x;∧ℓT ∗Fs ⊗ E) we have

∂Yν DNξ = [∇ν
Ŷ
,DN ]ξ = [∇

Ŷ
,DN ]ξ =

∇
Ŷ
DN,γ(t)(ξt)−DN∇Ŷ

(ξt) = ∇
Ŷ
DN,γ(t)(ξt),
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since ∇Ŷ (ξt) = 0. So by Equation 9.7 we have

∂Yν DN =
∂(DN,t)

∂t

∣∣∣
t=0

.

As above, this extends to

9.8.
∂(DN,t)

∂t
= Φ−1

t

(
∂Y (t)
ν DN,γ(t)

)
.

Set B−1
t = Φ−1

t (B−1), D′
N,t = Φ−1

t

(
∂
Y (t)
ν DN

)
= ∂(DN,t)/∂t, and

D′
t = Φ−1

t

(
limN→∞ ∂

Y (t)
ν DN

)
. Note carefully that the following com-

putation takes place on the leaf L̃x. For ξ1, ξ2 ∈ C∞
c (L̃x;∧ℓT ∗Fs ⊗ E),

and h ∈ (0, ǫ), we have that

∣∣∣〈B−1
h (ξ1), ξ2〉 − 〈B−1

0 (ξ1), ξ2〉 −
∫ h

0
〈D′

t(ξ1), ξ2〉dt
∣∣∣ ≤

∣∣∣〈B−1
h (ξ1), ξ2〉 − 〈DN,h(ξ1), ξ2〉

∣∣∣ +
∣∣∣〈DN,h(ξ1), ξ2〉 − 〈DN,0(ξ1), ξ2〉 −

∫ h

0
〈D′

N,t(ξ1), ξ2〉dt
∣∣∣ +

∣∣∣〈DN,0(ξ1), ξ2〉 − 〈B−1
0 (ξ1), ξ2〉

∣∣∣ +
∣∣∣
∫ h

0
〈(D′

N,t −D′
t)(ξ1), ξ2〉dt

∣∣∣.

The first term equals
∣∣∣〈Φ−1

h (B−1
γ(h) −DN,γ(h))Φh(ξ1), ξ2〉

∣∣∣ ≤

||Φ−1
h || ||B−1

γ(h) −DN,γ(h)|| ||Φh|| ||ξ1|| ||ξ2||,
which goes to 0 as N →∞, since DN → B−1 in norm and ||Φ−1

h || and
||Φh|| are bounded. The second term is zero since D′

N,t = ∂(DN,t)/∂t.

The third term is bounded by ||DN,0 − B−1
0 || ||ξ1|| ||ξ2||, which goes to

0 as N →∞, since DN → B−1 in norm. The last term is bounded by
∫ h

0
||Φ−1

t || ||∂Y (t)
ν DN,γ(t) − lim

N̂→∞

∂Y (t)
ν DN̂ ,γ(t)|| ||Φt|| ||ξ1|| ||ξ2||dt,

which goes to 0 as N → ∞, since ||Φ−1
t || and ||Φt|| are uniformly

bounded for t ∈ [0, h], and ∂Yν DN converges in norm.
Thus

lim
N→∞

∣∣∣〈B−1
h (ξ1), ξ2〉 − 〈B−1

0 (ξ1), ξ2〉 −
∫ h

0
〈D′

t(ξ1), ξ2〉dt
∣∣∣ = 0,

and as the expression inside the limit is independent of N , it actually
equals 0. This implies that

〈 lim
h→0

1

h

(
B−1

h −B−1
0 −

∫ h

0
D′

tdt
)
(ξ1), ξ2〉 = 0,
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for all ξ1, ξ2 ∈ C∞
c (L̃x;∧ℓT ∗Fs ⊗ E), so

lim
h→0

1

h

(
B−1

h −B−1
0 −

∫ h

0
D′

tdt
)

= 0

as a map from C∞
c (L̃x;∧ℓT ∗Fs ⊗ E) to C∞(L̃x;∧ℓT ∗Fs ⊗ E).

Next we have∣∣∣〈lim
t→0

D′
t(ξ1), ξ2〉 − 〈D′

0(ξ1), ξ2〉
∣∣∣ ≤

∣∣∣〈lim
t→0

(D′
t −D′

N,t)(ξ1), ξ2〉
∣∣∣ +

∣∣∣〈(lim
t→0

D′
N,t −D′

N,0)(ξ1), ξ2〉
∣∣∣ +

∣∣∣〈(D′
N,0 −D′

0)(ξ1), ξ2〉
∣∣∣ ≤

lim
t→0
||Φ−1

t || || lim
N̂→∞

∂Y (t)
ν DN̂,γ(t) − ∂

Y (t)
ν DN,γ(t)|| ||Φt|| ||ξ1|| ||ξ2|| +

|| lim
t→0
〈D′

N,t(ξ1), ξ2〉 − 〈D′
N,0(ξ1), ξ2〉|| +

||∂Y (0)
ν DN,γ(0) − lim

N̂→∞

∂Y (0)
ν D

N̂,γ(0)
|| ||ξ1|| ||ξ2||.

The first and last terms can be made arbitrarily small (for t ∈ [0, h])
by choosing N sufficiently large. The middle term equals zero since
〈D′

N,t(ξ1), ξ2〉 is continuous in t, which follows immediately from Equa-
tion 9.8 and the fact that DN is transversely smooth. Thus,

0 = 〈lim
t→0

D′
t(ξ1), ξ2〉 − 〈D′

0(ξ1), ξ2〉 = 〈(lim
t→0

D′
t −D′

0)(ξ1), ξ2〉,

which holds for all ξ1, ξ2 ∈ C∞
c (L̃x;∧ℓT ∗Fs⊗E), so limt→0D

′
t−D′

0 = 0,

that is D′
t is continuous at zero. The operator lim

h→0

1

h

(∫ h

0
D′

tdt
)
is also

well defined as a map from C∞
c (L̃x;∧ℓT ∗Fs⊗E) to C∞(L̃x;∧ℓT ∗Fs⊗E),

and as D′
t is continuous at zero, we have

lim
h→0

1

h

(∫ h

0
D′

tdt
)

= D′
0.

Again by the fundamental relationship between parallel translation and
∇, we have

lim
h→0

B−1
h −B−1

0

h
= ∂Yν B

−1,

so

∂Yν B
−1 = lim

h→0

B−1
h −B−1

0

h
= lim

h→0

1

h

(∫ h

0
D′

tdt
)
= D′

0 = lim
N→∞

∂Yν DN ,

and ∂Yν B
−1 is a bounded leafwise smoothing operator. q.e.d.

A boot strapping argument now finishes the proof of Theorem 9.2.
Let Y1, Y2 be vector fields on M . As B−1B = Pℓ and the ∂Yi

ν are
derivations, we have as usual

∂Y2
ν B−1 = (∂Y2

ν Pℓ)B
−1 −B−1(∂Y2

ν B)B−1,
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which is in the domain of ∂Y1
ν . Applying it, we find that ∂Y1

ν ∂Y2
ν B−1

equals

(∂Y1
ν ∂Y2

ν Pℓ)B
−1 + (∂Y2

ν Pℓ)(∂
Y1
ν B−1)−

(∂Y1
ν B−1)(∂Y2

ν B)B−1 −B−1(∂Y1
ν ∂Y2

ν B)B−1 −B−1(∂Y2
ν B)(∂Y1

ν B−1),

which is a bounded leafwise smoothing map, since B and P are trans-
versely smooth and ∂Y1

ν B−1 is bounded and leafwise smoothing. Pro-
ceeding by induction, we have that for all vector fields Y1, ..., Ym on M ,
the operator ∂Y1

ν · · · ∂Ym
ν B−1 is bounded and leafwise smoothing, so B−1

is transversely smooth.
This completes the proof Theorem 9.2. q.e.d.

Finally, we prove Theorem 9.1, that is we prove

Theorem 9.9. cha(π
f
±) = f∗(cha(π

′
±)).

Proof. We will only prove that cha(π
f
+) = f∗(cha(π

′
+)), as the other

proof is the same. We begin by constructing special covers of M and

M ′. Let {Û ′} be a finite open cover of M ′ by foliation charts with

transversals T̂ ′. Choose the Û ′ so small that g | T̂ ′ is a diffeomorphism.

Denote by ρ′
Û ′

: Û ′ → T̂ ′ the projection. Let {U} be a finite open cover

of M by foliation charts with transversals T . Since the collection of

open sets f−1(Û ′) cover M , we may choose the U small enough so that

for each U , there is a Û ′
U with f(U) ⊂ Û ′

U . We may further assume that
the U are so small that f |T is a diffeomorphism. Set

U ′ = (ρ′
Û ′

U

)−1(ρ′
Û ′

U

(f(U))).

Then the set {U ′} is a finite open cover of M ′ by foliation charts,
f(U) ⊂ U ′, and T ′ = f(T ) is a transversal of U ′. Denote the projection
ρ′
Û ′

U

|U ′ → T ′ by ρ′.

Set V = f−1(U ′), and note that V is not necessarily connected. How-
ever, V ⊃ U whose transversal T is taken diffeomorphically onto T ′ by f .
There is a well defined projection ρ : V → T given by ρ = (f |T )−1◦ρ′◦f .
Recall the connection ∇ on πf+ (induced from the connection ∇′ on π′+)

which we will use to construct cha(π
f
+), and set ∇T = ∇ |T with curva-

ture θT . Then just as in Proposition 5.20, we have

Lemma 9.10. ∇ |V = ρ∗(∇T ) and θ |V = ρ∗(θT ).

Proof. The proof is essentially the same. To effect it, we need to
be able to define local invariant sections over V , and to do this we
need families of leafwise paths such that moving along them gives the
projection ρ. Given y ∈ V , choose a leafwise path γ′y : [1, 2] → U ′

from ρ′(f(y)) to f(y). Let h : M × I → M be a leafwise homotopy
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between the identity map and g ◦ f . In particular, h(x, 0) = x and
h(x, 1) = gf(x). Define the leafwise path γy from ρ(y) to y as follows:

γy(t) = h(ρ(y), t) for 0 ≤ t ≤ 1; γy(t) = g(γ′y(t)) for 1 ≤ t ≤ 2;

and

γy(t) = h(y, 3− t) for 2 ≤ t ≤ 3.

Since f(ρ(y)) = ρ′(f(y)), this does give a path from ρ(y) to y. Using
the γy, we may extend any local section defined on T to a local invariant
section on all of V , and then proceed just as in the proof of Proposition
5.20. q.e.d.

The connection ∇T ′

(which is ∇′ restricted to π′+ | T ′) and its curva-

ture θT ′ satisfy ∇′ |U ′ = ρ′∗(∇T ′

) and θ′ |U ′ = ρ′∗(θT ′). Set f̂ = f |T
and define f̂∗(∇T ′

) and f̂∗(θT ′) as follows. Let ξ ∈ C∞(πf+ |T ) and

suppose that X and Y are tangent to T . Set X ′ = f̂∗(X) = f∗(X) and

Y ′ = f̂∗(Y ) = f∗(Y ), both of which are tangent to T ′. Define

f̂∗(∇T ′

)Xξ = f̃∗(∇T ′

X′(f̃−∗ξ |T ′))

and (
f̂∗(θT ′)(X,Y )

)
ξ = f̃∗(θT ′(X ′, Y ′)(f̃−∗ξ |T ′)).

Lemma 9.11. f̂∗(∇T ′

) = ∇T and f̂∗(θT ′) = θT .

Proof. The element ξ ∈ C∞(πf+ |T ) determines the local invariant

sections ξ̃ of πf+ and f̃−∗ξ of π′+. Then

f̂∗(∇T ′

)Xξ = f̃∗(∇T ′

X′(f̃−∗ξ |T ′)) = f̃∗(∇′
X′ f̃−∗ξ) = ∇X ξ̃ = ∇T

Xξ.

Next, using local spanning sets of πf+ |V and π′+ |U ′, it is not difficult
to show that

θT (X,Y ) = ∇T
X∇T

Y −∇T
Y∇T

X −∇T
[X,Y ],

and similarly for θT ′(X ′, Y ′). Then

∇T
X∇T

Y ξ = f̃∗∇T ′

X′ f̃−∗f̃∗∇T ′

Y ′ f̃−∗ξ = f̃∗∇T ′

X′∇T ′

Y ′ f̃−∗ξ

and ∇T
Y∇T

Xξ = f̃∗∇T ′

Y ′∇T ′

X′ f̃−∗ξ. As f̂ is a diffeomorphism, f̂∗([X,Y ]) =
[X ′, Y ′], so

∇T
[X,Y ]ξ = f̃∗∇T ′

[X′,Y ′]f̃
−∗ξ.

It follows immediately that
(
f̂∗(θT ′)(X,Y )

)
ξ = f̃∗θT ′(X ′, Y ′)f̃−∗ξ = θT (X,Y )ξ.

q.e.d.
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Now consider the curvature operator θ′ of∇′ over U ′. We may assume
that U ′ ≃ Rp × Rq with coordinates x′1, ..., x

′
n, and that T ′ = {0} × Rq.

Choose a local invariant spanning set {ξ′i} of π′+ |U ′. Recall that for

sections α′
1 ⊗ φ′1, α′

2 ⊗ φ′2 of ∧T ∗L̃′ ⊗ E′,

Q′(α′
1⊗φ′1, α′

2⊗φ′2) =

∫

L̃′

{φ′1, φ′2}α′
1∧α′

2 =

∫

L̃′

(α′
1⊗φ′1)∧ (α′

2⊗φ′2).

There are functions a′i,j,k,l on T ′ (thanks to Proposition 5.20) so that

the action of θ′ on a section ξ′ of π′+ is given by

θ′(ξ′) =
n∑

k,l=p+1

∑

i,j

a′i,j,k,lQ
′(ξ′j , ξ

′) ξ′i dx
′
k ∧ dx′l =

∑

i,j,k,l

a′i,j,k,l

[ ∫

L̃′

ξ′j ∧ ξ′
]
ξ′i dx

′
k ∧ dx′l.

The reason that we can represent θ′ this way is because for any ξ′ ∈
Ker(π′+) and any ξ̂′ ∈ Im(π′+), Q

′(ξ′, ξ̂′) = 0. This follows from the facts

that 〈ξ′, ξ̂′〉 = 0, Q′(ξ′, ∗̂ ξ̂′) = 〈ξ′, ξ̂′〉, and ξ̂′ = τ̂ ξ̂′ =
√
−1ℓ

2

∗̂ ξ̂′.
Let x′ ∈ U ′ and y′, z′ ∈ L̃x′ . With respect to the spanning set {ξ′i}

and the local coordinates on U ′, the Schwartz kernel Θ′
x′(y′, z′) of θ′ |U ′

is given by

Θ′
x′(y′, z′) =

n∑

k,l=p+1

∑

i,j

a′i,j,k,l(ρ
′(x′))ξ′i(y

′)⊗ ξ′j(z′)dx′k ∧ dx′l.

We write this more succinctly as

Θ′ |U ′ =
∑

i,j,k,l

a′i,j,k,l ξ
′
i ⊗ ξ′j dx′k ∧ dx′l.

Recall that x′ ∈ L̃x′ is the class of the constant path at x′, that we

identify M ′ with its image under x′ → x′, and that

∫

U ′

is integration

over the fibration U ′ → T ′. Let {ψ′
U ′} be a partition of unity subordinate

to the special cover {U ′} of M ′. Then

Tr(θ′) |T ′ =

∫

U ′

ψ′
U ′(x′)

∑

i,j,k,l

a′i,j,k,l(ρ
′(x′))ξ′i(x

′) ∧ ξ′j(x′) dx′k ∧ dx′l.

Note that we do not multiply the integrand by the leafwise volume form
dx′, since this is already incorporated in it by our use of the leafwise
differential forms ξ′i in the Schwartz kernel Θ′ of θ′. In particular, being
very precise,

Θ′
x′(y′, z′) =

∑

i,j,k,l

a′i,j,k,l(ρ
′(x′))ξ′i(y

′)⊗ ivol(z′)[ξ′j(z′) ∧ (·)] dx′k ∧ dx′l,
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where vol(z′) is the oriented unit length vector in (∧2ℓTFs)z′ . Then

tr(Θ′
x′(x′, x′)) dx′ =

∑

i,j,k,l

a′i,j,k,l(ρ
′(x′))(ivol(x′)[ξ

′
i(x

′) ∧ ξ′j(x′)])dx′ dx′k ∧ dx′l =

∑

i,j,k,l

a′i,j,k,l(ρ
′(x′))ξ′i(x

′) ∧ ξ′j(x′) dx′k ∧ dx′l.

To avoid notational overload, we will not be this precise.
The G′ invariance of θ′ allows us to compute Tr(θ′) as follows. Denote

the plaque of x′ in U ′ by Px′ . Let j′ : Px′ → L̃x′ be the map given by:
j′(w′) is the class of any leafwise path in Px′ from x′ to w′. Then the
value of Tr(θ′) at ρ′(x′) ∈ T ′ is given by

Tr(θ′)(ρ′(x′)) =
∫

j′(Px′ )
ψ′
U ′(j′

−1
(y′))

∑

i,j,k,l

a′i,j,k,l(ρ
′(x′))ξ′i(y

′) ∧ ξ′j(y′) | j′(Px′) dx′k ∧ dx′l.

Abusing notation once again by identifying Px′ with its image under j′,
we have that at ρ′(x′) ∈ T ′,

Tr(θ′)(ρ′(x′)) =

∫

Px′

ψ′
U ′(y′)

∑

i,j,k,l

a′i,j,k,l(ρ
′(x′))ξ′i(y

′) ∧ ξ′j(y′) dx′k ∧ dx′l =

∑

i,j,k,l

a′i,j,k,l(ρ
′(x′))

[ ∫

Px′

ψ′
U ′(y′)ξ′i(y

′) ∧ ξ′j(y′)
]
dx′k ∧ dx′l.

Similar remarks apply to all powers of θ′.
We now return to our analysis on V = f−1(U ′), where we have the

normal coordinates xp+1, ..., xn given by xi = x′i◦f ◦ρ, so dxi = f∗(dx′i).

If we set ξi = f̃∗(ξ′i), then the ξi are a spanning set of πf+ |V . Set
ai,j,k,l = a′i,j,k,l ◦ f ◦ ρ, where ρ : V → T . Using Lemma 9.11 along with

Proposition 6.5, the Schwartz kernel Θx(y, z) of θ |V is given by

Θx(y, z) =
∑

i,j,k,l

ai,j,k,l(ρ(x))ξi(y)⊗ ξj(z) dxk ∧ dxl,

and the action θ |V is

θ(ξ) =

n∑

k,l=p+1

∑

i,j

ai,j,k,lQ(ξj , ξ) ξi dxk ∧ dxl =

∑

i,j,k,l

ai,j,k,l

[ ∫

L̃
ξj ∧ ξ

]
ξi dxk ∧ dxl.

That is

Θ = f̃∗Θ′.
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We are interested in the Schwartz kernels Θ′k and Θk of the operators

θ′k and θk. These are given by

Θ′k
x′(y′, z′) =

∫

L̃x′

∫

L̃x′

. . .

∫

L̃x′

Θ′
x′(y′, w′

1) ∧Θ′
x′(w′

1, w
′
2) ∧ . . . ∧Θ′

x′(w′
k−1, z

′)

and

Θk
x(y, z) =

∫

L̃x

∫

L̃x

. . .

∫

L̃x

Θx(y,w1) ∧Θx(w1, w2) ∧ . . . ∧Θx(wk−1, z),

where the integration is done over repeated variables. Using Proposition
6.5 again, we have immediately that

Θk = f̃∗(Θ′k).

For each ψ′
U ′ in the partition of unity subordinate to {U ′}, set ψV =

ψ′
U ′ ◦ f , which gives a partition of unity subordinate to the open cover

{V } of M . Denote by

∫

V
integration over the fibration ρ : V → T .

Recall the map i : M → G given by i(x) = x, the class of the constant
path at x.

Lemma 9.12. Tr(θk) =
∑

V

∫

V
ψV i

∗ tr(Θk).

Proof. It suffices to show that for any differential form ω on M ,∫

F
ψV ω and

∫

V
ψV ω define the same Haefliger form. Let W0, ...,Wm

be an open cover of M by foliation charts, with transversals S0, ..., Sm.
We may assume that W0, ...,Wk are the only elements which intersect
the support of ψV non-trivially, and that these sets are subsets of V .

Let ψ̂0, ..., ψ̂m be a partition of unity subordinate to theWj. We require
that W0 = U and S0 = T . Recall that ρ′ : U ′ → T ′ is the projection.
For j = 1, ..., k, choose a point yj ∈ Sj . Then ρ′(f(yj)) = f(ρ(yj)), and,
as in the proof of Lemma 9.10, we define the leafwise path γj from ρ(yj)
to yj. By construction, the holonomy map hj induced by the leafwise
path γj (which has domain possibly a proper subset of S0) has range

all of Sj. In addition, for each Sj , the map h−1
j : Sj → S0 = T is just

the restriction to Sj of the projection ρ : V → T . Then the Haefliger
classes
∫

F
ψV ω ≡

k∑

j=0

∫

Wj

ψ̂jψV ω =

∫

W0

ψ̂0ψV ω +
k∑

j=1

h∗j

( ∫

Wj

ψ̂jψV ω
)

=

∫

W0

ψ̂0ψV ω +
k∑

j=1

h∗j

(∫

Wj

ψ̂jψV ω
)
.
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The Haefliger form

∫

W0

ψ̂0ψV ω +

k∑

j=1

h∗j

(∫

Wj

ψ̂jψV ω
)
is supported on

S0 = T , and it follows immediately from the fact that h−1
j : Sj → S0 is

just ρ : Sj → T , that it equals

∫

V
ψV ω. q.e.d.

Now cha(π
f
+) =

[
Tr

(
πf+ +

[n/2]∑

k=1

(−1)kθk
(2iπ)kk!

)]
, and by Theorem 9.2 this

equals cha(π+), which is independent of the Bott form ω used to con-

struct f̃∗. Let φ be a smooth even function on R, decreasing on [0, 1]
with φ(0) = 1 and φ(x) = 0 for |x| ≥ 1, and let ω be the Bott form
which is a multiple of φ(x1)...φ(xk)dx1...dxk. For t > 0, let qt : R

k → Rk

be the diffeomorphism qt(x) = x/t. Denote by ωt the smooth family of

Bott forms given by ωt = q∗tω, and denote by f̃∗t the map constructed
using ωt. Then for all t > 0 and k ≥ 1, we have

[
Tr(θk)

]
=

[∑

V

∫

V
ψV i∗ tr(Θk)

]
=

[∑

V

∫

V
f ◦ ψ′

U ′ i∗ tr(f̃∗t (Θ
′k))

]
=

[∑

V

lim
t→0

∫

V
f∗(ψ′

U ′) i∗f̃∗t (trΘ
′k)

]
.

We may use the ωt to construct the family of maps f∗t (analogous to

the family f̃∗t ), defined on the original foliation F . As both f̃∗t and f∗t
are locally constructed and trΘ′k is G′ invariant, it is clear that

i∗f̃∗t (trΘ
′k) = f∗t (i

′∗ trΘ′k).

Thus
[∑

V

lim
t→0

∫

V
f∗(ψ′

U ′) i∗f̃∗t (tr Θ
′k)

]
=

[∑

V

lim
t→0

∫

V
f∗(ψ′

U ′)f∗t (i
′∗ trΘ′k)

]
.

It is a classical result that on each plaque in V , the compactly supported

forms f∗(ψ′
U ′)f∗t (i

′∗ trΘ′k) are bounded independently of t ∈ [0, 1], and

converge pointwise to f∗(ψ′
U ′)f∗(i′

∗ trΘ′k) = f∗(ψ′
U ′i′

∗ trΘ′k). By the
Dominated Convergence Theorem, we have

[
Tr(θk)

]
=

[∑

V

∫

V
lim
t→0

f∗(ψ′
U ′)f∗t (i

′∗ tr Θ′k)
]
=

[∑

U ′

∫

f−1(U ′)
f∗(ψ′

U ′i′
∗
tr(Θ′k))

]
=

[
f∗

∑

U ′

∫

U ′

ψ′
U ′i′

∗
tr(Θ′k)

]
= f∗

[
Tr(θ′

k
)
]
.
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As cha(π
′
+) =

[
Tr

(
π′+ +

[n/2]∑

k=1

(−1)kθ′k
(2iπ)kk!

)]
, to finish the proof that

cha(π
f
+) = f∗(cha(π

′
+)), we must show that

[
Tr(πf+)

]
= f∗

[
Tr(π′+)

]
.

Just as we did with θ′, we may write the Schwartz kernel of π′+ |U ′ as

(π′+)x′(y′, z′) =
∑

i,j

b′i,j(ρ
′(x′))ξ′i(y

′)⊗ ξ′j(z′),

where the b′i,j are functions on T ′, and the action of π′+ on a section ξ′

is given by

π′+(ξ
′) =

∑

i,j

b′i,j Q
′(ξ′j , ξ

′) ξ′i.

Set bi,j = f̃∗b′i,j = b′i,j◦f ◦ρ and ξi = f̃∗(ξ′i), and consider the operator

π̃f+ on Aℓ
(2)(Fs, E), where π̃f+ |V =

∑
i,j bi,jξi ⊗ ξj, which acts by

π̃f+(ξ) =
∑

i,j

bi,j Q(ξj, ξ)ξi.

Then π̃f+ is a G invariant idempotent, has image equal to Im(πf+), and

has a smooth Schwartz kernel. In general π̃f+ 6= πf+ because forms of

the type δsβ, which are in the kernel of πf+, are not necessarily in the

kernel of π̃f+. However, since π̃
f
+ has smooth Schwartz kernel, Tr(π̃f+) is

well defined, and its Schwartz kernel is just f̃∗ of the Schwartz kernel

of π′+. Arguing as we did for θk, we get
[
Tr(π̃f+)

]
= f∗

[
Tr(π′+)

]
.

Lemma 9.13.
[
Tr(πf+)

]
=

[
Tr(π̃f+)

]
.

Proof. Since Im(πf+) = Im(π̃f+) and both are idempotents, we need

only show that π̃f+ is transversely smooth, and then apply Lemma 3.5.
We will use the notation of Section 6. Let K ′ be Schwartz kernel

of a G′ invariant bounded leafwise smoothing operator on Aℓ
(2)(F

′
s, E

′),

which is given locally, with respect to a local invariant spanning set {ξ′i}
of Aℓ

(2)(F
′
s, E

′), by K ′ =
∑

i,j b
′
i,jξ

′
i ⊗ ξ′j, with the action given by

K ′(ξ′) =
∑

i,j

b′i,j Q
′(ξ′j, ξ

′) ξ′i.

Now consider the operators f̃∗K ′ on Aℓ
(2)(Fs, E) and p̃∗fK

′ on Aℓ
(2)(Fs×

Bk, p∗fE
′), with local Schwartz kernels

f̃∗K ′ =
∑

i,j

f̃∗b′i,j f̃
∗ξ′i⊗f̃∗ξ′j, and p̃∗fK ′ =

∑

i,j

p∗fb
′
i,j(p

∗
fξ

′
i∧ω)⊗(p∗fξ′j∧ω),
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where ω is a Bott form on Bk. Recall that π1,∗ is integration over the

fiber of the projection π1 : G ×Bk → G, and pf,∗ is integration over the

fiber of the submersion pf : G×Bk → G′. Straight forward computations

show that for ξ ∈ Aℓ
(2)(Fs, E) and ξ̃ ∈ Aℓ

(2)(Fs ×Bk, p∗fE
′),

f̃∗K ′(ξ) = π1,∗

(
p̃∗fK

′(π∗1ξ)
)
and p̃∗fK

′(ξ̃) = p∗f

(
K ′(pf,∗(ω ∧ ξ̃))

)
∧ ω.

The maps π1,∗, π
∗
1 , p

∗
f , pf,∗, and ∧ω are all bounded maps, and K ′

is bounded and leafwise smoothing. Thus f̃∗K ′ is a bounded leafwise

smoothing operator. Applying this to K ′ = π′+, we have that π̃f+ is a
bounded leafwise smoothing operator.

Using Proposition 7.4, it is easy to show that ∂Yν π̃
f
+ = [A(Y ), π̃f+] +

f̃∗(iZ′∂ν′π
′
+), where Y and Z ′ are as in Lemma 7.8, and A(Y ) is a

leafwise operator whose composition with a bounded leafwise smoothing
operator is again a bounded leafwise smoothing operator. Applying the

argument above to iZ′∂ν′π
′
+, we have that ∂Yν π̃

f
+ is also a bounded

leafwise smoothing operator. An obvious induction argument finishes
the proof. q.e.d.

Thus
[
Tr(πf+)

]
=

[
Tr(π̃f+)

]
= f∗

[
Tr(π′+)

]
, and we are done. q.e.d.

10. The twisted leafwise signature operator and the twisted
higher Betti classes

In this section we give some immediate consequences of our results. In
particular, we show that the twisted higher harmonic signature equals
the (graded) Chern-Connes character in Haefliger cohomology of the
“index bundle” of the twisted leafwise signature operator, that is the
(graded) Chern-Connes character cha(P ) of the projection P onto all
the twisted leafwise harmonic forms. We conjecture a cohomological
formula for this Chern-Connes character, which has already been proven
in some cases. We also indicate how our methods prove that the twisted
higher Betti numbers are leafwise homotopy invariants.

Consider the first order leafwise operator DE = ds + δs, which is
formally self adjoint and satisfies (DE)2 = ∆E . Because of this, the
kernel of DE is the same as the kernel of ∆E . Recall the ±1 eigenspaces
A∗

±(Fs, E) of the involution τ̂ of A∗
(2)(Fs, E), and that

DE τ̂ = −τ̂DE ,

so we have the operators DE± : A∗
±(Fs, E) → A∗

∓(Fs, E), and DE+ is
designated the twisted leafwise signature operator.

Denote by P± the projections onto the Ker(DE±). We assume that
the projection P to Ker(∆E) is transversely smooth, so the P± are also.
Then the (graded) Chern-Connes character of the index bundle of the
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twisted leafwise signature operator, cha(P ), is defined and is given by

cha(P ) = cha(P+)− cha(P−) =

[
cha

( ℓ−1∑

j=0

Pj + τPj

)
+ cha

(1
2
(Pℓ + τPℓ)

)]
−

[
cha

( ℓ−1∑

j=0

Pj − τPj

)
+ cha

(1
2
(Pℓ − τPℓ)

)]
.

As in the case of compact manifolds, we have

Theorem 10.1. Suppose that M is a compact Riemannian manifold,
with an oriented Riemannian foliation F of dimension 2ℓ, and that E
is a leafwise flat complex bundle over M with a (possibly indefinite)
non-degenerate Hermitian metric which is preserved by the leafwise flat
structure. Assume that the projection P onto Ker(∆E) for the associated
foliation Fs of the homotopy groupoid of F is transversely smooth. Then,
the (graded) Chern-Connes character cha(P ) of the index bundle of the
twisted leafwise signature operator equals the twisted higher harmonic
signature of F , that is

cha(P ) = σ(F,E).

Proof. As cha is linear and 1
2 (Pℓ±τPℓ) = π±, we need only show that

cha(Pj + τPj) = cha(Pj − τPj),

for j = 0, ..., ℓ − 1. Set Pt = Pj + tτPj where −1 ≤ t ≤ 1. Then Pt is
a smooth family of G invariant transversely smooth idempotents (since
PjτPj = 0 for j = 0, ..., ℓ − 1) which connects Pj + τPj to Pj − τPj. It
follows from Theorem 3.4 that cha(Pj + τPj) = cha(Pj − τPj). q.e.d.

Corollary 10.2. Under the hypothesis of Theorem 10.1, the (graded)
Chern-Connes character cha(P ) of the index bundle of the leafwise sig-
nature operator with coefficients in E is a leafwise homotopy invariant.

The operator DE+ is elliptic along the leaves of Fs, and so produces,
via a now classical construction due to Connes [C81], a K−theory in-
variant Inda(D

E+), the index of the operator DE+, which has a Chern-
Connes character cha(Inda(D

E+)) ∈ H∗
c(M/F ), [BH04].

Conjecture 10.3. Under the hypothesis of Theorem 10.1,

cha(Inda(D
E+)) = cha(P ) ∈ H∗

c(M/F ).

This conjecture has been proven when the spectrum of DE+ is reason-
ably well behaved, see [H95, HL99, BH08], where it is proven for the
holonomy groupoid. The proofs extend immediately to the homotopy
groupoid. It also holds for both groupoids, without any extra assump-
tions, whenever the projection P belongs to Connes’ C∗-algebra of the
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foliation for the groupoid in question. In particular, it holds for the
holonomy groupoid case for any foliation whose leaves are the fibers of
a fibration between closed manifolds, provided that P is transversely
smooth.

Recently, Azzali, Goette and Schick have announced, [AGS], that
they have proven it for smooth proper submersions V → B with the
fiberwise action (freely and properly discontinuous) of a discrete group
Γ such that the quotient V/Γ → B is a fibration with compact fiber,
but only for bundles E which are globally flat. Conjecture 10.3 should
follow immediately for the homotopy groupoid provided that their result
extends to bundles which are only leafwise flat.

Recall, [BH04, GL03], that in Haefliger cohomology,

cha(Inda(D
E+)) =

∫

F
L(TF ) ch2(E),

where L(TF ) is the characteristic class of TF associated with the mul-
tiplicative sequence

∏
j xj/tanh(xj), and ch2(E) =

∑
k 2

k chk(E).

Corollary 10.4. Under the hypothesis of Theorem 10.1, and assum-

ing Conjecture 10.3,

∫

F
L(TF ) ch2(E) is a leafwise homotopy invariant.

Finally we have the following.

Definition 10.5. Assume the hypothesis of Theorem 10.1, but now
F may have arbitrary dimension. For 0 ≤ j ≤ p = dim(F ), define the
j-th twisted higher Betti class βj(F,E) by

βj(F,E) = cha(Pj) ∈ H∗
c(M/F ).

It is an interesting exercise to show that, just as in the case of com-
pact fibrations, the bundle defined by the projection onto the leafwise
harmonics (in the case E =M × C) is a flat bundle. That is, it admits
a connection whose curvature is zero, so there are no higher terms in
the βj(F,M ×C). This is not the case in general.

Theorem 10.6. (Compare [HL91]) Under the hypothesis of Theo-
rem 10.1 with F allowed to have arbitrary dimension, the twisted higher
Betti classes βj(F,E), are leafwise homotopy invariants.

Proof. We only give a sketch here of the proof of the second state-
ment. Let f : (M,F ) → (M ′, F ′) be a smooth leafwise homotopy
equivalence with smooth homotopy inverse g. The pull-back bundle
f∗(P ′

j) is a smooth bundle since it can be realized by the transversely

smooth idempotent P f
j = f∗R′∗P ′

jg
∗R∗Pj . It can be endowed with the

pull-back connection under f of the connection P ′
j∇′νP ′

j , and hence the

Chern-Connes character of f∗(P ′
j) is given by

cha(f
∗(P ′

j)) = f∗ cha(P
′
j) = f∗βj(F

′, E′).
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As in the proof of our main theorem, show that Pj : f∗(Ker(∆E′

j )) →
Ker(∆E

j ) is an isomorphism and that Qf
j = PjP

f
j is a smooth idempo-

tent with image Ker(∆E
j ), hence its Chern-Connes character coincides

with the Betti class βj(F,E). As Qf
jP

f
j = Qf

j and P f
j Q

f
j = P f

j , the

family Qt = tQf
j + (1 − t)P f

j is a smooth homotopy by transversely

smooth idempotents from Qf
j to P f

j . Therefore P f
j and Qf

j have same
Chern-Connes character. q.e.d.

11. Consequences of the Main Theorem

In this section, we derive some important consequences of Theorem
9.1. In particular, we re-derive some classic results for the Novikov
conjecture, and then give some general results for the Novikov conjecture
for groups and for foliations.

Example 11.1 (Lusztig, [Lu72]).

Let N be a compact connected even dimensional Riemannian mani-
fold. SetW = H1(N ;R/Z), and recall the natural (onto) map h1 :W →
Hom(H1(N ;Z);R/Z). Choose a base point xo ∈ N . Then there is the
natural (onto) homomorphism h : W → Hom(π1(N,xo);R/Z) given by
composing h1 with the natural map π1(N,xo) → H1(N,Z). Thus for
each element w ∈ W , we have the homomorphism h(w) : π1(N,xo) →
R/Z, which we may compose with the map x→ exp(2πix) to obtain the

homomorphism hw : π1(N,xo) → S1 ⊂ C. Denote by Ñ the universal

covering of N . π1(N,xo) acts on Ñ in the usual way, and on Ñ×W ×C

as follows. Let β ∈ π1(N,xo), and (x,w, z) ∈ Ñ ×W × C, and define

β · (x,w, z) = (βx,w, hw(β)z).

Set

E = (Ñ ×W × C)/π1(N,xo),

a complex bundle over (Ñ ×W )/π1(N,xo) = N ×W , which is leafwise
flat for the foliation F given by the fibration M ≡ N ×W → W . It is
obvious that the usual metric on C defines a positive definite metric on
E which is preserved by the leafwise flat structure. As H1(N ;R/Z) is
the abelianization of π1(N,xo), h is onto, and it is natural to call E the
universal flat C bundle for N . ThenM , F , and E satisfy the hypothesis
of Theorem 9.1, since the preserved metric is positive definite.

Note that if f : N → N ′ is a homotopy equivalence, then there is
a natural extension of f to f : (M,F ) → (M ′, F ′) which is a leafwise
homotopy equivalence, and f∗E′ = E. Thus σ(F,E) is a homotopy
invariant of the manifold N .
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By [BH04] (and assuming Conjecture 10.3 if necessary), we have
that

σ(F,E) =

∫

N
L(TF ) ch2(E) ∈ H∗

c(M/F ) = H∗(H1(N ;R/Z);R).

To relate this to Lusztig’s theorem on Novikov conjecture, suppose that
π1(N,x0) = Zn. Denote by g : N → BZn = Tn the map classifying

the universal cover Ñ → N (as a Zn bundle), and let α1, ..., αn be the
natural basis of H1(Tn;R).

Proposition 11.2. ch2(E) =

n∏

i=1

(1 + 2g∗(αi)⊗ αi).

Theorem 11.3 (Lusztig, [Lu72]). The Novikov conjecture is true
for any compact manifold with fundamental group Zn.

Proof.

σ(F,E) =

∫

N
L(TF ) ch2(E) =

∑

i1<···<ik

2k
[∫

N
L(TN)g∗(αi1 ∧ · · · ∧ αik)

]
αi1 ∧ · · · ∧ αik

is a homotopy invariant, so each of the

∫

N
L(TN)g∗(αi1 ∧ · · · ∧ αik) is

a homotopy invariant. q.e.d.

Proof. (of Proposition 11.2) As π1(N,x0) = Zn, W = H1(N ;R/Z) ≃
Tn. The bundle E → N × T n is the pull back by g × id : N × Tn →
Tn × Tn of the bundle Ên → Tn × Tn which is given as follows. Let
ξ ∈ Zn = π1(T

n), and (x,w, z) ∈ Rn × Tn × C, and define

ξ · (x,w, z) = (x+ ξ, w, (ξw) · z),
where

(ξw) · z = (exp(2πiξ1w1)z1, . . . , exp(2πiξnwn)zn).

Then
Ên = (Rn × Tn × C)/Zn.

Note that Ên = E1⊗· · ·⊗En, where Ej is the pull back by the projection

Tn × Tn → T × T onto the j-th coordinates of the bundle Ê1. As

ch2(Ên) =

n∏

j=1

ch2(Ej), we need only show that

ch2(Ê1) =

n∏

i=1

(1 + 2α ⊗ α),

where α is the natural generator of H1(T;R). That is, c1(Ê1) is the
natural generator of H2(T2;R). This is a classical direct computation
in the theory of characteristic classes. q.e.d.
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We can extend the previous example to the fundamental group Γ of
the closed oriented surface Sg of genus g ≥ 2. This is a well known the-
orem which follows from the results of many people, the first probably
being Lusztig.

Theorem 11.4. The Novikov conjecture is true for any compact
manifold with fundamental group Γ.

Proof. The space of equivalence classes of representations of Γ in U(1)
is easily seen to be a torus T2g of dimension 2g. Form the fiberwise flat

line bundleE over the total space of the trivial fibration π
Sg

2 : Sg×T2g →
T2g given by

(x, θ;u) ∼ (xγ, θ;hθ(γ)(u)), x ∈ H2, θ ∈ T2g, u ∈ C, γ ∈ Γ,

where hθ : Γ → U(1) is the corresponding homomorphism as in 11.1.

Denote by π
Sg

1 : Sg × T2g → Sg the other projection. Then for any
cohomology class y ∈ H∗(T2g;R), the cohomology class in H∗(Sg;R) =
H∗(BΓ;R) given by

x = π
Sg

1,∗

[
(π

Sg

2 )∗y ∧ ch(E)
]

satisfies the Novikov conjecture. This can be seen as follows. Let N
be a smooth closed manifold with fundamental group Γ and denote by
ϕ : N → Sg = BΓ a smooth classifying map. Notice that the harmonic
signature of the foliated manifold M = N × T2g (with foliation given
by the fibers of the projection πN2 : N × T2g → T2g) twisted by the
fiberwise flat bundle (ϕ× id)∗E, is given in H∗(T2g;R) by the formula

σ(M,F ; (ϕ × id)∗E) = πN2,∗
[
(πN1 )∗L(TN) ∪ (ϕ× id)∗ ch(E)

]
.

Clearly, for any cohomology class y ∈ H∗(T2g;R), we get the homotopy
invariance of

∫

T2g

y ∪ πN2,∗
[
(πN1 )∗L(TN) ∪ (ϕ× id)∗ ch(E)

]
=

∫

N
L(TN)πN1,∗

[
(πN2 )∗y ∧ (ϕ× id)∗ ch(E)

]
.

But (πN2 )∗y = (ϕ× id)∗(π
Sg

2 )∗y and therefore

πN1,∗
[
(πN2 )∗y ∧ (ϕ× id)∗ ch(E)

]
= (πN1,∗ ◦ (ϕ× id)∗)

[
(π

Sg

2 )∗y ∧ ch(E)
]
.

The conclusion follows using that πN1,∗ ◦ (ϕ× id)∗ = ϕ∗ ◦ πSg

1,∗.

Thus we need only show that every class x ∈ H∗(Sg;R) has the given
form. We may write Sg = ♯gT

2 as the union

Sg = H1 ∪H2 ∪ · · · ∪Hg,
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where H1 and Hg are T2 with a disc removed, and the other Hj are T2

with two discs removed. There are natural inclusions gj : Hj → T2
j ⊂

T2g. On T2g × T2g we have the bundle Ê2g. Consider the natural map

hj = gj × I : Hj × T2g → T2
j × T2g ⊂ T2g × T2g.

Then E |Hj × T2g = h∗j (Ê2g). Note also that on a neighborhood of
the boundary of Hj, the bundle E is trivial, and the trivialization is
independent of j. Thus we may construct a connection on E by using
a partition of unity and the local connections given on the Hj ×T2g by

the pull back under hj of the connection used on Ê2g and the local flat
connections on the neighborhoods of the boundaries of the Hj. Thus on
the complement of a collar neighborhood of the boundary of Hj × T2g,

ch(E) = h∗j(ch(Ê2g)), and on a neighborhood of the boundary, ch(E) =

0. Now on T2g × T2g we have the one dimensional cohomology classes
[dx1j ], [dx

2
j ], [dw

1
j ] and [dw2

j ] which are dual to the natural generators of

H1(T
2
j ;R). The [dx

k
j ] live on the first factor of T2g ×T2g, and the [dwk

j ]
on the second. In addition,

ch(Ê2g) =

2g∏

i=1

(1 + [dx1i ] ∧ [dw1
i ])(1 + [dx2i ] ∧ [dw2

i ]).

Set yj =
∏

i 6=j[dw
1
i ] ∧ [dw2

i ]. Denote by γ1j and γ2j the elements of

H1(Sg;R) corresponding to the natural generators of H1(T
2
j ;R). Then

(
π1,∗

[
π∗2yj ∧ [dwk

j ] ∧ ch(E)
]
|Hj × T2g

)
(γmj ) = h∗j ([dx

k
j ])(γ

m
j ) = δkm,

while for i 6= j,
(
π1,∗

[
π∗2yj ∧ [dwk

j ] ∧ ch(E)
]
|Hi × T2g

)
(γmi ) = h∗i ([dx

k
j ])(γ

m
i ) = 0,

as h∗i ([dx
k
j ]) = 0.

Thus each element of H1(Sg;R) has the required form. It is not
difficult to see that π1,∗ [π

∗
2yj ∧ ch(E)] gives a non-zero two dimensional

class of the required form, so we have the theorem.
q.e.d.

Here is another version of Lusztig’s construction, see [Lu72] and
[G96]. Let E be a flat U(p, q) bundle over N (that is a flat bundle
given by a map ρ : π1(N) → U(p, q)). Then E is a leafwise flat com-
plex bundle over N with an indefinite non-degenerate Hermitian metric
which is preserved by the leafwise flat structure. Write E = E+ ⊕ E−,
where the indefinite metric is positive ± on E±.

Theorem 11.5. ∫

N
L(TN)(ch2(E

+)− ch2(E
−))
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is a homotopy invariant of N .

Proof. If N is odd dimensional, this is zero, so assume that N is even
dimensional. Let F be the foliation of N with one leaf, namely N . The
holonomy groupoid of F is just G = N ×N , and the projection onto the
leafwise harmonic forms is the same on each N . Thus the hypothesis of
Theorem 9.1 are satisfied and Conjecture 10.3 holds, giving the result.

q.e.d.

This may be recast as follows. Let ρ : Γ → U(p, q) be a homo-
morphism of a finitely presented group. Given any manifold N and
homomorphism ψ : π1(N) → Γ, we may construct the bundle E =
E+ ⊕E− → N . This construction is natural under pull-back maps, i.e.
given any map f : N ′ → N we can form the bundleE′ = E′+⊕E′− → N ′

using the homomorphism ρ ◦ ψ ◦ f∗ where f∗ : π1(N
′) → π1(N) is the

induced map. Then E′± = f∗(E±), and so this construction determines
two universal bundles E+

ρ and E−
ρ over BΓ.

Theorem 11.6. Let ρ : Γ→ U(p, q) be a homomorphism of a finitely
presented group. Then

ch(E+
ρ )− ch(E−

ρ ) ∈ H∗(BΓ;R)

satisfies the Novikov conjecture.

Note that the universal Cp+q bundleEU(p, q)×U(p,q)C
p+q → BU(p, q)

splits as EU(p, q) ×U(p,q) C
p+q = E+

p,q ⊕ E−
p,q, and for any map f :

N → BU(p, q) classifying a bundle E with splitting E = E+ ⊕ E−,
f∗(E±

p,q) = E±. The map ρ : Γ→ U(p, q) induces Bρ : BΓ→ BU(p, q),

and ch(E±
ρ ) = Bρ∗(ch(E±

p,q)). Now U(p)× U(q) is a maximal compact
subgroup of U(p, q), so the inclusion i : BU(p) × BU(q) → BU(p, q)
induces an isomorphism in cohomology. That is

H∗(BU(p, q);R) = H∗(BU(p);R)⊗H∗(BU(q);R).

It is not difficult to see that under this isomorphism

ch(E+
p,q) = ch(Ep) and ch(E−

p,q) = ch(Eq),

where Ep → BU(p) and Eq → BU(q) are the universal bundles. Thus
we have

Theorem 11.7. Let ρ : Γ→ U(p, q) be a homomorphism of a finitely
presented group. Then

(Bρ)∗(i∗)−1
(
ch(Ep)− ch(Eq)

)
∈ H∗(BΓ;R)

satisfies the Novikov conjecture.

Of course, this follows immediately from the well known fact that the
Novikov conjecture is true for subgroups of Lie groups. The main input
here is the possibility to use (complementary) families of representations
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giving rise to interesting foliations. To this end, we have the following
generalization of the Lusztig construction. It would be a very interesting
application to use this construction to shed more light on the series of
some discrete groups sitting in U(p, q). Note that, for a given Lie group
H, the space Hom(Γ,H) is well understood for abelian groups Γ and
has been intensively studied when Γ is a higher genus surface group and
H is PSL(2,R) or PU(1, 2), see [Go85]. Other examples of Γ and H
have also been studied by other authors and they all fit into the case of
H = U(p, q), see [G96] for a survey.

Example 11.8 (Foliation Lusztig Example).

Let K be a compact Riemannian manifold without boundary, and
g : π1(N)→ Iso(K) a homomorphism to the isometries of K. Denote by
Homc(π1(N), U(p, q)) the set of homomorphisms from π1(N) to U(p, q)
which have image contained in a compact subgroup. Let

h : K → Homc(π1(N), U(p, q))

be a weakly uniformly continuous smooth g-cocycle. Smoothness of h
means that for any γ ∈ π1(N), w → hw(γ) is a smooth function from K
to U(p, q). Weak uniform continuity of h means the following. Denote
the norm on U(p, q) by || · ||. Given w1, w2 ∈ K, define

dW (w1, w2) = max
A1

[
min
A2

||A1 −A2||
]
,

where Ai ∈ hwi
(π1(N)), the closure of the image of π1(N) under hwi

.
Then, h is weakly uniformly continuous if dW (w1, w2)→ 0 as w1 → w2.

That h is a g-cocycle means that for γ1, γ2 ∈ π1(N) and w ∈ K,

hgγ2 (w)(γ1)hw(γ2) = hw(γ1γ2).

Then we may form

E = Ñ ×K × Cp+q/π1(N),

where the action of γ ∈ π1(N) on (x,w, z) ∈ Ñ ×K ×Cp+q is given by

γ(x,w, z) = (γ(x), gγ(w), hw(γ)z).

Then E is a Cp+q bundle over Ñ ×π1(N) K.
Now we have the Riemannian foliation F of the flat fiber bundle

Ñ ×π1(N) K → N , whose leaves consist of the images of the Ñ × {w}.
The bundle E is leafwise flat and the (indefinite) inner product is pre-
served by the flat structure. Again write E = E+ ⊕ E−, where the
indefinite metric is ± definite on E±. The parallel translation along
the leaves of F is bounded since the closure of the union of all the im-
ages,

⋃
K hw(π1(N)) is a compact subset of U(p, q). This follows easily

from the facts that K is compact, each hw(π1(N)) is compact, and h is
weakly uniformly continuous. (We conjecture that continuity of h and
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compactness of K imply compactness of
⋃

K hw(π1(N)).) As above, the
hypothesis of Theorem 9.1 are satisfied, and we have

Theorem 11.9. Assume Conjecture 10.3. Then for every g, h and
K as above, ∫

F
L(TF )(ch2(E

+)− ch2(E
−))

is a homotopy invariant of N .

Note that we may view this Haefliger form as living on a single fiber

K of the bundle Ñ ×π1(N) K → N . This is because we may take
fundamental domains of N in the various leaves to integrate over (when
we do integration over the fiber to get to Haefliger cohomology), and
these fundamental domains are indexed by any fiber K. Thus we may
integrate over K to obtain

Corollary 11.10. Assume Conjecture 10.3. Then for every g, h and
K as above, the real number∫

K

∫

F
L(TF )(ch2(E

+)− ch2(E
−))

is a homotopy invariant of N .

As above, we may recast this result in terms of the Novikov conjec-
ture. Let Γ = π1(N) and let g, h and K be as in Example 11.8. The

construction of the bundle E → Ñ ×ΓK and its splitting E = E+⊕E−

are natural with respect to pull-back maps, so this construction defines
the universal bundle

EB = EΓ×K × Cp+q/Γ,

where the action of γ ∈ Γ on EΓ × K × Cp+q is given as above by
γ(x,w, z) = (γ(x), gγ(w), hw(γ)z). Then EB is a Cp+q bundle over
EΓ×ΓK, and it splits as EB = E+

B ⊕E−
B . If ϕ : N → BΓ classifies the

universal cover Ñ → N , with induced map ϕ̃ : Ñ → EΓ, then ϕ̃× idK :

Ñ ×K → EΓ×K descends to the map ϕ̃×Γ idK : Ñ ×ΓK → EΓ×ΓK,
and (ϕ̃×Γ idK)∗(E±

B ) = E±.

Proposition 11.11. Assume Conjecture 10.3, and denote by πΓ1 :
EΓ×Γ K → BΓ the projection. Then

πΓ1,∗(ch([E
+]− [E−]))

satisfies the Novikov conjecture.

Proof. This follows immediately since a direct inspection shows that
in the cohomology of N

πN1,∗ ◦ (ϕ̃×Γ idK)∗ = ϕ∗ ◦ πΓ1,∗.
q.e.d.
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Remark 11.12. Example 11.8 can be easily generalized to the fol-
lowing situation. Let E0 be a complex vector bundle over K which is
endowed with a (possibly indefinite) non-degenerate metric {·, ·}. As-
sume that the vector bundle E0 is a Γ-equivariant vector bundle and
that the action of Γ preserves {·, ·}. Then the vector bundle

E := Ñ ×Γ E0 → Ñ ×Γ K,

is easily seen to be a complex bundle with a well defined (possibly in-
definite) non-degenerate metric, which admits a leafwise flat connection
preserving that metric. Hence (assuming Conjecture 10.3), we get in
this way more general cohomology classes which satisfy the Novikov
conjecture.

Applications to the BC Novikov conjecture. We now explain
how Theorem 9.1 can be used to investigate the Baum-Connes Novikov
conjecture, that is the Novikov conjecture for foliations. We do this
by generalizing the construction in Example 11.8. Choose a complete
smooth transversal T to the foliation (M,F ) and denote by BGTT the

classifying space of the groupoid GTT which is the reduced (to T ) ho-
motopy groupoid. GTT consists of elements of G which start and end

on T . It is well known that BGTT classifies free and proper actions of

GTT , so that the principal GTT bundle GT (which consists of elements of
G which start on T ) over M is the pull-back, by a (up to homotopy
well defined) map ϕ : M → BGTT , of a universal GTT bundle EGTT over

BGTT . More precisely, we have an action of GTT on EGTT on the right
EGTT ×sB GTT → EGTT , denoted xγ for (x, γ) ∈ EGTT ×sB GTT , where

EGTT ×sB GTT := {(x, γ) ∈ EGTT × GTT , sB(x) = r(γ)},
and sB : EGTT → T , rB : EGTT → BGTT satisfy

sB ◦ ϕ̃ = s, sB(xγ) = s(γ) and rB ◦ ϕ̃ = ϕ ◦ r.
where s : GT → T and r : GT →M are the source and range maps, and
ϕ̃ : GT → EGTT is the GTT -equivariant classifying map which covers ϕ. So
we have

T
sB←− EGTT

rB−→ BGTT .
The fibers of the submersion sB are contractible and this identifies the
universal principal bundle EGTT , see [C94], pages 126-127.

Definition 11.13. A GTT -equivariant Hermitian bundle (E0, {·, ·})
is a complex vector bundle π0 : E0 → T endowed with a (possibly
indefinite) non-degenerate metric {·, ·} together with an action of GTT
which preserves the metric.

So if we set

GTT ×T E0 := {(α, u) ∈ GTT × E0, s(α) = π0(u)} = (s | GTT )∗E0,
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then there is a smooth map h : GTT ×T E0 → E0 such that π0 ◦h(α, u) =
r(α), and for any α ∈ GTT the map hα(u) := h(α, u) is a linear map from
E0,s(α) to E0,r(α) which preserves the metric {·, ·}. It is understood that
h is an action in the sense that

hαβ = hα ◦ hβ , if r(β) = s(α).

Given a GTT Hermitian bundle (E0, {·, ·}), we define a Hermitian bundle

over the classifying space BGTT whose total space is

E = EGTT ×GT
T
E0.

Here E is the quotient manifold where we have identified (x, u) with
(xα, h(α−1, u)) for any α ∈ GTT such that

s(α) = π0(u) and r(α) = sB(x).

Note that Example 11.8 falls into this class where we take T = K, a

single fiber of Ñ ×π1(N)K and where the Hermitian bundle E0 is trivial
and equivariant through the cocycle h. Finally, for general Riemannian
foliations, the holonomy action of GTT on the transverse bundle to the
foliation, and on all functorially defined bundles obtained from it, gives
an example of a GTT -equivariant Hermitian bundle.

Definition 11.14. If (E0, {·, ·}) is a GTT -equivariant Hermitian bun-

dle, the vector bundle E over the classifying space BGTT is called a
Hermitian leafwise flat bundle.

This terminology is explained by the following. Recall that ϕ :M →
BGTT is a classifying map for the foliation F .

Lemma 11.15. The complex vector bundle ϕ∗E over M admits a
leafwise flat structure which preserves the induced (possibly indefinite)
metric.

Proof. We may assume that the vector bundle ϕ∗E is smooth and is
isomorphic to GT ×GT

T
E0. Since the action of GTT preserves the metric

{·, ·}, there is a well defined metric on E → M which is induced from
{·, ·}. The usual proof, using for instance properness of the action of GTT
on GT , allows the construction of a connection on E which is leafwise
flat and which preserves the (possibly indefinite) non-degenerate metric
on E. q.e.d.

As usual, the complex bundle E splits into a direct sum of unitary
vector bundles E = E+⊕E− which are not leafwise flat in general. We
say that the leafwise flat bundle E is bounded if the leafwise parallel
translation along the leafwise flat connection of E is a bounded map.

Theorem 11.16. Assume that the foliation (M,F ) is Riemannian,
oriented, and transversely oriented, and assume Conjecture 10.3. Then
for any Hermitian bounded leafwise flat bundle E over BGTT , the Chern
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character ch(E+) − ch(E−) ∈ H∗(BGTT ;R) satisfies the BC Novikov
conjecture.

Proof. The bundle ϕ∗E is a leafwise Hermitian flat bundle for the
smooth foliation (M,F ), and by our assumption of boundedness, the
parallel translation along the leaves is bounded, so the projection onto
the twisted leafwise harmonics is transversely smooth. Suppose f :
(M ′, F ′)→ (M,F ) is a leafwise oriented, leafwise homotopy equivalence
(which also preserves the transverse orientations). Then f∗(ϕ∗E) =
(ϕ◦f)∗E is also a bounded leafwise Hermitian flat bundle, so projection
onto the twisted leafwise harmonics for (M ′, F ′) is also transversely
smooth. Applying Theorem 9.1, we get that in H∗

c (M
′/F ′),

σ(M ′, F ′; (ϕ ◦ f)∗([E+]− [E−])) = f∗σ(M,F ;ϕ∗([E+]− [E−])).

Since the foliation is transversely oriented, there is a well defined trans-
verse fundamental class, namely the holonomy invariant closed cur-
rent [M ′/F ′] which is given by integration over the transversals of
(M ′, F ′). Applying [M ′/F ′] to the above equality and using the fact
that [M ′/F ′] ◦ f∗ = [M/F ] (since f preserves the transverse orienta-
tions) we get

〈
[M ′/F ′], σ(M ′, F ′; (ϕ ◦ f)∗([E+]− [E−]))

〉
=

〈
[M/F ], σ(M,F ;ϕ∗([E+]− [E−]))

〉
.

But Conjecture 10.3 gives

σ(M,F ;ϕ∗([E+]− [E−])) =

∫

F
L(TF ) ∧ ϕ∗ ch([E+]− [E−]),

and

σ(M ′, F ′; (ϕ◦f)∗([E+]− [E−])) =

∫

F ′

L(TF ′)∧(ϕ◦f)∗ ch([E+]− [E−]).

Since [M/F ]◦
∫

F
=

∫

M
and [M ′/F ′]◦

∫

F ′

=

∫

M ′

, the conclusion follows,

namely
∫

M
L(TF )∧ϕ∗ ch([E+]− [E−]) =

∫

M ′

L(TF ′)∧(ϕ◦f)∗ ch([E+]− [E−]).

q.e.d.

12. Appendix

We give brief outlines for the proofs of the results of Section 6.
Let f : M → M ′, g : M ′ → M , E′ → M ′ and E be as in Section 6.

Then there are leafwise homotopies h :M×I →M and h′ :M ′×I →M ′

with I = [0, 1], so that for all x ∈M,x′ ∈M ′

h(x, 0) = x, h(x, 1) = g ◦ f(x), h′(x′, 0) = x′, and h′(x′, 1) = f ◦ g(x′).
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Proof of Proposition 6.1. If U ⊂M and U ′ ⊂M ′ are foliation charts
in good covers, with transversals T and T ′, and f(U) ⊂ U ′, then it is not

difficult to show that f induces f̂ : T → T ′, which is a diffeomorphism

onto its image. Define f̂∗ on Haefliger forms in the obvious way, and
show that it is well defined. It follows easily that the induced map on
Haefliger cohomology f∗ : H∗

c(M
′/F ′) → H∗

c(M/F ) is an isomorphism
with inverse g∗. q.e.d.

As f is a homotopy equivalence between M and M ′, the dimensions

of M and M ′ are the same. Since f̂ is a local diffeomorphism, it follows
immediately that the codimensions of F and F ′ are the same, and so
the dimensions of F and F ′ are also the same.

Proof of Proposition 6.2. Smoothness is obvious. Let m(P ) be bound
on the diameter of any plaque in a finite good cover U of M , so also
a bound for any plaque in the corresponding cover of G. Let U ′ be a
finite good cover of M ′, such that for each U ′ ∈ U ′ there is U ∈ U so
that g(U ′) ⊂ U . Use the fact that the Lebesgue covering distance of U ′

is positive (say ǫ > 0), and the fact that ǧ(L̃′) ∩ (U, γ, V ) consists of at

most one plaque of ǧ(L̃′), to show that if z′t is a path in L̃′ of length less

than C, then ǧ ◦ z′t is a path in ǧ(L̃′) of length less than m(P )C/ǫ.

Let z0, z1 ∈ L̃x with f̌(zi) = z′i, whose leafwise distance dL̃′
x
(z′0, z

′
1) ≤

C. Use the result above and the fact that composition on the right by
any path is an isometry, to show that

d
L̃x

((ǧ ◦ z′0) · γx, (ǧ ◦ z′1) · γx) ≤ m(P )C/ǫ,

where γx(t) = h(x, t). Then show dL̃x
(zi, [(ǧ ◦ z′i) · γx]) ≤ length(γr(zi)),

which by Lemma 3.16 of [HL91] is bounded, say by B. Conclude that

dL̃x
(z0, z1) ≤ 2B +m(P )C/ǫ,

so f̌ is leafwise uniformly proper. q.e.d.

Proof of Proposition 6.3. For this proof only, for ξi = αi ⊗ φi ∈
A∗

c(Fs, E), set

ξ1 ∧ ξ2 = (φ1, φ2)α1 ∧ α2 and ξ1 ∧ ∗ξ2 = (φ1, φ2)α1 ∧ ∗α2,

and extend linearly, where (·, ·) is the positive definite metric on E.
Similarly for A∗

c(F
′
s, E

′).
Lemma 3.17 of [HL91] implies that f is leafwise uniformly proper.

Becausef̌ is also leafwise uniformly proper andM×Bk is compact, both
the maps denoted pf are also leafwise uniformly proper. Show that we

may assume that the metric on each Lx ×Bk (respectively L̃x ×Bk) is
the product of a fiberwise metric for the submersion pf and the pull-back

under pf of the metric on L′
f(x) (respectively L̃

′
f(x)). Denote by d volvert

the canonical k form on both L × Bk and L̃ × Bk whose restriction to
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the oriented fibers of pf is the volume form. Simple computations show

that for any α1, α2 ∈ ∧ℓT ∗F ′
s,

12.1. p∗fα1 ∧ ∗p∗fα2 = d volvert ∧p∗f (α1 ∧ ∗′α2),

and

12.2. d volvert ∧p∗fα1 ∧ ∗(d volvert ∧p∗fα2) = d volvert ∧p∗f(α1 ∧ ∗′α2).

Since pf is leafwise uniformly proper,

C = sup
[γ′]∈G′

∫

p−1
f

([γ′])
d volvert < +∞.

Use 12.1, to show that for ξ ∈ Aℓ
c(L̃

′
f(x), E

′), ‖p∗f (ξ)‖20 ≤ C‖ξ‖20, so p∗f
defines a bounded operator from W ℓ

0(F
′
s, E

′) to W ℓ
0(Fs ×Bk, p∗fE

′).

Choose a sub-bundle Ĥ ⊂ TF ⊕ TBk so that for each Lx, it is a

horizontal distribution for the submersion pf : Lx×Bk → L′
f(x). Ĥ de-

termines a sub-bundleH of TFs⊕TBk, which is a horizontal distribution

for the submersion pf : L̃x × Bk → L̃′
f(x). Choose a finite collection of

leafwise vector fields Ŷ1, . . . , ŶN on M ′ which generate C∞(TF ′) over
C∞(M ′). Lift these to leafwise (for F ′

s) vector fields Y1, . . . , YN on G′,
and lift these latter to sections of H, denoted X1, . . . ,XN . If Xvert is a

vertical vector field on L̃×Bk with respect to pf , then iXvert ◦ p∗f = 0.

Modulo such vector fields, the Xi generate T L̃⊕TBk over C∞(L̃×Bk).

In addition iXj
◦ p∗f = p∗f ◦ iYj

. Thus for any ξ ∈ Aℓ
c(L̃

′
f(x), E

′), any

YK = Yk1 ∧ · · · ∧ Ykℓ, and any j1, . . . , jm, with ji ∈ {1, . . . , N},
‖iXj1

d · · · iXjm
d(p∗f (ξ)(YK))‖0 = ‖p∗f (iYj1

d · · · iYjm
d(ξ(YK))‖0 ≤

√
C‖iYj1

d · · · iYjm
d(ξ(YK))‖0.

A classical argument then shows that for any s ≥ 1, p∗f extends to a

uniformly bounded operator from W ℓ
s (L̃

′
f(x), E

′) to W ℓ
s (L̃x ×Bk, p∗fE

′),

that is a bounded operator from W ℓ
s (F

′
s, E

′) to W ℓ
s (Fs ×Bk, p∗fE

′).

The operator eω maps W ℓ
s (L̃x × Bk, p∗fE

′) to W k+ℓ
s (L̃x × Bk, p∗fE

′)
and is uniformly bounded, since ω and all its derivatives are bounded.
Thus for s ≥ 0, eω ◦ p∗f is a bounded operator from W ℓ

s (F
′
s, E

′) to

W k+ℓ
s (Fs ×Bk, p∗fE

′).
For s < 0, dualize the argument above. Denote by pf,∗ integration of

fiber compactly supported forms along the fibers of the submersion pf .

Show that for any α ∈ Ak+ℓ
c (L̃x ×Bk),

12.3. pf,∗α ∧ ∗′pf,∗α ≤ C pf,∗(α ∧ ∗α),

where oriented volume elements of L̃′
f(x) at a point are identified with

R∗
+. Do this by first reducing to the case α = d volvert ∧α3, with α3 ∈
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C∞
c (p∗f (∧ℓT ∗L̃′

f(x))). Choose a finite collection of sections β̂1, . . . , β̂r of

∧ℓT ∗F ′, so that β̂i ∧ ∗′β̂j = 0 if i 6= j, and the β̂i generate C
∞(∧ℓT ∗F ′)

over C∞(M ′). Lift these to sections βi of ∧ℓT ∗F ′
s. Write α =∑

i gi d volvert ∧p∗fβi. Then pf,∗α ∧ ∗′pf,∗α =
∑

i[pf,∗(gi d volvert)]
2βi ∧

∗′βi, and thanks to 12.2,

pf,∗(α ∧ ∗α) =
∑

i

pf,∗(g
2
i d volvert)βi ∧ ∗′βi ≥

∑

i

[pf,∗(gi · 1 d volvert)]2
pf,∗(1 d volvert)

βi∧∗′βi ≥
1

C

∑

i

[pf,∗(gi d volvert)]
2βi∧∗′βi =

1

C
pf,∗α ∧ ∗′pf,∗α,

proving 12.3. Note that the second to last inequality is just Cauchy-

Schwartz. Conclude that for all α ∈ Ak+ℓ
c (L̃x × Bk), ‖pf,∗α‖20 ≤

C ‖α‖20. Using the facts that pf,∗ commutes with the de Rham dif-
ferentials, pf,∗ ◦ iXvert = 0 and iYj

◦pf,∗ = pf,∗ ◦ iXj
, it is easy to deduce,

just as above, that for s ≥ 0, pf,∗ ◦ eω extends to a uniformly bounded

operator (say with bound Cs) fromW ℓ
s (L̃x×Bk, p∗fE

′) toW ℓ
s (L̃

′
f(x), E

′).

For ξ′ ∈W ℓ
s (L̃

′
f(x), E

′) with s < 0,

‖(eω ◦ p∗f )(ξ′)‖s = sup
ξ

|〈ξ′, (pf,∗ ◦ eω)(ξ)〉|
‖ξ‖−s

≤

sup
ξ

‖ξ′‖s‖(pf,∗ ◦ eω)(ξ)‖−s

‖ξ‖−s
≤ Cs‖ξ′‖s,

where ξ ∈ W ℓ
−s(L̃x × Bk, p∗fE

′). Thus for any s < 0 (and so for all

s ∈ Z), eω ◦ p∗f is a uniformly bounded operator from W ℓ
s (L̃

′
f(x), E

′) to

W k+ℓ
s (L̃x×Bk, p∗fE

′), so eω ◦p∗f is a bounded operator from W ℓ
s (F

′
s, E

′)

to W ℓ
s (Fs ×Bk, p∗fE

′).
For all s ∈ Z, the image of eω ◦ p∗f consists of π1-fiber compactly

supported distributional forms. The argument above for pf,∗ applied to
π1,∗ shows that it is uniformly bounded as a map from Im(eω ◦ p∗f ) ⊂
W k+ℓ

s (L̃x × Bk, p∗fE
′) to W ℓ

s (L̃x, E). Thus for all s ∈ Z, f (i,ω) extends

to a bounded operator from W ℓ
s (F

′
s, E

′) to W ℓ
s (Fs, E). q.e.d.

Proof of Proposition 6.4. To prove this, we switch our point of view

to that in [HL91], and give another construction of the map f̃∗. Let

K =
⋃

L̃

K
L̃

be a bounded leafwise triangulation of Fs (see [HL91])

induced from a bounded leafwise triangulation to F . A simplicial k-
cochain ϕ on KL̃ with coefficients in E assigns to each k-simplex σ of
KL̃ an element ϕ(σ) ∈ Eσ, the fiber of E over the barycenter of σ.
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To define the co-boundary map δ, use the flat structure of E. The ℓp

cohomology of this is denoted H∗
△,p(L̃, E). The classical Whitney and

de Rham maps, [W57], extend to well defined isomorphisms

H∗
△,p(L̃, E)

W−→ H∗
(2)(L̃, E) and H∗

△,p(L̃, E)

∫
←− H∗

(2)(L̃, E),

(which are inverses of each other), with bounds independent of L̃, for
p = 1, 2. See [HL91] for p = 2, and [GKS88] for p = 1.

Any oriented leafwise simplicial approximation of f̌ , [HL91], defines
a map on simplicial cohomology denoted f∗△. Set f∗D = W ◦ f∗△ ◦

∫
. It

suffices to show that f̃∗ = f∗D : H∗
(2)(F

′
s, E

′) −→ H∗
(2)(Fs, E), since then,

for any choice of i and ω, f̃∗ = f∗D, so they are all the same. The other

properties of f̃∗ follow from these same properties for f∗D which are easy
to prove using classical arguments.

Consider the following diagram, where we write L̃B for L̃×Bk. Clas-
sical results imply that it commutes.

H∗
∆,2(L̃

′, E′)

?

H∗
(2)(L̃

′, E′)

W

p∗f,△-

-
p∗f

H∗
∆,2(L̃B , p

∗
fE

′)

?

H∗
(2)(L̃B , p

∗
fE

′)

W

[β]∪
-

-
[ω]∧

H∗+k
∆,2,c(L̃B , p

∗
fE

′)

?

H∗+k
(2),c(L̃B, p

∗
fE

′)

W

∩[Bk]
-

-
π1,∗

H∗
∆,2(L̃, E)

?

H∗
(2)(L̃, E).

W

The subscript c means cohomology with fiber compact supports, and
β is the simplicial k cocycle

∫
ω on Bk. The bottom line of this diagram

is f̃∗, and W−1 =
∫
, so it suffices to show that

∩[Bk] ◦ [β] ∪ ◦ p∗f,△ = f∗△.

But, ([β]∪) ◦ p∗f,△ = ([β]∪) ◦ π∗1,△ ◦ i∗△ ◦ p∗f,△ = ([β]∪) ◦ π∗1,△ ◦ f∗△,
where π∗1,△ and i∗△ are induced by the projection and zero section of the

bundle L̃×Bk → L̃. By the Thom Isomorphism Theorem, ([β]∪)◦ π∗1,△
is an isomorphism whose inverse is precisely ∩[Bk]. q.e.d.

Proof of Proposition 6.5. Use the cup product

(ϕ1 ∪ ϕ2)(σ) =
1

(2ℓ+ 1)!

∑

i,j

{ϕ1(σi), ϕ2(σj)},

where σi and σj are certain faces of the 2ℓ simplex σ (see [LS03], Equa-
tion (3.30)), {·, ·} is the (possibly indefinite) metric, and we identify
ϕ1(σi) ∈ Eσi

and ϕ2(σj) ∈ Eσj
with their images in Eσ.
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Proposition 12.4 ([LS03]). For any ℓ2 simplicial cochains ϕ1 and

ϕ2 on L̃ with coefficients in E,

Q(W (ϕ1),W (ϕ2)) =

∫

L̃
W (ϕ1 ∪ ϕ2).

Their proof extends immediately to this case. Using the metric {·, ·}
guarantees that for simplicial ℓ2 cohomology classes Ξ1 and Ξ2,

Q(W (Ξ1),W (Ξ2)) =

∫

L̃
W (Ξ1 ⊔ Ξ2) = 〈[L̃],Ξ1 ⊔ Ξ2〉.

For any L2 cohomology classes Ψ′
1 and Ψ′

2 on L̃′ with coefficients in E′,

〈[L̃′],
( ∫

Ψ′
1

)
⊔
( ∫

Ψ′
2

)
〉 =

∫

L̃′

Ψ′
1 ∧Ψ′

2,

and for any classes Ξ′
1,Ξ

′
2 ∈ H∗

∆,2(L̃
′, E′), we have f∗△Ξ′

1 ⊔ f∗△Ξ′
2 =

f∗△(Ξ′
1⊔Ξ′

2) in H
∗
∆,1(L̃, E). Recall that if ξ′1 = α′

1⊗φ′1 and ξ′2 = α′
2⊗φ′2,

then ξ′1 ∧ ξ′2 = {φ′1, φ′2}α′
1 ∧ α′

2, and we extend to all ξ′ by linearity.
Let Ψ′

1 and Ψ′
2 be the cohomology classes determined by ξ′1 and ξ′2.

Substituting f̃∗D for f̃∗, we have

Qx(f̃
∗
D(ξ

′
1), f̃

∗
D(ξ

′
2)) =

∫

L̃x

(
W ◦ f∗△ ◦

∫
Ψ′

1

)
∧
(
W ◦ f∗△ ◦

∫
Ψ′

2

)
=

∫

L̃x

W
((
f∗△ ◦

∫
Ψ′

1

)
⊔
(
f∗△ ◦

∫
Ψ′

2

))
= 〈[L̃x], f

∗
△

(∫
Ψ′

1⊔
∫

Ψ′
2

)
〉 =

〈[f△,∗L̃x],
( ∫

Ψ′
1 ⊔

∫
Ψ′

2

)
〉 =

∫

L̃′

f(x)

Ψ′
1 ∧Ψ′

2 = Q′
f(x)(ξ

′
1, ξ

′
2).

q.e.d.
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Université Paul Verlaine-Metz

28 Rue Université de Metz
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