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THE CLASSIFYING SPACE OF SMOOTH FOLIATIONS

BY

STEVEN HURDER

One of the most striking examples of a foliated manifold was constructed by
Thurston [24] on the 3-sphere. He exhibited a family of codimension-one
foliations on S for which the Godbillon-Vey class takes on a continuous
range of values. In subsequent explicit constructions of foliations with non-zero
secondary classes, almost always a discrete group F is given which acts on Sq

and the foliation is defined on the quotient M B rSq, where F acts freely
on B [1], [5], [6], [13], [19], [21]. The quotient space M is very complicated as a
manifold, and it is natural to ask whether there exist codimension q foliations
on spheres S n with non-vanishing secondary classes for q > 1 (Haefliger’s
problem 2, p. 241 of [22].) One of the aims of this paper is to answer this
question affirmatively (Corollary 4.6). For n 2q / 1, if S" admits a rank q
subbundle Q

_
TS then there exists a family of codimension q foliations on

S for which a set of secondary classes takes on a continuous range of values.
Other values of n > 2q also work, and S can be replaced with any dosed,
oriented n-manifold M which admits a q-frame field Q c_ TM. This is a
consequence of Thurston’s realization theorem [25], and the following two
theorems which we will prove.
For each q > 1 a sequence of non-negative integers ( Vq, } is defined in 2.8

with the properties:

(1)
(2)

For q 2, lim_.ooo2,4k+l and /)2,4k+1 > 0 for all k > 0.
For q 3, limk ooV3,3k+ oO and va,3k+ > 0 for all k > 1.
For q > 3, lim, ooVq, .

We denote by BFq Haefliger’s classifying space of codimension q smooth
foliations. The integral homotopy groups of BFq are denoted r,(BFq).

THEOREM 1.
groups

For each q > 1 and n > 2q there is an epimorphism of abelian
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For q odd this is precisely the content of [14, Proposition 6.17]. For q even,
this gives the first non-triviality and variation results for the homotopy groups
of BFq.

Let BFq be the homotopy fiber of v: BF_q --, BGLq. We also obtain variation
results_ for the secondary classes in H*(BFq). In 2.6 we define a non-empty set

lq
_
H*(Wq) such that:

THEOREM 2._ The characteristic map k__," H*(Wq) - H*(BFq) is injective on
the span of Vq, and the image set k,(Vq) is__independently variable. That is,
k,(Vq) defines a surjection H,(Bq; Z) ---> R#Vq of the integral homology groups.

For all q > 2 this theorem gives further independence results for the
secondary classes, in addition to those previously established by Baker [1],
Heitsch [13] and Kamber-Tondeur [19]. For even q, the above yields the first
variation results proved for H*(BFq).

In previous papers [14], [15] we constructed a set of independent rigid classes
in H*(BFq) for even codimensions. We show in [}3 that many of these
cohomology classes are spherically supported (Theorem 3.2) and the corre-
sponding spherical cycles generate a large free graded Lie subalgebra in
r ,(BFq). From this we derive:

COROLLARY 4.8. Let q >_ 10 be even and suppose n >> q. If S n admits a
rank q subbundle Q c_ TSn, then there exists an infinite set (} of codimension
q foliations on S which are distinct up to homotopy and concordance, but whose
tangential distributions (F c_ TSn } are all homotopic as embedded subbundles.

This answers problem 3 posed by Lawson in [20], and gives further examples
of non-trivially foliated spheres.
Our analysis of BFq for even codimensions is based on the following idea.

The general technique for studying H,(BFq) has been to construct a foliated
manifold M with non-trivial secondary classes. The classifying map f: M --->

BFq then has non-trivial image f,
___
H,(BFq; Z). In most cases, the rational

Pontrjagin classes vanish for the normal bundle Q of the foliation on M, and
we show that the map f: M BFq can then be modified via CW-space
techniques to produce non-trivial spherical cycles in H,(BFq; Z). The corre-
sponding homotopy classes in r,(B_Fq) generate a free graded Lie subalgebra
whose elements_ come from_ r,(BI’q). The images of some of these classes_
under r,(BFq) --, H,(BFq; Z) are shown to be detected by the set k,(Vq) of
Theorem 2.

It is a pleasure to thank J. Neisendorfer for several helpful conversations
during the development of this work, and especially for an essential suggestion
in the proof of Theorem 4.5. The author is grateful to the Institute for
Advanced Study for its hospitality and support.
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We will use H*(X) to denote the singular cohomology of X with real
coefficients, and H,(X; R) denotes the singular homology with coefficients in
a ring R. All spaces are connected and have a basepoint, and maps are always
assumed to be continuous.

1. Homotopy properties of BFq

Recall that v: BFq BGLq classifies the universal normal bundle_ and BFq
denotes the homotopy fiber of v. The fundamental result about BFq is"

THEOREM 1.1 (Haefliger-Mather-Thurston [26]).
connected.

The space BFq is (q + 1)-

The double cover BFq+ of BFq is thus simply connected and there is a
fibration

rq -, U -"  SOq.

The space BFq+ classifies foliations with orientable normal bundles, and is
technically easier to work with. We will need the following general result. For
any simply connected CW complex X, the localization of X at {0} (or the
rationalization of X) is denoted XQ. The basic property of XQ is there exists
an inclusion X XQ inducing an isomorphism

,r,(X) (R) Q - r,(XQ) (R) Q -= r,(XQ).

For details see [2], [23].

LEMMA 1.2. Let f: X Y be a map of CW complexes with both X and Y
simply connected. Assume the rational space YQ is an H-space and that f,:
H (X; Q) H,,(Y; Q) is the trivial map for all n < N. Then there exists a CW
complex X’ and map g: X’ X so that:

(a) g,: H,(X’; Q) -= n,(x; Q).
(b) For the N-skeleton X of X’, the restriction of the composition, f g xk:

Xv Y is homotopic to the constant map.

In other words, if a map f: X ---, Y of simply connected spaces is rationally
trivial up to dimension N, and YQ is an H-space then we can multiply f on the
cells of X to make the new map trivial up to dimension N.
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Proof. For a CW complex C, let C denote the n-skeleton.
To prove 1.2, we inductively construct spaces X, and maps go: X, ---, X

which satisfy:
(ao) (go),: Hm(X; Q) H,,(X; Q) is an isomorphism for 0 < m < n.

(bo) If n < N then f go: X, -, Y is homotopic to the constant map.
(%) X’ is obtained from X’_ by attaching n-cells.

We then set X LIo=IXA and define g lim go X’ X; the map g clearly
satisfies (a) and (b) of the theorem.
By Milnor’s Theorem (see [28, p. 196]) we can assume X has a minimal CW

complex structure. This guarantees the existence of a basis of H,(X; Q)
represented by cells in the CW complex of X.
To proceed, set X; (*}, the basepoint and let gl: gl’ g be the map

onto the basepoint in X.
Let n > 1 and assume that go-1: X_ --’ S is given. Choose a set of n-cells

{ eTli I } in the CW structure for X which gives a basis for Ho(X; Q). For
each In, let ai" S

n-1 tge7 ---, Xn_ be the attaching map. Our choice of
I is made so that the inclusion

xo_iUe7
_
x

In

induces an isomorphism on Ho( ;Q). Each map a determines a class

by Mayer-Vietoris the image [ai] Ho_l(Xo_; Q) is zero.
The hypothesis that X is simply connected implies go-1: X_

rational (n 1)-equivalence, and

ro_(X,_) (R) Q qrn_l(Xn_l) (R) Q.

Therefore, there exist maps 3’;: S
of [ai] in ,rn_x(Xo_). Note that

--, X2_ such that g-x

Now set

[)ti] (gn_l)-l([Ri]) 0 in nn_l(g_l; Q).

xo_ isa

3’1 is a multiple

,n= g_l

I

There is a natural extension of go- to a map ’o --’ X, defined by
mapping 0e’ into Xo_ via the appropriate multiple of a, and then we can
extend across e’. It is straightforward that

(o)," Ho( ’o; Q) --> Ho( X; Q)
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is an isomorphism. If n > N, we set X, ’o and go n to finish the
inductive step.
For n < N, the inductive hypothesis implies that the composition

f#,n" (n Y

is homotopic to a constant when restricted to the (n 1)-skeleton X,_ 1. Let
W X,,/X/,_1~ be the quotient, with c: ’, --* W-= V.S the collapse map.
Then f o induces a map h" W ---, Y on the quotient.

Consider the commutative diagram

Hn( (n; Q)

H.(W; Q)

(f o),

, H.(Y; Q) -= H.(Yo; Z)

The map (f ,), is zero by hypothesis; by construction, c, is surjective and
so h, is the zero map. The assumption Yo is an H-space implies the Hurewicz
map . is injective. Therefore, h# is rationally trivial in degree n.
For each I,, let fli: S W be the inclusion of the i-th factor of the

wedge corresponding to the inclusion e’ _c ’o. The above shows that h#(fli)
,r.(Y) has finite order n > 0. Define a new space in place of X,"

X,=X’ Ue’i’nl

niYi,

iI

There is a natural map/xo: X ---, ’, which is the identity on X’n_l, and has
degree n on e7. Set go g’o /o. It remains to check that g," X X satisfies
(bo). First note f g, f o on X,_ 1, so f g, is homotopic to the composi-
tion

But h g o is homotopic to a constant by choice of the n i"

PROPOSITION 1.3. Let f: M BF be a continuous map, and assume that

(0 f )*" H"(BSOq) H"(M)
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is zero in degrees n < N < q + 1. Then there exists an N-connected space X, a
map fx: X ---> BF and a map on cohomology so that

(1.4)

H"(M)...,x.%
H(

H"(X)

commutes, and is an isomorphism for n > N + 1.

Proof We may assume that M is a CW complex, and then set 3/= M/Mt,.
Since BFq+ is simply connected we get an induced f: 3/- BI’q+ The space M
is simply connected, so apply Lemma 1.2 to and , f to obtain a map g:
5/’ M which is rational homology equivalence, and o f g: -1 BSOq
is homotopic to a constant. Since N < q + 1 and ,: BFq+ BSOq is (q + 2)-
connected, the map f g: .lf/ BFq+ is also homotopic to a constant. We
define fx to be the induced map on the identification space

x  t’/ tk -, +.

Note that X is N-connected, and is defined by the isomorphisms (for
n>N+l)

l: H"(M) H"(I) H"()’) H"(X).

DEFINITION 1.5. A class c H,(X; Z) is said to be spherical if there is a
map a: S -, X representing the homology class of c. The spherical cycles for
X consists of the cycles in the image of the Hurewicz map r ,(X) --* H,(X; Z).
The spherical cycles for BFq+ play an important role in analyzing the

homotopy type of this space. We come now to the main result of this section.

PROPOSITION 1.6. Let z H2q+ I(BI’;) be such that there is a cycle c in the
image off: M ---> BF with z(c) 4 O, and (, f)* is trivial in degrees less than
q. Then there is a spherical class in/-/2q+l(BFq+; Z) on which z is non-triviaL

COROLLARY 1.7. Let z HZq+I(BF;) satisfy (1.6) and let i: Bq BF
be the inclusion of the fiber. Then i*(z) is non-zero in Hzq+l(Bq).

Proof Let f: M BFq+ be given. By Proposition 1.3 we replace f with a
map fx: X --> BF where X is (q 1)-connected and z is non-zero on a cycle
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in the image of fx," H2q+(X; Z) -, H2q+(BF; Z). The aim is to show that
a multiple of each cycle in the image of fx, is spherical.

Case 1. q is odd. Then Hq(BSOq) (0} and in choosing X we can apply
1.3 with N q so that X is q-connected. By the rational Hurewicz theorem [2]
the map r2q+(X) (R) Q --, H2q+(X; Q) is onto, and so a multiple of each
class in H2q+ (X; Z) is spherical. The claim follows.

Case 2. q is even. Then %+I(BSOq)= 7rq+l(Bl’q+) is a finite group. We
construct a new space X’ by attaching (q + 2)-cells to X so that rq+ I(X’) is a
torsion group, and fx extends to f.: X’ ---, BFq+. The space X’ is (q- 1)-
connected, and rq/ I(X’) (R) Q {0}. Therefore, in the minimal model d//x’
for X’, (see [2] or [23] for details) the decomposable cocycles occur in degrees
2q and > 2q + 2. In particular, H2q+ I(X,) is represented by closed indecom-
posable elements in x,. By the fundamental theorem of minimal models
[Theorem 10.1; 23] the map rr2q + I(X’) (R) Q H2q/ I(X’; Q) is onto. This
completes the proof of (1.6).
To prove the corollary, let a" $2q+1 BF define a cycle for which

z(a) O. The group 7r2q+l(nSOq) is always finite, so replacing a by a
non-zero multiple if necessary we can assume v a is homotopic to a constant.
Thus, a factors as

s2q+ q--’ B --* BF
and i*(z)(K) z(a), O.

Remark 1.8. It is important to note that if a fixed space M is given with a
family of maps fx: M ---, BFq+ , ’, so that a cocycle z is non-trivial on the
images of fx., then the proof of (1.6) shows that we can construct a fixed space
X’ with an induced family of maps fx, x’: X’ ---, BF for which H2q+ I(X’; Q)
consists of spherical classes. That is, there is a fixed isomorphism : Hn(X’) -=
Hn(M) making (1.4) commute for all h .

2. Non-trivial secondary classes for framed foliations

The construction of the secondary classes of a smooth foliation is briefly
recalled. For details, see Bott [3], [4] or Kamber-Tondeur [18]. Examples and
results of Heitsch and Rasmussen are presented, which we use in conjunction
with Corollary 1.7 to study H*(BFq).

Let I(GLq) denote the algebra of Ad-invariant polynomials on the Lie
algebra glq. This has an algebra basis given by the Chern polynomials
{ c1,..., Cq) where degree cj z2.; a vector space basis of I(GLq) is given by
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the monomials cs c Cqq, where J (Jl,..., Jq) with J/> 0. The trun-
cated polynomial algebra Iq is the quotient

Iq I(GLq)/ideal{ csldeg c > 2q ).

Define a differential graded algebra

Wq A(yl,..., yq) (R) Iq

where A(yl,..., yq) is an exterior algebra on indeterminants Yi with degree
Yi 2i 1. The differential is determined by setting dyi ci. Also, a differen-
tial subalgebra WOq c. Wq is defined by

WOq A(yl, Y3,..-, Yq’) (R) Iq,

where q’ is the greatest odd integer < q.
Let o- be a foliation of codimension q on a manifold M, Q is the normal

bundle to - and A(M) is the deRham algebra of M. The choice of a basic
connection o on Q and a metric g on Q determines a differential algebra
homomorphism A(, g): WOq A(M), and it is a classical result that the
induced map

A, A(o, g)," H*(WOq)--) H*(M)

does not depend upon the choice of the connection 0 or metric g, but depends
only on the concordance class of -.

If Q is a trivial bundle, then the choice of a framing s defines a map

and the induced map

A(o,s)" Wq- A(M),

A, A(o,s)," H*(Wq)---) H*(M)

depends only upon the concordance class of and the homotopy class of s.
The construction of the homomorphisms A, and A, is functorial, and there

are universal maps denoted by

5$" U*(WOq)-) U*(Brq) and k," H*(Wq) H*(Bq).

A basis for the space H*(Wq) is easily described. First, a basis for Wq is
given by the monomials of the form
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where

l=(ix,...,is)
J (Jl,...,Jq)

withl <i < <is<q,

with jl >0 and degcj<2q.

An element ytcj is a cocycle if degree yi,cs > 2q for all 1 < < s. According
to Vey [7], the following subset of cocycles is a basis of H*(Wq):

Zq { ylcs]l < < < <_ q; degree yixcj > 2q;

degcs<2q; l<ixjt=0}.

The elements of Zq are called admissible cocycles.
An admissible cocycle ylcj with deg yilcj > 2q + 2 is said to be rigid. This

terminology reflects the fact that these secondary classes are invariant under
homotopy (a one-parameter deformation of the foliation [12].) An admissible
cocycle which is not rigid is said to be variable, and has degree yixc 2q + 1.
A set of cocycles ZOq which is a basis for n*(WOq) can also be exhibited.

For our purposes, we only note that there is an inclusion

n2q+ l( WOq) QT. n2q+ l( Wq)

whose image is spanned by the admissible cocycles yicj of degree 2q + 1 such
that either is odd, or c contains a factor c for some odd 1. Hence, for q even
this inclusion is actually an isomorphism.
An explicit construction of foliated manifolds for which some secondary

classes are independently variable has been given by Heitsch [13] and
Rasmussen [21]. We recall their results in a form convenient to our purposes.

THEOREM 2.1 (Rasmussen). There exists a compact, oriented 5-manifold M
with a family (’ a } of codimension 2 foliations for which the values of
the secondary classes A,( YxC, YxC2} c_ HS(M) vary independently with a.

The common normal bundle of the foliations (’} is not trivial as it has
non-zero Euler class.

For higher codimensions, there are the following two results, which are
Theorems 6.2 and 6.3 of [13]. A subset Vq

_
HEq+l(Wq) will be defined in

(2.4), with Vq containing at least three dements for all q >_ 3. For q even, recall
that we identify H2q+ l(WOq) H2q+ l(Wq).

THEOREM 2.2 (Heitsch). Let q > 4 be even. There exists a compact, ori-
ented manifold M of dimension 2q + 1 with a family of codimension q foliations
(-xlh ’) such that the secondary classes A,(Vq)

_
H2q+x(M) vary inde-

pendently with .
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THEOREM 2.3 (Heitsch). Let q > 3 be odd. There exists a compact, oriented

manifold M with a family ((’x, s)lA ’ } of codimension q foliations, and a
framing s of their common normal bundle Q, such that the secondary classes
As,(Vq)

___
H2q+ I(M) vary independently with

The foliations -x of (2.2) are obtained by starting with a flat Rq/ 1-vector
bundle E over a compact manifold Xq/ 1. An auxiliary vector field vx on E is
introduced which is non-zero off the zero section E0

___
E. By construction, the

flow of the vector field vx preserves the fiat bundle structure on E--) X.
Therefore, the span of vx and the horizontal distribution on E of the flat
bundle together form a codimension q foliation -x’ on E* E- E0. The
manifold M consists of the unit sphere bundle inside E*, and ’x is the
restriction of ’(. The reader is referred to Example 5.2 of [13] for complete
details. The vector fields vx used are all homotopic, so all normal bundles Q,
of ’x’ are homotopic. We can identify the normal bundle Qx of ’x with a
common bundle Q M. The bundle Q is not trivial as there is an inclusion

TSq Q

Sq M,

so Q has non-zero Euler class. But we note that the rational pontrjagin classes
of Q all vanish. To see this, observe that Q (vx) --- p*E where p" E* ---) X.
The bundle p*E--) E* is fiat, so Q. (oX)IM is flat and hence has zero
rational pontrjagin classes, which implies our claim.
The construction of { -x } for (2.3) proceeds as above, except we let M be

the SOq-frame bundle of the normal bundle and lift the foliations to M. The
normal bundle of the foliations of M has a canonical trivialization s.

Remark 2.4. The set Vq is defined as follows. First, let q 2k- 1
for k > 2. Each Chern polynomial cj defined on glq is the restriction of a
Chern polynomial j defined on glq+ 1. For =(A1 ,A) let Ax
diag(A1, ,1,..., ,, k) g!q+ 1" Define a rational function on R"

det Ax

For the vector space spanned by the set of functions

( ?i?jlyics Zq; deg cic 2q + 2)
choose a basis (f,ll -< < d }. The set Vq is the collection of admissible
cocycles

Vq { yi,clll < 1< d ).
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For q 2k, we let )t (1,..., k+l) R k+l, set

Ax diag()kl, X,...,)k, ,) glq,

and define

cj detAx. X+I.
For the span of the set

( Oi?.slYiCs Zq; deg cic 2q + 2},

choose a basis as before and set

Vq { yi,cs, I1 <1< d }.

We begin our study of H*(BFq) with:

THEOREM 2.5. k ," H5(W2) H5(B2) is injective, and evaluation of

(k,(yxcE),k,(ylc2)}

defines an epimorphism of abelian groups

Proof Let M and f,: M BF+ be as in (2.1) so

f* , ( ylc, yxc2 ) c_ Hs (M )

varies independently with a. Since H(BSO_) 0 we can use Propositions 1.3
and 1.6 to construct a space X’, an isomorphism " HS(X’) -= H(M) and, for
all ct ’, maps g," X’ BF2+ so that

g: f:. --, 14’(x’).

Further, Hs(X’; Z) Z contains a non-zero spherical class represented by/3:
S X’. Because is fixed, it follows that

(go fl)*o a,{ yc, yc2 } c_ H’(S)

varies independently with



THE CLASSIFYING SPACE OF SMOOTH FOLIATIONS 119

Now lift g,,o fl to a map h," S -) B"2, noting that rs(BS02)= 0. From
the diagram

we see that k,(ylc21, ylc2 ) takes on all values in R: when evaluated on the
subgroup spanned by the classes ([h,]la #’}

_
rs(BF2).

The analysis of BFq for q > 2 is based on the examples of Heitsch. For each
q > 2 we defined a set Vq

_
H2q+l(Wq) in Remark 2.4. Now define two

extensions of this set. For a number x, [x] denotes the greatest integer _< x.

DEFINITION 2.6.

Vq= yfc,ZqlY,xCJ Vqand(i2, i3,.. is) c 2 4, 2
q 1

2

g-- YzCs gqlis< q + 2
2

THEOREM_ 2.7._ (a) k," H*(Wq) H*(BFq) is injective on the span of the
set Vq and k,(Vq) is a set of independently variable classes.

(b) Evaluation of the set k,(Vq) on spherical classes defines an epimorphism

of abelian groups r ,(B

If we set 2 { ylc2, YlC2 ) then (2.5) and (2.7) together imply Theorem 2 of
the introduction.

Remark 2.8. For even codimensions this theorem gives the first results on
the variation of secondary classes in H*(BFq). (The independence of certain
secondary classes was previously shown in [1, 5, 13].) For example, when q 4
the set V4 is a basis of H9(W4), and f 4 is the union of V4 with a basis for
H12(W4), so (2.7) implies k, is injective in degrees 9 and 12.

Remark 2.9. For odd codimensions, (2.7) yields complementary results to
those of Heitsch. For example, 1/" { ylc31, ylclc2, y9.c 2 } is a basis for HT(w3)
and

3 V3 L) { ylY2C3, yy.clc2 ),
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the latter set a basis for HI(W3). Both of these classes in degree 10 vary by
[Theorem 6.12; 13] but not necessarily independently. Using (2.7) and (6.12)
we can say that the set

{ ylC31, YlClC9_, Y2C2, YlY2C31, YlY2ClC2, Yly3c31, YlY2Y3C31}
is mapped to an independently variable set by k," H*(W3) H*(BF3).

Proof of 2.7. For q even, let M and fx" M BFq+ be as in (2.2), so

fo ,(Vq)
_
H2q+l(M)

varies independently with X ,’. By the remark after (2.3), the map

( fx)*" H"(BSOq) ---> H"(M)

is trivial for n < q, so we can use Propositions 1.3 and 1.6 to construct X’,

j" H’(X’)=-H’(M) forn>q+ 1

and maps gx: X’ ---, BFq+ so that fx* g, in degrees n > q + 1. Further,

n2q+l(X’ Z) Z

contains a non-trivial spherical class represented by fl: S 2q+ ....> St. The group
2q+l(BSOq) is finite so replacing/3 with a positive multiple if necessary, we
can assume , gx fl is homotopic to a constant for all ,. Let

s2q+h x BFq

denote a lift of gx ft. As in the proof of (2.5) we conclude that k,(Vq) is
independently variable when evaluated on the subgroup spanned by the classes
([hx]lX e s)

_
r2q+l(BFq).

For q odd, let M and fx: M -+ BFq be as in (2.3) so that

fok,(Vq) c H2q+l(M)

varies independently with h M’. Let X’ M/Mq+ 1, the result of collapsing
the (q + 1)-skeleton of M to the basepoint. Each fx induces a map h x:
X’ Bq. Noting that n2q+l(M) n2q+t(s’), we see that hok,(Vq)
varies independently with ,. Further, X’ is q + 1 connected, so by the rational
Hurewicz theorem the cokernel of

q?2q+l(X’) + H2q+l(X’; Z)
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is finite. It follows that k,(Vq) is independently variable when evaluated on the
subgroup spanned by the images for ) of

( h x ) # rEq+ ( X’) - ,r/’2q+l(g).

The above shows that for all q, k,()_ H2q+l(Bq) is independently
variable when evaluated on spherical classes. To finish the proof, we invoke
[15, Theorem 3.5]_ which implies that k,(Vq) is an independently variable set.
To see that k,(Vff) is independently variable on spherical cycles, we note this
follows from [14, Proposition 6.12] applied to the set Vq.

Theorem 2.7(b) yields much information about the homotopy groups of
BFq. For each q > 2 let Otq, be the number of elements in Vq of degree n.
Define a wedge of spheres

Yq= V s
n=2q+l j=l

Then

Y2 S5 V S 5, Y3 S7 v S 7 v S 7 v S10 v S1,....

Theorems 2.5 and 2.7(b) imply that for each R#V there is a map Fx:
Yq BFq so that Fx*o k,(Vff) takes value X on a set of generators for
H,(Yq; Z). Therefore, for , the images of

z)

form a subgroup with uncountable basis.

DEFINITION 2.8. For q >_ 2, n > 0, define integers

Uq, dimQr (Yq) (R) Q.

The properties of the ( Uq, ) given in the introduction result from calculating
the rational homotopy groups of Yq as in [10, p. 518].

Proof of Theorem 1. The proof is a consequence of 2.7(b) and the theory of
dual homotopy invariants in [14] to which the reader is referred for details.
Briefly, there is a universal map

h#" r*(Iq) r*( BFq+) -= Homz( r ,( BFq+), R)
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where r*(Iq) is the space of indecomposable elements of the minimal model
for Iq. There is an exact sequence of graded vector spaces

0 "rr*(Wq) ,n’*(Iq) SpanR(cl,...,Cq) -- 0

and ,r*(Wq) is infinite-dimensional for q > 1. In general, one knows [11] that
the graded vector space r*(Wq) is the dual of the suspension of a free graded
Lie algebra with basis corresponding to Zq:

,r*(W,) (sLs-Z:) *.

From this we obtain an inclusion

" H*(Wq) =- SpannZq _c r*(Wq) ,lr*(Iq),

and in [14, Theorem 3.1] we show"

PROPOSITION 2.9. There is a commutative diagram"

H*
k,

(w,)

)

q)’

Given a set V
_
Zq we get a free Lie subalgebra .W= Ls-1V*

_
Ls-IZ

which is an algebra summand, and hence there is an inclusion : (sLs-IV*)*
,n’*(Iq). For V V we let aq denote the resulting graded Lie algebra, and

q be a basis of .Z’q over R chosen so that ’()
_

(s.eq*).
When q > 1, q is an infinite set. In fact, it is easy to see that

so the integer Vq, of (2.8) is just the number of elements in q of degree
(n-- 1).
Theorem 2.7(b) asserts that the set ,’*o k,(V,)c_ r*(BFq) is indepen-

dently variable when evaluated on the subgroup generated by the images of the
maps (Fx) #" t,(Yq) ’,(BFq). By Proposition 2.9, this shows the set
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h# ’()
___
r*(BFq+) is independently variable on the subgroup generated by

the images (i _xFx)#, r,( r,(BFq+). As a Lie algebra, Laq is generated
by the set s Vq

_
s We can thus use [16, Proposition 5.13] to

conclude that the entire set h o(Sq*) is independently variable when
evaluated on the Lie subalgebra of r,(BFq+) generated by the images of the
maps (i Fx)#. This is precisely the claim of Theorem 1. m

3. Rigid classes

We show there are rigid secondary classes which are non-zero on spherical
cycles and deduce some consequences about BFq+. There are just two basic
types of rigid classes which have been shown to be non-trivial [15, Theorem 1]
and then only for even codimension. In spite of this, one has enough data to
construct an infinite family of dual homotopy classes in r*(BFq+) which are
"rigid" for all even q > 6.

DEFINITION 3.1. For q 2k with k even, set

Rq (Y2Y2i2 Y2iscl 1 < i2 < < is <
k+l

Forq=4m-2withm> 1, set

C
k < < 2 < m} k) ( Y2mC2m )R q ( Y2Y2i2 Y2is 211 < i2

In either case, R q is a set of admissible cocycles which are rigid.

THEOREM 3.2. Let q > 4 be_even. Then k, is injective on the span of R q,
and the image k ,(Rq) c_ H*(BFq) takes independent values when evaluated on
spherical classes.

Let (Zl,..., Zd } be an enumeration of the elements of R q, with
Define a space T V/a= xS"’. A direct consequence of (3.2) is:

deg zi.

COROLLARY 3.3. For all even q >_ 4, there exists a map G: T - BFq such
that the composition

k, G*
SpanRR q -- H*(Bq) H*(T)

is an isomorphism in positive degrees.
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Proof of 3.2. Let q 2k > 4. Recall the construction in [15] of a manifold
M and f: M Bq with f*o k,(y2cg) 4: 0" There is a map

g" S2 S2 ---, BS02 with *(Pl) 4: O.

Since B2 is 3-connected [26], we lift this to g: S2 S 2 BF+. Set

k k

X= X (S2S2) and f= Xg: XBFk.

Then f*(p) 4: O. Define M to be the principal SOq-bundle over X which is
induced by v f. There is a homotopy commutative diagram:

f

, ,eSOq

, BI; r- gaOq.

The Hirsch Lemma yields f* k,(yEc) 4: O.
The manifold M is compact, so give M a finite CW complex structure. Let

ill M/Mq+ be the space obtained by collapsing the (q + 1)-skeleton to the
basepoint. By (1.1), there is an induced map

F: ill Bq with F*o k,( yEcg) 4: O.

The space/f/is (q + 1)-connected so the Rational Hurewicz theorem implies
that

’7/’2q+3( ) @ Q n2q+3(.]’/; Q)

is onto. Let a: S2q+3 -- M represent a spherical class such that
F* k,(y2c)[a 4 O, so k,(y2cg) is non-zero on the spherical class [Fo a].

For q 4m- 2 with m > 1, the class k,(Y2mC2m) was shown to be
non-zero on a spherical class f: S2q+ Bq in [14, Corollary 6.4]. Further, it
was remarked after (6.4) that k,(y2c)[f 0. This shows that k,(y2cg) and
k,(YmC2,) are independent when evaluated on spherical cycles.
To finish the proof of (3.2) we invoke the homotopy permance results,

Proposition 6.9 and Corollary 6.10 of [14]. In the notation of [14, p. 380], for
q 2k, k even, set .= {yzcg}, and for q 4m 2 with m > 1 set
{ yz 2 Y-mC-, }" Then the conditions of (6.9) are satisfied. Observing that R q
is the set a, of (6.9), Theorem 3.2 follows.
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Let " be a codimension q foliation on a manifold M. For each > 0 the
product M R has a codimension q + foliation whose tangential distribu-
tion is that of ’. On the level of classifying spaces, this produces a commuta-
tive diagram"

+

nSOq nSOq+,.

We are interested in the map_ induced on homotopy groups (Jq, t)#. For each n,
define a filtration of r,(BFq) by setting

=ker(Lt)Kq, #

o C C Kqn,-nq-l= %(BFq), and there is a simpleThen 0 Kq,
_

Kq, n

geometric description of these subgroups: An element a: S" --> BFq defines a
if the codimensionsmooth foliation - on S" R

_
R"+, and a is in Kq,

q + 1 foliation on S" Rt+ is integrably homotopic to the product foliation
on Sn R/+1 c Rn-q+1 Rq+l.
The group Kql,2q+l is uncountably generated for q >_ 3. A real parameter

family of maps hx: Sq+ Bq was constructed in 2 from the Heitsch
foliations. All of the foliations of (2.2) and (2.3) yield the same codimension
(q + 1)-foliation when extended by R: the fiat bundle on E* in 2. Thus, all of
the maps h x are sent to the same element by (}q,) #, hence 0 4: h x] h x’]
Kq, for X : X’.

Let G" T --> BF2k be the map and space of Corollary 3.3. In contrast to the
above we have:

PROPOSITION 3.4. Let q > 4 be even. Then the composition

ql’,(BL+I) (R)Q

is monic.
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Proof The rigid classes in H*(Wq) are precisely the image of H*(W,+ t)
H*(Wq), and we have a commutative diagram [18, Remark 4.75]"

U*( +1)
k. H.(Bq+I )

Lift Rq to a subset hq C H*(Wq+ 1). Then by (3.3) the composition

*o "H*(W,+ )--, H*(T)(Jq,1 G ) k,

is injective_ on the span of/ q. Thus the set k,(/ q) restricts to a dual basis for
image (Jq,1 o. G),. Further, the product of any two cocycles representing the
classes k ,(R q) vanish. By [11, Theorem 4], this implies that the rational map

(Jq,lOG)# ,r,(T) (R) Q - r,(Bq+l) (R) Q

is injective, m

Recall that Rq (21,...,Zd) where degz tt i. The space T is a bouquet
of spheres, so

r,(T) (R) Q SLQ{S-Zl,...,s-zd} =-

where &aR is a free graded Lie algebra over Q with generators of degree
s-lzi n 1. Define .L,eR(n) to be the subspace of homogeneous elements of
degree (n 1).

DEFINITION 3.5. For even q >_ 4 and n >_ 0 set

rq,. dimrr,(r) (R) Q dim.oqa(n).

For q 4, R 4 (y2cZ2} so .LR(ll) Q and T S11.

For even q > 6, o has at least 2 algebra generators so .L’(n) 4:0 for an
infinite number of n > 2q + 2. When q > 10, we have in addition that rq, n is
positive for all n >> q.

4. Existence of foliations

The space BFq was introduced by Haefliger [8], [9] to give a homotopy
theoretic solution to the problem of classifying foliations. For an open mani-
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fold M, the Gromov-Phillips theorem [9] shows the homotopy classification
yields a geometric classification. For compact manifolds, the realization theo-
rem of Thurston [25] shows that we also obtain a geometric classification.
Consequently, the calculations in Sections 2 and 3 of the homotopy groups and
other properties of BFq have applications to the existence of distinct foliations
on a given manifold.
There are three notions of equivalence between foliations which are im-

portant [20]. Let H0, H be codimension q foliations on M.

DEFINITION 4.1. H0, H1 are integrably homotopic if there is a codimension
q foliation H on M I with " transverse to each inclusion M (t)

__
M

I, and ltx(t)= t for 0,1.

DEFINITION 4.2. H0, H are concordant if there is a codimension q folia-
tion " on M I with .]t (t) for 0,1.

DEFINITION 4.3. H0, - are homotopic if there is a smooth 1-parameter
family { t: 0 < < 1 } of codimension q foliations on M from H0 to H.

For a compact manifold, -0 is integrably homotopic to H implies they
are isotopic, while concordance is a weaker equivalence. Homotopy is the
weakest notion of equivalence. Note that if ’0 and H1 are homotopic, then
there exists a codimension q + 1 foliation H on M I which restricts to t
on M {t} for 0,1.

Question 4.4 [20, Problem 3]. Does there exist a pair of foliations H0, H
with tangential distributions Fo, F TM homotopic as embedded subbun-
dies but Ho and H not homotopic?

For instance, if Ho and Hx have dimension one then F0 F1 ** H0 Hx.
However, when the codimension q > 4 is even and dimension > 2q + 3, we
show the answer to (4.4) is yes.

In the following, M is either a compact connected manifold without
boundary or an open connected manifold. Let Cq(M) denote the set of
concordance classes of codimension q foliations on M. Recall that (Vq, } is
the set of integers defined in (2.8).

THEOREM 4.5. Let M be a connected manifold and Q TM a trivial
subbundle of rank q. Assume that either

(a) M is closed, orientable and of dimension n,
or

(b) M is open, has the homotopy type of an n-dimensional CW complex and
nn(M) O.
Then there is a set { Hla Rq } of codimension q foliations on M with each
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normal bundle Q, trivial and for a 4: fl, , is not concordant to . If M is
closed then ’ is not concordant to any orientation-preserving diffeomorph of

In particular, there is an inclusion Rq

_
Cgq(M).

The sphere S4k+3 always admits a 3-frame field Q TS4k+3, SO it follows
from the properties of { v3, ) that for all k > 0 with 2k + 1 divisible by 3 the
sphere S4k + admits an uncountable number of distinct concordance classes of
foliations (e.g., S 7, S19, S31,... ).

It is remarked in [25, Corollary 2] that if S admits a rank q subbundle
Q TS for q < n/2 then S admits a trivial rank q subbundle.

COROLLARY 4.6. If S admits a rank q subbundle then S has at least Rq,

distinct concordance classes offoliations.

Recall that for n >> q > 3, Vq, 4: 0. Therefore (4.6) applies to many spheres.
Further, in the proof of Theorem 4.5 we see that these foliations are dis-
tinguished by having differing dual homotopy invariants, so by Proposition 2.9
they often have non-trivial secondary invariants as well.
More generally, it is easy to construct compact manifolds with a trivial

q-subbundle to which (4.5) applies. If X is compact and almost parallelizable,
take M X Sx. For any orientable closed manifold N, M N Tq will
work.
With regards to the weaker equivalence of homotopy we have the following.

Let q > 4 be even. Recall that { rq, } is the set of integers defined in (3.5).

THEOREM 4.7. Assume M satisfies the conditions of (4.5) and suppose
rq, > O. Then M admits an infinite set (-la Zrq’n) of codimension q
foliations with each normal bundle Q trivial, Q and Q# are concordant, andfor
a 4 fl, is not homotopic to ’. IfM is closed then is not diffeomorphic
to o
COROLLARY 4.8. Let q >_ 4 be even and suppose rq, > O. If S" admits a

rank q subbundle of TSn, then S admits an infinite set (,,la d’) of
codimension q foliations which are distinct up to homotopy, but whose tangential
distributions are all homotopic as embedded subbundles.

Remark 4.9. The simplest case is for codimension 6 on S15.

Proof of 4.5. Given a trivial subbundle Q
_
TM it is shown in [9], [25] that

there is an inclusion [M, BFq]
_

Cq(M), where [X, Y] denotes the set of
homotopy classes of continuous maps of X to Y (not necessarily base point
preserving!) We analyze the set [M, BFq] when M satisfies either (4.5a) or
(4.5b). For M closed and orientable, give M a finite CW structure with exactly
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one n-cell (e ) and set M’ Mn_l, the (n 1)-skeleton of M. For M open,
replace M with its homotopy equivalent CW complex of dimension n, which is
again denoted by M. Let ( e n } be an n-cell in M corresponding to a generator
of H,,(M; Q) and let M’= M- {e}. In either case we obtain a map p:
M M/M’ S" which is essential in homology. Consider the induced map
on sets:

 rql-, [M,  rq]

We study the image of p’ to prove (4.5).
The key to the proof follows a suggestion made by Joe Neisendorfer to use

the Barratt-Puppe sequence of a: S _= Oe M’, the attaching map of the
cell ( e }. This is a homotopy fight-exact sequence [27, Theorem 6.11]

( ) M’
o O

M’4.9 Sn-1 --* M S" Y

where we set fl Ra. Exactness of (4.9) yields the exact sequence of sets:

(4.10) Srq] 5 5 [M, Srq].

Note_the first two sets have a natural group structure, and [M, BFq] has a

rr(BFq)-action compatible with p’.

LEMMA 4.11. The image of fl’ & contained in the torsion subgroup of

Proof It suffices to show that fl: S" EM’ is an element of finite order in
rn(RM’). For a suspension the rational Hurewicz map

.z: ,.(ZM) (R) Q -, n,(ZM; Q)

is onto. For the inclusion i: EM (EM, RM’), naturality of gives a
commutative diagram:

Orn+l(RM) (R) Q H,,+I(EM; Q) 0

rn+l(M, M’) @ Q Hn+I(,M,,M’; Q) Q.

Hence, i# is onto. For the map of pairs (a, fl): (en+l,sn) "- (EM, RM’) we
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have the diagram with exact rows"

0
0 r,,+l(e n+l) . rn+l(e n+l, S n) rn(S n)

%+(M) %+(,M,M’) ’rl’n(,M’).

Since i# has finite cokernel, the composition fl# 0 has image in a finite
subgroup of %(XM’), and fl#(1) [fl] therefore has finite order, m

By Theorem 1, there is a group epimorphism h" %(BFq) R,.. The
composition h fl’ is trivial as R is torsion-free, so h defines a map on the
image of p’:

h" {image0’} R,".

This shows the set [M, BFq] contains at least ROq,n distinct elements.
To finish the proof of (4.5), for each x Rq. chose a map

ax" S" "-+ Bq with h(ax)= x.

Set fx ax P: M BFq and let -x be the foliation on M with normal
bundle concordant to Q and classified by f0, which the various existence
theorems construct. For x y we saw above that fx fy, so the foliations x
and y are not concordant.

Suppose M is closed and g is an orientation-preserving diffeomorphism of
M with g-X(y) concordant to . Then f,, and fy g are homotopic. We can
assume g is a CW-map; the quotient map g: M/M’ M/M’ is homotopic to
the identity since g is orientation-preserving. Therefore, p p g and

fy OlyOp OtyOpog=fyOg ---fx
sox =y. m

Proofof 4.7. Given M satisfying (4.5a, b)let p" M S" and fl: S" EM’
be as in the proof of (4.5). We again consider the map

o"

The point of (4.7) is to produce foliations on M which are not homotopic and
this is based on the following observation.

Let ax, a2 %(BFq), set fi ai p and let ,,. be the resulting foliation on
M. If ’ and --2 are homotopic, then there exists a codimension q + 1
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foliation " on M I which restricts to ,. on M { }. Let

f: M I BFq+

classify ’. Then f is a homotopy between the maps Jq,1 fi" M BFq+ for
1,2. For r/: [M, BFq] [M, BI’q+l], this implies

0.

From the commutative diagram

r,(rq+)

we see that O" (jq,1)#([al] [a2]) 0. The kernel of O" is a torsion subgroup
by Lemma 4.10, hence

(L,)#[all (,1)#[0121 t ,/rn(B+l) (R) ( _- ,/rn(Bl-’q+l) (R) Q.

Therefore, if a1, a2 are chosen so that (q,1)#[ai] are rationally distinct then
-1 and -2 are not homotopic.

With the above remarks, it is clear how to proceed. Let G" T ---, BFq be as in
(3.4). Choose a set { al,..., at} __C_ r,(T) which yields a Q-basis for %(T) (R) Q

.’q(n). (So r rq, n). Let An

_
%(T) be the free abelian group generated by

the ai. Proposition 3.4 implies that

(,1)# G#" rrn(T) q’l’n(BFq+l) (R) Q

is monic on the set An. For each aA let ’ be the foliation on M
classified by G a p: M BFq. The set (’,,[a An } is then seen to satisfy
the conditions of (4.7). m

Proof of 4.8. For M Sn, let (-l a An} be the set of codimension-q
foliations constructed above. Note that for all a A the normal bundle Q of- is concordant to the given embedding Q TS of a trivial bundle [25, p.
217]. This implies Q and Q are concordant for all a, fl A n. Let

G (g, g)" S -.-) OOq X nOn_ q
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classify the splitting TS = Q, F, where F is the tangential distribution of-. For all ao, a A. we then obtain a commutative diagram"

sn X {0,1}

1
SnI

sn-q

"BOq X BO,,_q

,BOq X BO,_q/ .
Therefore, the homotopy classes of Go and G differ by an element of
%(sn-q). This is a finite group for q even, so we can find an infinite subset
_

A so that a, fl s implies G= Ga. But this means F and Fa are
homotopic as embedded subbundles of TSn, while - and are not
homotopic for a 4: ft. m
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