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ABSTRACT. When the index bundle of a longitudinal Dirac type operator is transversely smooth, we define
its Chern character in Haefliger cohomology and relate it to the Chern character of the K —theory index. This
result gives a concrete connection between the topology of the foliation and the longitudinal index formula.
Moreover, the usual spectral assumption on the Novikov-Shubin invariants of the operator is improved.
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INTRODUCTION

In this paper, we continue our systematic study of the index theorem in Haefliger cohomology of foliations.
In [BHO04], we defined a Chern character for leafwise elliptic pseudodifferential operators on foliations. By
using Connes’ extension in [Con86], we then translated the Connes-Skandalis K —theory index theorem
[CS84] into Haefliger cohomology, thus proving scalar index theorems in the presence of holonomy invariant
currents.

In order to get more insight into topological invariants of foliations, we extend here the results of [He95]
and [HL99], which tie the indices of a leafwise operator on a foliation of a compact manifold to the so-called
index bundle of the operator. In particular, we show that for a generalized Dirac operator D along the
leaves of a Riemannian foliation, the Chern character of the analytic index of D coincides with the Chern
character of the index bundle of D. In [He95] and [HL99], the groupoid G was assumed to be Hausdorff,
but for Riemannian foliations that is automatic. As in [He95] and [HL99], we assume that the projection
onto the kernel of D is transversely smooth, and that the spectral projections of D? for the intervals (0, €)
are transversely smooth, for e sufficiently small. In those two papers, we assumed that the Novikov-Shubin
invariants of D were greater than three times the codimension of F. Here we use the K —theory index and
we need only assume that they are greater than half the codimension of F'. More precisely, the pairings of
these Chern characters with a given Haefliger 2k—current agree whenever the Novikov-Shubin invariants of
D are greater than k. We conjecture that this theorem is still true provided only that the Novikov-Shubin
invariants are positive. Note that in the heat equation proof of the classical Atiyah-Singer families index
theorem, [B86], it is assumed that there is a uniform gap about zero in the spectrum of the operator, which
implies the conditions we assume on the spectral projections.
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In [Con79, Con81], Connes extended the classical construction of Atiyah [A75] of the L? covering index
theorem to leafwise elliptic operators on compact foliated manifolds. To do so he replaced the lifting and
deck transformations used by Atiyah by a lifting to the holonomy covers of the leaves invariant under the
natural action of the holonomy groupoid. Moreover, he defined an analytic index map from the K-theory of
the tangent bundle of the foliation to the K-theory of the C* algebra of the foliation, which plays the role of
the K-theory of the space of leaves. In [CS84], Connes and Skandalis defined a push forward map in K-theory
for any K-oriented map from a manifold to the space of leaves of a foliation of a compact manifold. This
allowed them to define a topological index map from the K-theory of the tangent bundle of the foliation to
the K-theory of its C* algebra. Their main result is that the analytic and topological index maps are equal,
an extension of the classical Atiyah-Singer families index theorem. This theorem does not lead in general to
a relation between the index of the operator and its index bundle, by which we mean the (graded) projection
onto the kernel of the operator, even when this latter is transversely smooth and when its Chern character
is well defined. This index bundle, which lives in a von Neumann algebra of the foliation, carries important
information about the foliation.

In this paper, we extend the Chern character to the index bundle of D, provided the projection onto
the kernel of D is transversely smooth. Our main result is that, with the conditions given in the second
paragraph, the Chern character of D equals the Chern character of the index bundle of D. Since the Chern
character of the index bundle equals the superconnection index defined in [He95], we obtain as a corollary the
coincidence of the superconnection index with the Chern character of the analytic and topological indices.
This Chern character is readily computable and directly relates the index of D with the topology of the
foliation.

Here is a brief outline of the paper. In Section 1., we fix notation and briefly review some necessary
material. In Section 2., we extend our Chern character to the K —theory of the space of super-exponentially
decaying operators on the leaves of a foliation, and recall the construction of Dirac operators and the heat
index idempotent. In Section 3., we review the construction of the Chern character we use, and extend it
to the index bundle of a leafwise Dirac operator. In Section 4., we prove our main theorem, Theorem 4.1.
In Section 5., we show that the Chern character of the index bundle for D defined here is the same as that
defined in [He95] using Bismut superconnections.

It is also worth pointing out that our results are valid if we replace the holonomy groupoid G by any
smooth groupoid between the monodromy and holonomy groupoids, see [Ph87]. We point out the papers
[GL03, GLO05] where Gorokhovsky and Lott prove, by a different method, an index theorem for longitudinal
Dirac operators.
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1. NOTATION AND REVIEW

Throughout this paper M denotes a smooth compact Riemannian manifold of dimension n, and F' denotes
an oriented Riemannian foliation of M of dimension p and codimension q. So n = p+¢q. We assume that the
metric on M, when restricted to the normal bundle v of F, is bundle like, so the holonomy maps of v and
its dual v* are isometries. The tangent bundle of F' will be denoted TF. If E — N is a vector bundle over a
manifold N, we denote the space of smooth sections by C*°(E) or by C*°(N; E) if we want to emphasize the
base space of the bundle. The compactly supported sections are denoted by C2°(E) or C2°(N; E). The space
of differential k—forms on N is denoted A*(N), and we set A(N) = @x>0.A*(N). The space of compactly
supported k—forms is denoted A¥(N), and A.(N) = ©p>0AF (V).

The holonomy groupoid G of F' consists of equivalence classes of paths + : [0,1] — M such that the image
of 7y is contained in a leaf of F.. Two such paths v, and 72 are equivalent if v1(0) = v2(0), v1(1) = 72(1), and
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the holonomy germ along them is the same. Two classes may be composed if the first ends where the second
begins, and the composition is just the juxtaposition of the two paths. This makes G a groupoid. The space
G of units of G consists of the equivalence classes of the constant paths, and we identify G(©) with M.

For Riemannian foliations, G is a Hausdorff dimension 2p + ¢ manifold, in fact a fibration. The basic
open sets defining its manifold structure are given as follows. Let U be a finite good cover of M by foliation
charts as defined in [HL90]. Given U and V in this cover and a leafwise path v starting in U and ending in
V, define (U,~, V') to be the set of equivalence classes of leafwise paths starting in U and ending in V' which
are homotopic to v through a homotopy of leafwise paths whose end points remain in U and V respectively.
It is easy to see, using the holonomy defined by v from a transversal in U to a transversal in V', that if
U,V ~RP x R?, then (U,7,V) ~ RP x RP x RY.

The source and range maps of the groupoid G are the two natural maps s, r : G — M given by s([ﬁy}) =

7(0), r([7]) = 7(1). G has two natural transverse foliations F, and F,. whose leaves are respectively L, =

s Ha), L* = r~Y(z) for z € M. Note that r : L, — L is the holonomy covering of L. Recall that there is a
canonical lift of the normal bundle v of F' to a bundle vg C T'G so that TG = TF; ®TF, @vg and r.vg = v,
swvg = v. It is given as follows. Let [y] € G with s([y]) = «, 7([7]) = y. Denote by exp : v — M the
exponential map. Given X € v, and ¢ € R sufficiently small, there is a unique leafwise curve v : [0,1] — M
so that

i) 1(0) = exptX i) 7i(s) € exp(vy(s))-
In particular 79 = . Thus the family [v;] in G defines a tangent vector Xe TGy It is easy to check that

~ ~

54+(X) = X and r,(X) is the parallel translate of X along v to v,.

The metric gy on M induces a canonical metric go on G as follows. TG = TF; @ TF, @ vg and these
bundles are mutually orthogonal. On T'F,. we define gy to be s* (g0|TF) and on TF; ®vg ~ r*T M we define
go to be r*gg. So the normal bundle vs of TF; is vy = TF, ® vg.

The (reduced) Haefliger cohomology of F', [H80], is given as follows. For each U; € U, let T; C U; be
a transversal and set T' = (J 7;. We may assume that the closures of the T; are disjoint. Let H be the
holonomy pseudogroup induced by F on T. Give A¥(T) the usual C* topology, and denote the exterior
derivative by dr : A¥(T) — A¥+1(T). The usual Haefliger cohomology is defined using the quotient of A*(T')
by the vector subspace L* generated by elements of the form a — h*a where h € H and a € A¥(T) has
support contained in the range of h. The (reduced) Haefliger cohomology uses the quotient of A¥(T') by the
closure L¥ of L¥. Set A¥(M/F) = A¥(T)/L*. The exterior derivative d induces a continuous differential
dg : AX(M/F) — A¥1(M/F). Note that A¥(M/F) and dy are independent of the choice of cover U.
In this paper, the complex {A.(M/F),dy} and its cohomology H(M/F) will be called, respectively, the
Haefliger forms and Haefliger cohomology of F'.

As the bundle T'F is oriented, there is a continuous open surjective linear map, called integration over
the leaves,

/ c APYRE(M) — AF(M/F)
F

which commutes with the exterior derivatives dy; and dg. Given w € APTF(M), write w = Y w; where
w; € APTR(U;). Integrate w; along the fibers of the submersion m; : U; — T; to obtain / w; € AXT).
U;
Define / w € A¥(M/F) to be the class of Z / w;. It is independent of the choice of the w; and of the
F i U;

cover U. As /

commutes with dj; and dg, it induces the map / cHPYR(M;R) — HY(M/F).
F

F
2. THE K —THEORY INDEX

In this section, we recall the definition of the analytic index of a Dirac operator defined along the leaves
of a foliation. We begin with some general remarks about operators along the leaves of foliations.



4 M-T. BENAMEUR AND J. L. HEITSCH JANUARY 14, 2023

Let E; and Ej be two complex vector bundles over M with Hermitian metrics and connections, and set
E =r*E; and E' = r*E} with the pulled back metrics and connections. A pseudo-differential G-operator
with uniform support acting from E to E’ is a smooth family (P)zep of G-invariant pseudo-differential
operators, where for each z, P, is an operator acting from E | L to E'| Zz The G-invariance property
means that for any v € Eg = ZI N f% we have

('Y'P)y:UWOPwOUw_lzpy’

where U, denotes the operator on sections of any bundle induced by the isomorphism = : Ey — L, given by
composition with ; for instance
Uy : CX(Ly; E) — C(Ly; E).

The smoothness assumption is rigorously defined in [NWX96]. If we denote by K, the Schwartz kernel
of P, then the G-invariance assumption implies that the family (K.).ep induces a distributional section
K of Hom(E,E\’) over G which is smooth outside G© = M. Here E/ = s*E1, which is also the pullback
bundle of E’ under the diffeomorphism v — y~!. Since M is compact, the uniform support condition
becomes the assumption that the support of K is compact in G. The space of uniformly supported pseudo-
differential G—operators from E to E’ is denoted ¥*°(G; E, E’), and the space of uniformly supported
regularizing G-operators is denoted by U~°(G; E, E’). When E' = E we simply denote the correspond-
ing spaces by ¥>°(G; E) and ¥~°(G; E). The Schwartz Kernel Theorem identifies ¥~°°(G; E, E') with
Cé’o(g,Hom(E,E\’)), see [Con79, NWX96].

An element of U>°(G; E, E’) is elliptic if it is elliptic when restricted to each leaf of Fs. The parametrix
theorem can be extended to the foliated case and we have

Proposition 2.1. [Con79] Let P be a uniformly supported elliptic pseudo-differential G—operator acting
from E to E'. Then there exists a uniformly supported pseudo-differential G—operator Q acting from E’ to
E such that

I —QoP eV (G E)and Igr — PoQ € V(G E).
Here Iy and I denote the identity operators of E and E' respectively.

A classical K —theory construction assigns to any uniformly supported elliptic pseudo-differential G—operator
P from E to E’, a K—theory class

Ind,(P) € Ko(T™°(G; E® E')) = Ko(CX(G; Hom(E & E')))

called the analytic index of P, [CM91, BHO04]. It will be useful to define this index class using functional
calculus in a wider space of smoothing operators, so we now relax the uniform support condition and extend
the above pseudodifferential calculus.

A super-exponentially decaying G—operator from E to E’ is a family P = (Py)zenm of smoothing
G—operators so that its Schwartz kernel P, (y, z) is smooth in z, y, and z, and satisfies

2.2. Given non-negative integer mulli indices o, B, and v, there are positive constants €,C1, and C3, such
that for allx € M, y,z € Ly,

a|a\+|6|+|"/‘Px(y’ z) _da:(yu Z>1+6
< — 7 .
| 92 0yPozY I=¢ exp{ Cs }

Here 0/0x , 0/Jy, and 0/0z come from coordinates obtained from the finite good cover U of M and d,( , )
is the distance on L,. The space of all such operators is denoted V™(G;E,E") or C%O(Q;Hom(E,E\’)).
Again when E’ = E we denote the corresponding spaces by V<> (G; E) and CZ(G; Hom(E)) for simplicity.
When E and E’ are trivial line bundles, we omit them and denote the corresponding spaces by ¥<>°(G) and

g (9).
Lemma 2.3. When E' = E, the space ¥ <>°(G; E) is an algebra.
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Proof. Let P and Q € V3> (G; E), with constants €;,C,Cy and €3, D1, Dy respectively, for the estimate
given by Equation 2.2. We may replace €; and ez by € = min(ej,e). Set « = 1+¢, C = C1D; and
D =C5+ Ds. Then for y,z € L,,

1Py o Quly, = |_|/ (1, w)Qu (w, 2) dw\</ Cre™ d(y,w)® /CzD e~ dw,z)* /D2dw<

/ Cle—dww)* /D g=d(w,2)*/D g — Ce—(d(y,2) /2°D) / o= ()" +d(w,2)° ~(d(,2)/2))/D gy, <

Lo L.

Oe—(d(y,z)“mm{/ o—d(y.w)* /D dw+/ p—d(w,2)* /D dw} <
s, S,

Ce—(d(y,zw/zam[ / =) /D gy /
i L

e—d(w,z)o‘/D dw] ,
LJ?
where

S, ={we L, |dw,z)>d(y,2)/2} and S, ={w e L,|d(y,w) > d(y,z)/2}.

Now each of the integrals /~ e~ W)™ /D duy and /~ e~ 4Uw:2)"/D duy is bounded independently of z,y, and
L, Ly

z. This is a standard argument for foliations of compact manifolds. Since M is compact, the leaves L, have
at most (uniformly bounded) exponential growth, and the integrands are super-exponentially decaying with
uniform super-exponential bounds. This gives us the estimate in 2.2 for P o Q.

To get the estimate for the derivatives I8+ (P o Q). (y, 2)/02*0y? 927 we need only note that these

are finite sums of the form
Z / a\a1\+\ﬂlpx(y7w)> <3\agl+\v\Qx(w7 Z)) J
Ox10yP 0x*20z7 v

a1tas=a

We can then repeat the argument above, using the estimates for the individual integrands.

There is a continuous embedding of algebras
je : C(G;Hom(E & E')) — CF(G; Hom(E & E')),

and we define the Schwartz analytic index Ind? as the composition of the analytic index Ind, and the
induced morphism je. : Ko(C®(G;Hom(E & E'))) — Ko(CZ(G;Hom(E & E’))). So if P is a uniformly
supported elliptic pseudo-differential G—operator,

IndS (P) = je:(Inda(P)) € Ko(CF(G;Hom(E & E'))).
By classical arguments, see for instance [MN96], it is easy to check that ¥<°°(G; E, E’) is a right module
over the algebra ¥~°°(G). The extended pseudodifferential calculus is defined by:
US(G; B, E) = Vg™ (G; B, E') @y (g) ¥(G; E, E).

It is generated by ¥*(G;E,E') and V™ (G;E,E’). When E' = E, we obtain in this way an algebra
of pseudodifferential operators. The subspace V> (G; E) is then an ideal in the algebra UE(G; E). This
is due to the estimate given in 2.2. In particular, we may define IndS (P) directly using a parametrix
Q € UVZ(G; E', E) and the classical construction, and it is obvious that the two definitions agree.

The construction of the Chern character ch, : Ko(C°(G;Hom(E @& E'))) — HJ(M/F) in [BH04] is
reviewed and extended to this case in Section 3 below. Thus we have

ch® : Ko(CX(G; Hom(E @ E'))) — Hi(M/F)
and
chf ojs+ = ch, .
Finally, the formula for ch, in Definition 3.3 below also holds for ch®.
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Now assume that the dimension p of F' is even and denote by D a generalized Dirac operator for the
foliation F'. One of the most important examples of such an operator is given by the leafwise Dirac operator
with coefficients in a vector bundle over M. It is defined as follows. As above, let E; be a complex vector
bundle over M with Hermitian metric and connection, and set E = r*(F;) with the pulled back metric and
connection. Assume that the tangent bundle T'F' of F is spin with a fixed spin structure. Then T'F} is also
spin, and we endow it with the pulled back spin structure from TF. Denote by S = ST & S~ the bundle of
spinors along the leaves of F,. Denote by V° the connection on T'F, given by the orthogonal projection of
the Levi-Civita connection for go on TG. V° in then the Levi-Civita connection on each leaf of F, for the
induced metric. For all z € M, VY induces a connection V° on S |Ew and we denote also by V° the tensor
product connection on S ® E|L,. These data determine a smooth family D = {D,} of Dirac operators,
where D, acts on sections of S ® F |E,; as follows. Let Xi,...,X, be a local oriented orthonormal basis of

TZE, and set
p
D, =Y p(X;)V,
i=1

where p(X;) is the Clifford action of X; on the bundle S ® E|Zm Then D, does not depend on the
choice of the X;, and it is an odd operator for the Zs grading of S® F = (ST @ E) ® (S~ ® F). Set
Dt =D :C*(ST®FE) - C*(S @FE)and D- =D : C*(S” ® E) - CX(ST ® E). For more on
generalized Dirac operators, see [LM89].

A super-exponentially decaying G—operator on S ® E is defined to be an operator of the form

Ay A
A= ,
( Agr Ago
where each A;; is a smoothing operator whose Schwartz kernel A;; ,(y,2) is smooth in z, y, and z, and
satisfies the estimate in 2.2. A;; maps sections of ST ® E to itself, A3 maps sections of S~ ® F to sections

of St ® E, etc. The set of all such operators is denoted Y5> (G;S ® E) or C(G; Hom(S ® E)). If we
unitalize ¥<*°(G;S ® E) by adding two copies of C corresponding to the projections 74 : C°(S ® E) —

C*(S* ® E), then we get a unital algebra that we denote by \T/(;OO(Q;S ® E). Note that 7, = ( é 8 )

0 1
U (G;S®E).
The odd operator D is elliptic, so its analytic index is defined using a parametrix @ for D which is also
odd, i.e.

and m_ = < 00 ) Since the grading operator a for S = ST @ S~ satisfies @ = 7, — m_, « belongs to

Q=QF :CX(STQE) — C*(ST® E).
Set
S, =I-Q oD and S_.=I—-D"oQ~
SO
S.:CX(STQE) — CX(STQE).

Using embeddings of our bundles in trivial bundles and computing the boundary map in K —theory, it is
easy to see that the analytic index of D is the K —theory class, see [CM91], in Ko(¥~°(G;S ® E)) =
Ko(C*(G; Hom(S ® E)),

Indq (D7) = [¢] = [7-],
where the idempotent e is given by

_ S1 —Q o (5 +52)
2.4. e_(S_oD+ - s2 .
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The class [¢] — [r_] lives in the Ky—group of the unital algebra ¥=°°(G;S ® E) but its image in the
Ky—group of C & C under the map induced by
. All + /\IS+®E A12
b ( Agy Ao + pls+op > — m);
is trivial. Since this epimorphism admits a splitting homomorphism, it is clear that the kernel of the
induced map p, is isomorphic to the Kyg—group of the non-unital algebra ¥~>°(G; S ® E). Hence, the index
Ind, (D) = [e] — [r_] is well defined.

Proposition 2.5. Set

_ tD— Dt
PD) e—tD~ DT (—e —tD™ D+/2)I teD - ViD~
t =
_e—tD+D*/2\/£D+ I— e—tD*D*

Then, for allt > 0, P(tD) is an idempotent in \ngm(g;s ® E) and

[P(tD)] — [r_] = IndS (D) € Ko (CZ(G; Hom(S & E)).
Proof. Tt is classical that all the operators in P(¢D) (with the possible exception of the term 7_) are smooth-
ing when restricted to any L,, so their Schwartz kernels are smooth when restricted to any L,. Thus to check

for smoothness, we need only check that they are smooth transversely, i.e. smooth in the variable z € M.

The coefficients of the D* are smooth, and Corollary 3.11 of [He95], says that the e ~*P D7 are transversely
tp-pt/2 L — e th D" Vi Vi tprp-y2d — et b”
th. We will sh tly that e~ ———VtD™ = D e —_— i
SmMoo e will show presently that e D-DF DFp- B
also transversely smooth.
By [He95], the Schwartz kernels Pffx (y,2) of the e~tD DT gatisty the following estimate. Given a non-
negative integer ¢ and non-negative integer multi indices «, §, and v, and a real number 7' > 0, there is a

constant C' > 0 such that foralz € M, y,z € L,, and 0 <t < T,
ai+|a\+|6|+\w\pt{tz(y7 2)
OtidxOyP Oz

2
2.6. [ | < Ct=@/2Fital 481+ 1) exp[—dz(y&)}

4t

It follows immediately that the e~tP*DT and the e—tP D7 /2 satisfy the estimate in Equation 2.2, and
so also e~ tP*DT /2, /Dt = \/1?D“‘@‘tD7D+/27 since the derivatives of the coefficients of D* are uniformly

bounded on G.

—tD~ D%t —tDtD~

I— I—
To handle e~ D+/2ﬁ\ﬁD7 VD e PP /2£+7D, note that
i I — e—stD :| _ e—sDJrD*’ “ I — e—tDiD _ l/t e-gD*D* s,
ds D+D tD+D tJo
Thus
—tD+D— _ _
fD_ —tDtD™ /2.[ — e tDT D _ \/ED /t e—(t/2+S)D+D7 ds _ \/ED 3t/2 6_5D+D7 dS
tD+D~— t t/2 ‘
I— —tDt D~
A simple calculation using Equation 2.6 above then shows that for fixed ¢, VtD e —tpTDT/ 2# is

transversely smooth and that it satisfies the estimate in Equation 2.2.
] — e—tD~D*)2
It is easy to check that the operator Q(tD) = Q*(tD) where Q= (tD) = :D_#\/ZD’ and
7 e—tDJrD* /2
Qt(tD) = ——————/tD", is a parametrix for v/tD. The corresponding idempotent e given by
tD+

Equation 2.4 is then P(tD), so the Schwartz analytic index of ¢D is just [P(tD)] — [r_]. For ¢t = 1 it is by
definition Indy (D). Since P(tD) is a smooth family of idempotents, it follows from results of [BH04] that
the K-theory class [P(tD)] — [r_] is independent of ¢, and so is IndS (D) for all ¢ > 0. O
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Remark 2.7. The above representation of the analytic K —theory index uses the isomorphism between the
K —group of the algebra CE(G;Hom(S ® E)) and the kernel of the homomorphism induced by the surjection

p:Ug®(G;S®E) — CaC,

as described in Section 3.

3. THE CHERN CHARACTER IN HAEFLIGER COHOMOLOGY

In this section we review and extend the construction of the Chern-Connes character in Haefliger cohomol-
ogy given in [BHO04]. In view of our definition of the analytic index through the K —group of the unitalization
\Tléoo (G; S ® E), the Chern character is easy to express in terms of heat kernels.

Denote the connection on the Hermitian bundle E; over M by VFi. Extend the leafwise Levi-Civita
connection on the bundle of spinors along the leaves of F' to a connection V¥ on this bundle as a bundle
over M. Then V = r*(VF®E1) is an extension of the leafwise connection V° on & ® E to a connection on
S ® E as a bundle over G. We may regard V as an operator of degree one on C*°(S ® E ® AT*G) where on
decomposable sections pQw, V(p@w) = (Vo) Aw+¢d&dw. The foliation Fy has normal bundle vy = TF,. ®rg
and dual normal bundle v* = s*(T*M), and V defines a quasi-connection V¥ acting on C*°(S @ E ® Av¥)
by the composition

CP(ERE®AN) —5 C®(S®E®AT*G) — C®(S® E® AT*G) 2% C®(S® E ® AvY),
where ¢ is the inclusion and p, is induced by the projection p, : T*G — v} determined by the decomposition

TG = TF, & TF, ® vg.
Note that C*°(S® E ® Av¥) is an A(M)-module where for ¢ € C*(S®@ E® Av¥), and w € A(M), we set

w-d=s"(w)e.

Recall U=°(G;S ® F) ~ C*(G; Hom(S ® E)) the space of uniformly supported regularizing G-operators.
We may consider the algebra

AG, 8 ® E) =0 (G:S © E)Bcme () A(M)

as a subspace of the space of A(M)-equivariant endomorphisms of C*(S ® E ® Av¥) by using the A(M)
module structure of C*°(S ® E ® AvZ¥). More specifically, given ¢ € C*°(S ® F ® Av?}), write it as

6=> 0; 05" (W),
J
where the ¢; € C(S ® E) and the w; € A(M). Then for AQw € ¥~°(G;S @ E)®cw (an) A(M),
(A®w)(¢) =D A(9) ® 5™ (w A w))-
J

It is easy to check that this is well defined.

Denote by 0, : End(C*(S® E® Av})) = End(C*(S® E ® Avk)) the linear operator given by the graded
commutator

9,(T) = [V¥,T].

The operator 8, maps the space A.(G,S® E) to itself, and (9,)? is given by the commutator with the curva-
ture 0 = (V¥)? of V¥. The operator 6 is a leafwise differential operator. To see this, let (U,~, V) be a basic
open set for G where U, V' € U have coordinates z1, ..., Zp, W1, ..., wg and y1, ..., Yp, 21, ..., 2. The x; and y; are
the leaf coordinates for F', and the w; and z; are the normal coordinates. Then 1, ..., Tp, Y1, .., Yp, 21, ---, Zq
are coordinates for (U, v, V'), and T'F; is spanned by the 0/0y;, v} is spanned by the dz; and the dz;, and v,
is spanned by the 0/0x; (which span T'F,.) and vector fields of the form 0/0z; +3%_, a;;0/9y; (since vector
fields of the form /02 +Y°%_, a;;0/dy; +>_"_, bi;0/dx; span vg). The aj; are locally defined functions on
(U,~,V) which only depend on y1, ..., Yp, 71, ..., 24, i.€. they are pull backs of functions on V. In particular,
on V, the vector fields 9/0z; + Z§:1 a;;0/dy; span v. A simple computation then shows that

pu(dx;) = dxy,  po(dz) =dz;, and  p,(dy;) = a;jdz,



INDEX THEORY AND NON-COMMUTATIVE GEOMETRY II January 14, 2023 9

where we use the Einstein convention of summing over repeated indices. Suppose that ¢ is a local section of
C*®(S®@E®Av}) and f is a smooth function defined on (U, 7, V). Then another simple computation shows
that

Thus we need to show that the operator (p,d)? is a leafwise differential operator. Now

pvdf = g—id gf dzi + g{ aijdz;,
SO
pvd(pudf) = 35:(?;1, dai A dz; + 65,34 dop Ndz; + aj:g aijdzy A dz; + ayj; ?922;: dog A dzi+
85:5;1- dzp Ndx; + 65:521- dzi Ndz; + (%a:g%awdzk ANdz; + g—fg :dzk Adzi+
aya:afmi aedze N dzi + 85:521- agrdze N dzi + ay({f(‘;cyja[kaij dzg A dz; + g?i 8?;;: aekdze N dz;.

The first, sixth, and eleventh terms are zero as usual, the fourth term is zero as da;;/0x, = 0, the second
and fifth terms cancel, the third and ninth terms cancel, and the seventh and tenth terms cancel. Thus
8aij + E)aij

0
2
(pl,d) = [azk e 8yj’
which is a first order leafwise differential operator, with coefficients in A*v¥. In fact 6 has coefficients in
r*(A*r*), as it is the pull back under r of an analogous operator on M. In particular, we may form the
operator A on M with respect to the foliation F' and the normal bundle v in complete analogy with the
operator #. Using the coordinates above, it is clear that 6| (U,~,V) = r*0f | V. This fact will allow us to
handle 6 in the estimates used in the proof of the main theorem.

In the same way as above, we consider the algebra

As(G.8® E) 1= Ug™(G; S ® E)R¢ (ar) A(M)

as a subspace of the space of A(M)-equivariant endomorphisms of C*°(S ® E® Av}), where V<™ (G;S® E)
is the algebra of superexponentially decaying G—operators defined in the previous section. To extend our
Chern-Connes character to Ko(¥ 5™ (G;S ® E)), we need the following.

akg:| dzp Ndz; ®

Lemma 3.1. 9, preserves As(G,S ® E), and (9,)? is given by the commutator with 6.

Proof. This is a local (on M) question, so we may restrict attention to U e U. If H € V(G;S® E) | v
and w is a differential form on U, then 0,(H ® s*(w)) = 0,(H) ® s*(w) £ H @ p,ds*(w). As any element
of As(G,S ® E) |y may be written as a sum of elements of the form H ® s*(w), to show that 0, preserves
As(G,S ® E), we need only show that ixd, H € ¥<™(G;S ® E) |y, for any bounded vector field X on U.
It then follows immediately from the proof of Lemma 3.1 in [BHO04] that (9,)? is given by the commutator
with 6.

The Schwartz kernel of H (also denoted H) is a section of a bundle over the double graph Gjg) = U Ly X

reEM
L. Given basic open sets (U, 71, V1) and (U, 72, V2) of G, the basic open set (U, 1, V1,72, V2) on Gy consists
of ordered pairs ([a1],[as]), where [a;] € (U,v;,V;), and s([a1]) = s([az]). Let 21,...,2p,w1,...;wq be

coordinates on U, and y{,...,y, 2], ..., 2} coordinates on Vj, where the z; and y] are the leaf coordinates,
and the w; and z] are the normal coordinates. Note carefully that we now use T1, ..., Tp, Wi, ..oy Wy, Y1 4 e Y,
as coordinates for (U,v;,V;), and 1, ..., Tp, Wi, ..., Wq, Y1, ... 7yp,yl,. ,yp as coordinates for (U, v1, V1,72, Va).

On V}, v is spanned by the vector fields 8/823 +3 0, alka/ayk, where the af, are locally defined functions,
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each of whose der_ivatives is uniformly bounded over all V; in the good cover Y. On (U, ~;, V;), we still have
the one forms dz], and as above

po(de;) = dz; po(dw;) = dw;, p,(dz]) =dz!, and  p,(dy]) = aj,dz].
Denote by &y the bundle of spinors along T'F', and suppose that on V}, VE®EL i5 given by
VIO | = dy + Aldy! + Bldz,
where A7, B] € C*(V;; Hom(Sy ® E1)). The coefficients of the A7 and B] (with respect to orthonormal
bases of Sop ® E1) have each of their derivatives uniformly bounded over all Vj in the good cover ¢. Then on
(U5, Vj), V = dg + Ajdy] + Bjdzj, and
VY = 8/0x; @ pyda; + 8/w; @ p,dw; + d/dy! @ p,dy] + Alp,dy! + Blp,dzl,
where A{,Bi are now in C*°((U,~;,V;); Hom(S ® E)), and are really A7 or and Bi or. Denote by ; :

(U, 71, V1,72, V2) = (U,v;,V;) the obvious projections. Then a straight forward computation shows that the
Schwartz kernel 9, H on (U, ~1, V1,72, Vo) with respect to the corresponding local bases, is given by

OH =71 (V | W vi) © H — Homspy (V| (ysvs)) =

8Hﬂ_* dx—}—aH o +8H . d1+8H At
ST PvAT; + 7T PrAW; + 7T PuAY; + 55 TaPudy;
oz, 1P B 1P i ayil 1Pvay ayig obvay
7 (Azlpl,dyi1 + B,ip,,dz,i) oH—Hom, <A§pydyi2 + B,%p,,dz,%) =
OH OoH , o0H , N "
o, dw; + @Wl (allcidzli) + Tylg% (aiidzl%) +m ((Azlallei + Bli)dzli) oH—Hom, ((A?aii + Bl%)dzlz)v

as OH/Ox; = 0 since H is G—invariant. Since the w; are functions of the z}, 8, H depends only on the yi
and z], so it is also G invariant. In addition,

* 3.0 _ px 3.0 _
midz, = h dz, = Choyry QWi

where h;j is the holonomy map defined by ~; from v* |y, to v*[y. As hf/j is an isometry, the ¢, have each
of their derivatives uniformly bounded over all (U, v, V4,72, V2). Since each of the derivatives of the Ag , Bg

and a{n— are also uniformly bounded, and H is super-exponentially decaying, it follows easily that for any
bounded vector field X on U, ix0, H is also super-exponentially decaying. ]

By the Schwartz kernel theorem, Ag(G,S ® E) is isomorphic to the algebra
CZ(G;Hom(S ® E))@ces (a)A(M).
For any T € Ag(G,S ® E), define the trace of T to be the (compactly supported) Haefliger k-form Tr(T)
given by

Tr(T):/Ftr(Tm(f,T))d:c,

where T, (Z,T) is the smooth Schwartz kernel of T, Z is the class of the constant path at z, tr(T,(Z, T)) is the
usual trace of T,(Z,T) € End((S ® E)z) ® AT M and so belongs to ATM}, and dz is the leafwise volume
form associated with the fixed orientation of the foliation F'. The map

Tr: As(G,S ® E) — A(M/F)

is then a graded trace which satisfies Trod, = dy o Tr. See [HL02], Lemma 2.5, and [BHO04|, Lemma 3.2.
Note that Lemma 2.5 of [HLO02] requires one of the elements to be uniformly exponentially decaying while
the other must have uniformly bounded coefficients. But if an operator is uniformly exponentially decaying
it does have uniformly bounded coefficients.

Since 9?2 is not necessarily zero, we used Connes’ X —trick to construct a new graded differential algebra
(./16, ) out of the graded quasi-differential algebra (Ag(G,S ® E),d,), see [Con94], p. 229. By Lemma 3.1,
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the curvature operator 6 preserves Ag (G, S ® E). As a vector space Ag = My(As(G,8 ® E)). An element
T = T Tho € /Tg is homogeneous of degree T =k if
Tor Tao
k=0T11 =0T1o+1=0T +1 =0T +2.

On homogeneous elements of .Zg, ¢ is given by
o= ( —0,To1 —0,Tn L1 oo T+(-D)7T -9 0 )’

and is extended to non-homogenous elements by linearity. A straightforward computation gives 62 = 0. For

homogeneous T' € Ag(G,S ® E), the differential ¢ on ( z; 8 > € Ag is given by

(3 9)-(7 )

1 0
(0 4)
7T = Tol"

This makes (Z@;, 0) a graded differential algebra.
The graded algebra As(G,S ® F) embeds as a subalgebra of Ag by using the map

T 0
T — ( 0 0 > .
We shall therefore also denote by T' the image in Ag of any T € As(G,S® E).
For homogeneous T' € Ag define

(T) = Te(Thr) = (=1)°" Tr(T2a0),
and extend to arbitrary elements by linearity. The results of [BH04] extend easily to show that the map
®: As — AL(M/F) is a graded trace, and that ®od = dy o .
The (algebraic) Chern-Connes character in the even case is the morphism
chy : Ko(CF(G, S © E)) = Ko(Ug™(G:S ® E)) — H(M/F)
defined as follows. Denote by \Tléoo (G;S ® E) the minimal unitalization of 3™ (G;S ® E). This amounts
to adding a copy of the complex numbers C, so
Ve™(G;:S®E) = Ug®(G;S® E) @ C.

Let MN(\T!gX’(Q;S ® E)) be the space of N x N matrices with coefficients in \T/g”(g;s ® E). Denote by
tr: My(¥e™(G;S® E)) = U™ (G;S ® E) the usual trace.
The results in [BH04] again extend easily to give the following.

Theorem 3.2. Let B = [é1]—[é2] be an element of Ko(¥ ™ (G; S®E)), where &1 = (e1, A1) and é2 = (e2, A2)

~

are idempotents in My(Vs™(G;S @ E)). Then the Haefliger forms

(® o tr) (61 exp <_(2;1)2>) and (o tr) (ez exp (_(662)2>)

2

Set

and define a new product on .Z@ by

are closed and the Haefliger cohomology class of their difference depends only on B.

Definition 3.3. The algebraic Chern character ch,(B) of B is the Haefliger cohomology class

3.4. cha(B) = {(cb o tr) (61 exp <(25;)2>)] - [(@ o tr) (62 exp (gjf))} .
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In order to effectively compute the Chern character of the index of a generalized Dirac operator for F', we
need some further results. The exact sequence of algebras

05 Ug®(G;S®E) 5 Ug®(G:S® E) £ C2 = 0
has a splitting homomorphism g : C? — {Ivléoo (G; S®E) given by o(A, u) = Amy + pm—. Therefore the kernel
of the induced map
ps  Ko(Te™(G;:S ® E)) — Ko(C?) ~ Z2,
is isomorphic to the group Ko(Vg™(G;S® E)). Denote by pg the obvious projection of \ng”(g; S®E) onto
C. Then the inclusion map
B:VST(GSOE) — VY™ (G:S®E),
given by B(T,\) =T + Ary + An_ induces the isomorphism

B : Ko(Vs™(G;S ® E)) = Ker(po,») — Ker(p.) C Ko(Vg™(G;S ® E)).

We shall use the universal graded algebra in the proof of Proposition 3.5 below, so we recall its definition.
To any algebra C, there corresponds a (universal) differential graded algebra Q(C) = @,>0Q™(C) which is
defined by

Q°C):=C®C, and forn >1,Q"(C) := (C®C) @ C%".
The differential d : Q"(C) — Q*+1(C) is defined for @’ € C and ¢ € C by
dl(@®+0)®d @ -®d)] =10d®cd @ - @a"
It is clear that by definition d? = 0. The space Q"(C) is endowed with a natural right C-module structure
(and hence right C @ C-module structure) defined by
(@ +eo)@a @ - ®@aa" ™ = (1)) (-1)/(®+e0)®@ - @ddT @ - ®@a" T
§=0
The algebra structure of (C) is defined by setting
(@ +eo)@ad @ @a) (et @ - 0b) =("+e)®d @ - @a) b @ @b
and
(®+c0)®ad @ - @a") @b @ - b)) =d[(®+c)Rad @ - @a" @b @ @b
A straightforward verification shows that (2(C), d) is a differential graded algebra, see [Con85]. We point
out that by definition
(a® 4+ c)da'---da" = (a° +c)®a' @ - - ®@a"
The following is known to experts. We give the proof for completeness, since it will be used in the sequel.

Proposition 3.5. Let € and €' be two idempotents in Mn(Vs™(G;S ® E)) such that [€] — [€'] belongs to
the kernel of p.. Then the Haefliger forms

—(6(e — (gop)(é)))2>) and

2

@ o)~ eon@)ex

2

@om)((@ - (0on@ess
are closed and we have the following equality in Haefliger cohomology:

(chq 0B 1) (le] — [€') = [(q’ o tr) (¢ = (00 p)(€)) exp <(5(é - (257: p)(é)))2>>}

_ [(cp o tr)((é’ —(eop)(&))exp ((6(6/ — Op)(é/)»z))] '

—(6(¢ = (o op)(é’)))2>)

um
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Proof. We define for every k > 0 a multilinear functional ® on the unital algebra \Tléoo (G;S ® E) by the
equality
ST, -, T*) = &(T6T - - - 6T%) + B(S(A°TH)oT? - - - 6T"),
where T9 = T9 + N € Ug™®(G; S ® E) with
. ~. ~. . ~. J . )
T7 =T —(pop)(1T7) € V™ (G:S® E) and AV = pop(T7) = < /B l?j ) =Nnrg +pWn_.
Then ® is a functional on the universal differential graded algebra associated with @gW(g;S ® E), see
[Con85] and also the bivariant constructions in [CQ97, Nis93]. More precisely, we set:
O((T° + c)dT™ - - - dT*) := ®(T°,--- , T").
We then have by definition
(Pod)=0
on the universal differential graded algebra associated with \ng”(g ;S E).
For TV =T7 + AV € Ug™(G; S ® E), we have
(=1)*®([T0dT" - - - dT*, T*)) = (—1)k&>(fodf1 o dTFTRY — (= D)FQ(THTO4T? - - - dT")

= O(T°T'dT?.. dT*) +Z D)/ O(TOdT" - - dTI (T TI1)dT7+2 - . dTF+Y)

- hl)’@(f’““TodTlde’@)
= O((TT' + AT + TOAN)ST? - - T + B(S(APALT?)ST3 - - - 5THH)

(—1)IQ(TOST" - - 6T~ §(TITIH 4 NITITY L PINTTISTIF2 .. gTR L

<
Il
—_

+
M-

— BO(AN(TIT? + A'T? + T A?))6T3 - - - 6TH )

(=1)7®(S(A°TY)ST? - - - STI=1S(TITIHE 4 NI - TINTFYYTIF2 . TR+

+
Mw

[\™]

j=
o ( ) ((Tk+1TO + Tk+1A0 + Ak+1TO)5T1 5Tk)
(=)D (S(AFHIASTY ST .. 6TF).

By using a connection which commutes with the grading we insure that 9" (A) = 0 for any A € Cry @Cr_.

Thus, using the definitions of the product and the differential §, we can easily deduce the following relations
for all A,T,A’, and T":

3.6. 0V (AT) = A(9"T), 0"(TA) = (9"T)A, OAT = AOT, TAS(T')=TS6(AT"), &(TA)T' = (5T)(AT"),

S(TA)S(T') =6(T)6(AT"), TASN'T')=To(ANT) and 6(TT')=6TT +T6T'.
It is then a straightforward calculation that

S((TT + A°T* + TOAY)OT? - - 5T )+

DIO(TOST! - - 6TI 1 §(TITIH 4 AITIHL f TINIH)STIH2 .. gTR L)

Mk

]:1
collapses to
S(AOTHST? - - 6T ) + (=1)*@(TOST" - - 6T* (6T TH + 5(T*AF))),
and
S(S(AAT?)ST? - - 6T ) — S(S(AN(TT? + AT + T A?))6T? - - 6T 1)+
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k
D (1 B(E(AT)OT? - STI S(TITIT + ATV 4 TINITH)TIT2 - 5TRHT)
Jj=2
collapses to
S(AOTOT? - 5T + (=D (S(A'THOT? - - ST L (STFTHTY + 5(THAFTL))),

Substituting and multiplying by (—1)*, we get

S([T0dT" ---dT*, TF)) = (=1)*®AT6T?- .. 6T
+ O(TOST! - sTrRTHTYY)
+ O(TOST! - sTF15(THARTYY)
— (-1 )k@(AOT15T2“'5Tk+1)
+ D(S(A°THST? - - sTRTHTY)
+ D(S(ATHST? - sTF 1S (THARTYY)

(0
(
— (TS 8T
—  O(THFIAST ... 6TF)
—  B(AFFITOST ... 5TH)
—  O(S(AFFIAOTY T2 .. 5TR).

The first and the fourth terms on the right cancel. Using 3.6 and the trace property of ® we have the
following equations:

0 = &TOT"---sTFTHTY) — o(THHITOT! - .. 6TF).

0 = O(TO%T - 6TF15(TFAMTY)) — (APHITOST! - .. 6T").

0 = ®SATHST? .- sTFTHY) — S(THFHIASTE ... 6TF),

0 = ®BATHST? ... 5T 15(TEARL)) — (S(AFHIACTYST2 . 6TF).

Thus
S([TOdT* - - - dT*, TF1]) = 0.

Hence ® is a closed graded trace on the whole universal algebra associated with \ng"’(g;s ® F) which
commutes with the differentials.
Given the above, we know that for any idempotent € in the matrix algebra MN( s(G;S ® E)), the

expression
~ _ —5(e)?
(o tr) (e exp < 2in ) )

is a closed Haefliger form and that its cohomology class only depends on the K—theory class [é] of the
idempotent €, see for instance [BHO4]. But note that this Haefliger differential form coincides with the

differential form .
- ;i: p)(€))) ))

(@ otr) ((é —(00p)(8)) exp (‘(5(5

which is then also closed and represents the same Haefliger cohomology class. Thus we deduce that the
Haefliger class

(@ou) (e~ (op)(e) exp (— A= LoD )]

2

(@0 ) (i€~ (gop)@)ep (~HEL2DENEY )
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is well defined and only depends on the K —theory class [¢] — [¢/]. We denote it by ch,([¢] — [¢']). So we have
the following morphism

chg Ko( s (G;S®FE)) — HL(M/F).

The above construction applies also to the minimal unitalization \T/éoo (G; S®E) of the algebra ¥ ™ (G; S®FE)
and yields a morphism

ch, 1 Ko(Wg™(G; S © E)) — HL(M/F),

whose restriction to Ko(¥s™(G; S ® E)) is by definition the Chern character ch,. Note that ch,, is given by
the same formula (3.4), except that the K —theory element is no longer supposed to live in the kernel of

Ko( *(G;:S®E)) — Ko(¥e™(G; S ® E)).
Now the map 3 : \T/;O(g; S®E) — \I/é (G; S®F) induces a well defined morphism of short exact sequences

Z0 Do, *

0 — K056 B) Ko(T57(6:5 5 )
| i | 5. | .

0 — Ko(¥s™(9; 5@ E))

Ko(Tg™(G;S @ B)) — Ko(C?) ~ 22— 0.

Hence composing with chy gives the following diagram which is commutative by the very definition of the

\
V.

©(G;SQ®F))

H.(M/F).

/
0 — Ko(¥s™(G:S B
\

®(G;:S®F))

In particular, &1a 0By = &1,1, SO
&1(1 oBio 10,4 = C/I\la 0dgx = ch, .
But,
By 0, : Ko(Ve™(G;S ® E)) — Kerp,

is an isomorphism, so we may define the Chern character directly on the group Ko(¥s™(G;S®E)) = Ker p,.
The proof is thus complete. O

Corollary 3.7. Let D be a generalized Dirac operator for the foliation F acting on the sections of the
Zo—graded bundle S ® E. Let P(tD) be the associated idempotent in the algebra V<>(G;S ® E), as in
Proposition 2.5. Set P, = P(tD) — w_. Then for all t > 0, the Haefliger form
—(6P;)?
(®otr) (Pt exp {(t)} ),
2T

is closed and as Haefliger classes, we have the equality

chy (Ind, (D)) = [(cb o tr) (Pt exp [_(5_13t)2b] .

2im

Proof. The analytic K —theory index of D in the K —theory group Ko(¥ s> (G; S® E)) of superexponentially
decaying operators is given by

Ind, (DY) = [P(tD)] — [r.] € Ker (KO( ~(G;S® E)) — 22) .
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Since the splitting map o : C? — \ng”(g; SQ®E) is o(A, u) = My + pum—, we have that
P(tD) — (¢op)(P(tD)) = Py and m_ — (¢ o p)(r-) =0.
Now apply Proposition 3.5. O

In [BHO04] we proved that the Chern character ch, composed with the topological and analytic index maps
of Connes-Skandalis [CS84] yield the same map. As a particular case, for any generalized Dirac operator
D with coefficients in a Hermitian bundle E; over M, the Chern character of the topological index of D,
denoted ch,(Ind; (D)), coincides with the Chern character of the analytic index of D, i.e.

Cha(Indt (D+)) = Cha (Inda (D+))7

and the common value of this Haefliger cohomology class is

cha(Ind (DT)) = chy(Ind, (DT)) = / A(TF) ch(Ey).
F

Here E(TF) is the usual A genus of the tangent bundle of F', and ch is the usual Chern character of Fj.

In order to define the Chern character of the index bundle of D, we need the concept of “transverse
smoothness” for A(M) equivariant bounded leafwise smoothing operators on S ® E ® AvE.

The spaces we consider carry a natural Sobolev structure due to the compactness of the ambient manifold
M. For each leaf L, of the foliation Fy of G, and k € R, denote by Hi(S ® E | L,.) the Sobolev space which
is the completion of C°(S ® E | L,) with respect to the norm ||o||x = [|(1 + D?)*/2¢||, where || || is the L?
norm on C°(S ® E|L,). Because all of the objects we use are the pull-backs of objects on the compact
manifold M which are smooth as objects on M, the Sobolev spaces Hy(S ® E|L;) do not depend on the
choices made. An operator

A:C®(SQ®E)—=>C®(S®E)
is a bounded leafwise smoothing operator provided that for all k£ and ¢, and all x € M, A defines a bounded
operator
A:HL(S®E|L;) = Hi(S® E|Ly,),
with bound independent of x, but perhaps depending on k and £. A prime example of such an operator is
g(D?), where g is a Borel function on [0,00) so that for all k, (14 2)*/2g(z) is bounded on [0, c0).
An A(M) equivariant bounded leafwise smoothing operator H on C*°(S® E® Av¥) is first of all a leafwise
operator
H:C*S®E® /\V:) S C®(SRE® /\1/;)
which is equivariant with respect to the A(M) module structure of C°(S ® E ® Av¥). As such it can be
written as
H= H[O] JrH[l] + - JrH[n],
where Hig is homogeneous of degree d, that is, for all ¢,
Hig : C®(S@E®@ NV = C®(S® E®ANTW)).
Then Hg may be written as
Hig =) Hi; 5" (w)),
J
where the w; € C®(AYTM*) and Hjg) ; is a leafwise operator on S @ E. We further require that for any

X € C®(NITM), ix Hjg is a bounded leafwise smoothing operator on S ® E. The k, ¢ norm ||H||j; of such
an operator is given by

| H[xe = sup |lixHig|l.e,
z,d, X
where X € AYT'M, has norm 1, and |lix Higylk.¢ is the norm of the operator

ixHyg : Hi(S® E|Ly) — Hi(S ® E| Ly).
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The norm ||H||p,0 will also be denoted |[H||. Since M is compact, it is easy to prove that ||H||;¢ < oo for
all k, .
For X € C®°(AMTM), and Y € C®(TM), set

0y (ix Hya) = iy (9, (ix Ha)),
which (if it exists) is an operator on S ® E.

Definition 3.8. Suppose H is a A(M) equivariant bounded leafwise smoothing operator on S ® E ® AvE.
We say H is transversely smooth provided that for any X € C®(AYTM), and any Y1, ...,Yy € C®(TM), the
operator

0¥ .0 (ix Hya)

is a bounded leafwise smoothing operator on S ® E.

If H is transversely smooth, so is 0, H. Note that as in the proof of Lemma 3.1, this is a local question
on M. On U € U, H is a sum of operators of the form ix Hyg ® s*(wx) where wx € C>(NIT*U) is a closed
form and X € C*°(AYTU), both of which extend to M. Then on U, 9, H is a sum of operators of the form
Oy (ix Hiq)) ® s*(wx ), and the result is immediate.

Suppose that ¢ and ¢ € C2°(G), with associated multiplication operators, M, and M. If H is transversely
smooth, then My o H o My, is also transversely smooth. Standard techniques using the local expression for
dY then show that the Schwartz kernel H,(y, z) is smooth in all its variables, where € M, and y, z € Zz

It follows from Lemma 3.1 that any element A € Ag(G,S ® E) is transversely smooth.

We shall assume that Py, the projection onto the kernel of D, is transversely smooth. Note that classical
results imply that P, is a smoothing operator when restricted to any leaf L,.

Recall that o = 7, — 7_ is the grading involution for S® F = (ST ® E) & (S~ ® E). Then

[P0 [P0
Po—{ 0 PO], SO ozPo—[ 0 —P;

is the super-projection onto the leafwise kernel of D, where POi is projection onto the kernel of D*. Note
that 8,7+ = 0, provided we use a connection which preserves the splitting S = ST © S~, which we assume
that we do, so 9, = 0, and af = fa. Note also that aPy = Py, so

(0, (aPp))? = a?(0,Py)? = (8, Py)* and aPyfaPy = o> Py Py = PyfP,, which implies (5(aPy))? = (6Py)>.

—(0(aby))?
29

)) = (o tr) (aPoexp(LPO)z)) is

Proposition 3.9. The Haefliger form (® o tr) (aPO exp( 5
i

closed, and the Haefliger class it defines depends only on Py.
Proof. Set U = 2Py — 1 then

1 1
ol =Ua,U? = I,UPy = Py = RyU and U(0Py) = SU(8U) = =5 (8U)U = —(6R)U.
Thus, for any k£ > 0,
(dg o @ otr) (aPo((SPo)Qk) = (Potr) (a((SPO)Qk'H) =

(® o tr) (U2a(5po)2k+1) — (—1)2 (@ o tr) (Ua(apo)%“U) = (®otr) (Ua(cSPO)zk“U).

Lemma 3.10. (P o tr) (Ua((SPO)Qk'HU) = (®otr) (a((SPO)Qk‘H).

This immediately implies that
(dg o ®otr) (aP0(6P0)2k> =0.
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Proof. Using U = 2P, — 1, we get by multiplying out
(® o tr) (Ua(éPo)%“U) — 4(® o tr) (Poa(apo)%+1po) — 2P otr) (a(éPo)%HPO) -

2(® o tr) (POCV(CSPO)%H) + (P otr) (a(6P0)2k+1>.
Thus we need to show that
(P otr) (a(épo)%HPo) = (®otr) (Pooz((SPo)QkHPo) = (Potr) (Poa((SPO)QkH).
As Py = Pye~tP”, we have

(® o tr) (a(5po)2k+1po) — (@ otr) (a(apo)%“poe*tw).

The operator a(dPy)?*+1 Py is bounded, and e~*" ®is super exponentially decaying, so we may apply Lemma
2.5 of [HLO2] to get that this last equals

(® o tr) (e*tDQO[(apO)?kHPO),
which is true for all ¢ > 0. Now the proof of Theorem 2.3.17 [HL90] allows us to conclude that
tli}r&(@ o tr) (e_tDza(éPo)%HPo) = (dotr) (tli}rgo e_tDQa(éPo)%'HPo) = (dotr) (Poa(éPO)%HPO).
Similarly for the second equality. O

In order to show the independence of the choice of connection, we use the relevant parts of the proof of
Theorem 4.1 of [BHO04]. Indeed, it is obvious that the Poincaré argument developed there still applies to the
regularizing operator Py even though it may be non-compactly supported. (|

Definition 3.11. The analytic Chern character ch,([Py)]) of the index bundle of D is the class of the Haefliger

w0 (oo S — ot om0

Finally, an easy induction argument using the fact that for any idempotent e, e(d,e)*~te = 0 for all

£ > 0, shows that ,
e(6e) = [ € ((0,€) +ebe)’ 0
0 0/
Thus

((&IPO);: Py Fy) ))} .

3.12. chy([Po]) =) [(TY otr) (aPo exp(—

4. PROOF OF MAIN THEOREM

Denote by P. the spectral projection for D? for the interval (0,¢). Recall that the Novikov-Shubin
invariants of D are greater than k£ > 0 provided that there is 8 > k so that

(Trotr)(P.) = (®otr)(P.) is O(e?) as € — 0.

When we say a Haefliger form ¥ depending on ¢ is O(¢”) as ¢ — 0 we mean that there is a representative
Y € ¥ defined on a transversal T, and a constant C' > 0, so that the function on T, |[¢||r < Ce® as € — 0.
Here | ||z is the pointwise norm on forms on the transversal T' induced from the metric on M.

We now prove our main theorem.

Theorem 4.1. Assume that F is Riemannian, and that the Novikov-Shubin invariants of D are greater
than q/2. Assume further that the leafwise operators Py, and (for e sufficiently small) P. are transversely
smooth. Then the analytic Chern character of the K-theory index of D equals the analytic Chern character
of the index bundle of D, that is

chy(Indg (D)) = chy ([Po]).
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Theorem 4.1 uses estimates on Novikov-Shubin invariants of D to deduce the equality of the whole Chern
character of the index bundle with that of the analytic index. We will actually prove the following stronger
theorem.

Theorem 4.2. Assume that F is Riemannian, and that the leafwise operators Py, and (for e sufficiently
small) P, are transversely smooth. For a fizved integer k with 0 < k < q/2, assume that the Novikov-Shubin
invariants of D are greater than k. Then the k' component of the Chern character of the K-theory index
of D equals the k" component of the Chern character of the index bundle of D, that is

chy(Ind (D)) = chg([R]) € HZ(M/F).

The proof of this theorem is rather long and involves a number of complicated estimates. For easier
reading, we will split it into a series of propositions and lemmas. Note that Theorem 4.2 implies Theorem
4.1.

For the rest of this section, let k& be a fixed integer in the interval [0, ¢/2]. By Corollary 3.7, we need only
show that,

lim (® o tr) (Pt(dPt)%) = (®otr) (apo(a(apo))%).
—00

tD

If we ignore the minus signs in P;, we see that the diagonal terms give e~ 2, and the off diagonal terms are

I — —tD?
given by (Pt)Ql = (eftD2/2\/ZD)21 and (Pt)12 = (67tD2/2;#\/£D)12. Thus
I — —tD?
27T+ — e P 7T_€7tD2/2\/'ED7T+ — 7T+eftD2/2t;#\/ED7r_.
As the connection V used in the definition of 9, preserves the splitting S ® F = (ST @ E) & (S~ ® E),
—t

I[—etD?
9,7 = 0, and we may work with the operators e—tP”, e=tP*/2\/4D, and e*tDQ/QT\/fD in what

Pt = 7T+€7tD

follows instead of the (more notationally complicated) entries of P;.

We will assume that the reader is familiar with the Spectral Mapping Theorem, see for instance [RS80],
and how to use it to compute bounds on norms, strong convergence, etc. This theorem gives that for £ > 0,

I — —tD?

the norms of the operators Dée_tDz, Dée_tD2/2\/1?D and DfetP*/2 D2 VtD are uniformly bounded
as t — oo. In addition, for £ > 0, all three converge in norm to zero as t — co.

Choose d so that )

“1<d<— <0

B
and couple € to t by setting

e=1t°.

Because of the uniformly bounded geometry of the leaves of Fy, which follows from the fact that all the
structures we use on G are pulled back from the compact manifold M, the leafwise estimates we give below
are uniform over all leaves of F.

Denote by Q. the spectral projection for D? for the interval [e, 00). Since I = Py + P. + Q., the operator
0, Q. is bounded. Now consider

Pt:POPtPO+PePtP6+QePth:aPO+PePtPe+QePth~

Proposition 4.3. Ast — oo,
(i) ||QcP:Qc|| is bounded by a multiple of e= (110 /16)
(i) |10, (QP:Q¢)|| is bounded by a multiple of e= (0 /16),
(iii) || PPy Pe|| is bounded,
(iv) ||0,(P.P,P.)|| is bounded by a multiple of tz%9), for any a > 0.

Remark 4.4. The coefficient 1—16 in (i) and (i) can be improved very easily but this does not allow us to
improve the assumption on the Novikov-Shubin invariants.
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Proof. Note that the element
0 (QePrQe) = 0, (Qe) PQc + QePr0,(Qe) + Q0 (P1) Qe
and [|0,(Q.)|| is bounded. We may write P, = ¢~*P°/4P, = P,e='P*/4 where
o—3tD~D* /4 (767tD*D+/4)I — et Dt ViD~
- tD- D+

_eftD+D_/4\/£D+ _673tD+D_/4

ﬁt has essentially the same properties as P, in particular its norm is bounded independently of ¢. Since
e tP*/AQ || = [|Qee™P*/4|| < emte/t = 1"/ we have that [|P,Q.|| and ||Q.P,|| (so also [|Q.PQc]|,
[10,(Qe)PQc|| and ||QP:0,(Q.)||) are bounded by a multiple of et/ Thus we have (i) of the
Proposition, and to establish (i) we need only consider the term Q.9,(P:)Q.. First however, we need the
following result on the operators 9, (D) and 3, (D?).

Lemma 4.5. Suppose that H is a bounded leafwise smoothing operator on S® E, and extend it to an A(M)
equivariant bounded leafwise smoothing operator on S ® E ® Av:. Then HO,(D), 8,(D)H, Hd,(D?) and
0,(D?)H are A(M) equivariant bounded leafwise smoothing operators on S @ E @ Av:.

Proof. We may construct the partial derivative & for the foliation ' and its normal bundle * in complete
analogy with the operator d,,, and we have the leafwise Dirac operator D for the foliation F' and the bundle
E;. Then, 9,(D) = r*0L (D). In particular, let (U,v,V) be a basic open set for G where U,V € U have
coordinates z1, ..., Tp, w1, ..., wq and Y1, ..., Yp, 21, ..., Zg. The z; and y; are the leaf coordinates for F', and the
w; and z; are the normal coordinates. We use x1, ..., Tp, Y1, .-, Yp, 21, ---, ¢ as coordinates for (U,~,V), and
v is spanned by the dz; and the dz;. On V, v* is spanned by the dz;, and 90X (D) is given by an expression
of the form
0, (Dp) = Ayj(y, 2)dz; ® 8/dy; + Bj(y, 2)dz;,

where A;;j, B; € C™(V;Hom(Sy ® E1)). The coefficients of the A;; and B; (with respect to an orthonormal
basis of Sy ® E; | V') have each of their derivatives uniformly bounded over all V' in the good cover U. Because
D is independent of z1, ..., 2, and V | (7,5, vy has the form given in the proof of Lemma 3.1, 9, (D) has exactly
the same form on (U,~, V), that is

9,(D) = Aij(y, 2)dz; ® 0/dyi + B;(y, z)dzj,
where A;;, B; are now in C*((U,~,V); Hom(S ® E)), and are really A;; or and Bjor.

Now suppose that z € U and X € TM, with ||X|| = 1, and consider the leafwise operator ixd, (D) on
ZI. Write X = X¥ + X" where X € TF, and X" € v,. Then the local expression for ixd, (D) in (U,~, V)
is

ix0y(D) = Ayj(y, 2)dzj(h(X"))0/0yi + B;(y, 2)dzj(hy(X")),
where hy : vy — vy is the holonomy map induced by v and 2’ = (y,z) € V. Since h, is an isometry,
[|hy(X¥)|| < 1. Thus, ix9,(D) is a smooth first order leafwise differential operator on S ® E with uniformly
bounded coefficients. It follows that for any k € R, the operator ixd, (D) maps H(S® E | L) to Hy_1(S®
E|L,), and it is a bounded operator with norm independent of z. See [$92], [K91], and [K95].
If H is a bounded leafwise smoothing operator on & ® E, then for all £,/ € R and all x € M, H :

Hi-1(S® E| Ew) = Hire(SQ E | Zw) and it is a bounded operator with norm independent of x. Thus, for
all k,/ € R and all x € M, the composition

ixHO,(D): He(S® B|Ly) "2 1y (S ® B Ly) -5 Hysu(S @ E| L),

is a bounded operator, and its norm ||ix HO,(D)||k k+e < ||H|[k—1,k+ellix 00 (D)|lk,k—1, which is independent
of xz. Thus HJ,(D) is an A(M) equivariant bounded leafwise smoothing operator on & ® E @ Av}, in
particular ||H9,(D)| < oo.
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The same argument using the composition

ix0,(DVH : Hi(S @ E| L) 5 Hyponn (S @ B L) 28 1y (S © B | L),

shows that ||0,(D)H|| < co.

The same proof gives the result for 9, (D?) if we replace 8, (D) by 9,(D?), and 9 (D) by 0F (D%). The
fact that ixd,(D?) is a smooth second order leafwise differential operator on S ® E with uniformly bounded
coefficients gives that for any k € R, the operator ix 8, (D?) maps (S ® E | Ly) to Hy—2(S ® E| L,), and
it is a bounded operator with norm independent of x. O

Now we establish (i7) by considering the individual elements making up the term Q.0,(P;)Q..
Lemma 4.6. ||Q.8,(e~tP°/¥)Q.|| is bounded by a multiple of e=(t""/8%)

Proof. Recall the foliation Duhamel formula of [He95] (which requires that G be Hausdorff) which states
that

t
6,,(6_“32) = —/ 6_5D28V(D2)e(s_t)D2ds.
0
Thus ;
Qud(eP")Q. = — / Que*P" 0, (D)D" Q. ds =
0

¢ t/2
B QeeisDrA’ay(DQ)e(sft)DzQeds _ / QeeisDzay(D2)e(57t)D2QGdS.
t/2 0

The norm of the first integral satisfies

t t
I / Qce™*P°0,(D?)els" P Q ds|| < / 1Qee™P"8,(D?)es=P* Q. ||ds
t/2 t

/2

IN

t
/ 1Qee™ 2| lle™ 3770, (D?)]|[|*~7" Q. ds.
t/2
Now He(S*t)D2 Qc|] <1, and the operator e~ 2D” is a bounded leafwise smoothing operator, so by Lemma
4.5, le=2P%8,(D?)|| is bounded. Thus
e3P0, (D*)]| < [l = || le™*""0,(D?)]| < |le™*""0, (D)

for t > 2, as then |le="= 2°|| < 1 for all s > ¢/2. Finally, [|Qce™3P°|| < e7*</2, so the last integral is
bounded by a multiple of

6_1(6—(t€/4) _ e—(te/2)) — t—5(€—(t1+6/4) _ e—(t1+5/2)) < t_6e_(t1+5/4),

This in turn is bounded by a multiple of e*(tpré/g), for ¢ sufficiently large.

t/2
The change of variables s — ¢t — s transforms the integral QEE*SDZ (?,(DQ)e(S*t)D2 Q.ds to the integral
0
t
/ Qe IP79,(D?)e P Q.ds, so this satisfies the same estimate. Replacing D? by D?/k then gives the
t/2
estimate of the lemma. O

Lemma 4.7. Ast — oo, ||Q€&,(6_tD2 VtD)Q(|| is bounded by a multiple of e~ (t'70/16)
Proof. Observe that
2 2 2
Q:0, (e VID)Qe = QD (7 *VitDe P ?)Q, =
Qe (e P PWIDT P Qe + Qee™ 20, (VID)e P 2 Qe 4 Que P VDD, (P ?)Q. =
Qe (e P /)QNIDe™ P 2Q, + Qe P 1210, (D)e ™ P 2Qc + Qe P /2VAIDQ0, (7P /) Q..

By the Spectral Mapping Theorem, \/fDe_“y/2 = e_tD2/2\/fD has norm bounded by 1/y/e. Using Lemma
4.6 and the fact that ||Q.|| < 1, the first and third terms satisfy the estimate.
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The operator e~tP*/2 is a bounded leafwise smoothing operator, so by Lemma 4.5, 9, (D)e*w2/2 is an

A(M) equivariant bounded leafwise smoothing operator. As e~ (+)D* — =sD*—tD* 4pq ||e_tD2H <1,
it follows easily that its norm is bounded independently of ¢, for ¢ large. The fact that HQEe*tD2/2\/i|| <

Vie t/2 = \fte=(t""°/2) < e=(""/9) for1 ¢ large, gives the estimate for the middle term. O
I — —tD?

Lemma 4.8. Ast — oo, ||Q63u(6_tD2t€D#\/iD)QEH is bounded by a multiple of e~ /16
Proof.

- I — e 7tD2

1Qcd, (e=*P \[D)Q | = 1lQcd, (7P vipl=¢ JQel| <
s e—tD? B e—tD2
HQeau( P \[D) Q€|| + HQE tp* \[Da (72)QGH
e—tD®
and ”TH < 1, so by Lemma 4.7 the first term immediately above satisfies the lemma. If G is
—tD?
the Green’s operator for D, the second term may be written as Q.(G/vVt)Q.e —tD*1 D29, (;#)QE,
and ||Q. G/\f|| < (te)™1/2 = ¢+~(+9/2 which is bounded for ¢ large since 1 +§ > 0. The operator
I — —tD?
I — e tD? I— e tD? 2
tD?yi :—Vt.D2 L —tD
a ( tD2 ) 8 ( ) tD2 8 (e )7
and
2 I—etD? P2 I — e tP? 2 _ip2?
Qee tD tD2ay(tT)Qe = _Qee t al/(tDQ) tD2 Qe - Qee b al/(e tD )QE

Now,
Qee~P"9,(tD?) = Q.te*P*/2e~1P" /29, (D?),
and, as in the proof of Lemma 4.7, e*tD2/25',,(D2) has norm bounded independently of ¢, for ¢ large. As
1Qete™P*/2|| < temte/2 = o= (1""0/2) o= (W7/4)

I — —tD? 1
for ¢ large, the term QeeitDQau(tDz)te’#Qe has norm bounded by a multiple of e~*'""/4). By
Lemma 4.6, the term Qee_tD2 0y (e_tDz)Qe = Qee_tD2 Qeau(e_tDz)Qe is bounded by a multiple of e (t'F0/8)
(actually et if we use the estimate HQee_tD?H <eTt = e_tué). O

Thus we have the second inequality of Proposition 4.3. The third estimate follows immediately from the
fact that both P; and P. are bounded.

Lemma 4.9. ||P.8, (e *P*)P.|| is bounded by a multiple of t*+(/2).
Note that 1+ (6/2) > 1/2, but by choosing ¢ close to —1, we can make 1+ (§/2) as close to 1/2 as we

please.

Proof.

t t
PO, (e PP, = — / P.e %0, (D?) """ P ds = — / P.e*P’P.[0,(D)D + D, (D)|P.e"~P" P.ds.
0 0

As P, is a bounded leafwise smoothing operator, ||P.0,(D)|| and ||0,(D)FP.|| are bounded (Lemma 4.5

again). Since € — 0 as ¢ — 0o, their norms are bounded independently of ¢ for ¢ large. This follows

since for €; < ¢, P.,, = P.,P. = P.P,, and ||P.,|| < 1. Both [|P.e=*P|| and ||e*=9P° P.|| are bounded by

1, and both ||[P.D|| and ||[DP.|| are bounded by \/e. Thus ||P.9,(e*P*)P.|| is bounded by a multiple of
t

/ Veds = et = t1H0/2), O
0
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Lemma 4.10. ||P.0,(e~'P*\/iD)P.|| is bounded by a multiple of t(3/2+9.
Again note that we can make 3/2 + § as close to 1/2 as we please.

Proof.
[[BDu(e" P VID)P| < ||Py(e™ P ) PVIDPA | + || Pee ™" PO, (VID) |

< ||POL (e PT) P | VE|DP|| + vt || Pee™*P" Pe|| |0, (D) P |

<

Cl(t1+(6/2))\/t>€+ 02t1/2 — Clt(3/2)+5 + C2tl/2 g Ct(3/2)+6.

O
2o [ — 67tD2
Lemma 4.11. ||P.0,(e P D2 VtD)P.|| is bounded by a multiple of t(3/2+9
Proof.
[ _ o—tD? I — e—tD? I —etD?
Peay(e_tthe'#\/iD)Pe _ Peau(e_tDz\/%D)Pete’#Pe + Pee—tDQ\/gDPE&,(t‘e’#)P67
I — 6_tD2
so by the Lemma 4.10 and the fact that ”TH <1, we need only consider the term
D2 I— e tD? D2 I— e tD?
| Pee™ " VID PO, (——5—) Pel|| < lle™ " VIDP|| || P8, (— 75— )Pl <
tD tD
I— e_tDZ I — e_tDz
OVE NP )P = CH 2| P, (LS Pl
I — eftD2
Thus we need only show that ||P58V(T)PE|| is bounded by a multiple of t'+(9/2). Note that
d I*GiTD2 _rD?
a )=
o
d I—€_7D d I—B_TD "2 r _sD? _r\D2
5(8"( D2 ) :a”(E(T)) =0y(e P )= —/0 e P 3V(D2)€(s P ds.
Thus ) )
I—etP td I—e P b 2 2
ay - ) = _ ay . Vdr=-— —sD 81, D2 (s—r)D dsd
() = || g == [ [ o0t dsar
and
I—e ' 1 [—e D" L[t e :
PO, (—5—)F|| = ||7 PO, (—=3—) || = || ¢ _SDP€8VD2P6 (S_T)Ddd <
P2 Pl = s PPl =17 [ [ (D) PP ds dr| <
1 t T 1 t T
L[ 1 e -+ Do,y 1€ asdr < [ [ ovasar = e
o Jo o Jo
O
This finishes the proof of Proposition 4.3 ([

To finish the proof of Theorem 4.1, first note that the estimates of Proposition 4.3 remain true with 9,
replaced by 6. This follows from the fact that for T € As(G,S ® E) C Ag, 6T involves only T and 9,T.
Similarly, 6Py, d(aPy), dP., and 6Q. are bounded operators.

Next, recall that for fl,fg IS .Z@, T"l * fg = fl@fg, so we must take the operator © = ( é g )
(which is in general an unbounded operator) into account. The calculation made at the beginning of
Section 3 shows that the operator 8 = r*(8f), where 67 is (at worst) a first order leafwise differen-
tial operator which is globally smooth on M. Thus it will behave in our estimates just like the op-
erator 0,(D). If H is a bounded leafwise smoothing operator on S ® E, eg. H = Py, P, or P, it
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follows, just as in the proof of Lemma 4.5, that the composition 8H is an A(M) equivariant bounded
leafwise smoothing operator on S ® E @ Av?¥. In particular, P, and 0P, are bounded operators, as is
baPy = (0P))a. As ||0P.PP.|| = ||0P.P.P.P.|| < ||0P.||||P.P:P.|| and | P.P;P.|lis bounded by (iii) of
Proposition 4.3, ||0P.P;P,|| is bounded, that is, it also satisfies estimate (ii7) of Proposition 4.3. Finally,
10Q.PQ.|| = |0P,Qce~tP°/4Q.|| < 0P| |Qce~tP*/4Q. ||, and ||0 P, is bounded, so ||[0Q.P,Q.|| satisfies es-
timate (i) of Proposition 4.3, since ||Qce~*2*/4Q,|| satisfies that estimate. In the argument below, wherever
1 0 P. 0
0 0 0 O
occurs in the form ©§(A) where A is one of aPy, P, P.P,P., or Q.P,Q.. But,

(1 0 a,(4) A\ [ 0.(4) +A
@5(’4)_<0 9)( A o)‘( 04 0)’

so any norm estimate satisfied by 9, (A), where A = aPy, P., P.P,P., or Q.P,Q., is also satisfied by ©4(A),
with possibly a different constant. In particular, ©6(Q.P.Q.) and ©0(P.P,P.) satisfy estimates (i7) and (iv)
respectively of Proposition 4.3.

Previously, we suppressed the occurrence of © in the products we considered. For the sake of clarity, we
will no longer do this, except for some trivial occurrences.

Since P, = aPy + P.P;P. + Q. P,Q.,

do tr(Pt(GéPt)Qk) =do tr(aPO(@é(aPo))Qk) +do tr(aPo(GéPt)% — aPO(G(S(aPO))Qk)—&—
® o tr(P.P,P.(06P,)%) + @ 0 tr(Q. P,Q. (0 P,)*),

and we need to show that the limits as ¢ goes to infinity of the last three terms on the right side are zero.
For any integer £ > 0,

1D QcPQc(O6P,)* || = || DX Qe P 1Q P, (05 F,) || < ||D*Qce~ P /1Q.|| || (06 P,)?*||.

© occurs non-trivially in an estimate (e.g. OP. = = P, is a trivial occurrance), it

Now
O(P;) = O6(aly) + O (PP Pe) + ©3(QcPQe),

and ||P;|| is bounded independently of ¢. So ||P,(©3P;)%*|| is bounded by a multiple of
1(83P)**|| = |©5(aPy) + O(PPiF.) + O5(Q.PQ.) || < O+

where a > 0 is a number to be chosen later (as close to zero as we please). On the other hand, for ¢ sufficiently
large (so that t'*% > 4¢), the maximum of zfe~**/% on the interval [e, 00) occurs at €, so

||D2£QeeitD2/4QeH < 6467&/4 = tézef(tu*é)/ﬁl)

SO
|ID¥QcPQ.(O5P,)?*|| < O3+ =(t17/1)

which goes to zero as t — oo. The proof of Theorem 2.3.13 of [HL90] shows that this implies that

tr(Q.PiQ. (O35 P;)?) is pointwise bounded on M and converges pointwise to zero as t — oco. As ® is

integration over a compact set, the bounded convergence theorem gives

4.12. Jlim ®o tr(Q.P,Q. (05 P;)**) = 0.
— 00
To finish the proof we need the following lemma whose proof is given in the Appendix.

Lemma 4.13. Suppose that H and K are G invariant A(M) equivariant bounded leafwise smoothing oper-
ators on S ® E @ AvX, which are transversely smooth, then Tr([H, K]) = 0.

By assumption, Py, P. and Q. satisfy the hypotheses of this Lemma. If H satisfies the hypotheses, so
does 0, H. See the proof of Lemma 3.1. Since 9, is a derivation, any product of operators which satisfy
these hypotheses, also satisfies them. As noted above, any super-exponentially decaying operator, e.g. P,
satisfies these hypotheses. Since the coefficients of 6 and all their derivatives are uniformly bounded, the
product of # with any operator satisfying these hypotheses, also satisfies them. Finally, note that the trace
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property in the conclusion of the Lemma extends in the obvious way to ® o tr applied to terms which have
elements which satisfy the hypotheses of the Lemma.

Now consider ® o tr(P.P;P.(©5P;)?) = ® o tr(P. P, P2(O6 P;)%F) = ® o tr(P.(06 P;)?* P.P,P.). The proof
of Proposition 12 of [HL99] shows that

||® o tr(P.(O5P,)?* P.P,P.)||r < C||P.(O6P,)**P.P||||® o tr(P.)||r.

Now P. and P.P; are bounded and ||(©6P,)2%|| < Ct?*(3+) 5o ||P.(O6P)?* P.Py|| < Ct2*(z7) also. As
||@ o tr(P.)||7 is O(?), ||® o tr(P.(O6 P;)%* P.P,P.)||r is bounded by a multiple of

2k(3+a) B _ 2k(3+a)468 _ y2k(3+a)+B
Recall that —1 < § < —k/f and therefore we can choose a > 0 so small that
1
2k(§ +a) + 68 < 0.

Then

4.14. lim ® o tr(P.P,P.(00P,)%*) = 0.
t—o00

Finally, consider the individual terms of
® o tr(aPy(O6P,)%F — aPy(08(aPy))?k) = ® o tr(Py[a(OP,)%F — a(©5(aPy))?H]).
Suppose the term PyA contains a 00(Q.P:Q.). Then
1P Al < [|Poll || [|©6(Qe PiQe)|I# |06 (o) ||| ©5 (P PP ||
where p+ 8+ v = 2k and p > 0. Since ||| is bounded, Proposition 4.3, gives that as t — oo,
|PoA|| < Ce (/160G +a),

For every positive integer £, D?*Py = 0, so for every integer £ > 0, || D?**PyA|| — 0 as t — co. Proceeding as
in the proof of Equation 4.12, we have

lim ® o tr(PyA) = 0.

t—o00

Now suppose that we have one of the remaining terms. It must contain a term of the form O§(P.P,FP,).
As P? = P. and § is a derivation, we may replace ©4(P.P,P.) by

©5(P2P,P.) = ©5(P.)O(P.P,P.) + OP.05(P.P,P,) = O5(P.)(P.P,P,)P. + P.5(P.P;F.).

Using the trace property of ® o tr, (any terms we need to interchange have elements which satisfy the
hypotheses of Lemma 4.13) we get two terms of the form ® o tr(AP.). As above, the proof of Proposition 12
of [HL99] shows that

|@otr(AP)[|lr < ClA[[||® o tr(F)||7-

Now A is a product of terms of the form «, Py, ©6(aPy), Pe, 00(P.), P.P;P., and ©(P.P,P.). Each of these
is bounded in norm, except the last which has norm bounded by a multiple of t(z+4) As A can contain no
more that 2k terms of the form O5(P.P,P.), and ®otr(P.) is O(?), we have that ||® otr(AP.)||7 is bounded
by a multiple of

2k(3+a) B _ y2k(5+a)yB _ 2k(5+a)+6p

By our choice of a, we have that the limit as ¢ — oo of these terms is zero, just as in the proof of Equation
4.14.
This completes the proof of Theorem 4.2.



26 M-T. BENAMEUR AND J. L. HEITSCH JANUARY 14, 2023

5. BISMUT SUPERCONNECTIONS

As noted above, in [BH04] we proved that the Chern character ch, composed with the topological and
analytic index maps of Connes-Skandalis [CS84] yield the same map. In particular, for any Dirac operator
D, the Chern character of the topological index of D, coincides with the Chern character of the analytic
index of D, i.e.

chy(Ind¢(D1)) = ch,(Ind, (DT)).

In [HL99], it is proved that ch,(Ind;(D")) is equal to the Chern character of the index bundle of D
in another sense. We defined a “connection” V on the index bundle [Py] of D, and defined the Chern
character of [Py] to be the Haefliger class of Tr(ae_(vz/ 2im)). We then used a Bismut superconnection for
foliations, [He95], to show that chy(Ind;(D)) contains the Haefliger form Tr(ce™(V'/2™) provided that
the assumptions of Theorem 4.1 are satisfied, but with the stronger assumption that the Novikov-Shubin
invariants of D are greater than three times the codimension of F'. We will now show that whenever P is
smooth, ch,([FPy]) contains the Haefliger form Tr(ae’(VQ/ 2im)) | so the two definitions of the Chern character
of [Py] agree.

We first recall the construction of Bismut superconnections for D. See [B86], [BV87], and also [He95]. Let

V¥ be a Bott connection on v}. If wi, ..., w, is a local framing for v, then VPw; = 377 w; ® 8} where 6

n
are local one forms on G and the 0;'- satisfy dw; = ij A 9; That is, the composition
i=1

o) v V5 00 [, % * A 00 [, *
C*W.) = C°W:T*G) = C®Wwi: NT*G)

S

is just w — dw. VP induces a connection on Av} also denoted V2 so that
oo w V2 oo * * A oo * *
C®(Av;) = C=(A\v; @ T*G) = C™(Av; NT™G)

is also just w — dw.

Set V=TF, @vs®v; =TG ® v over G, and define a symmetric bilinear form g on V as follows. TFj
and v @ v} are orthogonal and g|T'F; is go|TFs. The form g|vs @ v} is given by the canonical duality, i.e.
v and v} are totally isotropic and ¢g(X,w) = w(X) for X € vy, w € v}. In [BV8T7], p. 455. it is shown that
there is a unique connection V, the Bismut connection, on V so that V preserves v* and g, V|v¥ = VZ and
forall X, Y € C*(TG), VxY — Vy X = [X,Y]. Note that in general V does not preserve TG but that for
X, Y e C®(TG), VxY —Vy X € C>*(TG).

Consider the vector space V = R? @& R" @ R™*. Define a bilinear form @ on V as g was on V, i.e. RP is
orthogonal to R™ @ R™* | Q|RP? is the usual inner product, and Q|R™ & R™* is given by the canonical duality.
Let C(V,Q) be the associated Clifford algebra and set Sp = AR™ ® S where S is the spinor space for RP
with the usual inner product. Let p be the representation of the Clifford algebra of RP in S. Then Sy is the
spinor space for C(V, Q) with the Clifford multiplication being defined by

po(X)(wes) = (—1)*“we p(X)s
pYV)w®s) = —-2iYV)w®s
po(P)w@s) = dAw@s

for X e RP, Y € R, ¢ € R™, w € AR™, s € S. See [BV87], p. 456 and for general facts about spinors and
Clifford algebras, [LM89].

The above fact allows Berline and Vergne to give a beautiful and concise definition of Bismut supercon-
nections for fiber bundles which was extended to foliations in [He95]. Recall that S is the spinor bundle along
the leaves of Fy, and consider the vector bundle Sy = Av; ® S over G and the bundle of Clifford algebras
C(V) over G associated to V,g. Then Sy, the fiber over y € G of Sy, is a module for the algebra C(V),
and we denote the module action also by pg. The connection V on V induces a connection V on Sy ([BV87],
p. 456; or more generally [LM89], Ch. 4). Let E be a vector bundle with connection over G as in Section 2.
We shall also denote by V the tensor product connection on Sy ® FE.
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A Bismut superconnection B for F and E is the Dirac type operator on C°(Sy ® F) defined as follows.
Let X1,...,X, be a local oriented orthonormal basis of TF,, and Xp41,...,Xp4n a local basis of v,. Let
X¥,..., X, be the dual basis in TF, @ v}, ie. X/ =X,for1 <i<p, X =w;,for p+1<i<p+n

ptn s
where w; € v} and w;(X;) = d;;. Set
p+n P p+n
B = Z(pO(Xz*) ® I)VX’L = Zp(Xi)sz + Z wi VX,
i=1 i=1 i=p+1

B does not depend on the choice of X1,..., Xpin.

Since S = ST & S~ is Zy graded and Av} is Z graded, Sop = AvF ®@ S has a total Zs grading and we write
So = S ®S, . We then have an associated Zs grading Sy ® E = (S§ ® E) @ (S; ® E). It is immediate from
the fact that V preserves the grading that B is an odd operator, i.e. B maps C® (S ® F) to C*°(S; ® E)
and vice-versa.

Finally, we may use the Z grading on Av} to grade the operator B, i.e. B = BO 4+ B 4+ ... where
B . C®(A v @ S® E) = C® (A @ S® E).

It is straightforward to check that

Proposition 5.1. The term B is a quasi-connection V¥ for E ® Av*as defined in Section 3.
Recall, [HL99], that a connection on the index bundle of D is defined by
Vv = pP,BMPp,.
For this to be well defined, we must require that Py is transversely smooth.
Theorem 5.2. Suppose that Py is transversely smooth. Then chy([Py]) contains the Haefliger form Tr(ae= (V7 /2im)
Proof. First we calculate V2.
v = pBUPRBMNPE

= PBY, PBUR + PBM)2R

= P[BUY, PIBUY, P+ P[BY, Po]P,BM + Py(BM)2R,

= P[BUY P]BY, P] + Py(BH)2P,.

The last equality is a consequence of the relation Py[B [ Py]Py = 0 which is true since P§ = Py and since
B, ] is a derivation. This derivation is precisely d,, so (B[1)? = 6 as in Section 3. Thus

V2 = Py(d,Py)? 4+ Py0Py,

and
V2 = (Py(9,P)? + Py Pp)".
Note that
0y (Py) = 0,(PoPo) = 0,(Po) Py + Po0,(Po),
S0

0, (Po)Po = 0,(FPo) — Py0,(FPo).
Using this twice, one can easily show that
Py, (Py)0,(Py) = Pyd,(Py)0,(Po)Fo.
Then a simple induction argument shows that
(Po (0, Po)? + PobPy)" = Po((0,Py)? + P Pp)*

Thus,
Tr(aV?*) = Tr(aPy((8, Po)? + PobPo)"),

and comparing with Equation 3.12, we see that ch,([Fy]) contains the Haefliger form Tr(ae=(V/2m) [
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6. APPENDIX

We now prove Lemma 4.13, namely the fact that if H and K are G invariant A(M) equivariant bounded
leafwise smoothing operators on & ® E ® Av¥, which are transversely smooth, then Tr([H, K]) = 0. To
accomplish this it suffices to construct forms in Tr([H, K]) which are arbitrarily C* close to 0, for any ¢. To
do so, we adapt the argument in the proof of Lemma 2.6 of [HL02].

Denote by H,(y, z) and K,(y, z) the Schwartz kernels of H and K, where z € M and y, z € L,. Denote
by k(z,y, z), the pointwise trace k(x,y, z) = tr(H,(y, 2)K.(z,y) £ K. (y,2)H.(2,y)), where the ambiguity
of signs occurs because we are using graded comutators. Then,

Tr([H,K})/F/EI k(z,T,2)dz dz,

where T € Ew is the class of the constant path at x.

Let Ug = {(Ui,'yijk, Uj)} be the cover of G corresponding to the good cover U of M. Here, U;, U; € U
and 7,1 is a leafwise path from U; to U;. Let {¢;} be a partition of unity subordinate to the cover . For
each (Ui, viji, Uj), define ¢i51 : G = R by ¢ii(2) = ¢,(r(2)) for z € (Ui, vijk, Uj), and ¢;;,(z) = 0 otherwise.
Then for each = € M, {¢;;,} restricted to Em is a partition of unity subordinate to the cover of Zm by its
placques in the various (U;, vijk, Uj).

On the transversal T; C U;, the class /~ k(x,T, z)dz dz is represented by / ¢i(x) /~ k(x,Z, z)dz dz,
FJI, P, Lo

where P, is the placque of x € U;. Because of the G invariance of k, this is equal to / 0i(y) /~ k(x,y, z)dz dy,
P, L

where now x = P, NT; and y € P, is thought of as the class of the path in P, from z to y. Now we have

/Pm /ZT bi(y)k(x,y, 2)dzdy = jz,;/P, /ZT 6i(Y) ik (2)k(z,y, 2)dz dy =

%;/Pm /Pz bi(y)oj(2)k(x,y, 2)dz dy,

where z € P, C Uj is thought of as the element of (U;, ik, U;) starting at « and ending at z. Note that
with this interpretation, ¢; ; x(z) becomes ¢;(z). For any chart of the form (U;,Z, U;), where z € U,

/PI /Px ¢i(y)9i(2)k(z,y, z)dz dy = 0

by symmetry. For the chart (U;,~ijx,U;), consider the form I;;, = / / 0i(Y)¢;(2)k(z,y, 2)dzdy on
P, JP.

T;. On T; C Uj there is the corresponding form I, = / 0i(2)¢i(y)k(z, z,y)dy dz for the chart
PZ P’.Z'

(Uj, %‘}1};7 U;). The crucial point is that because we are using graded commutators, Lijk = h:ijk (—Ijik). Thus

if we move the term I, to T; using the holonomy map h.,,, associated to vk, it will cancel /;;; and we

obtain a new form in / /~k;, which at z € T; is given by
FJL

| [ e - oum@tep iz
and for x € T} is given by
|| o0 - sy

Doing this procedure over all v;;; of length less than or equal to R (of which there are only a finite number),

we obtain the form in 'k which on Tj it is given by
FJL
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6.1. /P dn(y)/i (1 — or(2))k(z,y, 2)dz dy,

™

where ¢r(z) = >, #ijr(2), and the sum is over all j and k such that the length of v;;x < R.
We claim that this form and all its derivatives converge to zero as R — oo.

Lemma 6.2. /~ |k(z,y, 2)|dz is bounded independently of x and y.

Proof. We will use the notation of the proof of Theorem 2.3.9 of [HL90], and will use subscripts to distinguish
the different inner products we use (e.g. <, >, on (S® E),, <, >, on sections of S ® E| L,).

Let X € AYTM with || X|| =1 and recall that ix H{q.(y,2) € Hom((S ® E)., (S ® E),). Let v1,..., v
and wi, . .., w; be orthonormal bases of (S ® E), and (S® E),. Recall the Dirac delta sections d,”, and 5%
of S® E | L, and set

X'u
d]yj Z<ZXH[d s ,5yj > Wi

Then 1/)[)51’1;; (z) is independent of the choice of basis w; and so defines a section z/)[)él’ij of SRFE | L,. Standard
techniques show that w[)jﬂj €C®(L,;;S® E). For € € L2(L,;; S ® E), it is easy to see that

ixcHi €)= 3 ( / U6 > dz) vy,

that is .
ix Hig Z Vidly () © 05

We claim that w[)s]’f};(z) € LQ(EI;S ® E), and that its L2 norm is uniformly bounded over all z, y, v;, and
X. This is true provided there is a constant C, independent of z, y, v;, and X, so that for all sections & of
L’ (zra S®E),

| < & >a | < ClIEllo.
Since the L, have uniformly bounded geometry, there is a k > 0 so that the Sobolev norms ||8;7 || are
bounded independently of z, y and v;. Finally, since H is transversely smooth and ||X|| = 1, the Sobolev

(by ||H|lo.x). Now for any ¢ € L*(L,; S ® E), we

norm ||ix Hig,
have

| <>, | = |/ < (),6() >, da] = |<2(/E <), () >+ da)vi vy >y | =

| <ixHgo€(y),v; >y | = | <ixHg €0, >z | < |lixHigo&lle 10,71 <
llix HgyelloklIEllo 10,7 1|-k < CI€]fo,

and the constant C' is independent of z, y, v;, and X.
Similarly, if Y € A°TM with ||Y|| = 1, we have

YvJ
(ZYK[e x Z¢ ®w]7

where (iy K. )" is the adjoint of iy K[, .., and so is a bounded smoothing operator with bound independent
of z and Y. As above, the gf)[ ’UJ( ) e L? (Zz;s ® E), and have L? norms uniformly bounded over all z, v,
v;, and Y. A standard argument gives that

. X vJ ij
tr(’txH[d]’x( )’LyKe] Z < ’(/)d] v 7y(z) >,

SO

/* tr(ix Hig o (Y, 2)iy Ko 2(2,9)) dz = Z < Vialy Dty e

x
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Ei]vzj/ cL? (Zz, S ® E), with norm bounds independent of z, y, v;, X, and Y, the function z —

tr(ix Higo (Y, 2)iy Koo (2,9)) € L'(Ly), and /~ | tr(ix Hig),« (Y, 2)iy K[e)«(2,9))| dz has bound independent

As wﬁl’j}yj and ¢

x

of z, y, X and Y. The same holds for /~ |tr(iy Ke) 2 (¥, 2)ix Hiaq),2(2,9))| dz, so /~ |k(z,y, )| dz, which is
L

bounded by a finite sum of terms with these forms, is bounded independently of x and y. O

As
[(1—¢R<z>>\k<x,y,z>|dz < / k(. 2)| dz,

/N (1 = ¢r(2))|k(z,y, 2z)|dz is also uniformly bounded. In addition, it is monotonically decreasing as a
L

function of R. An application of the Dominated Convergence Theorem gives

dm [ o [0 onniy azdy= [ o) Jim [ 0= oniktey, 2] iy

x

Now, 0 < 1—¢gr(z) <1, and E}im 1 —¢r(z) =0. It follows immediately that
—00

lim [ (1= ¢r(2))[k(z,y,2)|dz =0,

R—o00 ZI
and the convergence in monotonic in R. So
tin [ out0) [ (1= on()lkGep.2)idzdy =0,
P,

R— o

) L
and the convergence in monotonic in R. Thus given any ¢ > 0, and = € T, there is an R(x) so that if
R > R(x)

/ 6:(v) / (1 - $n() ke, y, 2)ldz dy < e/2.
P,

x

For each R, thefunction/ ¢¢(y)/~ (1—¢R(z))k(x7y,z)dzdyisinAz(T),since/ ¢¢(y)/~ k(x,y,z)dzdy
P, Py

x x

and all the terms I;;; are in A%(T). Thus / qi)i(y)/~ (1= 9¢r(2))|k(z,y, 2)|dz dy is at least continuous, so
P

© Lo
given € > 0, and z € T, there is §(x) so that if w € T and |z — w| < §(z), then for all R > R(z) (due to
monotonicity),

/ 6:(v) / (1= br(2) k(w,y, 2)|dz dy < c.
Py L

w

We may assume that the closure T of T in M is an embedded compact transverse submanifold, that is a
smooth compact submanifold with boundary. The open sets U(z) = {w ||z — w| < §(z)} form a cover of T.
Let U(z1),...,U(zk) be a finite subcover, and set R = max(R(z1), ..., R(x)). Then for all z € T,

[ o / (1— dr()k(z,y, 2)dzdy| < / 6:(v) / (1— $r(2)k(z,y, 2)|dz dy < c.

Thus / qbl(y)/~ (1 — ¢r(2))k(z,y, 2)dz dy, which is in Tr([H, K]), is arbitrarily C° close to 0.
P, L

To treat the derivatives, we need the following lemma.

Lemma 6.3. Suppose that H is an A(M) equivariant bounded leafwise smoothing operator on S @ E @ AV,
which is transversely smooth, and that its Schwartz kernel is zero on Ly X Ly, if ¢;(x) = 0. Then on T;

/P (0, H).(3.9)) dy = dr, / te(H, (7,7)) dy.

T
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Proof. The Schwartz kernel of H, also denoted H, is a section of a bundle over the double graph Gp5;. Denote
by U, = {(,8) € G|, B € (Us,7,U;)}, and set W = {(@,@) |a € supp ¢;}. Then W is a compact subset
of the open set Ul As 0, is a local operator and we are integrating over W, we may assume that supp(H),

the support of the Schwartz kernel of H, is a subset of a

Note that the lemma is a coordinate free statement, so we are free to choose coordinates as we please,
and we need only confirm the statement at a single point « € T;. We use the exponential map exp : v — M
restricted to P, to construct coordinates on a neighborhood of P, in U;, which we may assume is all of U;.
Then U; ~ RP x RY has coordinates (y, z), with P, = R? x {0}. We may identify T; with (0,0) x R?. That
is, we use the coordinates induced on Tj;, thought of simply as a manifold in its own right, by the natural
diffeomorphism T; ~ (0,0) x R?. Thus we have U; ~ RP x T;, and the fact that we have used the exponential
map to define the coordinates means that v, o) = T'(T})(y,0), i-e. at (y,0), v is spanned by 9/0z1,...,0/0z.

The set (U;, T, U;) ~ RP x R? x RP has coordinates (y, z,w). On U;, with the coordinates (w, z), where
w =y, v is spanned by vector fields of the form 9/0z; + 3_; a;;0/0w;, and a;;| Py = 0. On (U;,7,U;),
VY =dy+d. + 3, aijdz ® 9/0w; + A where A € C*((U;,7,U;); Hom(S ® E))@Coo )ANU;). See the
proof of Lemma 3.1. Thus

/tr(&,H)dy:/ tr([dy—i—dz—l—Zaijdzi@a/awj—f—A,H]dyz
P’\E

P, 7
/ tr(dyH) dy+/ tr(d.H) der/ tr([A, H]) dy,
P, P, P,
since a;; | P, = 0. The term / tr(dyH) dy is obviously zero. A direct computation, using the fact that
PT/

supp(H) C /Uvi, shows that / tr([4, H]) dy = 0. Finally, note that in these coordinates, dr;, is d,. Thus
Py

/P I tr(d, H) dy = /P T d, te(H) dy = dr, / () dy.

P

The form in 6.1 may be written as
/ (/~ tr(My, o Ho My_4, 0 K £ My, 0o K o Mi_g, oH))dy
Ly

where the integrand satisfies the hypothesis of Lemma 6.3. To simplify the notation, we may assume that
both H and K are degree zero A(M) equivariant operators. We want to show that the derivatives of the
coeflicients of this differential form on 7T; go to zero as R — oo. It is sufficient to estimate the norm of

ia/ayjszi ’ "ia/ayjl dr, L </Z tr(My, o H o M _gp 0K+ My 0oKoM g0 H) )dy’

where 1 < j; <--- < j, <gq. Let Y be the vector field /0y, on T;, and denote also by Y its extension to
U;. Then

iydTi/ /~ tr(My, o Ho My_4, 0o K + My, o K o Mi_y, oH))dy =

J.

‘/131
tr(My, 0(9 HoM_4,0K=EtMy, oKoM_4,00, H))dy—

Invs

/ / tr(Mg, o Ho My p,a¢,) © K £ My, 0 K 0 My p,dpr) oH))dy +
P, NJL

x

/~ tr(9Y ( (Mg, o HoMi_y, o K+ My, 0o KoM_ ¢RoH)))dy =

tr(Myg) 0 H o Mi—g 0 K £ My 0 K 0 My g 0 H) )dy +

x

b\h\/\
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/ (/~ tr(M@oHoMl_(ﬁRo@},}K:l:Mmo@ZKoMl_quoH))dy.
P, NI,

The first, second and fourth integrands above all have the same properties as the integrand in 6.1. So the
same proof shows that as R — oo, these terms converge uniformly on 7; to zero. To obtain monotone
estimates for the third integrand, first note that since ¢ is constructed out of the partition of unity on the
compact manifold M, there is a constant C; > 0 so that the derivatives of ¢ have norm bounded by Cj.
Because M is compact, there is a constant Co so that supp(iyd,égr) Nsupp(¢pr_c,) = 0. Then the third

integral is majorized by the integral / oi(y) /~ Ci1(1 = ¢r—c,(2))|k(z,y, 2)| dz dy. This integrand also has
P

L.
the same properties as the integrand in 6.1. An obvious induction argument finishes the proof.
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