
VANISHING OF SECONDARY CLASSES FOR
COMPACT FOLIATIONS

STEVEN HURDER

Let 3F be a C2-foliation of codimension q on a compact manifold without
boundary. If each leaf of SF is a compact submanifold of M, then SF is a compact
foliation. The purpose of this paper is to show that the Godbillon-Vey class of a
compact foliation vanishes, as must all of the 'residuable' secondary classes

HJ(WO,) = {y,cj e H*(WOq): degc, = 2q}.

THEOREM. Let 3? be a compact, C2-foliation on a closed manifold M. For each
y,Cj e H*(WOq) the secondary class A#(y,Cj) G H*(M) of SF is zero. In particular, the
Godbillon-Vey class gv(#~) = A)|s(j;1c^) is zero.

In codimension one, remarkable progress has been made on the problem of
relating the Godbillon-Vey class of a general foliation SF with the geometry of SF ̂
especially the rates of growth of the leaves [3, 4, 11]. The solution of the Sullivan
conjecture by Duminy [4] implies that the leaves of SF must have exponential
growth if gv(«^) ^ 0. For higher codimensions, the secondary classes in H*(WO,)
appear to be the best candidates for admitting an extension of the codimension one
results. The above theorem asserts that the classes from H*(WOq) vanish if all leaves
of SF have growth of degree zero. The terminology 'residuable' is used for an element
y,Cj in H*(WO,) because the evaluation of the class A^(y,Cj)€ H*(M) can be
obtained using an integral formula which is often expressible as a generalized residue
along the leaves of J5" (for example, see [8]). The reduction to an integral formula is
the key to the proof of the theorem.

It is well known that a compact foliation of codimension one with orientable
normal bundle is defined by a submersion M -> Sl [7]. For a codimension two
compact foliation, the beautiful study of compact foliations by Edwards, Millet and
Sullivan [5] showed that M has a covering by saturated open sets Ul,..., Un for
which SF\V. has the property that there is a finite cover \Jl of U{ such that the lifted
foliation &\Q. on U{ is defined by a submersion onto the disc D2. A metric on D2 pulls
back to a metric on the normal bundle of #" which is invariant under the holonomy
of #". Thus, SF is a riemannian foliation and all of its secondary classes vanish. For
q > 2, a compact foliation need not be riemannian, as evidenced by the examples of
Sullivan and others, even if SF is analytic [13]. These examples show that the
geometry of a compact foliation of higher codimension can be very complicated. In
spite of this, the restrictions on the holonomy of SF imposed by the condition that all
leaves are compact leads to the conjecture that all of the secondary classes of SF must
vanish [10, Question 1.22].

We give now the idea of the proof of the theorem. Passing to a double cover of M
if necessary, we can assume that M is orientable. Multiplying the form on M
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representing our secondary class by a closed form, we see that it is enough to show
that an integral over M vanishes. We use the Epstein filtration [5, 6] of the bad set of
$F to decompose this integral into a sum of integrals over saturated sets Ya = Tax L^
on which 3F is the product foliation. We then show that the secondary class
decomposes into a corresponding product, and the integral of one factor over a leaf
La is proportional to a leaf class of 3F for La. The leaf classes of a compact foliation
are identically zero, and so the integrals over the sets Ya all vanish.

Preparatory lemmas are given in §§1 and 2. The proof in a special case is given in
§3, while in §4 we consider the general integral over the bad set.

It is a pleasure to thank Andre Haefliger for helpful conversations and comments
on this work. The author is grateful to the referee for several suggestions which have
improved and clarified the presentation.

1. The bad set of a compact foliation

Let 3F be a compact foliation on M, and fix a riemannian metric on M. Each leaf
L of 3F has an induced metric, and therefore a volume form and a total volume
vol (L). Define a function on M by assigning to a point x the number vol(LJ, where
Lx is the leaf through x. For details on the properties of the function x t-> vol(LJ,
the reader is referred to the concise summary given in Proposition 4.1 of [5]. Note
that the function vo\(Lx) is continuous at x precisely when Lx has no holonomy.

DEFINITION 1.1. The bad set Xx of $F is the union of the leaves with holonomy:

^ i = (xo G M | x *-> vol (Lx) is not continuous at x 0 } .

The bad set is a saturated, closed and nowhere dense subset of M. The Lebesgue
measure ^(A^) need not be zero, and this forces us to introduce a nice decomposition
of Xy. The Epstein filtration of the bad set is a decreasing collection {Xa | a e si) of
closed subsets of Xx on whose successive differences the function vol(LJ is
continuous. See [5, §6] or [6, §6] for complete details. The indexing set si consists of
the ordinals, and Xp = 0 for some countable successor ordinal /? e si. For each
/? > a, Xp is a saturated, closed and nowhere dense subset of Xa.

For each aesi, set Ya = Xa — Xx+i, and let Yo = M — Xx. Then vol(Lx) is
a continuous function when restricted to Ya, whence J ^ has no holonomy
[5, Proposition 4.1]. The set Ya is relatively open in the closed set Xx. We observe
that Ya has an exhaustion by closed, saturated subsets; this will be used in §4.

LEMMA 1.2. For as si and given e > 0, there is a closed, saturated subset
K <= Xa with K n Xa+l = 0 and ^i(Ya-K) < e.

Proof Let W ^ M be open with Xa+l <= W and f*{W-Xa+i) < e. Let K
denote the .^"-saturation of the closed set Z = (M— W) n Xa. Since ^\Ya is without
holonomy, by [6, Proposition §8] the quotient map n: Ya -* YJfF is open and
proper. The set n(Z) is compact and K = n~l(n(Z)), so that K is compact and
hence closed in M. Both Xa and Xa+l are saturated, and so K ^ Ya. Finally,
Xa-K £ W implies that

( X X K ) ^ {WXa+l) < e .



VANISHING OF SECONDARY CLASSES FOR COMPACT FOLIATIONS 177

2. Leaf and secondary classes

Let s/ (M) denote the deRham algebra of M. The choice of a Bott connection for
2F defines a differential algebra map A: WO, -> s# (M). The algebra WO, is the
product of an exterior algebra with a truncated polynomial algebra

WO, ^ ACyi ,^, . . . ,^^* .^] - . )® R[c,,...,cJ,

where degy,- = 2i — i, degc; = 2i and the differential is determined by dy( = c{ and
dcx = 0. The construction of A and its properties are described in detail in the
foundational paper of Bott [1]; see also [2]. The image of the map in cohomology,
A# : //*(WO,) -> H*{M), consists of the secondary classes of SF.

Next recall the construction of the leaf classes for a leaf L £ M. Let Q = TM/3?
be the normal bundle to J5" and let T{M, Q*) £ stfl(M) be the space of 1-forms
which annihilate J5". The crucial property of the map A is that, for all i,

a consequence of constructing A using a Bott connection. For the leaf L, this implies
that the form A(c,) vanishes when restricted to L, and therefore each A(y,)|L is a
closed form. We remark that this vanishing corresponds to the observation that the
restricted bundle Q\L -> L has a natural flat structure obtained by restricting the Bott
connection on Q. The curvature of a flat connection is zero, and hence A(c,)|L = 0.

For an index / = (il5...,is) with \ ^ i{ < ... < is ^ q and all i, odd, set
yf = yh...yis e WO,. The form A(y,) e $4 (M) is not closed in general, but the above
remarks imply that A(j>,)|L is closed and determines a class in H*(L). The restriction
of A thus defines an algebra map

where we identify the relative Lie algebra cohomology H*(g\q, O,) with the exterior
algebra in WO,. The image of XL consists of the leaf classes of $F for L. The map XL is
an invariant of the germ of $F about L, and in fact depends only on the flat bundle
structure of Q\L -> L. To be precise, recall that the foliation in a neighborhood of L
determines the linear holonomy dh : 7^ (L, x) -> G\qU where x e L. The flat structure
on Q\L is classified by the induced map B(dh):L -> BG\s

qU where GljR has the
discrete topology.

In the study of the leaf classes by Shulman and Tischler [12] (see also [9, Chapter
6]) the following relationship is proven.

PROPOSITION 2.1. There is a commutative diagram

O,) - ^ H*(L)

V E \ /B{dh)*

H*{BG\6
qU)

where VE is the Van Est map defining the continuous cohomology ofGliU.
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COROLLARY 2.2. If the linear holonomy of a leaf L is trivial, then all leaf classes
XL{yt) are zero in H*(L).

Actually, a stronger form of 2.2 can be shown which is relevant to compact
foliations. Recall that a matrix AeG\qU is unipotent if all eigenvalues of A have
modulus 1. The linear holonomy of a leaf L is said to be unipotent if for all
y e KX (L, x) the matrix dh(y) is unipotent.

PROPOSITION 2.3. If the linear holonomy of a leaf L has a solvable subgroup of
finite index, then all leaf classes from Hm(g\q,Oq) vanish for m> I. If the linear
holonomy is unipotent, then all leaf classes for L vanish.

Proof. We can put dh into standard form (for example, see [14, Proposition
3.2]) and so we can assume that the image of dh is contained in a closed subgroup
H ^ G\qU, where H is either unipotent or solvable. For the Lie algebra h of H, the
induced map H*(g\q, Oq) -> H*(h) is then zero for H unipotent, or zero when * > 1
for H solvable. The composition B(dh)* o VE can be factored

H*(g\q, Oq) > H*(h) > H*(BHS) > H*(L)

and hence is zero for H unipotent, or vanishes in degrees greater than one for H
solvable. The composition is equal to xL by Proposition 2.1, and Proposition 2.3
follows.

For a compact foliation the linear holonomy of each leaf L is unipotent (see
Lemma 4.5 below). Thus, for every leaf L of a compact foliation, all leaf classes
vanish.

3. Proof of the theorem

Let 2F be a compact foliation on the compact m-manifold M without boundary.
By passing to a two or four-fold covering of M, we can assume that both M and the
normal bundle Q of SF are orientable. For y,Cj e H"(WO,) with degc, = 2q, we
must show that A^(y,Cj)e H"(M) is zero. It suffices to show, by Poincare duality,

that for every closed (m-n)-form 0 the integral 0 • A(y,Cj) = 0. In §1 a countable
J

decomposition of M associated to the Epstein filtration of X^ was introduced:

M = [j Ya. It is enough to prove that the integral over each Ya is zero. We treat the
a

technically simpler case of Yo = M — Xl in this section, and the case of a general Ya

in the next. If Xx has measure zero in M, then the theorem is equivalent to the
statement that the integral over Yo vanishes. For example, if $F is transversely
analytic, or if every leaf in X{ has non-trivial linear holonomy, then //(A^) = 0.

For convenience, set Y = Yo. Recall that Y is an open saturated set with every
leaf compact and $F\Y has no holonomy. The quotient space T = Y/J5" is therefore
an open, smooth Hausdorff manifold with SF\Y defined by the submersion n : Y -> T
[5, §8]. Choose a volume form cb on T. Then w = n*6j is a transverse invariant
volume form for $F on Y, satisfying den = 0 and i(v)co = 0 for all vector fields v on Y
tangent to 3F.
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Give M a riemannian metric, which determines an embedding Q £ TM
orthogonal to OF. The exterior power bundle AqQ is orientable and we choose a
section z € F(Y, AqQ) over Y satisfying co(z) = 1. Define a <j-form on Y

L o c a l l y , t h e r e a r e v e c t o r fields z l 5 . . . , zq w h i c h f r a m e Q w i t h z = zx ~... ~z f l ; t h e n for
v e c t o r fields y l t . . . , y q w e h a v e C j { y x , . . . , yq) = C j ( z x , . . . , z q , y x , . . . , yq). T h e
assumption that c3 has degree 2g implies that the form A(cj) belongs to
T(M, A*()*) * stfq{M), whence A(c,) = a; • c, on Y. The form c, is not closed, but we
observe that

0 = dh{cj) = d(w • Cj) = dw Cj±a>- dcj = ±a>- dcj.

This implies that dcj vanishes when restricted to a leaf L £ Y, and so Cj\L e $0q{L) is
a closed form.

Now consider

( p - A ( y l c J ) = \ ( l > - A ( y l ) a ) - c J = { - i y j 0 • A(y,) • Cj L V • o > , ( 3 . 1 )

where the expression in (3.1) is the integral over the compact fibers {Lx\x e T} of the
fibration n: Y -*• T, and the integrand factors because co is a basic form on Y of
degree q = dim T. The foliation !F\Y has no holonomy, and so for all leaves Lx £ Y
the leaf class zL<()>;) e H"~2q(L) is zero. Since c7|tt is a closed form, and Lx is closed,

each integral <j>- A(y,)- c3 = 0. The expression in (3.1) thus vanishes, and this
4/

proves our claim.

4. When the bad set has positive measure

The bad set Xx is closed and nowhere dense in M; thus if the Lebesgue measure
n{Xx) > 0, then the transverse structure of Xx, and hence of each Ya = Xa — Xa+l, is

very complicated. We must show that 0 • A(j;;c7) = 0 for each a, and special care
j

is needed to make the techniques of §3 extend. We fix a. The set Ya can be exhausted
by closed saturated sets K £ Ya by Lemma 1.2, and so it is enough to show that the
integral over such a K vanishes. The difficulty in extending the formula 3.1 is that
the quotient space T = Kj3^ is compact and Hausdorff but has no interior, and so
we cannot use T to define a transverse invariant volume form for $F on K. To
circumvent this, we reduce the integral over K to a finite sum of integrals over
compact saturated subsets X, £ K. Each set /C( is chosen to have an open
neighborhood £/, on which there is a transverse volume form co,- which is invariant
when restricted to K{. The existence of such an co,- is then sufficient to make the
method of §3 work for the integral over Kt.

For the reader's convenience and to fix our notation, we give the definition of a
foliation chart.



180 STEVEN HURDER

DEFINITION 4 .1 . A foliation chart (U, 0) for 2F centered a t x e M consists of an
open neighborhood U ^ M of x and a diffeomorphism

0 = (\I/J):U ^Dm-qxDq <= Um

such that 0(x) = 0, and the second factor defines ^\v as the level sets of
/ : U -* Dq £ W. For each y e ( / , the set

is the transversal to $F through y associated to {U,(f)).

Since Q is orientable, we choose an orientation, and require also that the local
m a P / * : Q\u ~~* TW be orientation preserving, where W has the standard
orientation.

The decomposition {K1,...,Kr} of K will be defined after some preliminary
constructions. Given a leaf L £ K, choose a base point x e L. Since L is compact, we
can choose a finite set of open foliation charts {(V,, 4>j)\j = 1,..., p} with V} centered

p
at yj e L, y1 = x, and L e (J Vj = V. Let /?, be a path in L from x to yy Recall that

j = i

D^. is the transverse disc for (Vj, <£,•) centered at yj. By shrinking Vx in the transverse
direction if necessary, we can assume that the holonomy along /?; defines a
diffeomorphism into, denoted by ytj: Dx -+ Dy..

Set C = M—. V, a compact set. Let T = K / ^ ; by the proof of Lemma 1.2, we
know that 7r: K -* T is an open proper map. Thus, n(K n C) is compact in T, and
Z = ^" ' ( ^ (K n C)) is a closed saturated set. For technical reasons, we shrink the
cover {Vj} once again by deleting the set Z. Define open sets Uj = Vj — Z for

p

j = l , . . . ,p and let UL = [j Uj. Observe that K — Z is saturated and we have

L S K - Z = K n UL £ [/L.
The compact set /C is covered by the open sets UL for L £ /C. Choose a finite

subcover C/L|,..., t/Lr. For each L, let Dt be the transverse disc through a base point
X: e L:, as in the above construction. Each leaf L ^ K must intersect some V, and
thus intersect the transverse disc D,. Recall that the quotient T = K/^ is a compact
hausdorff space, and let n: K -*• T be the quotient map. Then the sets
D, = 7r(D, n /C), 1 < i < r, form an open cover for T. Choose a decomposition
T = Tx u ... u Tr with 7] e D, a closed subset of T and such that, for i ± j , T{ n 7}
has measure zero as a subset of the transversal disc D^ We can now define the closed
subsets of K:

Kt = 7r-l(T,), 1 ^ i < r.

It is immediate that K = /Ct u ... u /Cr and /i(X,- n /C;) = 0 if i ^ ; . Note that K{ is
contained in the open set ULj.

The care taken above to construct the sets K{ and UL. seems to be necessary,
because the set K £ Xx has no a priori restriction on its global topology. To make
the constructions which follow, we need to localize to well-behaved pieces of K. For
the rest of this section, we fix i and set K = Kh U = UL. and L = Lt.

LEMMA 4.2. There is a smooth q-form u> on U which defines $F on U and satisfies
0(V)OJX = Ofor all xe K and vector fields v on U tangent to SF.
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Here, 0{v)cox denotes the Lie derivative of co along v evaluated at x.
Since a>(v) = 0 for all v tangent to #", the Cartan formula

6(v) — i(v) od + do i{v) applied to the form co in (4.2) yields the vanishing condition

i{v)dcox = 0 for all x e K and v tangent to 3F . (4.3)

Assuming Lemma 4.2, we finish the proof of the theorem. Choose a section z of
AqQ over U satisfying OJ(Z) = 1, and then define c, = i(z)A(c,) as in §3 so that
A(Cj) = co • Cj. On a neighborhood of a point xe K, let z l 5 . . . , zq be a framing of Q
with z = zt ~ . . ." zq and let ylt...,yq+i be vector fields tangent to 2F. Since
co~ ddj = ±dci)~ Cj we have at x that

dcJ{yl,...,yq+l) = oj-dcJ(zu...,zq,yl,...,yq + l) = ±dw~ Cj(zu ..., zq, yu ..., yq + l)

= ± I {-\)l>+l-do){yl,zl,...,zq)-cJ{yx,...,yu...,yq + l) = 0
/ = i

because i(y,)d(jL>x = 0 from (4.3). For a leaf L £ K, this implies that c,|L is a closed
form.

The g-form co determines a transverse measure to 2F on K, and the property
0(y)co = 0 on K implies that the measure is invariant. Then by [5, Lemma, p. 25], we
have a decomposition

U • &(ylCj) = U • A(y,) -cj-aj= f | f ( 0 • A(y;) • c j | J • co . (4.4)

The restriction )̂ • Cj\L is a closed form, and Proposition 2.3 implies that A(x/)|L is

exact for every leaf L ^ K. Therefore, for each XE L, the integral c6 • A(y,) • Cj = 0

.v

since Lx is a closed manifold. The integral in (4.4) thus is zero, as was to be shown.

We now prove Lemma 4.2. Let {(£/;,</>,•): 1 ^ i ^ p} be the cover of L by
p

foliation charts as defined earlier with U = \J t/;. Then fi:Ui^Dq^ W defines &

on Ui, and D{ = fa 1 (0 x D") is a transversal to J^ in Ut. Set T = K n D t , a compact
set. Recall that this cover of L was chosen so that, for each i, there is an open
neighborhood V of T in Dj and a diffeomorphism into, y u : V -> D,-, the transition
function from / , to fr Let W be an open set with T ^ W ^ W ^ V.

The standard volume form on W is denoted by dfx = dx{ ~ ... ~ rfxq. We begin by
defining co, = ff{dn), a closed g-form on Ux which restricts to a volume form on
V ^ Dx ^ Ul. Let Vt (respectively Wt) denote the image of V (respectively W) under
the diffeomorphism into,

and let cou denote the g-form on Vt which is the push-forward of ai{\y. We extend cou

to a volume form defined on all of W: choose a partition of unity {Xh (1 — A,)} for the
cover {Vh W-W^ of W, and set co,. = A/d>liH-(l — A£) • rf/z. Define «,• = /f(co,), a
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transverse invariant volume form for 3F on Ut. Note that the restriction of co, to the
transversal </>f '(Ox Wt) agrees with the translation (yiVr^i lw)-

Choose a partition of unity {al,..., ap + ,} subordinate to the open cover
p

{Vx,...,Vp, M-X) of M, where X = (J ^" '(D"1"* x Wt). Let cup+1 be a 4-form on
i = 1 p + 1

M — X which defines !F and has the same orientation as Wj on (/,. Set en = £ a,co,-
i = 1

and restrict to (/ to get the <j-form of 4.2. The assumption that the foliation charts
are compatibly oriented implies that w defines f-F on U.

It remains to show that 0(u)o).x = 0 for x e K and v a vector field tangent to 8F.
This is equivalent to proving that a)x = (coi)x for all x 6 Ut n K, as w, = /*(a>,) is
invariant under the flow Of of v, and 0, preserves the fibers of f: U( -> R'.

p

The function ap + 1 vanishes on X, and so co = £ a,a>, on K £ X. If we show
; = 1

that {cDi)x = {a)j)x for x e K n ^ n C/j5 then we can conclude that cox = (co,)̂  as
desired. Because w, and ŵ  are pull-backs from W, we need only show, for the
transverse slice Vx = #f '(^.-(xjx Vj-), that the restrictions co,|Kv and a>j\Vx agree at x.
Both of these restricted forms are defined as the push-forward via (yf;1)* and (yi"/)*
of a)j|K, and so

At x, the action of (yj,- o y^1)* on the q-forms AqQ* is induced from the action of the
linear holonomy along the leaf L containing x. This action is trivial by the following
result.

LEMMA 4.5. Let L be a leaf in a compact foliation. Then the linear holonomy ofL
is unipotent, and if the normal bundle Q restricted to L is orientable, then every element
has determinant one.

Proof. Let dh : ny (L, x) -> G\qU denote the linear holonomy of L. Assume that
there exists y e nx (L, x) for which dh(y) has an eigenvalue of modulus not equal to 1;
we can assume it to be less than one. By the stable manifold theorem, a local
diffeomorphism representing the holonomy element h(y) has a stable contracting
manifold of dimension at least one. This implies that there is a leaf of fF asymptotic
to L, which is impossible if all leaves are compact.

For each y the determinant of dh{y) is real with modulus one, and so must be ± 1.
For Q\L -> L orientable the only possibility is that det(dh(y)) = 1.

Under our assumptions, the linear holonomy of each leaf in K has determinant 1;
thus the action of (yu o yf/)* on AqQ* is trivial, and hence ct>7-|̂  = co.jKv on K n Vx.
This finishes the proof of the theorem.
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