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1 Introduction

Let M be a compact Riemannian C∞–manifold with a C1-foliation F of codimension q. The study
of the dynamics of F asks for the “typical” qualitative behavior of the leaves of F as submanifolds.
Typical issues of foliation dynamics are the recurrence properties of the leaves, and the more
delicate question of the existence of non–trivial transverse invariant measures. For a foliation with
one-dimensional leaves defined by a flow {ϕt}, the problem is to study the dynamical properties
of the flow which are independent of the time parametrization. When the leaves have higher
dimension, then the geometry of the leaves (for example, their branching towards the ends of the
leaves) can make the dynamics of the foliation far more complicated than that encountered in the
study of flows.

The geometric entropy h(GF ) of a C1-foliation F introduced by Ghys-Langevin-Walczak [5] is a
measure of the complexity of the dynamics. This is one of the most important dynamical properties
of C1-foliations, and captures essential information about the global transverse and leaf dynamics:

• Ghys, Langevin and Walczak (Theorem 6.1, [5]) showed that if F is a C2–foliation of
codimension one with h(GF ) > 0, then F has a resilient leaf.

• Ghys, Langevin and Walczak (Theorem 5.1, [5]) showed that if F is a C1-foliation of
codimension q ≥ 1 with h(GF ) = 0, then F has a non-trivial holonomy invariant transverse
measure.

• Attie and Hurder (Theorem 3, [1]) showed that if F is a C1-foliation of codimension q ≥ 1
with h(GF ) = 0, then every leaf of F must have zero entropy as complete metric space.

In this paper we establish a variety of results relating the geometric entropy of a C1–foliation
with its dynamics, including a new proof of Theorem 6.1, [5] applicable to C1-foliations.

THEOREM 1.1 If F is a transversally C1-foliation of codimension one with h(GF ) > 0, then F
has a resilient leaf.
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The proof of Theorem 1.1 uses methods similar to techniques of ergodic theory and topological
dynamics for flows, invoking counting arguments and properties of the foliation geodesic flow. Our
proof is fundamentally different that of Theorem 6.1, [5] for C2–foliations, which used delicate
properties of the structure theory of C2-foliations of codimension one.

As preliminaries to the proof of Theorem 1.1, we establish a number of useful technical results
about the dynamics of C1-foliations in sections 3, 4 and 5. In particular, Theorem 4.1 relates
measure theoretic properties of F with the geometric entropy, and as an application yields:

THEOREM 1.2 Suppose F is a C1-foliation of codimension one on a compact manifold M .
If the foliation geodesic flow Φt:V → V has an ergodic, t-hyperbolic, Φt–invariant measure m∗ on
V which is not t-discrete, then h(GF ) > 0.

In § 7 we give some applications of our results for codimension one to the study of foliation
dynamics. For example,we show:

THEOREM 1.3 Suppose F is a codimension-one C1-foliation with h(GF ) > 0, then the relative
geometric entropy h(GF ,Ω(F)) > 0 where Ω(F) is the non-wandering set for F .

Our method of proof of Theorem 1.1 uses the codimension one hypothesis in several essential
ways. In higher codimension, there are few geometric interpretations of h(GF ) > 0. In the last two
sections of this paper, we give two results in this direction.

THEOREM 1.4 For F a C1+a-foliation of arbitrary codimension with h(GF ) > 0, then there
exists a leafwise geodesic path γ: (−∞,∞) → L ⊂ M so that the transverse holonomy along γ
admits a stable transverse manifold which is (transversally) attracted to L at an exponential rate.

The proof of this result uses the standard Pesin Theory [14, 20, 21, 15], and it is interesting to
compare its proof with that of Theorem 1.1. It would be very desirable to extend Theorem 1.4 to
conclude from h(GF ) > 0 that there exists (partially) hyperbolic fixed–points for the holonomy of F .
Such a higher codimension “closing lemma” would almost certainly require additional hypotheses
on the supports of partially hyperbolic Φt-invariant measures for the foliation geodesic flow Φt.

There is a natural extension of the notion of a distal group action to foliations (cf. § 1 below).
Theorem 1.4 implies:

COROLLARY 1.5 Let F be C1+a-foliation with h(GF ) 6= 0. Then F is not distal.

It was asked in § 7 of [5] whether a foliation with all leaves compact must have zero entropy?
A foliation with all leaves compact is distal, so we have:

COROLLARY 1.6 If F is a C1+a-foliation with all leaves compact, then h(GF ) = 0.

Thanks are owed to Larry Conlon, Etienne Ghys, Remi Langevin, Takashi Tsuboi and Pawel
Walczak with whom the author has had from numerous technical and philosophical discussions
about foliation dynamics and entropy. Our main theorems above can be considered as a partial
realization of the program for the study of the dynamics of C1-foliations outlined in [10]. The reader
may find the companion paper [12] useful, where related ideas are applied to study the dynamics
of groups of C1-diffeomorphisms of the circle. The proofs there are often technically much simpler.

2



2 Basic Foliation Dynamics

Throughout this paper, will assume that M is a compact, orientable, smooth Riemannian manifold.
For simplicity of later estimates, we assume that the Riemannian metric on M has been normalized
so that M has diameter 1. We also assume that F is a codimension–q, C1-foliation with orientable
normal bundle, and that the leaves of F are smoothly immersed submanifolds of dimension p. This
is sometimes referred to as a C1,∞-foliation. In this section we introduce a number of standard
notions of foliation structure theory and dynamics. More details and discussion of basic foliation
theory can be found in the text “Foliations. I” by Alberto Candel and Lawrence Conlon [3].

2.1 Regular foliation atlas

A regular foliation atlas for F is a finite collection {(Uα, φα) |α ∈ A} so that:

1. U = {Uα | α ∈ A} is a covering of M by coordinate charts φα : Uα → (−1, 1)n

2. Each coordinate chart φα : Uα → (−1, 1)n admits an extension to a coordinate chart
φ̃α : Ũα → (−2, 2)n where Ũα contains the closure of the open set Uα

3. For each z ∈ (−2, 2)q , the preimage P̃α(z) = φ̃−1
α ((−2, 2)p × {z}) ⊂ Ũα is the connected

component containing φ̃−1
α ({0}×{z}) of the intersection of the leaf of F through φ−1

α ({0}×{z})
with the set Ũα. Moreover, we assume that P̃α(z) is convex subset for the induced Riemannian
metric, where each pair of points x, y ∈ P̃α(z) is joined by a unique geodesic segment in Pα(z).

The reader interested in the details of the construction of regular coverings and their properties
should consult Chapter 1.2 of [3].

The inverse images
Pα(z) = φ−1

α ((−1, 1)p × {z}) ⊂ Uα

are smoothly embedded discs contained in the leaves of F , called the plaques associated to the
given foliation atlas. One thinks of the collection of all plaques as “tiling stones” which cover the
leaves in a regular fashion. The convexity hypotheses in (3) implies that an intersection of plaques
Pα1(z1) ∩ · · · ∩ Pαd

(zd) is either empty, or a convex set.

For each α ∈ A, the extended chart φ̃α defines a smooth embedding

tα = φ−1
α ({0} × ·) : (−2, 2)q → Ũα ⊂ M

whose image is denoted by T̃α. We will also assume that these images T̃α are pairwise disjoint; this
can be achieved by a small perturbation of the coordinate charts if necessary. We can also assume
that each submanifold T̃α is everywhere perpendicular to the leaves of F by adjusting the given
Riemannian metric on M in an open tubular neighborhood of each T̃α. We may assume that each
Tα has diameter at most 1. Define Tα = φ−1

α ({0} × (−1, 1)q). The local coordinate on Tα is again
denoted by tα : (−1, 1)q → Tα. We use this coordinate to identify each transversal Tα with (−1, 1)q .

The collection of all plaques for the foliation atlas is indexed by the complete transversal

T =
⋃

α∈A

Tα

For a point x ∈ T , by a mild abuse of language we let Pα(x) denote the plaque containing x.
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Given a subset Z ⊂ Uα let ZP denote the union of all plaques in Uα having non-empty inter-
section with Z. We set ZT = ZP ∩ Tα. If Z is an open set, then ZP and ZT are also open.

The Riemannian metric on M induces a Riemannian metric and corresponding distance function
dT on each transversal T̃α. For α 6= β and x ∈ Tα, y ∈ Tβ we set dT (x,y) = ∞. Given r > 0 and

x ∈ T̃α let BT (x, r) = {y ∈ T̃α|dT (x, y) < r}.
Let εU > 0 be the Lebesgue number for the covering U . That is, for every x ∈ M there is an

index α ∈ A so that the ball B(x, εU ) ⊂ Uα.

Let ε0 > 0 be the greatest number so that for all Uα in the regular foliation atlas and for all
x ∈ Uα then BT (xT , ε0) ⊂ (B(x, εU ) ∩ Uα)T where xT = xP ∩ Tα (or equivalently, x ∈ Pα(xT ).)
We call ε0 the t–Lebesgue number of the regular foliation atlas.

2.2 The holonomy pseudogroup

A pair of indices (α, β) is admissible if Uα ∩ Uβ 6= ∅. For each admissible pair (α, β) define

Tαβ = {x ∈ Tα such that Pα(x) ∩ Uβ 6= ∅}.

Then there is a well-defined transition function hβα:Tαβ → Tβα, which for x ∈ Tαβ is given by

hβα(x) = y where Pα(x) ∩ Pβ(y) 6= ∅

Note that hαα : Tα → Tα is the identity map for each α ∈ A.

The holonomy pseudogroup GF associated to the regular foliation atlas for F is the pseudogroup
with object space T , and transformations generated by compositions of the local transformations
{hβα | (α, β) admissible}. The holonomy pseudogroup GF depends upon the choice of regular
foliation atlas for F , but two such atlases yield Morita equivalent groupoids [6].

The C1-hypothesis on F implies that each map hβα is C1 for the local coordinates

tα : (−1, 1)q → Tα and tβ : (−1, 1)q → Tβ

Moreover, the hypothesis (2) on regular foliation charts implies that each hβα admits an extension

to a C1-map h̃βα : T̃αβ → T̃αβ defined in a similar fashion. Thus, hβα is uniformly C1 on its
domain, and we note that its domain also satisfies a uniformity condition:

LEMMA 2.1 There exists ε > 0 so that for every admissible pair (α, β) and x ∈ Tαβ then the

closure BT (x, ε) ⊂ T̃αβ. 2

We say the foliation F is transversally C1+a, for some 0 < a < 1, if the regular foliation atlas
can be chosen so that each of the transition functions h̃βα: T̃αβ → T̃βα is C1 with a uniform a-Hölder
estimate on its first derivatives.

Composition of elements in GF will be defined via “‘plaque chains”. Given x, y ∈ T on the same
leaf, a plaque chain of length k between them is a collection of plaques

P = {Pα0(x0), . . . ,Pαk
(xk)}

where x0 = x, xk = y and for each 0 ≤ i < k we have Pαi
(xi)∩Pαi+1(xi+1) 6= ∅. A plaque chain P

also defines an “extended” plaque chain for the charts {(Ũα, φ̃α)},

P̃ = {P̃α1(x0), . . . , P̃αk
(xk)}
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We say two plaque chains

P = {Pα0(x0), . . . ,Pαk
(xk)} and Q = {Pβ0(y0), . . . ,Pβ`

(y`)}

are composable if xk = y0, hence αk = β0 and Pαk
(xk) = Pβ0(y0)). Their composition is defined by

Q ◦ P = {Pα0(x0), . . . ,Pαk
(xk),Pβ1(y1), . . . ,Pβ`

(y`)}

The holonomy transformation defined by a plaque chain is the local diffeomorphism

hP = hαkαk−1
◦ · · · ◦ hα1α0

whose domain DP ⊂ Tα0 contains x0. Note that DP is the largest connected open subset of Tα0

containing x0 on which hα`α`−1
◦ · · · ◦ hα1α0 is defined for all 0 < ` ≤ k. The dependence of the

domain of hP on the plaque chain P is a subtle issue, yet is at the heart of the technical difficulties
arising in the study of foliation pseudogroups. Given composable plaque chains P and Q, the local
transformations satisfy hQ◦P = hQ ◦hP on the domain of the composition hQ◦P which is typically
a proper subset of that of hP .

We similarly let h̃
P̃

be the holonomy associated to the chain P̃ , with domain D̃
P̃

⊂ T̃α0 the

largest maximal open subset containing x0 on which h̃α`α`−1
◦· · ·◦ h̃α1α0 is defined for all 1 < ` ≤ k.

By the extension property of a regular atlas, the closure DP ⊂ D̃
P̃

and h̃
P̃

is an extension of hP .

Given a plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} and a point y ∈ DP , there is a “parallel”

plaque chain denoted P(y) = {Pα0(y), . . . ,Pαk
(yk)} where hP(y) = yk.

2.3 Leafwise path holonomy

A leafwise path γ is a piecewise C∞ map γ : [0, T ] → M whose image is contained in a leaf of F .

Let dU denote the maximal diameter in the leafwise metric of all plaques Pα(x) for all x ∈ Tα

and α ∈ A.

Each plaque chain P defines a leafwise path γP from x0 to xk by concatenating the shortest
unit-speed leafwise–geodesic segments joining xi−1 to xi for 1 ≤ i ≤ k. Let 0 < dmin < dmax denote
the minimum and maximum lengths of all shortest leafwise geodesic segments joining points of
distinct transversals Tα and Tβ, where (α, β) is admissible. Note that dmax ≤ 2dU . Given a plaque
chain P of length k, the length of the leafwise path γP from x0 to xk is thus bounded by

k · dmin ≤ ‖γP‖ ≤ k · dmax (1)

Conversely, each leafwise path defines a leafwise plaque chain Pγ . Choose an index α0 so that
the ball B(γ(0), εU ) ⊂ Uα0 , and let x0 be the point of Tα0 whose plaque contains γ(0). Let t1 > 0
be the least time so that γ(t1) 6∈ Uα0 , then choose α1 with B(γ(t1), εU ) ⊂ Uα1 and let x1 ∈ Tα1 be
defined by the plaque containing γ(t1). Continue in this way until we obtain B(γ(T ), εU ) ⊂ Uαk

with xk ∈ Tαk
. Pγ is the plaque chain from x0 to xk determined by this sequence of foliation charts.

Given a leafwise path γ and choices of open sets γ(0) ∈ Uα0 and γ(T ) ∈ Uαk
, the germ of the

local holonomy map hγ from x0 ∈ Tα0 to xk ∈ Tαk
is well-defined. However, the domain of the

pseudogroup element hγ depends upon the choice of the open sets {Uα0 , . . . , Uαk
} covering γ. Our

choices of open sets Uαi
so that they contain disks B(γ(ti), εU ) ensures a certain “maximality” of

this domain for hγ .
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For each x ∈ M and B(x, εU ) ⊂ Uα, let Pα(zx) be the plaque of Uα containing x, then note that
the radius of the “ball” B(x, εU )∩Pα(zx) in the leafwise metric is at least εU . Thus, if we apply the
above plaque chain construction to γ, a unit–speed leafwise–geodesic which is length-minimizing in
its homotopy class rel {x1, xk}, then ti − ti−1 ≥ εU and hence

‖γ‖/dU ≤ k ≤ ‖γ‖/εU (2)

2.4 The derivative cocycle

Let {e1, . . . , eq} denote the standard basis of Rq corresponding to the coordinate axis {x1, . . . , xq}.
For x ∈ T̃α, the local coordinate tα : (−2, 2)q → T̃α induces the standard basis of TxT̃α denoted by
{e1(x), . . . , eq(x)}.

Given a plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} from x = x0 to y = xk, the derivative map

h′
P(x) : TxT̃α1 −→ TyT̃αk

defines a matrix DhP(x) ∈ GL(q,R) expressing h′
P(x) in terms of the standard bases. Given

composable plaque chains P and Q, with x = x0, y = xk = y0, z = y` then by the chain rule

DhQ◦P(x) = DhQ(y) · DhP(x) (3)

The map Dh : GF → GL(q,R) defined by Dh(P, y) = DhP(y)(y) is a cocycle over the groupoid,
and called naturally enough, the derivative cocycle.

2.5 Resilient leaves and “ping-pong games”

A plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} is closed if x0 = xk. A closed plaque chain P defines a

local diffeomorphism hP : DP → Tα with hP (x) = x, where x = x1 ∈ Tα.

A point y ∈ DP is said to be asymptotic to x if h`
P(y) ∈ DP for all ` > 0 (where h`

P denotes
the composition of hP with itself ` times) and the iterates lim

`→∞
h`
P(y) → x. The map hP is said to

be a contraction at x if there is some δ > 0 so that every y ∈ BT (x, δ) is asymptotic to x.

The map hP is said to be a hyperbolic contraction at x if the matrix Dh(P, x) is a linear
contraction. By the continuity of Dh(P, y) for y ∈ DP , there exists ε > 0 so that Dh(P, y) is a
linear contraction for all y ∈ BT (x, ε). It follows that every point of BT (x, ε) is asymptotic to x,
and moreover, there exists 0 < δ < ε so that the image of the closed δ–ball about x satisfies

hP(BT (x, δ)) ⊂ BT (x, δ)

DEFINITION 2.2 A point x ∈ T is resilient for GF if there exists

1. a closed plaque chain P = {Pα0(x0), . . . ,Pαk
(xk)} with x = x0

2. a point y ∈ DP which is asymptotic to x (and y 6= x)

3. a plaque chain Q from x to y.

If, in addition, hP is a hyperbolic contraction at x, then we say x is a hyperbolic resilient point.
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Resilient leaves are typically defined only for codimension one foliations, but the definition
above makes sense in general. For codimension one, one has the added property that if y ∈ DP is
asymptotic to x then hP is a one-sided contraction at x. (That is, there is an open half interval
[x, y) ⊂ Tα consisting of points asymptotic to x.) The existence of a resilient point x ∈ T is
well-known to imply that the dynamics of GF is non-trivial on the closure of the orbit of x. The
existence of a hyperbolic resilient point has further consequences, as the hyperbolicity guarantees
control of the dynamics of the map hP near x.

We next recall a dynamical notion which was been colloquially called a “ping-pong game” by
de la Harpe [7], though the concept dates from the work of Klein, and it has many uses in the study
of dynamical systems.

DEFINITION 2.3 The groupoid GF has a “ping-pong game” if there exists x, y ∈ Tα with x 6= y
and

1. a closed plaque chain P such that hP is a hyperbolic contraction at x = x0

2. a closed plaque chain Q such that hQ is a hyperbolic contraction at y = y0

3. y ∈ DP is asymptotic to x by hP and x ∈ DQ is asymptotic to y by hQ

This definition of a “ping-pong game” has a more general version in higher codimension, where
we simply require that the stable manifold of hP through x and and that of hQ through y inter-
sect transversally. The above definition reduces to this in codimension one, but the hyperbolic
contraction hypotheses is stronger than necessary for higher codimension. As we need only the
codimension one case in this paper, we leave further details of this extension to the reader. Let us
note the relation between “ping-pong games” and hyperbolic resilient orbits:

PROPOSITION 2.4 GF has a “ping-pong game” if and only if it has a hyperbolic resilient point.

Proof: Assume that GF has a “ping-pong game” with notation as above. Then there exists ε > 0
so that every point of BT (x, ε) is asymptotic to x. Choose µ � 0 so that h

µ
P(y) ∈ BT (x, ε) and

choose δ > 0 so that
h

µ
P(BT (y, δ)) ⊂ BT (x, ε)

Next, chose ν � 0 so that hν
Q(x) ∈ BT (y, δ). It follows that h

µ
P ◦hν

Q(x) ∈ BT (x, ε) and thus x is a
hyperbolic resilient point, with the plaque chain Pµ ◦ Qν joining x to a point in the domain of the
contraction hP .

Next, assume that GF has a hyperbolic resilient point with notation as above. Let P be the
closed plaque chain at x such that Dh(P, x) is a linear contraction and {h`

P(y) | ` > 0} is a sequence
asymptotic to x. As remarked above, by the continuity of Dh(P, z), there exists ε > 0 so that
Dh(P, z) is a linear contraction for all z ∈ BT (x, ε) It follows that there exists δ > 0 so that for
` � 0 the image of the closed δ–ball about y satisfies

h`
P(BT (y, δ)) ⊂ BT (x, ε)

Then for ` � 0 sufficiently large, the concatenation of plaque chains R = Q ◦ P` defines a trans-
formation

hR : BT (y, δ) −→ BT (y, δ)
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whose derivative Dh(R, z) is a contraction for all z ∈ BT (y, δ). It follows that there is a unique
hyperbolic fixed-point y0 ∈ BT (y, δ). As x ∈ BT (x, ε), we have that x is asymptotic to y0. By
choice, every point of BT (y, δ) is asymptotic to x. Thus, we have exhibited a “ping-pong game”
for GF . 2

In our proof of Theorem 1.1 we will find it more direct to show there exists a ping-pong table
for the dynamics, and thus by Lemma 2.4 is follows there is a hyperbolic resilient orbit.

2.6 Geometric entropy

Given ε > 0 and an integer N > 0, we say that x, y ∈ T are (N, ε)–separated if either x ∈ Tα and
y ∈ Tβ belong to distinct transversals, or there exists a plaque chain P of length at most N so that
x, y ∈ DP and dT (hP (x),hP (y)) > ε. If x, y ∈ Tα and dT (x,y) > ε then we can take P = {Pα,Pα}
to be the trivial plaque chain with hP = IdTα the identity map, and x, y are (N, ε)–separated for
all N ≥ 0. We say that a finite subset {x1, . . . , xν} ⊂ T is (N, ε)–separated if for every k 6= ` the
pair of points xk, x` ∈ T is (N, ε)–separated.

Let S(GF , ε,N) denote the maximum cardinality of an (N, ε)-separated subset of T . As M is
compact and the foliation atlas is regular, this is a finite number. Now define

h(GF , ε) = lim sup
N→∞

log S(GF , ε,N)

N
(4)

The geometric entropy of Ghys, Langevin and Walczak [5] is the limit

h(GF ) = lim
ε→0

h(GF , ε)

This limit is finite for a transversally C1-foliation [5]. See Chapter 13, [3] for further properties
of this number h(GF ). In general, h(GF ) depends upon the choice of the regular foliation atlas,
though it is independent of the choice of the Riemannian metric on M . A key point is that the
dichotomy h(GF ) > 0 or h(GF ) = 0 is independent of the choice of the atlas. We say that F has
positive geometric entropy if h(GF ) > 0 for some regular foliation atlas.

Given a subset K ⊂ T we can also define the relative geometric entropy h(GF ,K) where we
define S(GF ,K, ε,N) using subsets {x1, . . . , xν} ⊂ K, and the remainder of the definitions follow
the same pattern. For example,

h(GF ) = sup
α∈A

h(GF ,Tα)

Thus, given h(GF ) > 0 there is some transversal Tα with h(GF ,Tα) = h(GF ) > 0.

2.7 Distal foliations

The pseudogroup GF is said to be distal [9] if for every α ∈ A and pair of points x, y ∈ Tα with
x 6= y then there exists ε(x, y) > 0 such that for each holonomy transformation hP , if x, y ∈ DP

then dT (hP (x),hP (y)) ≥ ε(x, y).

If GF has a ping-pong game in its dynamics, then clearly GF is not distal.

A foliation F is distal if GF is distal for some regular foliation atlas.
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2.8 Foliation geodesic flow

The compactness of M has been used to obtain a finite regular atlas for F and thus uniform esti-
mates on the generators of the holonomy pseudogroup GF . Analyzing the dynamical consequences
of h(GF ) > 0 requires introducing recurrence properties of the plaque chains for GF . In theory,
this can be done using a “coding scheme” from the index set A, but a conceptually and technically
easier method is to use the Riemannian manifold structure on M to introduce the foliation geodesic
flow [10, 11, 23] which will allow us to apply techniques from the ergodic theory of flows.

Let V = T1FA be the Sq−1-sphere bundle of unit vectors in TM which are tangent to the leaves
of F . A typical point (x, v) ∈ V consists of a basepoint x ∈ M and a unit tangent vector v ∈ T1Mx.
The fibration projection π : V → M , π(x, v) = x, pulls F back to a foliation denoted by F̂ , whose
leaves L̂ are the unit tangent bundles to the leaves of F . The Riemannian metric on TM induces
a metric on the bundle TV , and we let dV denote the resulting distance function.

For x ∈ M , let Lx denote the leaf of F through x, and endow TLx with the restricted Rie-
mannian metric from TM . Given a unit vector v ∈ T1Lx, we can form the geodesic γ(x,v)(t) in the
complete Riemannian manifold Lx, defined for all t ∈ R. Note that the curve γ(x,v) : R → Lx ⊂ M
is not necessarily a geodesic for the metric on TM .

The foliation geodesic flow , Φ : V ×R → V , associated to the geodesic spray vector field on V
is characterized by the condition that γ(x,v)(t) = π(Φ(x, v, t)) is the leafwise geodesic starting at x
with initial velocity v, and (y,w) = Φ(x, v, t) where γ(x,v)(t) = y and γ′

(x,v)(t) = w. (cf. [10, 23]).

For a C1-foliation, the flow Φ is C1. If F is transversally C1+a,then Φ is C1+a. For fixed t, we
write Φt(x, v) = Φ(x, v, t) to emphasize this is a map of V to itself.

Each curve t 7→ Φ(x, v, t) is contained in a leaf of F̂ , hence the flow Φt maps the leaves of F̂
into themselves for all t.

Let Q → V denote the normal bundle to T F̂ , and identify Q with T F̂⊥ using the induced
Riemannian metric on V . For a point x ∈ Tα, the tangent space TxTα inherits a Riemannian metric
from TM so that TxTα is naturally isometric to Qz for each z ∈ V with π(z) = x.

The differential of Φt preserves Q for each t, and we let DΦt : Q → Q denote the induced
action on the bundle of normal vectors to F̂ , where

DΦt(x, v):T F̂⊥
(x,v) → T F̂⊥

Φt(x,v)

Suppose that x ∈ Tα, y ∈ Tβ, and Φ(x, v, s) = (y,w). We define a leafwise path γ(t) =
π(Φ(x, v, t)) : [0, s] → M from x to y, which induces a local diffeomorphism hγ from its domain
Dγ ⊂ Tα to an open subset of Tβ. One then has

Dhγ = DΦs

This is an exercise in the definitions, as the left hand side is a matrix, while the right-hand-side
is a linear transformation on vector spaces of normal vectors to F , but the assumption that x, y
lie in T allows the identification of DΦ(x, v, s) with a matrix, and the equality follows by the fact
that the holonomy hγ along the path γ has a well-defined germ about x, so can be germinally
represented by the flow on Φ on the local leaf spaces, which are identified with the components of
the transversal T .
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2.9 Flow invariant measures

A probability measure m on V , viewed as a linear functional on C0(V ), is Φ–invariant if for all
g ∈ C0(V ) and any t ∈ R, m(g) = m(g ◦ Φ−t). The measure m admits an extension to the Borel
functions on V , and we define the measure of a Borel subset K ⊂ V as m(K) = m(χK).

We say that m has support in K ⊂ V if m(g) = 0 for all g vanishing on K. The support of m,
denoted by |m|, is the intersection of all closed sets K such that m has support in K. The support
|m| is Φ–invariant, and is a non-empty compact set if m is not the zero measure.

The t-support of m is
|m|T = π(|m|)P ∩ T

Given a plaque Pα(x), we let P̂α(x) = π−1(Pα(x)) denote its unit tangent bundle, considered as a
subset of V . Then

|m| ⊂ π−1(|m|T ) =
⋃

z∈|m|T

P̂αz(z)

A Φ–invariant measure m is said to be t–discrete if there is a finite collection of plaques
{Pβ1(y1), . . . ,Pβk

(yk)} (not necessarily a plaque chain) so that |m|T = {y1, . . . , yk}. By abuse
of notation, we will say that m is supported on the set {Pβ1(y1), . . . ,Pβk

(yk)}.
Let m be a t–discrete measure. For each x ∈ π(|m|) there is an index αx for which B(x, εU/2) ⊂

Uαx , and yx ∈ Tαx with x ∈ Pαx(yx). We will assume the plaques {Pβ1(y1), . . . ,Pβk
(yk)} covering

π(|m|) are chosen so that each point yi ∈ Tβi
has a neighborhood of diameter at least εU . Note

that the set π(|m|)P is not necessarily F-saturated.

Given a t-discrete measure m, for each (x, v) ∈ |m| the leafwise geodesic γ(x,v) determines a
closed plaque chain as in § 2.3. As the set |m| is Φ-invariant, the orbit of π ◦ γ(x,v) is contained
in π(|m|)P , so the plaque chain can be chosen a subset of {Pβ1(y1), . . . ,Pβk

(yk)}. Thus, we can
assume |m| has support in a finite union of closed plaque chains. For example, a closed leafwise
geodesic γ gives rise to a t-discrete measure m. However, the t-discrete hypothesis does not imply
that the geodesic orbit γ(x,v)(t) is periodic. For example, the union of the plaques in the set π(|m|)P
may form a compact leaf L of F , so the plaques {Pβ1(y1), . . . ,Pβk

(yk)} form a covering of L by
coordinate charts, and the closed plaque chains correspond to elements of π1(L) defined in terms
of chains or open neighborhoods of L. The typical geodesic on L is not periodic, but is a covered
by compositions of these generating plaque chains.

At the other extreme from t-discrete, if |m|T is an uncountable set we say m has uncountable
t-support. A probability measure m is said to be transversally non-atomic if m(P̂α(x)) = 0 for
every plaque Pα(x). Clearly, such a measure must be t-uncountable. If the set |m|T has positive
Hausdorff dimension, then again it must be t-uncountable.

Let M denote the space of Φ–invariant probability measures, and Me ⊂ M the subspace of
ergodic measures. Given a measure m the ergodic decomposition of m expresses it as an integral

m =

∫

Me

dm

Note that if m∗ is an ergodic measure appearing in the ergodic decomposition of a Φ–invariant
measure m, then the support |m∗| is contained in the support |m|.
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3 Stable manifolds and hyperbolic periodic orbits

Assume that F is a codimension one, C1-foliation. In this section we establish some of the the
basic tools needed for studying the C1-dynamics of F . We show the existence of “transverse stable
manifolds” along t-hyperbolic paths in the leaves, and apply this to prove the existence of hyperbolic
contractions for the holonomy group GF . We define t–hyperbolic Φt–invariant measures on V , and
show that every such ergodic measure yields a hyperbolic contraction in its support.

The techniques of this section all have counterparts in the Pesin theory for non-uniformly
hyperbolic C1+α-flows [20, 21, 14]. In our situation, we study the dynamics of the flow Φt relative
to the invariant foliation F̂ which complicates the proofs, while the codimension one hypothesis
greatly simplifies them. Also, we require only qualitative results for this paper, as opposed to the
usual quantitative estimates of Pesin theory, which also simplifies the proofs.

Define an additive cocycle ν:R× V → R over the flow Φt by ν((x, v), t) = log{DΦt(x, v)}. By
definition, exp{ν((x, v), s)} is the transverse logarithmic expansion of F along the geodesic segment
{π(Φt(x, v)) | 0 ≤ t ≤ s}. The chain rule implies that ν satisfies the additive cocycle relation over
the flow Φ,

ν((x, v), s + t) = ν(Φt(x, v), s) + ν((x, v), t) (5)

The infinitesimal logarithmic transverse expansion along the geodesic flow is the continuous function
ϕ : V → R defined by

ϕ(x, v) =
d

dt
log{DΦt(x, v)} |t=0

Clearly, ν((x, v), s) =

∫ s

0
ϕ(Φt(x, v)) dt. By the cocycle property, ν(Φt(x, v),−t) = −ν((x, v), t)

for all (x, v) ∈ V and all t. Hence, ϕ(x,−v) = −ϕ(x, v) for all (x, v) ∈ V .

Define ‖ϕ‖ = max{|ϕ(x, v)| | (x, v) ∈ V }.

3.1 t-hyperbolicity and regular values

A continuous leafwise curve γ: [a, b] → M is piecewise-geodesic if there exist times a = t0 < t1 <
· · · < tN so that for all 0 ≤ k < N the path {γ(t) | tk ≤ t ≤ tk+1} is a leafwise geodesic
segment. Thus, there exists points (xk, vk) ∈ V with xk = γ(tk) and π(Φt(xk, vk)) = γ(t + tk) for
0 ≤ t ≤ tk+1−tk. We let γ̂(t) denote the curve in V obtained by concatenating the Φt flow segments
{Φt(xk, vk) | 0 ≤ t < tk+1 − tk}, so that π(γ̂(t)) = γ(t). For example, as noted in § 2.3, every
plaque chain gives rise to a piecewise geodesic curve. We also consider piecewise geodesic curves
γ: [a,∞) → M where now there can exist an infinite number of “corners” a = t0 < t1 < t2 < · · ·

The logarithmic expansion along a piecewise geodesic curve γ: [a, b] → M is defined by

ν(γ) =

∫ b

a
ϕ(γ̂(t)) dt, and also set λ(γ) =

1

b − a

∫ b

a
ϕ(γ̂(t)) dt. A piecewise geodesic curve

γ: [a,∞) → M is said to be t–hyperbolic with exponent λ(γ) if

λ(γ) = lim
s→∞

1

s

∫ s

a
ϕ(γ̂(t)) dt 6= 0

If λ(γ) < 0 then γ is said to be t–stable, and t–unstable if λ(γ) > 0.
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Suppose that a piecewise geodesic curve γ: [a,∞) → M is t–stable. For ε > 0, we say that
s0 ≥ a is ε-regular if for all s > s0

∫ s

s0

{ϕ(γ̂(t)) + ε} dt < 0 (6)

LEMMA 3.1 Suppose that a piecewise geodesic curve γ: [a,∞) → M is t–stable with expansion
λ(γ) < 0. Then for 0 < ε < −λ(γ) there exists ε-regular values {s1, s2, . . .} with sn → ∞.

Proof : The limit of the integral
1

s

∫ s

a
{ϕ(γ̂(t)) + ε} dt (7)

equals λ(γ) + ε < 0, so there exists a greatest value s1 ≥ a such that (7) equals 0. Clearly, s1 is
ε-regular. Assume that regular values {s1, . . . , sn} have been chosen with sk ≥ k. Then define sn+1

to be the largest value of s ≥ sn + 1 such that

1

s

∫ s

sn+1
{ϕ(γ̂(t)) + ε} dt = 0. 2

We can ask whether the regular values have a uniform distribution. Such results in general
require that the piecewise geodesic curve γ: [a,∞) → M be a generic orbit for an ergodic Φt-
invariant measure. For our applications, it suffices to consider the periodic case: a ray γ is periodic
if there exists a Tγ > 0 such that γ(t + Tγ) = γ(t) for all t ≥ a. We also consider a sequence of
times {s0, s1, . . . , sN} where a = s0 < s1 < · · · < sN = a + Tγ so that γ(t + sk) = π(Φt(xk, vk)) is a
smooth geodesic segment on each interval 0 ≤ t ≤ sk+1 − sk. For 1 ≤ k ≤ N and ε > 0 set

µk =

∫ sk−sk−1

0
{ϕ(Φt(xk, vk)) + ε} dt

so that (λ(γ) + ε)Tγ = (µ1 + · · · + µN ). Note that each |µk| ≤ (‖ϕ‖ + ε)(sk − sk−1).

Extend the finite sequence {µ1, . . . , µN} to an infinite periodic sequence

{µ1, . . . , µN , µ1, . . . , µN , . . .}
and let S`(n) denote the sum of the terms from ` to n, where 1 ≤ ` ≤ N and ` ≤ n < ∞. The
value s` is ε-good if and only if S`(n) < 0 for all n ≥ `.

Set c = max{(|λ(γ)| − ε)/‖ϕ‖(sk − sk−1) | 1 ≤ k ≤ N}.

LEMMA 3.2 Let 0 < ε < −λ(γ). Then at least cN of the values in {s0, s1, . . . , sN−1} are ε-good.

Proof : Since lim
n→∞

S`(n)/n = λ(γ) + ε < 0 there exists 0 ≤ ` such that s` is ε-good. Since γ is

periodic, if ` > N then s`−N is also ε-good, so we can assume 1 ≤ ` ≤ N . Also, we can assume
without loss that it is s0 which is ε-good by changing the starting point on γ to s`.

Now, if µN < 0 then sN−1 is also ε-good. Let k be the greatest value with k ≤ N such that
µk ≥ 0, so that {sk+1, . . . , sN} are all ε-good. A sequence of values {si, si+1, . . . , sk} is ε-bad if
µi+1 + · · ·µk+1 ≥ 0. Consider the least i ≤ k such that {si, si+1, . . . , sk} is ε-bad. Then µi < 0 and
it is an exercise that si−1 is ε-good. We continue in this way to group the values {s0, s1, . . . , sN−1}
into ε-good values and ε-bad values. Clearly, the sum of the ε-bad values in an ε-bad sequence
increase the sum S`(n), while the ε-good values decrease this sum. Since for an ε-good value s`

we have |µ`+1| ≤ (‖ϕ‖ − ε)(s`+1 − s`) there must exists at least cN ε-good values in order that
µ1 + · · · + µN = (λ(γ) + ε)Tγ . 2
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3.2 Stable manifolds

The construction stable manifolds is primarily based on using the derivative of a holonomy map
to estimate its action on nearby points. A critical technical step is to establish uniform estimates
on the derivative itself. Before giving the construction of stable manifolds, we present in detail
the definition of a monotone increasing function ε1: (0,∞) → (0,∞) which serves as a modulus of
continuity in the proofs of this section, and in the next two sections as well. The definition ε1 is
technical, so we start with an intuitive interpretation.

Suppose that γ: [s0, s∗] → M is a leafwise piecewise geodesic curve. We require that all of the
corners of γ lie in T . Recall the construction of the holonomy transformation hγ from in § 2.3.
Implicit in the definition of hγ is the use of a collection of short geodesic segments in the plaques
Pαk

(zk) covering γ. The point z0 ∈ Tα0 is first connected to the initial point x0 = γ(s0) via a
geodesic segment σ0 in the plaque Pα0(z0). Note that σ0 has length at most dU . Next, choose s1

with γ(s1) ∈ Pαk
(z1) so that {γ(t) | s0 ≤ t ≤ s1} ⊂ Pα0(z0) ∪ Pα1(z1). If possible, choose γ(s1)

to be a corner. Connect z1 to x1 via a geodesic segment σ1 in the plaque Pα1(z1). Note that by
the convexity of the plaques, the shortest geodesic segment joining z0 to z1, which we call τ1, is
contained in the union Pα0(z0)∪Pα1(z1). Repeat this process along the length of γ, until we get to
the last plaque where xN = γ(z∗) is connected to zN by a geodesic segment σN . The hypothesis on
corners implies that each of the curves γk = {γ(t) | sk ≤ t ≤ sk+1} is a leafwise geodesic segment.

The geodesic segments {(σk, τk, σk+1, γk) | 0 ≤ k < N} satisfy γ = γ0 ∗ γ1 ∗ · · · ∗ γN−1 and

τ = τ0 ∗ τ1 ∗ · · · ∗ τN−1 = (σ0 ∗ γ0 ∗ σ−1
1 ) ∗ (σ1 ∗ γ1 ∗ σ−1

2 ) ∗ · · · ∗ (σN−1 ∗ γN−1 ∗ σ−1
N ) (8)

The holonomy hγ is by definition the compositions of the holonomies along the paths τk which
is the composition of the holonomies along the segments appearing on the right hand side of (8).
Thus, to estimate the behavior of the map hγ , it will suffice to estimate the holonomies along the
curves γk. The estimates are all based on the function ϕ, so we consider the lifts of all the segments
in (8) lifted to Φt-flow segments in V . The function ε1 is chosen so that given δ > 0 then ε1(δ)
is chosen so that that the transverse derivative along γ satisfies a uniform estimate up to δ in an
ε1(δ)-neighborhood of γ. The details follow.

Recall that ε0 > 0 is the t-Lebesgue number of the given regular foliation atlas, and dU denotes
the maximal diameter in the leafwise metric of all plaques Pα(x) for all x ∈ Tα and α ∈ A.

The function ϕ is continuous on the compact space V , so given δ > 0 there exists 0 < ε2(δ)
such that for d((y,w), (y′, w′)) < ε2(δ) then |ϕ(y,w) − ϕ(y′, w′)| < δ. Clearly, we can assume ε2(δ)
is a monotone increasing function of δ.

Choose a monotone increasing function 0 < ε3(δ) < ε0 so that for all (y,w), (y′, w′) ∈ V and all
−4dU ≤ t ≤ 4dU then

dV ((y,w), (y′, w′)) < ε3(δ) ⇒ dV (Φt(x, v),Φt(y,w)) < min{ε0, ε2(δ)} (9)

Finally, the Riemannian metric gM on M restricts to a Riemannian metric on each foliation
chart Uβ which is pulled-back via φβ to a Riemannian metric gβ on (−1, 1)n. The tensor gβ can
be expressed as symmetric matrix-valued function with respect to the standard Euclidean basis of
(−1, 1)n, and the norm of gβ(u, v) is the maximum of the matrix norms of gβ(u, v) and gβ(u, v)−1.
Let ‖gβ‖ be the supremum of all such pointwise norms on (−1, 1)n, and let ‖g‖ be the supremum
of the norms {‖gβ‖ | β ∈ A}. This is finite as the covering of M by foliation charts is finite.

Set ε1(δ) = max{ε3(δ), ε3(δ)/‖g‖2}. Note that for all (y, z) ∈ (−1, 1)n−1 × (−1, 1) the curve
t 7→ φ̃−1

α0
(y, z + t) ∈ V for −ε1(δ) < t < ε1(δ) has length at most ε3(δ)/‖g‖ ≤ ε3(δ).
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After these technical preliminaries, we give an application.

THEOREM 3.3 Let γ: [a,∞) → M be a t-stable, piecewise geodesic curve whose corners lie in T
with expansion λ = λ(γ) < 0. Set ε1 = ε1(λ/10), and for ε = 9λ/10 let s0 ≥ a an ε-regular value.
Then there exists z ∈ Tα with γ(s0) ∈ Pα(z) and Ix = (z − ε1, z + ε1) ⊂ Tα so that for all s∗ ≥ s0,
the holonomy transformation h∗ defined by the curve γ∗ = {γ(t) | s0 ≤ t ≤ s∗} is defined on Ix.
Moreover, for s∗ � s0 the transformation h∗ is a contraction satisfying

0 < h′
∗(y) < exp{(s1 − s0) · λ(γ)/2} for all y ∈ Ix (10)

Proof: Choose a leafwise path chain covering γ∗ as in § 2.3, Pγ∗ = {Pα0(z0), . . . ,PαN
(zN )}, which

defines the holonomy transformation h∗. We show that (z0 − ε1, z0 + ε1) is contained in the domain
of h∗.

First, φ−1
α0

(0 × (z0 − ε1, z0 + ε1)) ⊂ Tα0 has length at most ε3 < ε0 so that hα1α0 is defined on
(z0 − ε1, z0 + ε1). The image hα1α0(z0 − ε1, z0 + ε1) = (z1 − ε′, z1 + ε′′) ⊂ Tα1 for some ε′, ε′′ > 0. As
remarked previously, the holonomy hα1α0 is the composition of the holonomy along σ−1

0 , followed
by the holonomy along γ0, then along σ1. The image of (z0 − ε1, z0 + ε1) under the holonomy along
σ−1

0 , which is just a “coordinate slide” in Uα0 , has the form I0 = {φ−1
α0

(y0, z0 + t) | −ε1 < t <
ε1} ⊂ Uα0 so that its length is again at most ε3(δ)/‖g‖ ≤ ε3(δ). The second image has the form
I1 = {φ−1

α1
(y1, z1 + t) | −ε′ < t < ε′′} ⊂ Uα1 .

The points of Iα0 are joined to the points of Iα1 by geodesic segments in Uα0 ∪ Uα1 where the
path joining φ−1

α0
(y0, z0) = γ(0) to φ−1

α1
(y1, z1) = γ(s1) is just the geodesic segment γ0. By the

choice of ε3 and (9), all of these segments lie within an ε2 neighborhood of γ0. By the choice of ε2

and the mean value theorem, the transverse separation of these geodesic segments is estimated by

ε3/‖g‖ · exp

{∫ s1

s0

{ϕ(γ̂0(t)) − λ/10} dt

}
< ε3/‖g‖ · exp {8(s1 − s0)λ/10} < ε3/‖g‖ (11)

hence (z1 − ε′, z1 + ε′′) has length at most ε3. We can thus apply hα1α2 to the image of hα1α0 .

The above argument is repeated almost verbatim for hα2α0 = hα2α1 ◦ hα1α0 , except that now
the estimate (11) involves an integral from s0 ≤ t ≤ s2. Continue inductively to obtain that hγ is
defined on (z0 − ε1, z0 + ε1).

The proof above also shows that h′
∗ satisfies an estimate

exp {(s∗ − s0)λ} /‖g‖2 ≤ h′
∗ ≤ ‖g‖2 · exp {8(s∗ − s0)λ/10} (12)

so that for s∗ � s0 the map h′
γ is a hyperbolic contraction satisfying (10). 2

3.3 Hyperbolic fixed-points

Theorem 3.3 is applied to show the existence of holonomy transformations with hyperbolic fixed-
points when there is suitable recurrence for the flow Φt.

Given a Φt–invariant measure m we set Λ(m) = m(ϕ) =

∫

V
ϕ dm. The diffeomorphism

(x, v) 7→ (x,−v) of V conjugates the flow Φt to itself, and transforms a Φt–invariant measure m to
another Φt–invariant measure m− such that m−(ϕ) = −m(ϕ). Thus, if Λ(m) > 0 then Λ(m−) < 0.
Note that π(|m−|) = π(|m|).
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DEFINITION 3.4 An ergodic, Φt–invariant measure m∗ on V is t–hyperbolic if Λ(m∗) 6= 0.
Given an arbitrary Φt–invariant probability measure m on V , we say m is t–hyperbolic if almost
every ergodic measure m∗ in an ergodic decomposition of m is t–hyperbolic. If there exists C > 0
so that |Λ(m∗)| ≥ C for all such ergodic measures, then we say m is uniformly t–hyperbolic.

THEOREM 3.5 Let m be an ergodic, t–hyperbolic, Φt–invariant measure on V . Then for
ε1 = ε1(|Λ(m)|/10), there exists α ∈ A, z ∈ π(|m|)P ∩ Tα and a holonomy transformation

hm: (z − ε1, z + ε1) → (z − ε1, z + ε1)

such that hm(z) = z and 0 < h′
m∗

(y) < c < 1 for all z − ε1 < y < z + ε1.

Proof: By reversing the time if necessary (i.e., using the conjugate measure m− in place of m) we
can assume that Λ = Λ(m) < 0.

By the ergodic theorem, m–almost every point (x, v) ∈ |m| satisfies

lim
s→∞

1

s

∫ s

0
f(Φt(x, v)) dt = lim

s→∞

1

s

∫ 0

−s
f(Φt(x, v)) dt = m(f) (13)

for every continuous function f :V → R. Such points (x, v) are called generic for m, and the
forward orbit of (x, v) is dense in |m|. Choose (x, v) generic for m so that

lim
s→∞

1

s

∫ s

0
ϕ(Φt(x, v)) dt = Λ

For ε = −9Λ/10 let s0 ≥ 0 be an ε-regular point for the geodesic ray γ(t) = π(Φt(x, v)) where
0 ≤ t < ∞. Choose a sequence of times sN 7→ ∞ such that ΦsN

(x, v) ∈ BV (Φs0(x, v), ε1/10).

By Theorem 3.3 there exists z ∈ Tα with γ(s0) ∈ Pα(z) and Ix = (z − ε1, z + ε1) ⊂ Tα so that
for all sN , the holonomy transformation hN along the curve γN = {γ(t) | s0 ≤ t ≤ sN} defines a
transformation hN :Ix → Ix. For N sufficiently large, hN is a uniform contraction on this interval,
hence hN has a fixed-point z ∈ Ix ⊂ Tα.

It remains to show that z ∈ π(|m∗|)P∩Tα. The orbit {Φt(x, v) | t ≥ s0} is contained in the closed
set |m∗|, while z is a hyberbolic attractor so the plaques covering the orbit {π(Φt(x, v)) | t ≥ s0}
are asymptotic to the plaque containing z, hence this plaque must lie in π(|m∗|)P . 2

A key point for the applications of Theorem 3.5 in the next sections is that the size of the
domain of the hyperbolic attractor depends only on |Λ(m∗)|, and given a collection of ergodic
measures {mk} with |Λ(mk)| > C > 0, the domains of the hyperbolic fixed-points constructed in
the proof are bounded below by ε1(C/10) > 0.
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4 Hyperbolic measures and resilient leaves

Assume that F is a codimension one, C1-foliation with a t–hyperbolic measure m. In the last
section, we showed this implies that F must have elements of holonomy which are hyperbolic
contractions. In this section, we show that with a suitable hypotheses on the support |m| of m,
then we can also conclude that F must have a resilient leaf.

THEOREM 4.1 Assume there exists an ergodic, t-hyperbolic, Φt–invariant measure m∗ on V
which is not t-discrete. Then there exists an open connected set I ⊂ Tα and elements of holonomy
h1:I → I and h2:I → I which are hyperbolic contractions, and satisfy h1(I) ∩ h2(I) = ∅.

Proof: We can assume that Λ(m∗) < 0 (otherwise we replace m∗ with m−
∗ ). By Theorem 3.3,

there exists ε1 > 0, a generic point (x, v) ∈ |m∗| and s0 > 0 so that for all sufficiently large s1 � s0,
the holonomy transformation hγ defined by the geodesic segment γ = {Φt(x, v) | s0 ≤ t ≤ s1} is
defined on the transverse interval I0 = (z−ε1, z+ε1) ⊂ Tα where π(Φs0(x, v)) ∈ Pα(z). Moreover,
hγ is a contraction with derivative

0 < h′
γ(y) < exp{(s1 − s0) · Λ(m)/2} for all y ∈ I0 (14)

The hypothesis that |m∗|T is not a finite set implies that the orbit σ∞ = {Φt(x, v) | 0 ≤ t}
intersects an infinite number of plaques P̂βz

(z) in V , hence the closure σ∞ must be a perfect set
transversally. That is, π(σ∞)P ∩ T ⊂ |m∗|T ⊂ T is a perfect set. Thus, for any open connected
subinterval I ⊂ Tα with π(σ∞)P ∩ I 6= ∅, there exists disjoint open connected subintervals
I1,I2 ⊂ I such that π(σ∞)P ∩ I1 6= ∅ and π(σ∞)P ∩ I2 6= ∅. Moreover, as π(σ∞)P is compact, we
can assume that the intervals have disjoint closures, I1 ∩ I2 = ∅, and both I1 ⊂ I and I2 ⊂ I.

Apply the above remarks to I0, which by choice satisfies π(σ∞)P ∩ I0 6= ∅. Choose connected
open intervals I1 and I2 so that I1,I2 ⊂ I0, I1∩I2 = ∅, and π(|m|)P∩I1 6= ∅ and π(|m|)P∩I2 6=
∅. As (x, v) is generic, there is a sequence of times {rk | s0 < rk → ∞} with π(Φrk

(x, v)) ∈ (I1)P for
all k, and also times {sk | s0 < sk → ∞} with π(Φsk

(x, v)) ∈ (I2)P for all k. For k sufficiently large,
let h1,k:I0 → I0 be the holonomy map defined by the geodesic segment γ1,k = {π(Φt(x, v)) | s0 ≤
t ≤ rk}. Similarly, let h2,k:I0 → I0 the holonomy map defined by γ2,k = {π(Φt(x, v)) | s0 ≤ t ≤ sk}.
Then observe that by the estimate (14), for k sufficiently large we have h1,kI0 ∩ h2,kI0 = ∅. For
such k, set I = I0, h1 = h1,k and h2 = h2,k. 2
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The following example shows that the ergodic hypothesis is necessary, and illustrates some of
the phenomena which can give rise to t-discrete measures. Consider the foliation F on a 3-manifold
V constructed as follows. Let Σ2 be a genus 2 compact surface, then π1(Σ1, x∗) maps onto the
free group Z ∗Z and by the usual suspension construction, given an action of two diffeomorphisms
f, g on S1, one can construct a foliation F on a 3-manifold V by suspension of the action of these
two maps on S1. Choose f to be the identity outside of a small interval I ⊂ S1, and to have a
hyperbolic fixed-point x∗ ∈ I. Choose g to be a hyperbolic linear fractional transformation with
fixed-points y∗, z∗ 6∈ I, and gI ∩ I = ∅. (Or, an even simpler example is obtained by taking g to
be the identity map!)

For each k and ` 6= 0 we get a hyperbolic attractor in the holonomy of F given by the compo-
sition hk,` = g−k ◦ f ` ◦ gk. For each element [γk,`] ∈ π1(Σ1, x∗) which maps onto this element of
Diff(S1), there is a shortest closed geodesic γk,` in Σ representing this class. Under the suspension
construction, γk,` gives rise to a closed leafwise geodesic through the hyperbolic fixed-point for
g−k ◦ f ` ◦ gk and hence to an ergodic, t-discrete Φt-invariant measure mk,` for F . Thus, there are
infinitely many t-hyperbolic measures mk,`. Note that the expansion rate Λ(mk,`) is proportional
to `/(` + 2k) so by taking weighted sums we obtain uniformly t-hyperbolic measures for F whose
t-support is countably infinite. However, F has no resilient leaves as all leaves of F are proper.

Ergodic, t-discrete Φt-invariant measures are an important consideration in the study of the
dynamics of foliations with h(GF ) > 0. As the above example suggests, they can arise from a closed
leafwise geodesic for which the holonomy hγ has a hyperbolic fixed-point. When the domains of
these hyperbolic attractors are disjoint, as in the above example, there does not have to be a
ping-pong game associated to the attractors. When these domains sufficiently overlap, GF has a
ping-pong game and hence h(GF ) > 0.
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5 Entropy and t-hyperbolic measures

In this section, we show that h(GF ) > 0 implies there exists an ergodic, t-hyperbolic Φ–invariant
measure m∗ on V , and the exponent of the measure can be estimated from h(GF ). We start by
introducing some conventions which are used in this section and the next.

Set E = h(GF ) > 0. Let 0 < ε4 < ε0 be such that 0 < ε ≤ ε4 implies h(GF , ε) > 3E/4.

Choose a sequence of integers {Nk | k > 0} tending to infinity such that

ek = S(GF , ε4, Nk) > exp(Nk · E/2)

Recall that h(GF ) = sup{h(GF ,Tα) | α ∈ A}, so we can assume there exists a fixed transversal
Tα such that for each k > 0 there is an (Nk, ε4)-separated subset {xk

` | 1 ≤ ` ≤ ek} ⊂ Tα. Use the
coordinate tα : (−1, 1) → Tα to identify Tα with a subset of the line. We can then assume that the
set {xk

` | 1 ≤ ` ≤ ek} is indexed so that xk
` < xk

`+1 for all 1 ≤ ` < ek.

For each k > 0 and 1 ≤ ` < ek there exists a plaque chain Pk,` of minimal length, at most
Nk, so that xk

` , x
k
`+1 ∈ DPk,`

and dT (hk,`(x
k
` ),hk,`(x

k
`+1)) > ε4. Here, hk,` denotes the holonomy

determined by Pk,` and DPk,`
is the maximal domain of hk,`.

By the mean value theorem, for each k > 0 and 1 ≤ ` < ek there exists a point xk
` ≤ yk

` ≤ xk
`+1

such that h′
k,`(y

k
` ) ≥ ε4/(x

k
`+1 − xk

` ). This suggests the definition of the expansiveness of the set

{xk
` | 1 ≤ ` ≤ ek} on a subset I ⊂ Tα, given by

E(I, k) = max
x`,x`+1∈I

{
sup

x`≤y≤x`+1

h′
k,`(y)

}
(15)

Note that by hypothesis, Tα has length at most 1, so for each k there must exist an ` for which
(xk

`+1 − xk
` ) ≤ 1/ek and hence E(Tα, k) ≥ ε4 · exp(Nk · E/2). Introduce the invariant

Λ(I) = lim sup
k→∞

log{E(I, k)}
Nk

(16)

which depends on the choices of GF , ε4 and the sets of expansive points. For simplicity, we omit
this dependence in the notation Λ(I). Note that by the above remarks, Λ(Tα) ≥ E/2.

The proof of the following result introduces a technique used repeatedly for constructing t-
hyperbolic measures. The basic idea, first applied to foliations in [10, 11], is that the existence of an
exponentially growing number of points in a bounded set, for which there are local diffeomorphisms
which expand them to a fixed distance apart, implies (non-uniform) hyperbolicity along increasingly
long orbit segments for the flow Φt. This data is converted to the existence of t-hyperbolic Φt-
invariant measures using the continuity of the derivative ϕ of the transverse expansion cocycle.

PROPOSITION 5.1 If h(GF ) > 0, then there exists an ergodic, Φ–invariant measure m∗ on V
with Λ(m∗) ≥ Λ(Tα)/dmax ≥ E/2dmax > 0.
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Proof: For 0 < ε < Λ(Tα) set λ = Λ(Tα) − ε. Choose a sequence {`k | 1 ≤ `k < ek} and points yk
`k

satisfying xk
`k

≤ yk
`k

≤ xk
`k+1 and h′

k,`k
(yk

`k
) ≥ exp{Nkλ}.

The plaque chain Pk,`k
determines a leafwise piecewise-geodesic path τk starting at yk,`k

and
ending at wk,`k

= hk,`k
(yk,`k

) of length at most Nk · dmax. By the completeness of the leafwise
Riemannian metrics, there exists a length-minimizing, leafwise geodesic γk starting at yk,`k

, ending
at wk,`k

and homotopic to τk rel endpoints. The length of γk has the bound ‖γk‖ ≤ Nk · dmax.

As τk and γk are leafwise homotopic, the germs at yk,`k
of the corresponding holonomy trans-

formations hk,`k
and hγk

are equal, hence h′
γk

(yk,`k
) = h′

k,`k
(yk,`k

) ≥ exp{Nkλ}.
The geodesic segment γk is the image of a flow segment, γ̂k(t) = {Φt(yk,`k

, vk) | 0 ≤ t ≤ ‖γk‖}
where vk = γ′

k(0). Define a sequence of probability measures {mk} on V by setting, for g continuous
on V ,

mk(g) =
1

‖γk‖
·
∫ ‖γk‖

0
g(γ̂k(t)) dt (17)

Note that from the definitions,

mk(ϕ) ≥ Nkλ/‖γk‖ ≥ λ/dmax

Choose a weak-* limit mε of the sequence {mk | k = 1, 2, . . .} which is a Φt–invariant probability
measure on V such that mε(ϕ) ≥ λ/dmax = (Λ(Tα) − ε)/dmax.

Consider a weak-* limit m of the family of Φt–invariant probability measures on V {mε | ε → 0}.
We must have m(ϕ) ≥ (Λ(Tα) − ε)/dmax for all ε, hence m(ϕ) ≥ Λ(Tα)/dmax.

Finally, take an ergodic decomposition of m and there must be an ergodic, Φt–invariant measure
m∗ with m∗(ϕ) ≥ m(ϕ) ≥ Λ(Tα)/dmax. 2

Note that the closure in V of the set of flow segments {γ̂k(t) | 0 ≤ t ≤ ‖γk‖} for 1 ≤ k < ∞
arising in the proof of Proposition 5.1 contains the support of the measures {mε | ε → 0}. Hence
it also contains the supports |m| and |m∗| of m and m∗ respectively.
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6 Positive entropy and ping-pong games

In this section we give the proof of Theorem 1.1. The methods used are the most technical of
the paper, primarily for two reasons which we discuss to motivate the following proof. Recall the
usual approach to establishing dynamical phenomenon for a flow or diffeomorphism with positive
topological entropy. For example, Katok’s proof of the existence of hyperbolic periodic points for a
surface diffeomorphism [14] is the closest analog to the results of this section. First, one starts by
showing the measure entropy is positive for some measure of positive Hausdorff dimension, and for
which there exist non-zero Lyapunov exponents. Then, the Lyapunov metric is introduced, and at
the regular points in the Pesin set one has stable and unstable manifolds which are used to show
the existence of hyperbolic phenomenon like homoclinic orbits and hyperbolic periodic points.

The first fundamental difficulty for foliations is that there is no good definition of measure
entropy yet, even though the dynamics of Φt relative to F̂ is rich with invariant measures. So
the above approach for flows and diffeomrophism, if it is to work at all for foliations, must be
based on the core ideas, and not on established theorems. For example, it was shown in the last
section that if h(GF ) > 0 then there exists ergodic t-hyperbolic Φt-invariant measure. If such a
measure is not t-discrete (and hence it has positive transverse Hausdorff dimension) then we can
invoke Theorem 4.1, yielding a ping-pong game which is the codimension-one foliation analog of
transversally intersecting homoclinic orbits.

The most technical part of the proof of Theorem 1.1 is to analyze the case when all the t-
hyperbolic Φt-invariant measures are t-discrete. Essentially, we show this cannot happen, using a
lengthy case-by-case analysis, in each case showing that there exists a ping-pong game for GF . For
flows, this case does not arise, since by the maximum principle for the measure entropy, positive
topological entropy implies there are measures of positive entropy. For foliations, similar ideas as
used in the proof of the maximal theorem arise in our analysis of the t-discrete case – except of
course, that we cannot use the orbit data to produce invariant measures of positive entropy! Instead,
we go directly to the construction of intersecting stable manifolds from the orbit data. However,
the second fundamental difficulty with foliation dynamics is then encountered: one can define the
Lyapunov metric on the normal bundle to F lifted to V , viewed as a Φt-invariant bundle, but this
metric is not necessarily related to a metric on M where the ping-pong game dynamics must be
constructed. The point is that we cannot choose the foliations charts on M as in § 2 to respect
the resulting Lyapunov metric on V . As a result, we introduce a number of technical devices, all
essentially showing some form of non-uniform hyperbolicity has uniform approximations.

We assume that h(GF ) > 0, hence there exists an ergodic t-hyperbolic measure. As discussed
above, to prove Theorem 1.1 it suffices to assume every ergodic t-hyperbolic, Φt–invariant measure
m on V is t-discrete, and show that there must exist a ping-pong game for the dynamics of GF .
Let {mb | b ∈ B} denote the collection of all ergodic Φt-invariant probability measures on V with
λb = Λ(mb) < 0. We are going to analyze a sequence of cases, based on the cardinality of B,
the values {λb | b ∈ B} and the nature of the hyperbolic contractions constructed in the proof of
Theorem 3.5 applied to each measure mb.

For each b ∈ B let π(mb)P be the finite union of plaques {Pβb
1
(yb

1), . . . ,Pβk
Nb

(yb
Nb

)}. Let J ⊂ T
denote the union of all plaque centers {yb

` | b ∈ B & 1 ≤ ` ≤ Nb}.
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6.1 The case when {zb | b ∈ B∗} is infinite

Assume that there is λ∗ > 0 such that the set B∗ = {b ∈ B | λb ≤ −λ∗} has infinite cardinality.
Set ε1 = ε1(λ∗/10) and ε = 9λ∗/10 as in § 3.2. Then by Theorem 3.5, for each b ∈ B∗ there exists
zb = yb

` ∈ π(|mb|)P ∩Tαb
for some 1 ≤ ` ≤ Nb such that Ib = (zb − ε1, zb + ε1) ⊂ Tαb

and an element
of holonomy hb:Ib → Ib such that hb(zb) = zb and 0 < h′

b(y) < c < 1 for all y ∈ Ib.

Suppose that the union of the set {zb | b ∈ B∗} is infinite. Choose an accumulation point
z∗ ∈ Tβ, and choose distinct points zb, zc ∈ BT (z∗, ε1/10). Then zb, zc ∈ I = Ib ∩ Ic and we choose
N � 0 so that hN

b I ∩ hN
c I = ∅. Then set h1 = hN

b and h2 = hN
c and we are done.

6.2 The case when {zb | b ∈ B∗} is finite, with bounded periods

With notation as in (6.1), suppose that the union of the set {zb | b ∈ B∗} is finite, but the set of
plaque centers J∗ = {yb

` | b ∈ B∗ & 1 ≤ ` ≤ Nb} is infinite, and there exists N∗ > 0 so that Nb ≤ N∗

for all b ∈ B∗.

From the proof of Theorem 3.5, each of the holonomy maps hb is the holonomy along a plaque
chain Pb of length at most N∗. It follows that we can join each yb

` to zb by a plaque chain
Pb,` of length again at most N∗ which defines a holonomy transformation hb,` with hb,`(y

b
`) =

zb. Thus, there exists ε∗ > 0 so that for all b, ` we have (zb
` − ε∗, z

b
` + ε∗) ⊂ h−1

b,` Ib Then the

composition hb,` ◦hn
b ◦h−1

b,` is a hyperbolic contraction with yb
` as fixed-point and domain containing

(yb
` − ε∗, y

b
` + ε∗). The collection of plaque centers J∗ are thus all hyperbolic fixed-points, and must

have an accumulation point, so we are done by the method of Case 1.

6.3 The case when {zb | b ∈ B∗} is finite with unbounded periods

With notation as in (6.1), suppose that the union of the set {zb | b ∈ B∗} is finite, the set of plaque
centers J∗ = {yb

` | b ∈ B∗ & 1 ≤ ` ≤ Nb} is infinite, but there is no upper bound on the lengths
{Nb | b ∈ B∗}. We will show that either there is a ping-pong game for GF or reduce the problem to
Case 4 below, where J is a finite set.

Fix b ∈ B∗ and let Pb = {Pα1(z0), . . . ,PαN
(zN )} be the plaque chain used to define hb where

zb = z0. From the proof of Theorem 3.3, form the piecewise geodesic curve τb: [0, Tb] → M obtained
by concatenating the geodesic segments τ` connecting z` to z`+1. Note that τb(0) = z0, and
{z0, . . . , zN} ⊂ {yb

1, . . . , y
b
Nb

}. Let 0 = s0 < s1 < . . . < sN = Tb be such that τb(sk) = zk.

We say that hb is irreducible if Pαi
(zi) = Pαj

(zj) implies i = j, and reducible otherwise.

Case 3a. Suppose hb is reducible. Choose indices 0 ≤ i < j < N so that τ(si) = τ(sj). Then
the plaque chain P along τ has a subloop starting at Pαi

(zi) and ending at Pαi
(zi). We decompose

P at these points, yielding closed plaque chains

P1 = {Pα1(z1), . . . ,Pαi
(zi),Pαj+1(zj+1), . . .PαN

(zN )}

P2 = {Pαi
(zi), . . . ,Pαj

(zj)}
and closed piecewise geodesic curves τ1(t) and τ2(t). As the logarithmic expansion is additive,
ν(τ) = ν(τ1)+ν(τ2) = λbTb at least one of these shorter loops must be t-hyperbolic with expansion
λ∗

b ≤ λb. We can thus continue to reduce the curve τ until we obtain an irreducible curve τ∗
b which

is t-hyperbolic with expansion λ∗
b ≤ −λ∗ and supported on a subset of Pb.
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For each closed plaque chain constructed from the orbit of each generic point (x, v) ∈ |mb| and
each irreducible plaque chain obtained as above, choose one with the longest length, and let τ∗

b be
the corresponding piecewise geodesic curve. If the length of τ∗

b is uniformly bounded for all b ∈ B∗

then we proceed on to Case 4. If the length of τb is unbounded, then we proceed to Case 3b.

Before continuing our analysis of cases, a comment on the intuitive motivation may be helpful.
In cases 1 and 2, we obtained an infinite set of distinct points in T which were the fixed-points
for hyperbolic attractors in GF with domains of uniform size. However, in case 3 we consider the
case where the set of fixed-points constructed is finite, even though the set J∗ is infinite. What
could go wrong is that there could be a finite set of plaques which “carry” all of the transverse
hyperbolicity (as is the case of the map f in the suspension example given previously.) The
technique of considering the irreducible plaque chains derived from the measures mb isolates this
possibility, and when the lengths of the curves τ∗

b are uniformly bounded this is the intuition.
This possibility is considered in Case 4, and requires using additional information derived from our
hypothesis that h(GF ) > 0 to obtain a ping-pong game.

The case 3b we consider next is where a collection of curves τ∗
b has length tending to infinity.

The intuition is that the hyperbolicity along τ∗
b must be distributed over an increasing sequence

of plaques dues to the uniform bound |ϕ(x, v)| ≤ ‖ϕ‖. Thus, for each such curve τ∗
b we produce

an increasing number of points along its orbit which are ε-good, and hence obtain once again an
infinite set of hyperbolic fixed points, and by the method of Case 1 produces a ping-pong game.

Case 3b. Let τb: [0, Tb] → M be the piecewise geodesic curve associated to the irreducible plaque
chain Pb = {Pβ1(z0), . . . ,Pβnb

(znb
)} which is either obtained from the proof of Theorem 3.3 if this is

irreducible, or by the reduction in case 3a. We assume that nb → ∞ and τb has exponent λb ≤ −λ∗.
We assume that τb(0) = z0, and let 0 = s0 < s1 < . . . < snb

= Tb be such that τb(sk) = zk. Extend
τb to a periodic piecewise geodesic curve τb: [0,∞) → M . Then by Lemma 3.2 there is a constant
c > 0 depending only on λ∗ and ε such that at least cNb of the values in {s0, s1, . . . , snb

} are
ε-good. It follows that each of the corresponding points in {τb(s0), . . . , τb(snb

} is the fixed-point
for a hyperbolic attractor in GF whose domain has width 2ε1. The collection of all such points for
b ∈ B∗ must be infinite, so we can proceed as in Case 1.

6.4 The case when t-hyperbolic measures are t-discrete

In this final case, we use the assumption h(GF ) > 0 and hypotheses on the t-hyperbolic periodic
piecewise-geodesic plaques chains (to be made precise later) to show there exists a ping-pong
game for the dynamics of F . The idea of the construction of a ping-pong game in this case is
simple, although tedious in its implementation. Each t-hyperbolic periodic plaque chain produces
an element of holonomy with a hyperbolic fixed-point. Positive entropy implies such paths exists,
and also that there exists an exponentially growing number of hyperbolic paths as constructed
in the proof of Proposition 5.1. We use these paths to construct an element of holonomy which
“translates” one of the hyperbolic fixed-points by an amount less than the size of its domain, which
will then produce a ping-pong game. A simple example illustrates this idea: consider the “ax+b”
group acting on R with generators h1(x) = 2x and h2(x) = 1. The composition h2 ◦h1(x) = 2x+1
has a hyberbolic fixed-point at x = −1 so {h1,h2◦1} generate a ping-pong table. The holonomy
element analogous to h1 is obtained from one of the t-hyperbolic plaque chains; the work is to
produce the a holonomy translation analogous to h2. More accurately, the translation is analogous
to a map to h−`

1 ◦ h2 ◦ h`
1 for ` � 0. A key point is to show that the map produced actually

translates the fixed-point, even though the size of the translation is exponentially small.
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We start with some technical preliminaries. Notation will be as in § 5. Recall that for ek =
dexp(Nk · E/2)e we assume there is chosen an (Nk, ε4)–separated subset {xk

` | 1 ≤ ` ≤ ek} ⊂ Iα.

Let qk = dexp(Nk · E/4)e be the least integer greater than or equal to exp(Nk · E/4). Then
by the pigeon-hole principle, for each k > 0 there exists a closed interval Jk ⊂ Tα of length 1/qk

so that Jk ∩ {xk
` | 1 ≤ ` ≤ ek} has cardinality at least qk. Without loss of generality, assume

this (Nk, ε4)–separated subset is labeled {xk
` | 1 ≤ ` ≤ qk} and indexed so that xk

` < xk
`+1 for all

1 ≤ ` < qk.

For each k > 0 and 1 ≤ ` < qk there exists a minimal-length plaque chain Pk,` of length at most
Nk, so that xk

` , x
k
`+1 ∈ DPk,`

and dT (hk,`(x
k
` ),hk,`(x

k
`+1)) > ε4. Here, hk,` denotes the holonomy

determined by Pk,` and DPk,`
is the maximal domain of hk,`.

For each k > 0 and 1 ≤ ` < qk, choose a point yk
` such that xk

` ≤ yk
` ≤ xk

`+1 and h′
k,`(y

k
` ) is

maximal. The distance |xk,` −xk,`+1| ≤ 1/qk so that by the mean value theorem, h′
k,`(y

k
` ) ≥ ε4 · qk.

The plaque chain Pk,` determines a leafwise piecewise-geodesic path τk,` starting at yk
` and

ending at wk
` = hk,`(y

k
` ) of length at most Nk ·dmax. By the completeness of the leafwise Riemannian

metrics, there exists a leafwise length-minimizing geodesic γk,` starting at yk
` , ending at wk

` and
homotopic to τk,` rel endpoints. The germs at yk

` of the holonomy transformations for hk,` and
hγk,`

agree, so h′
γk,`

(yk
` ) = h′

k,`(y
k
` ). Let Tk,` = ‖γk,`‖ and note that Tk,` ≤ Nk · dmax.

Let vk
` = γ′

k,`(0) so that γk,`(t) = π(Φt(y
k
` , vk

` )). Set γ̂k,`(t) = Φt(y
k
` , vk

` ) for 0 ≤ t ≤ Tk,` .

Let γ−
k,`(t) = γk,`(Tk,` − t) be the time-reversed geodesic segment, and γ̂−

k,`(t) = γ̂k,`(Tk,` − t)

the time-reversed orbit segment projecting to γ−
k,`(t). The holonomy defined by γ−

k,` is just h−1
k,`.

For each k > 0 and 1 ≤ ` < qk, set

λk,` =
log{h′

k,`(y
k
` )}

Tk,`
(18)

Note that λk,` ≤ ‖ϕ‖, and combined with the above estimates we have

‖ϕ‖ ≥ λk,` ≥
log{ε4 · qk}

Tk,`
≥ NkE + log(ε4)

4Tk,`
≥ NkE + log(ε4)

4Nkdmax
→ E

4dmax
(19)

For each k > 0, choose an index `k with 1 ≤ `k < qk so that

h′
k,`(y

k
`k

) = max
{
h′

k,`(y
k
` ) | 1 ≤ ` < qk

}

Note that by hypothesis, Jk has length 1/qk and contains qk distinct points, so for each k there
must exist an 1 ≤ ` < qk for which (xk

`+1 − xk
` ) ≤ 1/(qk)2 and hence h′

k,`k
(yk

`k
) ≥ ε4 · exp(Nk ·E/2).

For notational convenience, set hk = hk,`k
, yk = yk

`k
and Tk = Tk,`k

. Introduce the invariants

λk = log{h′
k(yk)}/Tk & λ∗ = lim sup

k→∞
λk (20)

From previous remarks, we have the estimate E/2dmax ≤ λ∗ ≤ ‖ϕ‖. Passing to a subsequence of
the k if necessary, we can assume that for each k and 1 ≤ ` < qk

λk ≥ λ∗(1 − 1/k) & λk,` ≥ E/5dmax (21)
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Set Λ∗ = min{1/2 , E/(96dmax)}. The factoring 96 = 2 · 4 · 12 reflect the role of Λ∗ – the key
to the proof of Theorem 1.1 will turn out to be the factor “2”! The estimate Λ∗ ≤ 1/2 is included
in the definition to simplify a later estimate.

We assume that every ergodic t-hyperbolic, Φt–invariant measure m on V is t-discrete, and that
there exists a finite collection of plaques P∗ = {Pβ1(z1), . . . ,PβN

(zN )} so that for every irreducible
plaque chain τ∗ with expansion λ(τ∗) ≤ −Λ∗ is composed of plaques in P∗. We also assume that P∗

is minimal, in the sense that every plaque in P∗ intersects at least one hyperbolic plaque chain. The
integer N depends on the choice of Λ∗ but to simplify notation, this dependence is not indicated.

Set ε1 = ε1(Λ∗/10). As in case (6.2) we can choose 0 < ε5 ≤ ε1 so that for each 1 ≤ ξ ≤ N , set
Iξ = (zξ − ε5, zξ + ε5) then Iξ ∩ Iη = ∅ for ξ 6= η, and there exists a holonomy map hξ:Iξ → Iξ

with 0 < h′
ξ(y) < c < 1 for all y ∈ Iξ. Let Lξ denote the leaf of F through zξ and note that if

Lξ ∩ Iξ 6= {zξ} then Lξ is a resilient leaf and we are done. Otherwise, we can assume each leaf Lξ

is proper.

For each 1 ≤ ξ ≤ N and ε > 0, let

S(zξ, ε) =
⋃

z∈BT (zξ,ε)

Pα(z)

denote the open subset of M given by the union of the plaques in BT (zξ, ε), and let

Ŝ(zξ , ε) = π−1(S(zξ, ε)) ⊂ V . Also set S(ε) =
N⋃

ξ=1

S(zξ, ε) and Ŝ(ε) = π−1(S(ε)) ⊂ V .

We next prove a technical result providing a uniform estimate on the transverse expansion
outside of the set Ŝ(ε5).

LEMMA 6.1 For each ε > 0 there exists T (ε) > 0 so that if (xk, vk) ∈ V ,s > 0 and T > 0 are
such that {Φt(x, v) | s ≤ t ≤ s + T} ∩ Ŝ(ε) = ∅, then

∣∣∣∣∣

∫ s+T

s
ϕ(Φt(x, v)) dt

∣∣∣∣∣ < T (ε) ‖ϕ‖ + T Λ∗ (22)

Proof: Define a continuous function ∆: [0,∞) → R where ∆(T ) is the maximum of

1

T
·
∣∣∣∣∣

∫ s+T

s
ϕ(Φt(x, v)) dt

∣∣∣∣∣ − Λ∗ (23)

for all (x, v) ∈ V and s ≥ 0 such that {Φt(x, v) | s ≤ t ≤ s + T} ∩ Ŝ(ε) = ∅. If lim sup
T→∞

∆(T ) ≥ 0,

then there exists {(xk, vk) ∈ V, sk, Tk | k = 1, 2, . . .} such that

lim
Tk→∞

1

Tk
·
∫ sk+Tk

sk

ϕ(Φt(xk, vk)) dt ≤ − Λ∗

(Recall that we can assume the integral is negative by simply reversing time along an orbit where
the integral is positive.) The orbit segments {Φt(xk, vk) | sk ≤ t ≤ sk + Tk} define a sequence of
probability measures {mk} as in equation (17), and let m be a weak-* limit. Then m(ϕ) ≤ −Λ∗

so there exists an ergodic Φ–invariant measure m∗ in the ergodic decomposition of m for which
m∗(ϕ) ≤ −Λ∗ whose support is contained in the closure

|m∗| ⊂
∞⋃

k=1

{Φt(xk, vk) | sk ≤ t ≤ sk + Tk}
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which is disjoint from Ŝ(ε) by hypothesis. The measure |m∗| is t-hyperbolic, so must be t-discrete.
Associated to m∗ is an irreducible plaque chain and piecewise geodesic curve τ∗ with exponent
λ(τ∗) ≤ −Λ∗. The plaques used to define τ∗ are contained in |m∗|P so this contradicts our
assumptions. Thus, lim sup

T→∞
∆(T ) < 0.

Since ∆(0) = 0 there is a greatest value T = T (ε) such that ∆(T ) = 0. Since ∆(T ) ≤ ‖ϕ‖ for
all T , the conclusion follows. 2

COROLLARY 6.2 For all T > T (ε) and for all (x, v) ∈ V − Ŝ(ε), s ≥ 0, if
∣∣∣∣∣

∫ s+T

s
ϕ(Φt(x, v)) dt

∣∣∣∣∣ ≥ T Λ∗ (24)

then {Φt(x, v) | s ≤ t ≤ s + T} ∩ Ŝ(ε) 6= ∅.

Proof: If the intersection is empty, then as T > T (ε) we have ∆(T ) < 0 contradicting (24). 2

We return now to the analysis of the dynamics of GF . It should be remarked that by (19) the
geodesic lengths Tk,` → ∞ uniformly in k. By Corollary 6.2, for k � 0 and each 1 ≤ ` < qk there
exists a value 0 ≤ Fk,` < Tk,` such that {γk,`(t) | 0 ≤ t ≤ Fk,`} intersects S(ε5) in a connected,
half-open interval Fk,` − δ1 < t ≤ Fk,` for some δ1 > 0. That is, Fk,` is the approximate time of
first entry in S(ε5) for the geodesic segment γk,`.

Let ρk,` denote the piecewise-geodesic curve formed from the segment {γk,`(t) | 0 ≤ t ≤ Fk,`}
followed by a geodesic segment σ0

k,` contained in a plaque from γk,`(Fk,`) to uk,` ∈ T . Let fk,`

denote the holonomy map determined by ρk,` so that fk,`(yk,`) = uk,` and by Lemma 6.1 for k � 0,

∣∣∣log{f ′k,`(yk,`)}
∣∣∣ ≤ ‖ϕ‖(T (ε1) + dU ) + Λ∗Fk,` ≤ 2Λ∗Tk,`

exp {−2Λ∗Tk,`} ≤ f ′k,`(yk,`) ≤ exp {2Λ∗Tk,`} (25)

We next estimate the distance from each point uk,` to the set {z1, . . . , zN}.
Let |A| denote the cardinality of the set A. By the “pigeon-hole principle”, for any collection of

points {x1, . . . , xa} ⊂ T with a ≥ d2|A|/ε1e+1 there exists 1 ≤ i < j ≤ a so that dT (xi, xj) ≤ ε1/2.
More generally, given an integer n > 1, if a ≥ nd2|A|/ε1e + 1 then there exists z ∈ T and integers
1 ≤ i1 < . . . < in ≤ a so that dT (z, xij ) ≤ ε1/4 for j = 1, . . . , n.

Choose an integer K2 > 2‖ϕ‖dU + 2. We want to ensure that there are at least K2 “close
points”, so we set

K3 = K2d2|A|/ε1e + 1 (26)

Set ε6 = 10Λ∗ and assume k � 0. We exhibit a sequence of points which are ε6-regular for γ−
k,`.

First, there exists 0 ≤ sk,`,1 < Tk,` which is the greatest value of s such that

∫ s

0

{
ϕ(γ̂−

k,`(t)) + 10Λ∗

}
dt = 0

and then
∫ Tk,`

sk,`,1

ϕ(γ̂−
k,`(t)) dt =

∫ Tk,`

0

{
ϕ(γ̂−

k,`(t)) + 10Λ∗

}
dt = −λk,` Tk,` + 10Λ∗ sk,`,1
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Then choose the least tk,`,1 > sk,`,1 so that

∫ tk,`,1

sk,`,1

ϕ(γ̂−
k,`(t)) dt = − 1 − Λ∗

Continuing, let sk,`,2 ≥ tk,`,1 be the greatest value such that

∫ sk,`,2

tk,`,1

{
ϕ(γ̂−

k,`(t)) + 10Λ∗

}
dt = 0

and then ∫ Tk,`

sk,`,2

ϕ(γ̂−
k,`(t)) dt = −λk,` Tk,` + 10Λ∗ sk,`,2 + 1 + Λ∗

Iterate this procedure K3 steps to obtain values {sk,`,1, . . . , sk,`,K3} all of which are ε6-regular,
and for sk,`,i satisfies

∫ Tk,`

sk,`,i

ϕ(γ̂−
k,`(t)) dt = −λk,` Tk,` + 10Λ∗ sk,`,i + (i − 1)(1 + Λ∗) (27)

For each 1 ≤ i ≤ K3, let σi
k,` be the geodesic segment contained in a plaque from some point

wk,`,i ∈ T to γ−
k,`(sk,`,i). We note that σi

k,` has length at most dU .

By the choice of K3 there must exist 1 ≤ i1 < · · · < iK2 ≤ K3 and some x ∈ T so that
dT (x,wk,`,i`) < ε1/4 for 1 ≤ ` ≤ K2. Set i = i1 and j = iK2 then dT (wk,`,i, wk,`,j) < ε1/2.

Let τk,` denote the piecewise-geodesic curve formed from the segment σi
k,` followed by the

segment {γ−
k,`(t) | sk,`,i ≤ t ≤ sk,`,j}, then followed by the reverse of σj

k,`. (This is a new definition
of τ from before.)

Let gk,` denote the holonomy map determined by τk,`. Then as sk,`,i is an ε6-regular value,
the domain of gk,` contains the interval Ik,`,i = (wk,`,i − ε1, wk,`,i + ε1) and satisfies the uniform
estimate for all y ∈ Ik,`,i

g′
k,`(y) ≤ exp{−(K2 − 1)(1 + Λ∗ − Λ∗/10) + 2‖ϕ‖dU} ≤ exp{−1} < 1/2 (28)

Hence,
gk,`(Ik,`,i) ⊂ (wk,`,j − ε1/2, wk,`,j + ε1/2) ⊂ Ik,`,i

It follows that gk,` has a hyperbolic contracting fixed point zk,`,i ∈ Ik,`,i. Moreover, Λ∗ < 1 so
(28) implies log{g′

k,`(zk,`,i)} < −Λ∗. It follows that τk,` determines an irreducible plaque chain
and corresponding piecewise-geodesic τ∗ with expansion λ(τ∗) ≤ −Λ∗. It follows that τ∗ must be
composed of plaques from P∗ and hence the hyperbolic fixed point zk,`,i of gk,` lies on a leaf Lξ for
some 1 ≤ ξ ≤ N .

We have shown that if k � 0 then zk,`,i ∈ Ik,`,i∩Lξ. Thus, the holonomy gk,` along the geodesic
segment {γ−

k,`(t) | sk,`,i ≤ t ≤ Tk,` − Fk,`} maps zk,`,i to a point of Lξ ∩ S(ε1). By our choice of ε6

so that Lξ ∩ Tβξ
= {zξ} we must have gk,`(zk,`,i) ∈ Pβξ

(zξ).

Recall the goal is to estimate the distance from uk,` to zξ. Our eventual goal is actually to
estimate the distance from yk,` to the image wξ ∈ Tα of zξ in Ik (which exists by the above!) so we
do that directly using the estimate (27) and and the definition of Λ∗. The estimate for the distance
from uk,` to zξ then follows from (25).
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Let h−
k,`,i:Ik,`,i → Tα be the holonomy along the geodesic segment {γ̂−

k,`(t) | sk,`,i ≤ t ≤ Tk,`}.
From the definitions we have

h−
k,`,i(γ̂

−
k,`(sk,`,i)) = yk,` & h−

k,`,i(uk,`,i)) = wξ

By the estimate (27) and the definition ε1 = ε1(Λ∗/10), for all y ∈ Ik,`,i we have

log
{
h−

k,`,i(y)
}

≤
∫ Tk,`

sk,`,K3

ϕ(γ̂−
k,`(t)) dt + Λ∗ Tk,`/10

≤ −λk,` Tk,` + 10Λ∗ sk,`,i + (i − 1)(1 + Λ∗) + Λ∗ Tk,`/10

≤ −λk,` Tk,` + 10Λ∗ Tk,` + (K3 − 1)(1 + Λ∗) + Λ∗ Tk,`

≤ (12Λ∗ − λk,`) Tk,` (29)

where (29) assumes that (Tk,` − K3)Λ∗ ≥ K3. We note that the definition of K3 in (26) is inde-
pendent of k, ` and Tk,`. Thus, the asymptotic estimate of h−

k,`,i(y) is completely determined by
λk,` − 12Λ∗ which we now estimate.

12Λ∗Tk,` ≤
ETk,`

8dmax
≤ ENk

8
≤ 1

2
log(qk) (30)

The patient reader will now be rewarded. The following completes the proof of Theorem 1.1.

LEMMA 6.3 For k � 0, let zξ correspond to the hyperbolic fixed-point constructed using the
holonomy of the path γk. There exists 0 < ε7 < ε5 and an element of holonomy

kξ: (zξ − ε7, zξ + ε7) → (zξ − ε5, zξ + ε5) = Iξ

such that kξ(zξ) 6= zξ.

Proof: The first step is to set up the notation. Choose k � 0 so the previous estimates hold, and
consider the geodesic segment γk(t) = γk,`k

(t) defined for 0 ≤ t ≤ Tk,`k
= Tk.

Let zk = zk,`k,i ∈ Ik,`k,i = Ik be the hyperbolic fixed-point constructed as above.

Let yk = yk,`k
= γk(0) be the initial point, and vk = vk,`k,i ∈ T be the plaque center containing

γk(sk,`k,i). The holonomy along γ−
k for sk,`k,i ≤ t ≤ Tk is denoted gk:Ik → Iα so we have

gk(vk) = yk and gk(zk) = wξ .

Recall that hk denote the holonomy along the full path γk(t) | 0 ≤ t ≤ Tk} and this was chosen
so that h′

k(yk) is maximum for the maps hk,` defined by the plaque chains Pk,` constructed from
the points xk,` and xk,`+1 for all 1 ≤ ` < qk.

From (29) and (30) and k � 0 we get

log{g′
k(y)} ≤ (12Λ∗ − λk) Tk ≤ −Tkλk + log(qk)/2 = − log{h′

k(yk)} + log(qk)/2 (31)

We conclude that
dT (yk, wξ) ≤ 2ε1

√
qk/h

′
k(yk)

Let Ξk = (yk − δ1, yk + δ2) ⊂ Tα be the open interval with length 4ε1
√

qk/h
′
k(yk) on either side of

yk, so that wξ ∈ Ξk.
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Let Ψk > 0 denote the number of elements in the intersection Ξk ∩ {xk
` | 1 ≤ ` ≤ ek}. By

the pigeon-hole principle applied to the this subset of Ξk, if Ψk > 2 there must be some pair
(xk,`, xk,`+1) with

dT (xk,`, xk,`+1) ≤
8ε1

√
qk

(Ψk − 2)hh′
k(yk)

Then the holonomy map hk,` satisfies

h′
k,`(yk,`) ≥

ε4(Ψk − 2)hh′
k(yk)

8ε1
√

qk

But it is given that h′
k(yk) ≥ h′

k,`(yk,`) so that

Ψk ≤ 8ε1

ε4

√
qk + 2

Thus, the set Sc
k = (Jk − Ξk) ∩ {xk

` | 1 ≤ ` ≤ ek} has cardinality Γk ≥ qk − 2 − 8ε1
√

qk/ε4 which
satisfies lim

k→∞
Γk/qk = 1.

The complement of Ξk in Jk can be written as as a disjoint union of intervals, (Jk−Ξk) = J1
k ∪J2

k

where possibly one of J1
k or J2

k is empty. The above estimate on the number of points in Ξk was
independent of λkλk,`k

. Hence, we can then repeat the above arguments for the set Sc
k to obtain a

pair of points xk,` and xk,`+1 and holonomy map (with analogous notation) g̃k, and points ỹk and
w̃ζ such that g̃k(w̃ζ) = zζ where w̃ζ 6∈ Ξ.

This argument can be repeated at most N + 1 times to obtain the case where w̃ζ = wξ, so we
assume this is the case.

Let fk denote the holonomy along the initial segment with fk(yk) = uk,`k
= uk. By (25) there

is the estimate
exp {−2Λ∗Tk} ≤ f ′k(yk) ≤ exp {2Λ∗Tk}

Similarly, we have
exp {−2Λ∗Tk} ≤ f̃ ′k(ỹk) ≤ exp {2Λ∗Tk}

Note that we estimate log{|fk(Jk)|} by

2Λ∗Tk + log{qk} ≤ TkE/48dmax − NkE/4

≤ (Tk − 12NkdmaxE)/48dmax

≤ −11NkE/48

≤ ε6 for k � 0

Thus, both fk(Jk) and f̃k(Jk) are defined, with kξ = f̃ ◦ f−1 defined on some ε7-neighborhood of zξ

and by construction, kξ(zξ) = f̃(wξ) 6= zξ. 2
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Case 4 of the proof of Theorem 1.1 is the hardest part of showing h(GF ) > 0 implies there
exists a ping-pong game for GF . The first three cases all just use information about the Φt-
invariant measures – that they are uniformly t-discrete with an assumption on the supports – so
philosophically belong to § 5. In Case 4, the dynamical implications of h(GF ) > 0 are used fully.
As suggested in the introduction to this section, there is a conjectural proof of Theorem 1.1 using
the measure entropy for foliations. There is no definition of the measure entropy for foliations, but
considering this possibility still offers some insight to the use of the “closing lemma” type arguments
and the need for working with the maximal exponent λ∗ in the proof of Case 4.

For each k > 0, the collection of geodesic segments {γk,`(t) | 1 ≤ ` < qk} on M can be used to
define a Φt-invariant probability measure µk on V . Given a continuous function g we set

µk(g) =
1

qk

qk∑

1

1

Tk,`

∫ Tk,`

0
g(γ̂k,`(t)) dt (32)

Let µ∗ be a weak-* limit of the collection {µk | k > 0}, with support |µ∗|. One conjectures that the
“measure entropy” associated to µ∗ is positive. In any case, one can study the putative approximate
measure entropies of the approximating measures mk, even if the limiting behavior has not been
well-defined, especially when only qualitative dynamical information is needed.

Consider the proof in Case 4 where F has an exceptional minimal set K. The intervals Ik can
then be chosen to be co-gaps for the Cantor set Kα = K ∩ Tα corresponding to basic open sets in
a coding of Kα, and we choose the points {xk,` | 1 ≤ ` < qk} so that after Nk iterations of the
holonomy on Kα the endpoints are separated by a gap of size at least ε4. The maximal exponent λ∗

provides a lower bound 1/λ∗ on the local Hausdorff dimension of Kα, and the choice of the special
paths γk starting at yk ∈ Kα are obtained by selecting a generic point in Kα where this dimension
is locally minimized. This choice ensures that that the iterations of yk have maximal density in the
coding of the set, so that the code for the orbit γk is well-approximated by t-hyperbolic periodic
orbits with respect to the function ϕ. Thus, the analogy suggests that h(GF ) > 0 implies the
approximating measure µk is supported on enough codes to obtain good periodic approximations
to generic orbits. This is exactly the intuitive idea behind tthe proof that positive measure entropy
implies positive topological entropy for diffeomorphisms, at least in the case of hyperbolic measures.

For a general codimension-one foliation with h(GF ) > 0 it is not possible to restrict the dynamics
to (exceptional) minimal sets where some form of good coding is available, so the above analogy is
limited. For example, the Cases 1 to 3 of the proof corespond to pathologies that are not typical
of the dynamics on minimal sets. Still, the technical nature of the proof given here supports the
hope for a more conceptual approach.
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7 Entropy and the non-wandering set

We give two applications to the topological dynamics of codimension one C1-foliations.

A point x ∈ M is wandering (§ 7, [5]) if there exists an open neighborhood Ux such that for
every leaf L of F , either L∩Ux is empty, or is a connected set. The wandering points form an open
saturated set whose complement is called the non-wandering set , and denoted by Ω(F). Clearly,
the wandering set M − Ω(F) is open and Ω(F) is closed.

A leaf L in the wandering set must be proper, although if L is proper this is not sufficient for
it to be in the wandering set.

Every resilient leaf is non-wandering. If K is a minimal set for F and does not consist of a
single compact leaf, then every leaf of K is non-wandering.

THEOREM 7.1 Let F be a codimension-one C1-foliation. If m is an ergodic, t–hyperbolic,
Φt–invariant measure on V , then π(|m|) ⊂ Ω(F).

Proof: From the proof of Theorem 3.5, given a generic point (x, v) ∈ |m| and ε > 0 there is a
-hyperbolic periodic orbit (z,w) such that dT (x, z) < ε. Moreover, there exists ε1 > 0, α ∈ A,
z ∈ π(|m|)P ∩ Tα and a holonomy map

hm: (z − ε1, z + ε1) → (z − ε1, z + ε1)

such that hm(z) = z and 0 < h′
m∗

(y) < c < 1 for all z − ε1 < y < z + ε1. It follows that for every
z − ε1 < y < z + ε1 with y 6= z the leaf Ly through y is asymptotic to the leaf Lz through z. Thus,
given any open set Ux ⊂ Uα the intersection Ly ∩ Ux will have an infinite number of connected
components. Hence, z ∈ Ω(F).

As Ω(F) is closed and saturated, and z can be chosen arbitrarily close to x, Lz ⊂ Ω(F) for all
such z implies Lx ⊂ Ω(F). But the Φt-orbit of (x, v) is dense in |m| so Lx is dense in π(|m|) and
the claim follows. 2

THEOREM 7.2 Suppose F is a codimension-one C1-foliation with h(GF ) > 0, then the relative
geometric entropy h(GF ,Ω(F)) > 0.

Proof: We proved in § 6 that h(GF ) > 0 implies GF must have a ping-pong game. That is, there
exists α ∈ A, an open connected set I ⊂ Tα and elements of holonomy h1:I → I and h2:I → I
which are hyperbolic contractions, and satisfy h1(I) ∩ h2(I) = ∅.

For ` = 1, 2 let z` be the hyperbolic fixed-point for h`. Then the leaves L1 and L2 through these
points must lie in Ω(F) and hence their closure K also. Thus, all the forward orbits of {z1, z2} by
the holonomy sub-semigroup generated by {h1,h2} must lie in K. This implies h(GF ,K) > 0 and
the claim follows. 2

The Hirsch example [8] is a real analytic codimension one foliation of a compact 3-manifold
with an exceptional minimal set K so that the complement M − K is wandering. The entropy
h(GF ,K) > 0 but also h(GF ,M − K) > 0, as is easily seen. Thus, unlike the case of dynamics for
a single diffeomorphism, it is possible for the wandering set of a foliation to have positive entropy.
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8 Entropy and partially t-expansive measures

In these last two sections, we consider the ergodic theory for C1-foliations of codimension q > 1
whose leaves are smooth submanifolds. In this section, we prove the higher codimension version of
Proposition 5.1. We first establish the notation and conventions needed.

Fix a Riemannian metric on TM and identify the normal bundle Q → M to F with the
subbundle TF⊥ of vectors perpendicular to TF . Endow Q with the subbundle Riemannian metric.
The definition of the foliation geodesic flow Φt:V → V remains unchanged, and preserves the
foliation F̂ on V whose leaves cover those of F . The tangent space TV inherits a Riemannian
metric from TM , and let Q → V denote the normal bundle to T F̂ , which is identified with T F̂⊥.
Let π⊥:T F̂ → T F̂⊥ be the fiberwise orthogonal projection.

The differential of Φt preserves Q for each t, and we let DΦt : Q → Q denote the induced
action on the bundle of normal vectors to F̂ , so induces a map

Ht(x, v) = D⊥Φt(x, v):T F̂⊥
(x,v) → T F̂⊥

Φt(x,v) (33)

Note that while DΦt(x, v):TV → TV must preserve the tangent distribution T F̂ , it need not pre-
serve the orthogonal complements, so that we must compose DΦt(x, v) with orthogonal projection
onto T F̂⊥

Φt(x,v). That is, Ht(x, v) = π⊥ ◦DΦt(x, v). Because each map DΦt(x, v) preserves T F̂ , the
chain rule implies there is a cocycle identity

Ht+s(x, v) = Hs(Φt(x, v)) ◦ Ht(x, v) (34)

Each vector space Q(x,v) has a norm ‖ · ‖(x,v) obtained from the Riemannian metric, so we can
define the norm of each transformation,

‖Ht(x, v)‖ = sup
06=w∈Q(x,v)

‖Ht(x, v)(w)‖Φt(x,v)

‖w‖(x,v)
(35)

Define G(x, v, t) = log{‖Ht(x, v)‖}. The norm of linear transformations is submultiplicative,
‖AB‖ ≤ ‖A‖ · ‖B‖, so by (3) the function G satisfies the subadditive cocycle identity,

G(x, v, t + s) ≤ G(Φt(x, v), s) + G(x, v, t) (36)

DEFINITION 8.1 Assume that F is a C1 foliation. For each (x, v) ∈ V set

λ∗(F)(x, v) = lim sup
t→∞

G(x, v, t)

t
(37)

Define the maximal t-exponent of F on a Φt-invariant set K ⊂ V to be

λ∗(F ,K) = lim sup
t→∞

lim sup
(x,v)∈K

G(x, v, t)

t
(38)

We set λ∗(F) = λ∗(F , V ).
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PROPOSITION 8.2 If F is a C1-foliation with h(GF ) > 0, then λ∗(F) > 0.

Proof: We proceed as in the codimension one case, with some nuances due to the higher codi-
mension. Set E = h(GF ) > 0. Let 0 < ε4 < ε0 be such that 0 < ε ≤ ε4 implies h(GF , ε) > 3E/4.
Choose a sequence of integers {Nk | k > 0} tending to infinity such that

ek = S(GF , ε4, Nk) > exp(Nk · E/2)

Recall that h(GF ) = sup{h(GF ,Tα) | α ∈ A}, so we can assume there exists a fixed transversal
Tα such that for each k > 0 there is an (Nk, ε4)-separated subset {xk

` | 1 ≤ ` ≤ ek} ⊂ Tα.

For each k > 0 and pair of indices 1 ≤ i < j < ek there exists a minimal length plaque chain
Pk

i,j of length at most Nk, so that xk
i , x

k
j ∈ DPk

i,j
and dT (hk

i,j(x
k
i ),h

k
i,j(x

k
j )) > ε4. Here, hk

i,j denotes

the holonomy determined by Pk
i,j and DPk

i,j
is the maximal domain of hk

i,j .

Recall that for α ∈ A, the local coordinate on Tα is denoted by tα : (−1, 1)q → Tα so that we
can identify transversal Tα with (−1, 1)q . The Riemannian metric on Q induces a metric of the
tangent space to each transversal Tα which is pulled back via tα to a metric on (−1, 1)q . We let ‖·‖α

denote the associated norm on the tangent space to (−1, 1)q . Let CU ≥ 1 denote the maximum of
all these norms:

CU = max
α∈A

lim sup
‖v‖=1

{
‖v‖α, ‖v‖−1

α

}

where the supremum is taken over all points (x, v) ∈ Tx(−1, 1)q where v has length one in the
Euclidean metric, and is finite as the foliation atlas is regular.

Given a linear map L:Tx(−1, 1)q → Ty(−1, 1)q viewed as a map between the normed spaces
with norm ‖ · ‖α on the domain and ‖ · ‖β on the range, we let ‖L‖αβ denote the operator norm.

Choose a pair of points xk
i , x

k
j so that dTα(xk

i , x
k
j ) is minimal for i 6= j. As Tα has dimension q

and diameter at most 1, the pigeon-hole principle applied to the domain (−1, 1)q implies that

dTα(xk
i , x

k
j ) ≤ CU

√
q · e−1/q

k ≤ CU
√

q · exp(−Nk · E/2q)

By the mean value theorem applied to the composition gk
i,j = t−1

β ◦ hk
i,j ◦ tα there exists a point

yk
i,j ∈ Tα such that

‖Dhk
i,j(y

k
i,j)‖ = ‖Dgk

i,j(t
−1
α (yk

i,j))‖αβ ≥ ε4 · exp(Nk · E/2q)

C2q
U · √q

The plaque chain Pk
i,j determines a leafwise piecewise-geodesic path τk starting at yk

i,j and ending

at wk
i,j = hk

i,j(y
k
i,j) of length at most Nk · dmax. By the completeness of the leafwise Riemannian

metrics, there exists a length-minimizing, leafwise geodesic γk starting at yk
i,j , ending at wk

i,j and
homotopic to τk rel endpoints. The length of γk has the bound ‖γk‖ ≤ Nk · dmax. As τk and γk are
leafwise homotopic, the germs at yk

i,j of the corresponding holonomy transformations hk
i,j and hγk

are equal, hence Dhγk
(yk

i,j) = Dhk
i,j(y

k
i,j) ≥ exp{Nkλ}. It follows that

log{‖Dhk
i,j(y

k
i,j)‖}

‖γk‖
≥ log(ε4) − 2q log(CU ) − log(q)/2 + Nk · E/2q

Nk · dmax
→ E

2q · dmax

so that λ∗(F) ≥ E/2qdmax > 0. 2
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A Φt-invariant probability measure m on V is said to be partially t-expansive if for m-almost
every (x, v) ∈ |m| we have λ∗(F)(x, v) > 0.

THEOREM 8.3 If F is a C1-foliation with h(GF ) > 0, then there exists an ergodic, partially
t-expansive Φt-invariant measure m∗ on V with λ∗(F)(x, v) = λ∗(F) for m∗-almost every (x, v).

Proof: Note that for codimension one, this is just Proposition 5.1. Unfortunately, because the
norm on matrix products is only subadditive, the same method of proof, using continuity of the
cocycle derivative followed by an application of the ergodic theorem, does not work for codimension
q > 1. Instead, we obtain an asymptotic average from the subadditive cocycle (36) using a standard
orbit averaging technique, followed by an application of Kingman’s subadditive ergodic theorem.

First, we establish a uniform expansion criterion.

LEMMA 8.4 There exists a sequence {(xk, vk) ∈ V | k = 1, 2, . . .} such that

G(xk, vk, k)

k
≥ λ∗(F) − 1/k (39)

Proof: For each k > 0, using that G(x, v, t) is uniformly bounded on V × [0, k] and the subadditive
property (36), there exists (yk, wk) ∈ V and Nk > 0 such that for Tk = kNk we have

G(yk, wk, Tk)

Tk
> λ∗(F) − 1/k

Again by the subadditive property (36) there is the estimate

G(y1
k, w

1
k, k) + G(y2

k, w
2
k, k) + · · · + G(yNk

k , wNk

k , k) ≥ G(yk, wk, Tk) ≥ (λ∗(F) − 1/k)Tk (40)

where (y`
k, w

`
k) = Φ`−1(yk, wk). Then at least one term on the left-hand-side of (40) must satisfy

G(y`
k, w

`
k, k) ≥ (λ∗(F) − 1/k). Set (xk, vk) = (y`

k, w
`
k). 2

For each k > 0 let σk = Φt(xk, vk) and define a probability measure µk on V by

µk(g) =
1

k

∫ k

0
g(σk(t)) dt

Let µ∗ be a weak-* limit of the sequence of measures {µk | k = 1, 2, . . .}.
Let GN :V → R be defined by GN (x, v) = G(x, v,N). Note that (36) can be rewritten

GK+N ≤ GK ◦ ΦN + GN (41)

LEMMA 8.5 For each integer N > 0

1

N

∫

V
GN dµ∗ ≥ λ∗(F) (42)
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Proof: Fix N > 0 and consider sequences k = m ·N +` for fixed 0 ≤ ` < N and m → ∞. Calculate

1

N

∫

V
GN dµ∗ = lim

k→∞

1

kN

∫ k

0
GN (σk(t)) dt

= lim
m→∞

1

kN

∫ mN+`

0
GN (σk(t)) dt

= lim
m→∞

1

mN2

∫ mN

0
GN (σk(t)) dt

= lim
m→∞

1

mN2

m∑

i=1

∫ iN

(i−1)N
GN (σk(t)) dt

= lim
m→∞

1

mN2

m∑

i=1

∫ N

0
GN (Φt(Φ(i−1)N (xk, vk))) dt

= lim
m→∞

1

mN2

∫ N

0

m∑

i=1

GN (Φt+(i−1)N (xk, vk))) dt

= lim
m→∞

1

mN2

∫ N

0

m∑

i=1

log
{∥∥∥D⊥ΦN(Φt+(i−1)N (xk, vk))

∥∥∥
}

dt

= lim
m→∞

1

mN2

∫ N

0
log

{
m∏

i=1

∥∥∥D⊥ΦN (Φt+(i−1)N (xk, vk))
∥∥∥
}

dt

≥ lim
m→∞

1

mN2

∫ N

0
log

{∥∥∥∥∥

m∏

i=1

D⊥ΦN (Φt+(i−1)N (xk, vk))

∥∥∥∥∥

}
dt

= lim
m→∞

1

mN2

∫ N

0
log {‖D⊥ΦmN (Φt(xk, vk))‖} dt (43)

= lim
m→∞

1

mN2
N log {‖D⊥ΦmN (xk, vk)‖} (44)

= lim
m→∞

1

mN
log {‖D⊥ΦmN (xk, vk)‖} (45)

= lim
mN→∞

λ∗(F) − 1/mN (46)

= λ∗(F)

where (46) follows from (45) by Lemma 8.4, and (44) follows from (43) by noting that the cocycle
rule (34) implies

D⊥ΦmN (Φt(xk, vk)) = D⊥ΦmN+t(xk, vk) · D⊥Φ−t(Φt(xk, vk))

= D⊥Φt(ΦmN (xk, vk)) · D⊥ΦmN (xk, vk) · D⊥Φ−t(Φt(xk, vk))

and thus

| log {‖D⊥ΦmN (Φt(xk, vk))‖} − log {‖D⊥ΦmN (xk, vk)‖} |
≤ (log {‖D⊥Φt(ΦmN (xk, vk))‖} + log {‖D⊥Φ−t(Φt(xk, vk))‖})

Observe that (log {‖D⊥Φt(ΦmN (xk, vk))‖} + log {‖D⊥Φ−t(Φt(xk, vk))‖}) is uniformly bounded in
m for 0 ≤ t ≤ N , so taking the limit of the integrals in (43) yields (44). 2
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Kingman’s subadditive ergodic theorem ([16, 17]; page 231 [24]) applied to the sequence of
functions {GN | N = 1, 2, . . .} yields an m-measurable function λm:V → R such that λm◦Φ1 = λm

and lim
N→∞

GN (x, v)/N = λm(x, v) for m-almost every (x, v) ∈ V . Moreover,

∫

V
λm dm = lim

N→∞

1

N

∫

V
GN dm ≥ λ∗(F)

Let m∗ be an ergodic, Φt–invariant measure in the ergodic decomposition of m such that∫

V
λm dm∗ ≥ λ∗(F). Then for m∗-almost every (x, v) ∈ V ,

λ(F)(x, v) = lim
N→∞

GN (x, v)/N ≥ λ∗(F)

Since λ(F)(x, v) ≤ λ(F) this completes the proof Theorem 8.3. 2

The C1-diffeomorphism Φ1:V → V preserves the measure m∗ constructed in Theorem 8.3 so
we can apply the Oseledets Theorem [19, 22] to DΦ1(x, v):TV → TV to obtain the Lyapunov
decomposition of TV with respect to m∗

• real numbers λ1 > · · · > λk for k ≤ dim V

• positive integers n1, . . . , nk such that n1 + · · · + nk = dim V

• for m∗-almost every z ∈ V a measurable splitting TzV = E1
z ⊕ · · ·Ek

z , with dimE`
z = n`

and DΦ1(z):E`
z
∼= E`

Φ1(z) such that

lim
N→∞

1

N
log {‖DΦN(z)w‖} = λ` (47)

whenever w ∈ E1
z ⊕ · · · ⊕ E`

z but w 6∈ E1
z ⊕ · · · ⊕ E`−1

z .

Let Ω(m∗) ⊂ V denote the set of points of full m∗-measure for which (47) holds. Replacing

Ω(m∗) with
∞⋂

N=−∞

ΦN(Ω(m∗)), we can assume that Ω(m∗) is a Φ1-invariant set of full m∗-measure.

A point z ∈ Ω(m∗) is said to be regular for m∗.

The numbers {λ1, . . . , λk} are called the Lyapunov exponents of m∗. Since Φ1 is the time 1 map
of a flow, the flow direction in TV is an invariant subbundle of exponent 0. Thus, there exists some
λ` = 0. The positive exponents are {λ1, . . . , λ`−1} and the negative exponents are {λ`+1, . . . , λk}.

For z ∈ Ω(m∗) let

E+
z =

⊕

λi>0

E`
z , E0

z = E`
z , E−

z =
⊕

λi<0

E`
z (48)

E+
z is called the unstable subspace, E0

z the neutral subspace, and E−
z the stable subspace.
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Let Ω(F ,m∗) denote the points of Ω(m∗) such that λ∗(F)(z) = λ∗(F) for all z ∈ Ω(F ,m∗).
Again, we can assume that Ω(F ,m∗) is a Φ1-invariant set of full m∗-measure.

Let z ∈ Ω(F ,m∗) and w ∈ Qz = T F̂⊥
z . Using the direct sum TzV = E+

z ⊕ E0
z ⊕ E−

z we can
uniquely decompose w = w+ + w0 + w−. By (47),

lim
N→∞

1

N
log

{∥∥∥DΦN (z)(w0 + w−)
∥∥∥
}
≤ 0

so that λ∗(F)(z) = λ∗(F) > 0 implies there exists a sequence of unit vectors {wN ∈ Qz | N =
1, 2, . . .} such that

lim
N→∞

1

N
log

{∥∥∥π⊥(DΦN (z)(w+
N ))

∥∥∥
}

= λ∗(F)

Thus, Q+
z = {w+ | w ∈ Qz} is a non-trivial vector space for all z ∈ Ω(F ,m∗).

As a technical aside, note that for ε > 0 and N � 0,

∥∥∥π⊥(DΦN (z)(w+
N ))

∥∥∥ ≤
∥∥∥DΦN (z)(w+

N )
∥∥∥

≤ exp{N(λ1 + ε)}

so that
exp{−N(λ1 − λ∗(F) − ε)} ≤ ‖w+

N‖ ≤ 1

In particular, as ε > 0 was arbitrary, λ∗(F) ≤ λ1.

Define Q−
z = {w− | w ∈ Qz}.

If we replace the diffeomorphism Φ1 with Φ−1 and the ergodic invariant measure m∗ with
the flow-reversed conjugate measure m−

∗ then in the Oseledets decomposition (48) the stable and
unstable bundles are reversed. Thus, the above arguments have shown

PROPOSITION 8.6 Suppose that F is a C1-foliation with h(GF ) > 0. Then there exists an
ergodic, Φt-invariant probability measure m∗ on V such that for all z ∈ Ω(F ,m∗) we have E−

z is
non-trivial, and Q−

z is a non-trivial subspace of Qz. 2
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9 Transverse Pesin theory

We combine the results of the last section with the stable manifold theory of Pesin to obtain:

THEOREM 9.1 Assume that F is a C1+a-foliation, for some a > 0, with an ergodic, partially
t-hyperbolic Φt-invariant measure m on V . Then there exists a leaf L and a leafwise geodesic path

γ: [0,∞) → L ⊂ M

such that the transverse holonomy along γ admits a stable transverse manifold which is (transver-
sally) attracted to L at an exponential rate.

Proof: For references on Pesin sets and stable manifolds see [14, 20, 21, 15].

By Proposition 8.6, there exists an ergodic, Φt-invariant probability measure m∗ on V such
that for all z ∈ Ω(F ,m∗) we have E−

z is non-trivial, and Q−
z is a non-trivial subspace of Qz.

Let λ` be the neutral exponent of Φ1 so that λi < 0 for i > `. Choose 0 < ν < −λ`+1 ,
0 < µ < λ`−1 and ν, µ � ε > 0. Let Λ(ν, µ, ε) ⊂ Ω(F ,m∗) be the Pesin set, which is closed and
non-empty for ε sufficiently small. Then for z ∈ Λ(ν, µ, ε), define the stable manifold through z for
δ > 0 by

W s
δ (z) = {y ∈ V | dV (ΦN (z),ΦN (y)) ≤ δ exp{−(ν − ε)N} for all N > 0} (49)

Then there exists ε, δ > 0 sufficiently small so that there exists z ∈ Λ(ν, µ, ε) and W s
δ (z) is a

C1-submanifold of V with TzW
s
δ (z) = E−

z .

Since Q−
z is non-trivial, there is a curve σ: (−ε8, ε8) → W s

δ (z) with σ(0) = z and π(σ) is a
transverse curve to F on M .

Let γ(t) = π(Φt(z)) for t ≥ 0 which is a leafwise geodesic path in M . Define

Γ: (−ε8, ε8) × [0,∞) → M by Γ(s, t) = π(Φt(σ(s))

Then Γ(0, t) = γ(t), Γ(s, 0) = π(σ(s)) is a curve transverse to F , and Γ(s, t) is a leafwise geodesic
curve for each (−ε8, s < ε8).

By the definition of W s
δ (z) and of the various metrics on TV , TM and Q, we have

dM (γ(t),Γ(s, t)) ≤ C exp{−(ν − ε)t} (50)

for a suitable constant C > 0 and all t ≥ 0. 2

Combining Theorems 8.3 and 9.1 we obtain the proof of Theorem 1.4.
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