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1 Coarse spectral geometry and foliation ergodic theory

Spectral geometry on a complete open manifold V of bounded geometry studies the relations between
the geometric and topological aspects of V , and the properties of the spectrum of symmetric elliptic
differential operators on V . The local aspects of this study are classical, and center on curvature
invariants of V and the asymptotic distribution of the spectrum. Coarse spectral geometry concerns
the global aspects of spectral geometry – investigating the spectral properties of differential operators
which depend only on the quasi-isometry type of the space. The first result of this type was Brooks’
theorem that the essential spectrum of the Laplacian on functions on a covering space V of a compact
manifold contains 0 if and only if the covering group is amenable [5, 6, 2]. The Novikov-Šubin
invariants of a covering are more recent examples of coarse spectral invariants [33, 32, 15, 20, ?, ?].

The leaves of foliations provide a natural class of complete open manifolds endowed with a
Riemannian metric of bounded geometry. The quasi-isometry class of the leafwise Riemannian
metrics depends only on the foliation, so their coarse spectral geometry is a natural property of
the foliation. This paper explores the coarse spectral geometry of leaves, and presents some basic
aspects of this study. Our main results relate the essential spectra of leafwise geometric operators
{DL | L ⊂ V } to the ergodic theory of the leaves. The basic observation is that a point λ is
in the essential spectrum of leafwise geometric operator DL if and only if there exists a sequence
of compactly-supported, approximate λ-eigensections on the leaf L whose supports tend to infinity.
This characterization of essential spectrum is combined with techniques from foliation ergodic theory
to obtain sharper forms of results in the literature known for Rn-actions.

A foliation geometric operator is actually a collection of operators, acting along each leaf of F .
These can be combined to yield an operator denoted by DF on the total space C∞(V,E). Each
transverse invariant measure µ for the foliation F yields a Hilbert space completion L2(V,E, µ) of
C∞(V,E), and DF has a densely defined closure Dµ in L2(V,E, µ). The spectral coincidence problem
[28, 29, 34, 40, 27] asks how the spectrum of Dµ is related to the spectra of the the operators
{DL | L ⊂ spt(µ)}. One expects such a relationship, because given a leaf L in the support of µ,
an eigensection for Dµ restricts to a generalized eigensection for DL. For an amenable leaf, each
generalized eigensection gives rise to a point in the essential spectrum. Foliation ergodic theory
methods yield in a converse to this, relating the spectra on leaves to the spectra of Dµ.

The study of spectral geometry of foliation operators is closely related to results from the physics
literature concerning the spectra of almost periodic (deterministic) and random operators. However,
these works tend to emphasize operator theory methods and not foliation methods. One of the
incidental goals of this paper is to exposit (in section 2 below) some basic foliation techniques useful
for spectral questions.

Let (V,F) be a compact foliated measure space. (See § 2 for this and other basic definitions.)
The leaf through a point x ∈ V will be denoted by Lx. The leaves of F admit a partial ordering
where Lx ≤ Ly means that Lx is contained in the topological closure Ly ⊂ V . The first result relates
the spectra for the leafwise operators DL with this partial ordering.

THEOREM 1.1 Let DF be a leafwise geometric operator for a foliated measure space (V,F).
Suppose that Lx ≤ Ly and the holonomy group of Lx is trivial when restricted to the closure Ly.
Then σ(DLx

) ⊂ σe(DLy
).

Recall that the ω-limit set ω(L) of a leaf L is the closure of the ends of L. A leaf L is proper if
the induced topology on L from V agrees with the manifold topology on L. This is equivalent to L
being open in the closure C`V (L), so that ω(L) = C`V (L) − L. A leaf is non-proper otherwise.

COROLLARY 1.2 Let L be a non-proper leaf of F without holonomy. Then for every geometric
operator DF along the leaves of F , the leafwise spectrum is all essential: σ(DL) = σe(DL). 2

1



A more general result (Theorem 4.1) than Theorem 1.1 is true, but its hypotheses is more
technical and requires precise definitions from section 2. The exact statement is postponed till
section 4. Theorem 1.1 follows from Theorem 4.1 and Proposition 2.9.

A subset Z ⊂ V is called a minimal set for a foliated space (V,F) if Z is closed, a union of leaves
of F , and every leaf of F in Z is dense in Z. An equivalent condition is to say that for every pair
of leaves Lx, Ly ⊂ Z we have Lx ≤ Ly. The foliation F is said to be minimal if V is a minimal set.
Theorem 4.1 and Proposition 2.10 yield:

THEOREM 1.3 Suppose that F is defined by a locally-free, smooth action of a connected nilpotent
Lie group N , and Z a minimal set F . For a leafwise geometric operator DF and any leaf L ⊂ Z,
the leafwise spectrum σ(DL) = σe(DL) is independent of the choice of L ⊂ Z. 2

These last results address only the spectrum of the leaves as closed subsets of the line. It seems
likely that there are generalizations of these results to the spectral measures associated to the leaves.
For example, suppose that DL has an L2-eigensection (corresponding to a Dirac mass for the spectral
measure). An interesting problem is to understand how this Dirac mass propagates to the spectral
measures for the DLy

where L ≤ Ly. The work of J. Álvarez-López and the author [1] give geometric
condition for the propagation of the pure-point spectrum.

Now assume that F admits an invariant transverse sigma-finite measure µ. The next results
relate the spectrum of a leafwise operator DL with that of the closure Dµ in L2(V,E, µ).

THEOREM 1.4 For every L ⊂ spt(µ), we have σ(DL) ⊂ σe(Dµ).

There is a converse to Theorem 1.4, but requires that F be hyperfinite with respect to µ
(cf. [41, 13] and section 2 below).

THEOREM 1.5 Suppose that F is µ-hyperfinite. Then

σ(DF ) ⊂
⋃

L⊂spt(µ)

σ(DL) (1)

COROLLARY 1.6 Suppose that F is µ-hyperfinite. Then

σ(DF ) =
⋃

L⊂spt(µ)

σ(DL) (2)

The conclusion of Corollary 1.6 is called spectral coincidence in the literature [27, 28, 29, 34, 40].
The usual context is in the study of almost periodic or random operators on Rn, but the framework
here shows that spectral coincidence follows from general dynamical principles. For example, we can
conclude:

COROLLARY 1.7 Let N be a simply connected nilpotent Lie group, and assume there is a
minimal, locally-free, measure-preserving action of N on a Borel measure space (V, µ̃). Then for
every leafwise geometric operator DF , the leafwise spectrum σ(DL) is independent of the orbit L,
and σ(DL) = σ(Dµ) = σe(Dµ).

This paper is dedicated to the memory of Bruce Reinhart, whose encouragement led the author
to pursue the study of index theory and spectral properties of foliations. The results of this paper
were first presented at the conference on “Foliations” in his memory at College Park, Maryland,
September 1989.
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2 Topological and measurable dynamics of foliations

This section gives a brief introduction to the topological and measurable dynamics of foliations.
Foliated measure spaces were introduced by Feldman and Moore [19], and are natural generalizations
of foliated manifolds and measured laminations. They are the correct context for studying the
measure theoretic questions of foliations (cf. [3, 4, 36, 19, 39, 30, 25]). Proofs of the main results we
need are given, as often only the idea of the proof is available in the published literature.

A compact foliated space is a pair (V,F) where V is a compact metric space, and the foliation
data F is specified by giving a finite covering {Uα | α = 1, . . . , k} and homeomorphisms φα : Uα

∼=
Dm×Xα where Dm = (−1, 1)m is the open m-disc and Xα is a compact metric space. The level sets
Pα(x) = φ−1

α (Dm ×{x}) are called the plaques of F . Note that the sets Xα are not assumed to have
a local Euclidean structure. For example, Xα may be a Cantor set - a perfect set without interior.
At the other extreme, for a foliation of a smooth manifold the model for Xα can be assumed to be
a closed disc in Rn where n is the codimension of the foliation.

The sets Uα are not assumed to be open (recall that the transversal spaceXα is closed) so we must
impose a covering condition on their interiors, which requires formulating a notion of the interior. Let
V − Uα denote the closure of the complement of Uα, and define the rim of Uα to be the intersection
R(Uα) = V − Uα∩Uα. The rim of Uα has a disjoint decomposition R(Uα) = R`(Uα)∪Rt(Uα) where
the longitudinal part R`(Uα) corresponds to the boundaries of the plaques, so is homeomorphic via
an extension of φ−1

α to Sm−1×Xα. The transverse part Rt(Uα) corresponds to the “boundary” of the
metric spaceXα and is homeomorphic via φ−1

α to Dm×∂Xα where ∂Xα is a closed subset ofXα. The
interior of Xα is the complement X int

α = Xα − ∂Xα, and define the interior U int
α = φ−1

α (Dm ×X int
α )

which is open in V . We require that the interiors {U int
α | α = 1, . . . , k} cover V .

The collection of plaques endow V with a second, much finer topology whose basic open sets are
the open sets (in the relative topology) in the plaques Pα(x). A leaf of F is a maximal connected
open set in this finer topology. That is, a leaf of F is an increasing union of plaques

L =
∞⋃

N=1

{
N⋃

i=1

Pαi
(xi)

}
(3)

where each

PαN
(xN ) ∩

{
N−1⋃

i=1

Pαi
(xi)

}
6= ∅ (4)

and if Pα(x) ∩L 6= ∅ then Pα ⊂ L. We will call the collection of plaques {Pαi
(xi) | i ∈ N+} a tiling

of L if it also satisfies the condition that

PαN
(xN ) 6⊂

N−1⋃

i=1

Pαi
(xi) (5)

If L is compact, then a tiling must be finite. A tiling is intuitively described as a connected chain
of open discs of uniform diameter which cover the leaf without redundancy, so that their increasing
unions eventually engulf every compact subset K ⊂ L.

This formal definition includes the usual examples of foliations on smooth manifolds, and also
allows for constructions that arise in dynamical systems and probablistic considerations. Section 6
includes some of the basic examples and constructions to illustrate the possibilities.
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The foliation F is leafwise smooth if for each non-empty intersection Pα(x)∩Uβ and x ∈ Xα, the
transition function `αβ(x) = φβ ◦ φ−1

α :Dm
αβ × {x} → Dm × {y} is uniformly C∞. The uniformity

means that there are estimates on the sup norm over Pα(x) ∩ Uβ of the derivatives of `αβ(x) which
are independent of α, β and x. We assume that each leaf L ⊂ V is given a Riemannian metric 〈·, ·〉L
of bounded geometry, so that the leafwise metrics restricted to a chart Uα vary continuously with
the transverse parameter x ∈ Xα. Moreover, by refining a given foliation covering, we can assume
that each plaque is convex for the leafwise geodesic metric. This implies that the covering is good:
for all choices α, α2, . . . , αk and x ∈ Xα if the intersection Pα(x) ∩ Uα2

∩ · · · ∩ Uαk
is non-empty,

then it is convex and hence connected.

Let ∇L denote the associated Riemannian connection on the leaf L, and let ∇F denote the
collection of all the leafwise connections.

A foliation cover as above of a foliated space admits a subordinate partition-of-unity
{λα | α = 1, . . . , k}, constructed by adapting the standard method. The first step is to produce
“model bump functions” on the standard spaces Dm×Xα. Choose a smooth function ξ:Dm → [0, 1]
which vanishes on the boundary of Dm and is non-zero on the interior of the disc. Choose a
continuous function ζα:Xα → [0, 1] which vanishes on ∂Xα and is positive on the interior X int

α . For
p ∈ Uα set ξα(p) = ξ(π1(φα(p))) · ζα(π2(φα(p))) where π1:D

m ×Xα → Dm is projection onto the
first factor, and π2:D

m×Xα → Xα is projection onto the second. The support of ξα is all of Uα and
it vanishes along the rim of Uα, so we can extend it to a continuous function on V which vanishes
outside of Uα. Note that ξα has uniform bounds on it’s leafwise covariant derivatives (∇F )sξα for
all s ≥ 0. Then define

λα(p) =
ξα(p)

∑k
β=1 ξβ(p)

A set W ⊂ V which consists of a union of leaves of F is said to be saturated with respect to F .
The saturation SFZ of a set Z ⊂ V consists of the union of all leaves which intersect Z. If Z ⊂ Uα

we also define the local saturation

SαZ =
⋃

Pα(x)∩Z 6=∅

Pα(x)

A local cross-section is a Borel subset Z ⊂ Uα which intersects each plaque Pα(x) in at most one
point. Define local cross-sections Tα = φ−1

α ({0}×Xα). For each β with Uα ∩Uβ 6= ∅ define compact
spaces Tαβ = Tα ∩ Sα(Uα ∩ Uβ) and Xαβ = φα(Tαβ) ⊂ Xα.

A transversal T ⊂ V to F is a Borel subset which intersects each leaf in at most a countable
set. A cross-section is thus a special case of a transversal, and one can show (via a Borel selection
process) that every transversal is a countable union of local cross-sections.

A pair (α, β) is admissible if Uα ∩Uβ 6= ∅. For each admissible pair (α, β) there is a well-defined
transition function γαβ :Xαβ → Xβα, which for x ∈ Xαβ is given by

γαβ(x) = φβ

(
Sβ(φ−1

α (Dm × {x}) ∩ Uβ) ∩ Tβ

)
∈ Xβα

The continuity of the charts φα implies that each γαβ is homeomorphism from Xαβ onto Xβα.

A plaque-chain of length k between a pair of points x, y ∈ L on a leaf of F is a finite collec-
tion of plaques P = {Pα1

(y1), . . . , Pαk
(yk)} with x ∈ Pα1

(y1) and y ∈ Pαk
(yk) so that Pαi

(yi) ∩
Pαi+1

(yi+1) 6= ∅ for 1 ≤ i < k. A plaque-chain P is said to be a shortcut from x to y if there does
not exists a plaque-chain of length less than k between x and y.

DEFINITION 2.1 The plaque length between two points x, y ∈ L is defined to be the length of a
shortcut between x and y.
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Each plaque-chain P = {Pα1
(y1), . . . , Pαk

(yk)} determines a local homeomorphism

γP = γα1α2
◦ · · · γαk−1αk

from an open neighborhood y1 ∈ W s
P ⊂ Xα1

to an open neighborhood yk ∈ W r
P ⊂ Xαk

where
W s

P ⊂ Xα1
is the maximal subset on which the composition is defined.

For x ∈ Xα, a closed plaque-chain based at x is a plaque-chain starting and ending at φ−1
α (x),

and defines a local homeomorphism from a neighborhood of x to itself. The collection of all such
local homeomorphisms defines a pointed groupoid ψHolF (x) ⊂ Emb(Xα, x). The germs of these
maps at x form a subgroup HolF (x) ⊂ Germ(Xα, x) of the germs at x called the holonomy group of
F at x. The isomorphism class of HolF (x) is well-defined, independent of the choice of transversal
and basepoint x (cf. Chapter IV, [7]).

Let (V,F) be a foliated measure space with a fixed covering by foliation charts
{(Uα, φα : Uα → Dm × Xα) | α = 1, . . . , k}. For each leaf L ⊂ V and y = φ−1

α (x) ∈ L ∩ Tα

there is a well-defined holonomy homomorphism

hx:π1(L, y) → HolF (x),

defined by sending the leaf homotopy class in π1(L, y) determined by a closed plaque-chain P to the
germ of γP at x.

The holonomy covering π: L̃h → L is the covering associated to the homomorphism hx. Each
plaque Pα(x) lifts to a disjoint union of open subsets of L̃h and each connected component of the
lift is homeomorphic to Pα(x). These connected components in L̃h are the plaques of L̃h, so L̃h is
covered by the union of its plaques. The defining property of the holonomy covering is that each
closed plaque-chain P̃ in L̃h projects under π: L̃→ L to a closed plaque-chain P in L for which γP is
the identity germ. That is, for each each closed plaque-chain P̃ in L̃h there is an open neighborhood
Wα of x ∈ Xα so that the restriction of γP to Wα is the identity.

A transverse measure µ for F is a locally-finite measure on transversals, whose measure class
is invariant under the transverse holonomy transformations. The transverse measure class defined
by µ is equivalently specified by giving finite Borel measures µα on each set Xα, so that each local
holonomy map γαβ pulls the measure class of µβ |Xβα back to that of µα|Xαβ. A local cross-section
Z ⊂ Uα is said to have µ-measure zero if and only if µα(φα(SαZ ∩ Tα)) = 0.

We say that µ is an invariant transverse measure for F if the local holonomy preserves the
measure; that is, γ∗αβ(µβ |Xβα) = µα|Xαβ for all admissible (α, β). The measure of a local cross-
section Z ⊂ Uα is defined as

µ(Z) = µα(φα(SαZ ∩ Tα))

This is extended as a countably additive measure to all transversals Z ⊂ V : use a selection lemma
to decompose

Z =

k⋃

α=1

∞⋃

i=1

Zα,i

where each Zα,i ⊂ Uα is a local cross-section, then define

µ(Z) =
k∑

α=1

∞∑

i=1

µα(Zα,i)

The holonomy invariance of the measures µα implies that µ(Z) is independent of the choices of the
foliation covering of V and the particular decomposition of a set Z.
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DEFINITION 2.2 A foliated measure space is a triple (V,F , µ) where (V,F) is a foliated space
and µ is an invariant transverse measure for F .

The support of a transverse measure µ is the smallest closed F -saturated subset spt(µ) ⊂ V so
that µ(Z) = 0 for any transversal Z ⊂ V \ spt(µ). The triple (spt(µ),F|spt(µ), µ) is a foliated
measure space.

The ω-limit set ω(L) of a leaf L generalizes the usual notion of the asymptotic limit set for flows:
choose a tiling {Pαi

(xi) | i ∈ N+} of L, then

ω(L) =

∞⋂

N=1

(
∞⋃

i=N

Pαi
(xi)

)
(6)

where the overline denotes closure in the topology on V . If L has only a finite number of ends, then
ω(L) equals the union of the closures of the ends; otherwise, it may properly contain this union.

LEMMA 2.3 ω(L) is a closed saturated set.

Proof: ω(L) is the intersection of closed subsets of V hence is closed.

Choose a tiling {Pαi
(xi) | i ∈ N+} of L. Let z ∈ ω(L), and choose a subsequence of plaques

{Pαi`
(xi`

) | ` ∈ N+} with z in their limit. Let z′ ∈ Lz be another point on the leaf through z. Choose
a plaque-chain P = {Pα1

(y1), . . . , Pαk
(yk)} from z to z′, with local holonomy homeomorphism

γP :W s
P → W r

P . It will suffice to show that Pαk
(yk) ⊂ ω(L). Choose N > 0 so that xi`

∈ W s
P for all

` > N . Continuity of γP implies that the sequence {γP(xi`
) | ` > N} contains yk in its limit, and

thus Pαk
(yk) ⊂ ω(L). 2

Recall that X ⊂ V is a minimal set for F if X is F -saturated, closed and there is no proper
F -saturated closed subset Y ⊂ X .

COROLLARY 2.4 A closed saturated non-empty subset X ⊂ V contains a minimal set Z ⊂ X.

Proof: The collection of closed saturated subsets of X is closed under intersections, hence by Zorn’s
Lemma contains a minimal element Z. For each leaf L ⊂ Z, ω(L) ⊂ Z is a closed saturated subset,
hence must equal Z. 2

The minimal set Z ⊂ X need not be unique. For example, if F is a foliation with all leaves
compact, then a minimal set for F consists of a single leaf, so that every closed saturated set with
more than one leaf contains more than one minimal set. (There are also much more sophisticated
examples of non-uniqueness.)

Associate to each leaf L the collection Z(L) = {Z ⊂ ω(L) | Z is minimal }. These are the
invariant sets for F onto which the leaf L “spirals” as we go to infinity. For codimension one
foliations, Poincaré-Bendixson Theory [35, 8, 9, 14, 23] relates the geometry of L with the structure
of the minimal sets in Z(L). It is easy to show that if all leaves of F are proper, then Z(L) consists
of compact leaves [24]. When F is C2 and codimension-one, for a proper leaf L, Z(L) again consists
of compact leaves [9, 23]. Moreover, the leaves of ω(L) admit a partial-ordering with the minimal
elements consisting of the leaves in Z(L).

We next formulate the notions of Fölner leaves and uniform amenability for foliated spaces
(cf. section 1.7, [25]). Fix a leaf L of F and a tiling {Pαi

(xi) | i ∈ N+} of L. For each subset
I ⊂ N+ define

FI =

{
⋃

i∈I

Pαi
(xi)

}
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A plaque Pαi
(xi) is said to be in the interior of FI if Pαi

(xi) ∩ Pαk
(xk) = ∅ for all k 6∈ I.

Pαi
(xi) is on the boundary of FN if i ∈ I and Pαi

(xi) ∩ Pαk
(xk) 6= ∅ for some k 6∈ I. Let ∂FI

denote the union of the boundary plaques for FI . Let #FI = #I denote the number of plaques in
FI and #∂FI denote the number of plaques on the boundary of FI .

DEFINITION 2.5 A leaf L of a foliated space (V,F) is Fölner if there exists an increasing se-
quence of finite subsets I1 ⊂ I2 ⊂ · · ·N+ so that the associated nested sequence of compact subsets

F1 ⊂ F2 ⊂ · · · ⊂ FN = FIN
⊂ · · ·

exhausts L and satisfies

lim
N→∞

#∂FN

#FN
= 0 (7)

The exhaustion F1 ⊂ F2 ⊂ · · · is called a Fölner sequence for L. The notion clearly generalizes the
usual idea of a Fölner sequence for a Lie group G.

A foliation F defined by a locally-free action of a connected solvable Lie group on V has every
leaf Fölner [6, 25]. This example, however, can be misleading, for it suggests that the typical Fölner
sequence has a “uniformity” corresponding to the homogeneity of the Lie group. This need not be
the case in more intricate, non-uniform examples [22, 23]. For results concerning the transference
of spectra from a leaf L to another L′, we require a formulation of amenability which is localized
to neighborhoods of L. The simplest approach is to require that the holonomy group HolF (x) of
Lx be amenable. However, it is the holonomy groupoid ψHolF (x) which describes the orbits of the
leaves near to Lx. Composition is not always defined for elements of ψHolF (x), so the usual Fölner
condition must be reformulated in different terms. We give two extensions to pseudo-groups – one
for invidual orbits, and the other for the entire action of ψHolF (x). The purpose of these definitions
is to ensure that a gievn subset of a leaf has an arbitrarily close “covering” by a set in nearby leaves
which again satisfies the Fölner condition.

Fix a leaf Lx and representative of the groupoid ψHolF (x) ⊂ Emb(Xα, x) defined by the closed
plaque-chains based at x. For each integerN > 0, let ψHolF ,N(x) denote the sub-groupoid generated
by the plaque-chains of length at most 2N . There are at most a finite number of plaque-chains which
are short-cuts of length at most N , so there exists a countable subset

{h0, h1, . . . , hi1 , . . . , hi1+···+iN
, . . .} ⊂ ψHolF(x)

so that each sub-collection

∆N = {h0, h1, . . . , hi1 , . . . , hi1+···+iN
}

(where h0 = Id:Xα → Xα) generates the sub-groupoid ψHolF ,N(x).

Let Ly be a leaf with Lx ≤ Ly, where y ∈ Tα = φ−1
α ({0} × Xα). The maps in the groupoid

ψHolF ,N(x) have domains depending upon the element selected, so that the orbit of y under this
groupoid is defined by a partial action as follows: for yα = π1 ◦ φα(y) ∈ Xα, set

ψHolF ,N(x) · yα = {h(yα) | h ∈ ψHolF ,N(x) & yα ∈ Domain(h)} ⊂ Xα

Let
ψHolF (x) · yα =

⋃

N>0

ψHolF ,N(x) · yα

For example, the assumption Lx ≤ Ly implies that xα = φα(x) ∈ ClosureXα
(ψHolF(x) · yα).
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Finally, given any subset W = {w1, . . . , w`} ⊂ Xα define the ∆N -penumbra

PNW = {z ∈ Xα | either z = h(wi) or wi = h(z) for some h ∈ ∆N & wi ∈ W}

Note that h0 = Id implies that W ⊂ PNW always. The ∆N -penumbra consists of the orbits of the
groupoid which can be obtained from an element of the given set W by application of an element of
the generating set ∆N .

DEFINITION 2.6 For Lx < Ly, we say ψHolF(x) is uniformly Fölner on Ly if,
for every N > 0, ε > 0 and open neighborhood x ∈ U ⊂ Xα, there exists a finite subset
WU,N,ε ⊂ U ∩ ψHolF(x) · yα such that

#{PNWU,N,ε} ≤ (1 + ε) · #WU,N,ε (8)

It follows by standard techniques that this notion is depends only on Lx and Ly and not on the
choices of basepoints and covering of V by foliation charts. The union of the plaques containing the
points of WU,N,ε define a compact subset of Ly intersecting the open neighborhoof U of x which has
the Fölner condition.

DEFINITION 2.7 ψHolF(x) is uniformly Fölner if or every N > 0, ε > 0 and open neighborhood
x ∈ U ⊂ Xα, there exists a finite subset WU,N,ε ⊂ U such that

#{PNWU,N,ε} ≤ (1 + ε) · #WU,N,ε (9)

The following proposition has an almost obvious proof:

PROPOSITION 2.8 Suppose that Lx has trivial holonomy group HolF (x). Then ψHolF (x) is
uniformly Fölner.

Proof: Suppose that xα ∈ U ⊂ Xα, N > 0 and ε > 0 are given. By hypothesis, the germ of each
map h ∈ ψHolF (x) is the identity at xα, so for the finite collection ∆N there exists an open set
xα ∈ VN ⊂ U on which each h ∈ ∆N restricts to the identity. Thus, for any subset W ⊂ VN we
have PNW = W so that it satisfies the Fölner condition (9). 2

The same idea also establishes:

PROPOSITION 2.9 Suppose that Lx ≤ Ly and the holonomy group of Lx is trivial when re-
stricted to the closure Ly. Then ψHolF (x) is uniformly Fölner on Ly. 2

A nilpotent Lie group admits an exhaustion by open neighborhoods of the identity e which are
Fölner with respect to a fixed compact neighborhood of e (i.e., the group satisfies the usual Fölner
condition) and the orbits of the group inherit this condition. Standard foliation techniques then
yields the following class of examples:

PROPOSITION 2.10 Suppose that F is defined by the locally-free action of a connected nilpotent
Lie group N on V . Then ψHolF (x) is uniformly Fölner for all x ∈ V .
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Hyperfinitesness for a foliated measure space (V,F , µ) (cf. section 4, [19]; section 5, [31])
generalizes the Fölner condition from individual orbits to a uniform condition over all orbits. A
Borel equivalence relation on X is a Borel subset R ⊂ X ×X such that x ∼R y whenever (x, y) ∈ R
defines an equivalence relation. A subequivalence relation is Borel subset S ⊂ R which also defines
an equivalence relation.

For the disjoint union of the transversal spaces to F ,

X =

k⋃

α=1

Xα

introduce the equivalence relation R(F) defined by setting x ∼F y if and only if the plaques Pα(x)
and Pβ(y) are on the same leaf of F . The R(F)-saturation of a subset Z ⊂ X is

R(F) · Z =
⋃

x∈Z

{y ∼ Fx}

If Z ⊂ Xα is µα-measurable and µα(Z) = 0, then for every admissible pair α, β the image
γαβ(Z ∩Tαβ) ⊂ Xβ also has measure zero. Hence, the saturation R(F) ·Z will have µ-measure zero.
This implies that R(F) is a measured equivalence relation in the terminology of [18, 19].

An equivalence relation S on V is finite if the number of elements in each equivalence class is
finite. The intuitive definition of a finite equivalence relation is that it partitions the leaves of F
into bounded Borel subsets, and two points x, y are S-equivalent if and only if they are on the same
leaf and they belong to the same bounded subset. For example, the nearest neighbor partition of the
leaves defines a finite subequivalence relation: Endow the leaves of F with the Riemannian distance
function, then for each plaque Pα(x) we obtain a Borel subset consisting of the points which are
“closer” to the transversal Tα(x) than to any other transversal Tβ(y). Continuity of the Riemannian
metric from leaf to leaf implies that the resulting partition of the leaves is Borel.

One can create larger partitions of the leaves by assembling the nearest neighbor partitions into
“blocks”. However, the selection process by which these basic leaf blocks are grouped together is
required to yield a Borel subset S ⊂ X ×X . The hyperfinite property asserts that this can be done
with arbitrarily large nested subequivalence relations:

DEFINITION 2.11 The equivalence relation R(F) is µ-hyperfinite if there exists an increasing
sequence of finite subequivalence relations

∗X ⊂ R1 ⊂ R2 ⊂ · · · ⊂ R

where ∗X denotes the trivial equivalence relation (x ∼∗ y if and only if x = y) and the union ∪RN

defines an equivalence relation ∼∞ which agrees µ-a.e. with ∼F (i.e., for µ-a.e. x ∈ X we have
x ∼∞ y ⇐⇒ x ∼F y). We then say that (V,F , µ) is a hyperfinite foliated measure space, and
{RN (F)} is an exhaustion of R(F).

Connes-Feldman-Weiss [13] proved that an equivalence relation is µ-hyperfinite if and only if
the quivalence relation is amenable in the sense of Zimmer [41]. Amenability of R(F) can often be
established by a variety of methods (cf. [41]; Chapter [42]) so this is a very useful criterion for the
existence of a hyperfinite partition.

The equivalence relation R(F) has an orbit metric dF :R(F) → N+ (cf. section 1.1, [25]) where
the distance dF (x, y) between points x ∈ Xα and y ∈ Xβ is 1 less than the length of a shortcut
between the plaques Pα(x) and Pβ(y).
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Let S be a finite subequivalence relation for R(F). A point x ∈ X is said to be in the interior
of S if all points y ∼F x with dF(x, y) = 1 satisfy x ∼S y. Otherwise, y is on the boundary of S.
The set of interior points for S will be denoted by X i(S) and the boundary points by X∂(S).

The key property that we need about a hyperfinite foliated measure space is given by:

PROPOSITION 2.12 Let (V,F , µ) be a hyperfinite foliated measure space, with exhaustion {RN (F)}.
Then the µ-measure of the set X∂(RN (F)) tends to zero as N → ∞.

Proof: The condition RN (F) ⊂ RN+1(F) implies that X∂(RN+1(F)) ⊂ X∂(RN (F)). Clearly,
X∂(R(F)) has µ-measure 0, so by the dominated convergence theorem the sequence {µ(X∂(RN (F)))}
tends to 0. 2

Adopt the notation ∼N for the equivalence relation determined by {RN (F)}.

COROLLARY 2.13 Let (V,F , µ) be a hyperfinite foliated measure space, with exhaustion {RN (F)}.
There exists Borel subsets {XN} of X so that

1. XN intersects each equivalence class of RN (F) exactly once.
That is, for x, y ∈ XN if x ∼N y then x = y

2. The µ-measure of the complement X \ RN (F)XN tends to 0 as N → ∞.

3. For µ-almost every x ∈ Xα the sequence of sets

FN (x) =
⋃

y∼N x

Pα(y)(y)

is a Folner sequence for the leaf L through Pα(x).

Proof: A finite Borel equivalence relation admits a Borel cross-section [18]. For each N let XN be
such a cross-section for RN (F), then conclusions 1 and 2 follow directly from Proposition 2.12. The
proof of 3 follows from a standard counting argument in the theory of measure preserving group
actions (cf. [17]): suppose there exists a subset Xb ⊂ Xα of positive µα-measure such that for each
x ∈ Xα the leaf Lx through Pα(x) is not Fölner. Then we can assume there exists a constant ε > 0
so that for each x ∈ Xb and N > 0 we have the estimate

µ((X∂(RN (F) ∩Xb) ≥ ε · µ((X i(RN (F) ∩Xb)

Since X∂(Ri(F) ∪X i(Ri(F) tends to a set of full µ-measure, for all i sufficiently large

µ((X i(Ri(F) ∩Xb) ≥ µ(Xb)/2 > 0.

and hence µ((X∂(RN (F) ∩Xb) is bounded from below by ε · µ(Xb)/2 > 0, a contradiction. 2

(2.13.3) implies in particular that µ-almost every leaf of F is Fölner (cf. Théorème 4, [10]).
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We say that a transverse measure µ is continuous, or without atoms, if for every x ∈ X and ε > 0
there exists an open set about x in X whose µ-measure is less than ε. Every invariant transverse
measure µ can be decomposed µ = µc + µa into an invariant continuous part µc plus an atomic
part µa where the atomic measure is a direct integral of measures supported on a countable set of
compact leaves of F . Thus, if F has no compact leaves then every invariant transverse measure is
continuous (cf. section 1, [26]).

We conclude our discussion of the dynamics of foliated spaces with a structure theorem for
neighborhoods of leaves, which is a direct generalization of the fundamental structure theorem for
a neighborhood of a compact leaf with finite holonomy (cf. Theorem 3, §4 [7]). Given a set Z ⊂ V
and ε > 0 let N (Z, ε) be the open neighborhood of K consisting of points which lie within ε of Z.

PROPOSITION 2.14 Let L be a leaf in a foliated space (V,F). Given a compact subset K ⊂ L̃h

and ε > 0, there exists x ∈ Xα for some α and δ > 0 so that for the open metric ball B(x, δ) ⊂ Xα

there is a foliated immersion Π:K×B(x, δ) → V with Π|K×{x} the restriction to K of the covering
map π: L̃h → L, and

Π(K ×B(x, δ)) ⊂ N (π(K), ε)

Proof: There exists N > 0 so that K is covered by the union of a finite plaque-chain {P̃1, . . . , P̃N}
in L̃h. Let P̃i project to the plaque Pαi

(xi) on L. For each 1 < ` ≤ N the plaque-chain
P̃` = {P̃1, . . . , P̃`} projects to a plaque-chain P` = {Pα1

(x1), . . . , Pα`
(x`)} on L. The holonomy

map γP`
for P` is a homeomorphism from an open neighborhood x1 ∈ W s

` ⊂ Xα1
to an open

neighborhood x` ∈W r
` ⊂ Xα`

. Choose δ1 > 0 sufficiently small so that

B(x1, δ1) ⊂W s
1 ∩ · · · ∩W s

N and φ−1
α`

(Dm × γ`(B(x1, δ1))) ⊂ N (π(K), ε) for all 1 ≤ ` ≤ N

That is, the ball B(x1, δ1) is in the domain of γP`
for all `, and foliated product centered on the

plaque Pα`
(x`) is contained in the ε-tube about π(K).

The definition of the map Π:K × B(x1, δ1) → V requires a small technical nuance, for though
the above choices show how to define this map on individual boxes P̃` × B(x1, δ1), a point p ∈ K
may be contained in several plaques. We must use a standard trick from differential topology to get
a well-defined map.

Let {λα} be the partition-of-unity on V constructed previously. Fix p ∈ K and y ∈ B(x, δ1),
then let

I(p) = {i | p ∈ P̃i} ⊂ {1, . . . , N}

The collection of points {φ−1
αi

(π(p), y) | i ∈ I(p)} lie in the geodesically convex intersection

PI(p)(y) =
⋂

i∈I(p)

Pαi
(γi(y))

Define Π(p, y) to be the unique point in PI(p)(x) which is the center of mass for the collection
{φ−1

αi
(π(p), x) | i ∈ I(p)} with respect to the weights {λαi

(π(p)) | i ∈ I(p)}. When y = x1 all of
the points {φ−1

αi
(π(p), x1) | i ∈ I(p)} are equal, so that Π|K ×{x1} = π is an immersion. Moreover,

for all y ∈ B(x1, δ1) the restriction Π|K × {y} is smooth along K, and depends continuously on
y in the C1-topology on immersions. Hence, there exists a 0 < δ < δ1 for which the restriction
Π|K × B(x1, δ) → V is an immersion. By construction, this map preserves the foliated product
structure and has image contained in the tube N (π(K), ε). 2
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3 Geometric operators on foliated measure spaces

In this section, we introduce the class of geometric operators on foliated spaces, and recall some of
their basic spectral properties.

Let (V,F) be a foliated space with the ancillary data as determined in section 2. A Hermitian
vector bundle E → V is a foliated Hermitian bundle if for each foliation chart Uα, there is a
trivialization Φα : E|Uα

∼= CN × Dm × Xα, such that for each admissible pair α, β and x ∈ Xαβ ,
the transition function

Φβ ◦ Φ−1
α (x) : CN × Dm

αβ × {x} −→ CN × Dm
βα × {γαβ(x)}

is an Hermitian isomorphism of CN which depends C∞ on Dm
αβ . Moreover, we require that

Φβ ◦ Φ−1
α (x) vary continuously on the parameter x in the C∞ topology on bundles maps. Thus, the

restrictions E|L → L to the leaves of F are smooth Hermitian bundles which depend continuously
on the transverse parameter.

Let ∇EL denote the leafwise Hermitian connection for EL

E → V is a foliated flat Hermitian bundle if the transition functions Φβ ◦ Φ−1
α (x) are constant

on Dm
αβ for all x. Thus, the restrictions E|L → L to the leaves of F are flat Hermitian bundles

whose flat structures depends continuously on the transverse parameter.

For each leaf L ⊂ V , let SL → L denote the Clifford bundle of spinors associated to the Clifford
algebra bundle C(TL), and let D/ L : C∞

c (SL) → C∞
c (SL) be the corresponding Dirac operator. The

union of the leafwise Spinor bundles S → V forms a foliated Hermitian bundle over V .

Fix an Hermitian vector bundle E0 → V . For each leaf L, form the leafwise generalized Dirac

operator DL = D/L ⊗∇E
0
L defined on the compactly supported sections C∞

c (EL) of the bundle E =
S ⊗E0 restricted to L. That is, DL is the Dirac operator associated to the leafwise Clifford bundles
SL ⊗E0

L → L (cf. Definition 2.4, [38]): At a point x ∈ L, choose an orthogonal framing {e1, . . . , em}
of TxL and extend these to local synchronous vector fields {ẽ1, . . . , ẽm} about x (cf. (1.29) of [38].)
The Clifford algebra C(TxL) is spanned by the monomials {eI = ei1 ⊗· · ·⊗eip

| I = (11 < · · · < ip)}.
Define |I| = p for I = (11 < · · · < ip). Choose also a unitary framing {f1, . . . , fq} of E0

x and extend

to local ∇E
0
L -synchronous sections {f̃1, . . . , f̃q}. Then for a general local section

s =
∑

|I| ≤ m
1 ≤ j ≤ q

sI,j · ẽI ⊗ f̃j set

DL(s)(x) =
∑

|I| ≤ m
1 ≤ α ≤ m
1 ≤ j ≤ q

∇L
eα

(sα,j)|x · eα ⊗ ẽI(x) ⊗ f̃j(x) (10)

DEFINITION 3.1 A foliation geometric operator DF for (V,F) is a collection of leafwise Dirac
operators {DL | L ⊂ V } associated to a leafwise Riemannian metric for F and a foliated Hermitian
vector bundle E0.
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PROPOSITION 3.2 (Chernoff [12, 37]) Let DL:C∞
c (EL) → C∞

c (EL) be a leafwise generalized
Dirac operator. Then DL is essentially self-adjoint. 2

Let DF :C∞(E) → C∞(E) be a foliation geometric operator. For each bounded Borel function
φ:R → R, we can apply the spectral theorem leafwise for each x ∈ V to the essentially self-adjoint
operator

DLx
:C∞

c (ELx
) → C∞

c (ELx
)

to obtain a family of bounded operators φ(DF ) = {φ(DLx
)| x ∈ V }. The finite-propagation method

[11, 37] can be used to show that this family depends Borel on the transverse parameter.

PROPOSITION 3.3 Let DL:C∞
c (EL) → C∞

c (EL) be a leafwise generalized Dirac operator.
Then λ ∈ σe(DL) if and only if there exists a sequence {φ1, φ2, . . .} ⊂ C∞

c (EL) of unit-norm sections
whose supports are disjoint, tend to infinity in L, and ||(DL − λ)φi||2 ≤ 1/i for all i ≥ 1.

Proof: Clearly, if such a sequence of test functions exists, then (DL −λ) does not admit a bounded
inverse so that λ ∈ σ(DL). If λ is not in the essential spectrum, then it must be an isolated point of
finite-multiplicity pure-point spectrum. Hence there is a finite-rank projection Πλ so that DL−λ+Πλ

is invertible. The condition on the supports of the {φi} imply that for i � 0, the sections φi are
almost orthogonal to the range of Πλ, hence

lim
i→∞

||(DL − λ+ Πλ)φi||2 = 0

contradicting invertibility.

We use three properties of geometric operators to establish the theorem in the converse
direction. A leafwise operator AL:L2(EL) → L2(EL) is smoothing if for each ψ ∈ L2(EL) the
image χB(DL)ψ ∈ C∞(EL). It is locally-compact if for each compactly-supported bounded Borel
function g:L→ R the compositions AL◦M(g) and M(g)◦AL are compact operators. (M(g) denotes
the mulptiplication operator by g.)

LEMMA 3.4 Let DL:C∞
c (EL) → C∞

c (EL) be a leafwise generalized Dirac operator. Then for each
bounded Borel set B ⊂ R the spectral projection χB(DL) is a locally-compact, smoothing operator.

Proof: By the spectral theorem, the operators D`
L ◦ χB(DL) are bounded for all ` > 0, so by the

Sobolev Lemma for open complete manifolds (cf. Chapter 3, [38]) the range of χB(DL) is contained
in C∞(EL). Local compactness follows from Rellich’s Theorem in the usual way. 2

LEMMA 3.5 Let DL:C∞
c (EL) → C∞

c (EL) be a leafwise generalized Dirac operator. Then there
exists a constant C1 > 0 (independent of the choice of L) so that for any smooth function f :L→ R
with compact support, and section ψ ∈ C∞

c (EL) we have

||DL(f · ψ) − f ·DL(ψ)||2 ≤ C1 · sup
x∈L

||∇xf || · ||ψ||2 (11)

Proof: The definition (10) for generalized Dirac operators yields a pointwise commutator formula

DL(f · ψ)|x = f(x) · (DLψ)x + ∇x · Ax(ψ)

where Ax is a 0-order linear operator on sections associated to the symbol of DL; (11) follows. 2

Let B(x,R) = {y ∈ L | distL(x, y) < R} be the open ball in L of radius R centered at x.

LEMMA 3.6 Let DL:C∞
c (EL) → C∞

c (EL) be a leafwise generalized Dirac operator. Then for each
x ∈ L, R > 0 and λ ∈ R, the restriction of DL − λ to the space

C∞(B(x,R),EL; ∂) = {ψ ∈ C∞
c (EL) so that spt(ψ) ⊂ B(x,R)

is Fredholm. 2
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Our assumption λ ∈ σe(DL) implies that for all ε > 0 the range of the spectral projection
χ(λ−ε,λ+ε)(DL) is infinite dimensional. We use this conclusion to inductively construct sections
{φi | i = 1, 2, . . .} ⊂ C∞

c (EL) and choose a sequence of radii S1 < S2 < · · · so that

1. ||φi||2 = 1

2. There exists x∗ ∈ L so that B(x∗, Si) ⊂ spt(φ) = Ki ⊂ B(x∗, Si+1) for all i ≥ 1

3. ||(DL − λ)φi||2 < 1/i

Choose a basepoint x∗ ∈ L. Then choose ψ1 in the range of χ(λ−1/10,λ+1/10)(DL). There exists
R1 > 0 so that the restriction ψ1|B(x∗, R1) to the ball of radius R1 centered at x∗ has norm
||ψ1|B(x∗, R1)||2 > 99/100. Fix a constant C1 > 1 as in Lemma 3.5, set S1 = R1 + 20C1 then
choose a function 0 ≤ g1 ≤ 1 which is identically 1 on B(x∗, R1), identically 0 on the complement
of B(x∗, S1) and has gradient bounded by (10C1)

−1. Set

φ1 = ||g1 · ψ1||
−1
2 · g1 · ψ1

and K1 = B(x1, S1). Then by Lemma 3.5 we have

||(DL − λ)φ1||2 ≤ ||g1 · ψ1||
−1
2 · {||g1 · (DL − λ)ψ1||2 + ||(DL − λ)φ1 − g1 · (DL − λ)ψ1||2}

≤ 100/99 ·
{
1/10 + C1 · (10C1)

−1 · ||ψ1||
}

≤ 1.

Assume we have constructed unit-norm sections {φ1, φ2, . . . , φn} ⊂ C∞
c (EL) with the support of

φi contained in the compact set Ki with B(x∗, Si−1) ⊂ Ki ⊂ B(x∗, Si) for 1 < i ≤ n, and

||(DL − λ)φi||2 ≤ 1/i for 1 ≤ i ≤ n.

Let χn be the characteristic function for B(x∗, Sn). Set ε(n) = (20(n + 1))−1. The range of the
projection χ(λ−ε(n),λ+ε(n))(DL) is infinite dimensional, while the composition

M(χn) ◦ χ(λ−ε(n),λ+ε(n))(DL)

is compact, so there exists a unit-norm ψn+1 in the range of χ(λ−ε(n),λ+ε(n))(DL) so that

||ψn+1 | B(x∗, Sn + 20nC1)||
2
2 < ε(n)

Choose a compact set K ′
n+1 disjoint from B(x∗, Sn + 20nC1) such that

||ψn+1 | Kn+1||
2
2 > 1 − 2ε(n)

Choose a compactly-supported smooth function 0 ≤ gn+1 ≤ 1 which is identically 1 on K ′
n+1,

identically 0 on B(x∗, Sn) and has gradient bounded by (10nC1)
−1. Set φn+1 = gn+1 · ψn+1, with

Kn+1 = spt(φn+1. Calculation as before yields

||(DL − λ)φn+1||2 ≤ (1 − ε(n)) ·
{
(10(n+ 1)C1)

−1 + C1 · (10(n+ 1))−1
}
< 1/(n+ 1)

Finally, choose Sn+1 > Sn so that Kn+1 ⊂ B(x∗, Sn+1). 2
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A transverse measure µ for F is a Radon measure on the Borel subsets of the transversals to
F , which takes finite value on compact subsets [36]. A transverse measure is quasi-invariant if, for
every transversal Z with µ-measure zero, all holonomy transports of Z also have µ-measure zero.
A transverse measure is invariant if the µ-measure of a transverse set Z does not change under
holonomy transport. A transverse measure for F is said to be non-atomic if it has no atoms. That
is, it assigns measure zero to each countable transverse set Z. Conversely, if µ is supported on a
countable collection of compact leaves, then we say µ is atomic.

Given an invariant transverse measure µ for F let µ̃ be its Haar extension to a locally-finite Borel
measure on V . Let L2(V,E, µ) denote the completion of C∞(V,E) with respect to the Hilbert space
inner product defined by µ̃. The resulting Hilbert space depends substantially on the geometric
properties of the measure µ. For example, if µ is the transverse Dirac measure associated to a
compact leaf L, then L2(V,E, µ) ∼= L2(L,E|L) is the Hilbert space completion of the smooth sections
over L with respect to the smooth leafwise Riemannian measure. While if µ̃ is equivalent to the
smooth Lebesgue measure on V , then L2(V,E, µ) is isomorphic to the Hilbert space completion of
the smooth sections over V with the usual Riemannian inner product.

A foliation geometric operator DF acts on the smooth sections C∞(E) of a foliated Hermitian
bundle. Lemma 2.1 of Chernoff [12] implies that DF and each of its powers is essentially self-adjoint:

PROPOSITION 3.7 Let DF :C∞(E) → C∞(E) be a foliation geometric operator. Then DF has
a unique densely-defined extension to a closed operator Dµ on L2(V,E, µ). 2

Hence, for any bounded Borel function φ:R → R we can define the bounded operator φ(Dµ) on
L2(V,E, µ) using the spectral theorem.
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4 Spectrum and recurrence

In this section we prove the results of section 1 relating the spectrum of a leafwise geometric operator
to dynamics.

THEOREM 4.1 Let DF be a leafwise geometric operator for a foliated measure space (V,F).
Fix Lx and let Lx ≤ Ly with ψHolF (x) uniformly Fölner on Ly. Then σ(DLx

) ⊂ σe(DLy
).

Proof: Let λ ∈ σ(DLx
), then by Proposition 3.3, there exists a sequence of unit-norm sections

{φi | i = 1, 2, . . .} ⊂ C∞
c (ELx

) with ||(DLx
−λ)φi|| < 1/i. The strategy is to lift these test functions

to a sequence of compact regions in Ly so they are approximate eigensections for DLy
.

Let Ki = spt(φi) which we can assume is a covered by a plaque-chain

Pi = {Pα(i,1), . . . , Pα(i,N(i))}

In particular, every plaque in Pi can be connected to Pα(i,1) by a chain of length at most Ni.

The leafwise operators DL vary uniformly continuously on the compact space V , so for εi > 0
sufficiently small, the variation of DLz

restricted to Lz ∩ N (Ki, ε) becomes uniformly small inde-
pendent of Ki. To be more exact, for z ∈ Tαi

= φ−1
αi

({0} × Xαi
) set zαi

= φαi
(y) ∈ Xαi

. Let
K(zαi

, N) ⊂ Lz be the union of the plaques of F which can be joined to Pαi
(zαi

) by a plaque-chain
of length at most N . For N fixed and zαi

sufficiently close to xαi
, projection along transversals

defines a covering map from K(zαi
, N) to a region of Lx. In particular, for zαi

∈ Xαi
close to xαi

the set K(zαi
, Ni +1) projects to a region in Lx containing Ki. We can thus lift DLx

to an operator

(D̃Lx
)zαi

on the region K(zαi
, Ni + 1) and compare coefficients with the operator DLz

. We choose
εi > 0 sufficiently small so that for zαi

∈ B(xαi
, εi) ⊂ Xαi

sup
w∈K(zαi

,Ni+1)

||DLz
− (D̃Lx

)zαi
||z < 1/i

Following the notation of Definition 2.6, choose a finite subset Wi ⊂ B(xαi
, εi)∩ψHolF (x) · yαi

such that
#{PNi

Wi} ≤ (1 + 1/i) · #Wi (12)

Define K(Wi, N) ⊂ Ly to be the union of all plaques which can be joined to one of the plaques
{Pαi

(w) | w ∈ Wi} by a plaque-chain of length at most N .

LEMMA 4.2 There exists C2 > 0 so that for all i, there is a smooth function gi:Ly → [0, 1] so
that

1. gi(z) = 1 for all z ∈ K(Wi, Ni)

2. gi(z) = 0 for all z ∈ Ly −K(Wi, Ni + 1)

3. |∇Fgi| ≤ C2

Proof: Recall that {λα | α = 1, . . . , k} is a partition-of-unity for the foliation covering of V . Let

C2 = k · sup
z∈V

|∇Fλα|z

be the supremum of the gradients along leaves for the partition functions. Conditions (4.2.1) and
(4.2.2) define gi everywhere except on Ly for z ∈ K(Wi, Ni + 1) −K(Wi, Ni), where we set

gi(z) =
∑

β∈Bi(z)

λβ(z)

with Bi(z) = {β | Pβ(zβ) ⊂ K(Wi, Ni + 1)}. 2
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Let ψi be the lift to K(Wi, Ni + 1) of the test section φi, and set ξi = gi · ψi ∈ C∞
c (ELy

).
Calculate the pointwise norms, for z ∈ Ly using Lemma 3.5

||(DLy
−λ)ξi||z ≤ C1 ·|∇Fgi|z ·||ψi||z+gi(z)·||(DLy

−(D̃Lx
)zαi

ψi||z+gi(z)·|| ˜((DLx
− λ)φi)zαi

||z (13)

Integrate this estimate over K(Wi, Ni + 1) and use (4.2.1), (4.2.3) and (12) to obtain

||(DLy
− λ)ξi||2 ≤ C1C2 · ||ψi|(K(Wi, Ni + 1) −K(Wi, Ni))||2

+1/i · ||ψi|K(Wi, Ni + 1)||2 + 1/i · #Wi (14)

≤ C1C2 · #Wi/i+ 1/i · #Wi + 1/i · #Wi (15)

≤ (C1C2 + 2)/i · #Wi (16)

On the other hand, K(Wi, Ni) covers the region Ki ⊂ Lx with multiplicity at least #Wi so we
have the estimate

||ξi||2 ≥ ||ψi|K(Wi, Ni)||2 ≥ #Wi · ||φi||2 = #Wi

Define Φi =
ξi

||ξi||2
and we have shown that

||(DLy
− λ)Φi||2 ≤ (C1C2 + 2)/i

which tends to 0 as i→ ∞. Thus, λ ∈ σ(DLy
).

To establish that λ is a point of infinite multiplicity, note that for each i, the test function Φi

constructed has compact support in the set K(Wi, Ni + 1) ⊂ Ly. When making the choice of the
next set Wi+1 we can specify that the open neighborhood B(xαi+1

, εi+1) be chosen sufficiently small
so that its Ni +1 saturation is disjoint from the supports of the previously constructed test functions
{Φ1, . . .Φi}. This yields an infinite set {Φ1, . . .Φi, . . .} of test functions with disjoint supports, hence
λ ∈ σe(DLy

) by Proposition 3.3. 2
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5 Spectral coincidence for completely amenable foliations

Throughout this section we assume F admits a holonomy-invariant transverse Radon measure µ.
We prove the two spectral coincidence results of the introduction, relating the leafwise spectra σ(DL)
for a geometric operator DF to the spectrum of its closure Dµ in L2(V,E, µ).

THEOREM 5.1 Let x ∈ spt(µ) with ψHolF (x) uniformly Fölner. Then σ(DLx
) ⊂ σe(Dµ).

Proof: We use the elementary observation

LEMMA 5.2 Let µα be a Radon measure on Xα. Then z ∈ spt(µα) if and only if, for every open
set z ∈ U ⊂ Xα we have µα(U) > 0. 2

Let x ∈ spt(µ) ∩ Tα for some foliation chart (Uα, φα) with corresponding point xα ∈ Xα. Then for
every δ > 0 we have µα(B(xα, δ)) > 0.

Let λ ∈ σ(Lx). For each i > 0 choose a unit-norm φi ∈ C∞
c (EL) for which ||(DL − λ)φi|| < 1/i.

The leaves Ly of F|spt(µ) with trivial holonomy group HolF(y)|spt(µ) = {e} form a dense Gδ subset
of spt(µ) [16], so by the same method of proof as for Theorem 4.1, we deduce that for all ε > 0, there
exists a leaf Lε ⊂ spt(µ) without holonomy, and test section Φε ∈ C∞

c (ELε
) with ||(DLε

−λ)Φε|| < ε.

Every saturated neighborhood in F|spt(µ) of the support Kε of Φε has positive measuse. So we
can extend the section

18



There is a converse to Theorem 1.4, but requires that F be hyperfinite with respect to µ
(cf. [41, 13] and section 2 below).

THEOREM 5.3 Suppose that F is µ-hyperfinite. Then

σ(DF ) ⊂
⋃

L⊂spt(µ)

σ(DL) (17)
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6 Examples

foliated manifold, invariant measure and pass to support of measure, group actions, constructions
using probability spaces
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