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Abstract

We prove two extensions of Sacksteder’s Theorem for the action A : Γ × S1 → S1 of a
finitely-generated group Γ on the circle by C1+α-diffeomorphisms. If the action A has an
exceptional minimal set K with a gap endpoint of exponential orbit growth rate, or if the
action A on K has positive topological entropy, then the exceptional set K is hyperbolic.
That is, A has a linearly contracting fixed-point in K. A key point of the paper is to prove a
foliation closing lemma using the foliation geodesic flow technique.
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1 Introduction

Let Γ be a finitely-generated group. In this paper we will study the differentiable dynamics of
a C1+α-action A : Γ×S1 → S1 of Γ on the circle, for 0 < α < 1. The usual structure theorems
for C2-actions on the circle are based on two techniques, the “naive distortion lemma” and
the “Koppell lemma” (cf. [7]), which do not hold for the actions considered in this paper. Our
idea is to replace the “naive distortion lemma” with more sophisticated methods of smooth
dynamical systems; in particular, we introduce the foliation closing lemma for transversally
hyperbolic measures (Proposition 4.1 below). Our main results are two theorems that recover,
in part, the known structure theory for C2-actions.

A closed non-empty subset K ⊂ S1 is minimal for the action A if K is invariant – Aγ(K) =
K for each γ ∈ Γ – and there is no closed, proper subset of K with these properties. There is
a trichotomy for the topological structure of K:

• K is a finite union of points;

• K has interior, hence K = S1 and every point in K has dense orbit in S1;

• K is a Cantor set in S1 and every point in K has dense orbit in K.

In the third case, we say that K is an exceptional minimal set. The complement of K is then
a countable union of open intervals,

S1 −K =
∞⋃
n=1

In , In = (an, bn). (1)

The open intervals In are called the gaps of K, and the points {an, bn | n = 1, 2, . . .} are the
endpoints of gaps, naturally.

The existence of an exceptional minimal set is a strong qualitative statement about the
dynamics of A, and it is natural to try to characterize the geometry of such sets (cf. [1, 3, 15]).
We consider the following property:

DEFINITION 1.1 An exceptional minimal set K for A is said to be hyperbolic if there exists
x ∈ K and γ ∈ Γ such that Aγ(x) = x and 0 < A′γ(x) < 1.

We also recall a definition from the theory of codimension-one foliations:

DEFINITION 1.2 A point x is said to be resilient for the action A if:

1. the orbit {Aγ(x) | γ ∈ Γ} contains x in the closure of {{Aγ(x) | γ ∈ Γ} − {x}}
2. there exists γ ∈ Γ such that Aγ(x) = x and Aγ is a contraction in an open neighborhood

of x.

The point x is linearly resilient if the contraction Aγ is hyperbolic at x; that is, 0 < A′γ(x) < 1.

The fixed-point x in Definition 1.1 is hyperbolic for the action of Aγ , and as x is also in
the closure of its orbit under Γ, this implies that x is linearly resilient.

A basic question is when must an exceptional minimal set be hyperbolic, or even just contain
a resilient point? When each diffeomorphism Aγ of a C1-action A has bounded variation for its
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first derivative, then the celebrated theorem of Sacksteder [20] implies that every exceptional
minimal set for A contains a resilient point. A corollary of Theorem 1.3 below is that the
minimal set must also be hyperbolic.

The well-known examples of Denjoy are C1-actions of Γ = Z on S1 with exceptional
minimal sets, but no periodic points, hence there can be no resilient points. Herman gave
a refined construction in [9] of the Denjoy example of class C1+α, for any α < 1. Recently,
Sullivan has observed that renormalization methods show that there are Denjoy examples in
the class C1+Λ∗ , where Λ∗ denotes the Zygmund class (cf. section 2, [12]). These “Denjoy
examples” show that for a C1+α-action with 0 < α < 1, it will be necessary to impose
additional hypotheses on the action A to obtain that an exceptional minimal set is a priori
hyperbolic.

Choose a finite subset Γ0 = {g1, . . . , gd} ⊂ Γ such that Γ0 generates Γ, the identity e ∈ Γ0

and γ ∈ Γ0 implies that γ−1 ∈ Γ0. The set Γ0 defines a word metric on Γ, where

|γ| ≤ n⇔ γ = γin · · · γi1 for some n− tuple {γi1 , . . . , γin} ⊂ Γ0 (2)

We introduce the finite sets
Γn = {γ ∈ Γ | |γ| ≤ n} (3)

and for each x ∈ S1, set
Γn(x) = {Aγ(x) | γ ∈ Γ0} . (4)

Define the growth rate of the group Γ with respect to the generating set Γ0 to be:

gr(Γ; Γ0) = lim
n→∞

{
log(#Γn)

n

}
. (5)

The existence of the limit and other properties of the word metric are discussed in Milnor
[16], where it is proven that the property gr(Γ; Γ0) > 0 is independent of the choice of Γ0. If
gr(Γ; Γ0) > 0 for some choice of generators, we write gr(Γ) > 0 and say that Γ has exponential
growth. We write gr(Γ) = 0 when gr(Γ; Γ0) = 0 for some choice of generators, and say that Γ
has sub-exponential growth.

The growth rate of an orbit of the group action is similarly defined,

gr(A; Γ0;x) = lim sup
n→∞

{
log(#Γn(x))

n

}
, (6)

except that the lim sup is required as the limit need not exist (cf. [6]). When gr(A; Γ0;x) = 0,
we say that the orbit has subexponential growth. The estimate gr(A; Γ0;x) ≤ gr(Γ; Γ0) always
holds, so that gr(Γ) = 0 implies each orbit of Γ has subexponential growth.

A hyperbolic point x ∈ K for an exceptional minimal set K must have gr(A; Γ0;x) > 0.
This follows from an elementary argument, using that the orbit of x intersects the domain of
the contraction, so there exists a subset of the orbit which maps quasi-isometrically onto a
free integer tree, and this forces the orbit growth to be greater than that of the tree, which is
exponential (cf. [8]). In particular, Γ must also have exponential growth.

Ou first result is a converse to the above observation: exponential growth of an endpoint
of an exceptional minimal set forces the set to be hyperbolic, and hence resilient.
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THEOREM 1.3 Let A : Γ× S1 → S1 be a C1+α-action, for 0 < α < 1, with an exceptional
minimal set K. Suppose there exists a gap I0 ⊂ K with an endpoint x0 such that gr(A; Γ0;x0) >
0. Then there exists a hyperbolic fixed-point for the action of A on K, and consequently K is
hyperbolic.

Our second result is based on growth estimates for arbitrary points in the exceptional
minimal set, but needs these estimates on a net of points in the set. This is expressed in terms
of the geometric entropy of a C1-action, as defined by Ghys, Langevin and Walczak [4], which
is based on the use of ε-separated sets. Let S1 have the Riemannian metric with total length
2π, and metric distance function d : S1 × S1 → [0, π]. For each ε > 0, we say that a finite
subset {x1, . . . , x`} ⊂ S1 is (ε, n)-separated if for any pair xi 6= xj there exists γij ∈ Γn such
that

d(Aγij (xi), Aγij (xj)) > ε.

Let H(A, ε, n) denote the maximal cardinality of an (ε, n)-separated subset of S1. Then the
geometric entropy of A is the limit

h(A) = lim
ε>0

h(A, ε) (7)

h(A, ε) = lim sup
n→∞

logH(A, ε, n)
n

(8)

The finiteness of (7) and (8) are consequences of the differentiability of the action A, and
are well-known to fail if the action is only continuous. Thus, h(A) is a geometric invariant of
the action, depending on more than its topological dynamics. For a closed subset X ⊂ S1, we
similarly define the restricted geometric entropy h(A;X) as above, but requiring that all of
the sample points {x1, . . . , x`} ⊂ X.

THEOREM 1.4 Let A : Γ× S1 → S1 be a C1+α-action, for 0 < α < 1, with an exceptional
minimal set K. If h(A;K) > 0, then there exists a hyperbolic fixed-point for the action of A
on K, and consequently K is hyperbolic.

Theorems 1.3 and 1.4 are proved in two steps, with the second step in common to both.
First, we reduce the the growth hypotheses to a conclusion about the asymptotic behavior of
the derivative cocycle for the action. For X ⊂ S1, define the absolute exponent of A on X:

E(A;X) = lim sup
n→∞

1
n

sup
x∈X

(
max
γ∈Γn

{∣∣∣log |A′γ(x)|
∣∣∣}) . (9)

When E(A;X) > 0, we say that A has non-uniform hyperbolicity on X. For a C1-action A
which satisfies either of the growth hypotheses of Theorems 1.3 or 1.4, we show in section 2
that A is non-uniformly hyperbolic on the exceptional minimal set K.

The second step in our proofs is to show that non-uniform hyperbolicity on a closed set
implies the existence of a hyperbolic periodic orbit. This will be based on the technique of the
foliation geodesic flow, using a foliation obtained by suspending the group action. We use the
hypothesis E(A;K) > 0 to produce a hyperbolic, invariant transverse measure for the leafwise
geodesic flow, then prove a leafwise closing lemma using the stable manifold theory of Pesin
[17, 19]. The Hölder hypothesis is needed at this stage to obtain the regularity results for the
stable manifolds used to prove the closing lemma. This second step is an application of what
we have called the Pesin theory for foliations, developed in [10, 11].
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2 Orbit growth, entropy and non-uniform hyperbol-

icity

In this section we assume that A : Γ×S1 → S1 is a C1-action, and show how exponential orbit
growth estimates imply non-uniform hyperbolicity. The techniques used in this section are
typical for codimension-one dynamics, especially in the various proofs of Sacksteder’s Theorem
(cf. [5]). We first prove the following:

PROPOSITION 2.1 Let A,Γ, x0 and K be as in Theorem 1.3. Given ε > 0, there exists
constants c1, c2 > 0, where gr(A; Γ0, x0) − ε < c2 < gr(A; Γ0;x0), and a sequence of elements
γn ∈ Γ with |γn| → ∞, such that

log |A′γn(x0)| < c1 − n · c2. (10)

Proof. We can assume without loss of generality that Γ acts via orientation-preserving C1-
diffeomorphisms, so that A′γ > 0 for all γ ∈ Γ. Fix 0 < ε < gr(A; Γ0;x0)/2. The proposition
is a consequence of the following two lemmas.

LEMMA 2.2 There exists constants c1, c3 > 0 with c3 > gr(A; Γ0;x0) − ε/2, and for each
positive integer n a point yn ∈ I0 and element γn ∈ Γ, such that

logA′γn(yn) < c1 − c3 · |γn| (11)

Proof. Let δ = ε/3 and set c3 = gr(A; Γ0;x0) − δ and c2 = gr(A; Γ0;x0) − 2δ. Choose an
increasing subsequence {in ∈ Z+} for which

log #Γn(x0) > c3 · in.

There is a unique gap of K corresponding to each point in Γin(x0), so the number of gaps of
K that can be reached from x0 by a word in Γ of length at most in has an estimate from below
by exp(c3 · in). Therefore, for each n there exists γn ∈ Γin so that the image gap Jn = Aγn(I0)
has length estimated above by

|Jn| ≤ 2π · exp(−c3 · in).

We require for our later applications that γn have the least length of all words in Γ which
map I0 to Jn; if necessary, replacing γn with a word of shorter length. (Thus, γn is a shortcut
in the notation of [2, 5].) The Mean-Value Theorem implies there exists yn ∈ I0 such that

0 < A′γn(yn) <
|I0|
2π
· exp(−c3 · in).

Set c1 = − log(|I0|/2π) and observe that |γn| ≤ in to obtain (11). 2
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For each pair (γn, yn) chosen in the proof of Lemma 2.2, set dn = |γn|. There then exists
elements {γ`,d` |1 ≤ ` ≤ dn} ⊂ Γ0 such that

γn = γn,dn · · · γn,1. (12)

Set yn,0 = yn, and for each 1 ≤ ` ≤ dn set

An,` = Aγn,` ◦ · · · ◦Aγn,1
yn,` = An,` (yn)

The choice of each γn to have shortest length implies that yn,i 6= yn,j for j > i – for if not,
then we can delete the factor γn,j · · · γn,i+1 from (12) to obtain a shorter word taking the gap
I0 to the gap Jn. (This gives intuitive meaning to the notation that γn is a shortcut.)

LEMMA 2.3
logA′γn(x0) < c1 − c2 · |γn| . (13)

Proof. Let N be a positive integer such that for all γ ∈ Γ0 and all x, y ∈ S1 with d(x, y) <
2π/N , ∣∣∣logA′γ(y)− logAγ(x)

∣∣∣ < ε/6 = δ/2 . (14)

Define a constant
c4 = max

γ∈Γ0

{
max
x∈S1

∣∣∣logA′γ(x)
∣∣∣} .

Then write

logA′γn(yn) =
dn−1∑
`=0

logA′γn,`+1
(yn,`) . (15)

As all of the points {yn,0, . . . , yn,dn} are distinct, there can be at most N points in the
set which correspond to endpoints of gaps of length greater than 2π/N , and each such point
contributes at most c4 to the sum (15). For each point yn,` in a gap of length less than 2π/N ,
the estimate (14) implies that∣∣∣logA′γn,`+1

(yn,`)− logA′γn,`+1
(An,`(x0))

∣∣∣ < δ/2 .

Thus, after summing we obtain the estimate∣∣∣logA′γn(yn)− logA′γn(x0)
∣∣∣ ≤ 2Nc4 + δdn/2

so that for n sufficiently large, Lemma 2.2 implies that

logA′γn(x0) ≤ logA′γn(yn) + 2Nc4 + δdn/2
≤ c1 − c3 · dn + δdn

≤ c1 − c2 · |γn| . 2

The next result is used in the proof of Theorem 1.4. Note that it does not asume that K
is exceptional, only that it is not a finite set.
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PROPOSITION 2.4 Let A : Γ × S1 → S1 be a C1-action with minimal set K. If the
geometric entropy h(A;K) > 0, then A is non-uniformly hyperbolic on K. More precisely, for
a fixed generating set Γ0, we show that

E(A;K) ≥ h(A;K) (16)

Proof. We can again assume that the actionA is via orientation preserving C1-diffeomorphisms.
Choose δ > 0 and set c5 = h(A;K) − δ/2. From the definition of h(A;K), we can find ε > 0
and N > 0 so that for each n > N there is a subset ∆n = {xn,1, . . . , xn,dn} ⊂ K with
dn ≥ exp(n · c5), and for each i 6= j and element γn,i,j ∈ Γn so that

d(Aγn,i,j (xn,i), Aγn,i,j (xn,j)) > ε . (17)

Thus, for each n > N we can find a pair yn, zn ∈ ∆n and an element γn ∈ Γn so that

d(yn, zn) ≤ 2π · exp(−n · c5)
d(Aγn(yn), Aγn(zn) ≥ ε

By the Mean-Value Theorem, for δn = γ−1
n , there exists a point wn between Aγn(yn) and

Aγn(zn) such that

logA′δn(wn) ≤ 2π
ε
· exp(−n · c5) . (18)

If an infinite subset of {wn} lies in K, then (18) directly yields the estimate

E(A;K) ≥ c5 = h(A;K)− δ/2 .

This is the case, for example, if K is all of S1. As δ > 0 was arbitrary, this yields (16).
Suppose that K is exceptional, and all but a finite number of the points {wn} lie in the

gaps of K. The proof of Lemma 2.2 did not use that I0 was a fixed gap in any essential way,
so we can repeat its proof for wn in place of the points yn of Lemma 2.2, xn the endpoint of
the gap containing wn in place of x0, and then replacing each δn by its shortcut if necessary.
We then obtain

E(A;K) ≥ h(A;K)− δ

and as δ was arbitrary, this implies (16). 2
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3 Geodesic flow of a group action

Non-uniform hyperbolicity on a set K implies the existence of a hyperbolic invariant transverse
measure on K. We prove this result by introducing the foliation geodsesic flow associated to a
group action. The importance of hyperbolic measures was brought out by the work of Katok
[13] and Ruelle [19] for actions of the group Z. The results of this section have extensions to
more general foliated manifolds and group actions, as discussed in [10, 11]

Let us first construct the foliation geodesic flow associated to a C1-action of a finitely-
generated group Γ on S1. Choose a compact orientable manifold B without boundary such
that there is a surjection of the fundamental group ρ : π1 = π1(B, b) → Γ. For example, if
Γ has a generating set with d elements, then the surface Σ2d of genus 2d maps onto a free
group with d generators, and hence onto Γ. We can therefore always assume that B is a closed
surface, although this is not used in the following constructions.

Let the group π1 act via deck translations on the left on the universal cover B̃ of B, and
on S1 via A ◦ ρ. For the product action of π1 on B̃ × S1, let M denote the quotient manifold
π1\(B̃ × S1). The horizontal product foliation of B̃ × S1, with leaves {B̃ × {x}| x ∈ S1}, is
invariant under the action of π1, so descends to a foliation on M denoted by FA. Note that
M is an S1-fibration over B, p : M → B, and each leaf of FA is transverse to the fibers of p.
The differentiability of FA is exactly that of the action A, which is C1+α.

Endow TM with a Riemannian metric such that:

1. each fiber of p has constant length 2π;

2. the leaves of FA are orthogonal to the fibers of p;

3. the metric on the tangential distribution TFA is the lift of a Riemannian metric from
TB.

Fix an identification S1 ∼= p−1(b), then we obtain a holonomy representation hA : π1 →
Diff1+α(S1). Recall that for a closed loop c(t) representing an element δ ∈ π1 and a point
x ∈ S1, we lift this to a leafwise path starting at x, and y = hA(δ)(x) is the endpoint of the
lift. The basic property of the suspension construction is that the holonomy action hA and
the original action A ◦ ρ of π1 are C1+α-conjugate, so that the transverse dynamics of FA
determines the dynamics of the original action A.

Let T1B denote the unit tangent bundle of B, and V = T1FA be the bundle of unit vectors
in TM which are tangent to the leaves of FA. Note that our choice of metric on TM yields
a natural map Dp : T1FA → T1B. Let F̂A denote the foliation of the compact manifold V ,
whose leaves L̂ are the unit tangent bundles to the leaves of FA. For x ∈ M and v ∈ T1Mx

we obtain a typical point (x, v) ∈ V .
For x ∈ M , let Lx denote the leaf of FA through x, and endow TLx with the restricted

Riemannian metric from TM . Note this metric is the lift of the metric on TB. Given a unit
vector v ∈ T1Lx, we can form the geodesic ft(x, v) in the complete Riemannian manifold Lx,
defined for all t ∈ R. Note that the curve ft(x, v) ⊂ Lx ⊂ M is not necessarily a geodesic for
the metric on TM ; for example, when Lx is a totally geodesic submanifold, ft(x, v) will be a
geodesic in M . The projected curve p(ft(x, v)) is a geodesic in B.

The foliation geodesic flow , F V : V ×R → V , is defined by letting F V (x, v, t0) ∈ V be
the endpoint of the geodesic ft(x, v) at time t = t0 (cf. [10, 21]). We summarize the basic
properties of this flow:
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LEMMA 3.1 1. F V is a C1+α-mapping;

2. F V covers the geodesic flow FB on the base T1B;

3. F V maps the leaves of F̂A into themselves, so preserves the foliation F̂A;

4. For fixed t = t0, the differential Dft0 = DF Vt0 : TV → TV presevres the orthogonal
decomposition TV ∼= T F̂A ⊕ Tp. 2

Let ∂/∂x denote the positively oriented, unit length vector field along the fibers of π. By
Lemma 3.1.4, there exists a positive scalar function fv

t on V so that

Dft
(
∂/∂x|(x,v)

)
= fv

t (x, v) · ∂/∂x|ft(x,v) , (19)

and this function satisfies the multiplicative cocycle law over the leafwise geodesic flow

fv
t+s(x, v) = fv

s (ft(x, v)) · fv
t (x, v) . (20)

Let X̂ ⊂ V be a closed set. Define the absolute exponent of fv
t along X̂ to be

E(fv
t ; X̂) = sup

(x,v)∈X̂
lim sup
t→∞

| log{fv
t (x, v)}|
t

. (21)

The exponent E(fv
t ; X̂) is independent of the choice of Riemannian metric on TV , and we

adopt the notation Et(X̂) = E(fv
t ; X̂).

Return now to the group action A whose suspension yields the foliation FA, and let X ⊂ S1

be a Borel subset invariant under the action of A. We let X̂ ⊂ V denote the saturation of
X ⊂ S1 ∼= p−1(b) under the leafwise geodesic flow ft.

LEMMA 3.2 There exists a constant c6 > 0 so that for any Borel invariant set X ⊂ S1,

1
c6
· E(A;X) ≤ Et(X̂) ≤ c6 · E(A;X) . (22)

Proof. The proof of this is standard, so we just indicate the steps involved. The choice of a
Riemannian metric on TB defines a distance function on π1, declaring the distance between
two words {δ1, δ2} as the geodesic length in the universal cover B̃ between the translates δ1 · b0
and δ2 · b0, for a basepoint b0 ∈ B̃. This distance function on π1 is eqivalent to the word metric
(cf. [18, 14]). Given a sequence of points {yn ∈ X} and words {γn ∈ Γ} with

lim
n→∞

− log{A′γn(xn)}
n

= E(A;K) ,

we can find leafwise geodesics in the leaves of X̂ which begin and end on the fiber p−1(b) with
the same exponents, and whose lengths are related to the word lengths of the γi by a constant
depending only on the Riemannian metric on TB. This implies the left estimate in (22). The
right estimate follows similarly, noting that a leafwise path in X̂ beginning and ending in the
fixed fiber p−1(b) can be replaced by a leafwise geodesic path having the same endpoints and
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holonomy, without incresing the pathlength. This geodesic path projects to a closed path in
B, and yields an element of π1 with the same exponent, whose word length is related to the
geodesic length by the same constant as before. 2

A probability measure m on V , viewed as a linear functional on C0(V ), is ft-invariant if
for all g ∈ C0(V ) and any t ∈ R, m(g) = m(g ◦ ft). We say that m has support in X̂ ⊂ V if
m(g) = 0 for all g vanishing on X̂. Introduce the logarithmic derivative function

Dfv(x, v) =
d

dt
[log{fv

t (x, v)}]t=0

The main result of this section is then:

PROPOSITION 3.3 Let X̂ be a closed invariant saturated set for the leafwise geodesic flow
ft. Then for all ε > 0, there exists an invariant probability measure mε supported in X̂ such
that

mε(Dfv) ≤ −
{
Et(X̂)− ε

}
. (23)

Proof. Fix X̂ and ε > 0, then choose a sequence of points {(xn, vn)} ⊂ X̂ and times {tn ∈ R}
tending to +∞ such that

log{fv
tn(xn, vn)} ≤ −tn · {Et(X̂)− ε} . (24)

Define probability measures {mn} on V by setting

mn(g) =
1
tn
·
∫ tn

0
g(ft(xn, vn)) dt . (25)

We have that mn(Dfv) = 1
tn
· log{fv

tn(xn, vn)} by the cocycle law and the Fundamental The-
orem of Calculus. Choose a weak-* limit m∗ of the sequence of measures {mn}. Then m∗ is
flow-invariant and supported in the closed set X̂, as each measure mn has support in X̂. The
estimate (24) and continuity of the logarithmic derivative function Dfv implies the estimate

m∗(Dfv) ≤ −{Et(X̂)− ε} . (26)

Thus, m∗ is a flow-invariant probability measure on V satisfying all of the conclusions of the
proposition, except possibly ergodicity with respect to the flow. However, the estimate (26)
is linear in the measure m∗, so for a flow-ergodic decomposition of m∗, there must exist some
ergodic component (an flow-ergodic probability measure on V ) which also satisfies (26), which
we then let equal to mε. 2

COROLLARY 3.4 Let X̂ be a closed, geodesic flow invariant set in V with E(A; X̂) >
0. Then there exists an ergodic probability measure mX on V , invariant under the foliation
geodesic flow and supported in X̂, such that for mX-almost every (x, v) ∈ X̂, the limit

et(mX) = lim
t→∞

log{fv
t (x, v)}
t

(27)

exists and satsifies et(mX) ≤ −Et(X̂).
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Proof. Let m∗ be a weak-* limit of the family of invariant probability measures {mε | ε > 0}
given by Proposition 3.3. This will satisfy (27), so there exists a flow-ergodic component of
m∗ which satisfies the same estimate. We take this to be mX . The existence and uniqueness
of the limit (26) follows from the Birkhoff Ergodic Theorem. 2.

We say that the flow-ergodic measure mX with et(mX) < 0 produced in Corollary 3.4 is
an FA-transversally hyperbolic measure.

In summary, we have shown that for a closed invariant set K ⊂ S1 with E(A;K) > 0,
there exists an FA-transversally hyperbolic measure mK supported on the foliation geodesic
flow saturation K̂ of K. Along the orbits of this flow contained in the support of mK , the
transverse linear holonomy of FA is non-uniformly contracting in positive time with exponent
et(mK). Thus, we have converted the non-uniform hyperbolicity of the group action on S1

into non-uniform hyperbolicity along certain orbits for the foliation geodesic flow.

4 The foliation closing lemma

The main result of this section is a leafwise closing lemma for transversally hyperbolic measures.
This is the 1-dimensional version of the closing lemma for non-uniformly hyperbolic measures
for Z-actions (cf. Theorem 4.1, [13]). Define the FA-support of a measure m on the unit
tangent bundle V = T1M to be the union of all leaves in M which intersect the pushdown
p(spt(m)) ⊂M of the support of m.

PROPOSITION 4.1 Let FA be a C1+α-foliation of a compact manifold M obtained by the
suspension construction of an action A, with α > 0. Given an ergodic invariant probability
measure m for the foliation geodesic flow ft with et(m) < 0, there exists a closed leafwise
path γ∗ contained in the closure of the FA-support of m, with linearly contracting transverse
holonomy.

Proof. The multiplicative ergodic theorem of Oseledec (cf. Ruelle [19]), applied to the leafwise
geodesic flow ft on V , asserts the existence of:

1. A Borel subset Y ⊂ V which is flow-invariant, and for every ft-invariant probability
measure µ on V , µ(Y ) = 1;

2. Y is the union of disjoint Borel subsets Yσ indexed by the ft-ergodic measures σ, such
that ft(Yσ) ⊂ Yσ, and for each continuous function g : V → R we have

σ(g) = lim
T→∞

1
n

∫ T

t=0
g(ft(y))dt for all y ∈ Yσ;

3. For each y ∈ Y , the spectrum of the flow

{−∞ < λ(1)
y < . . . < λ(s)

y < +∞}

of Dft and the associated filtration V
(1)
y ⊂ · · · ⊂ V

(s)
y = TVy are defined, are Borel

functions of y and constant on each Yσ.
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The tangent bundle Tp to the fibers of the fibration p : M → B lifts to a flow-invariant
sub-bundle Dp∗(Tp) ⊂ TV , so the hypotheses e(m) < 0 implies that for ε = e(m)/2 and
y ∈ Ym, there is an inclusion of subbundles

Dp∗(Tp)y ⊂ V ε
y

def
=

⋃
λ

(i)
y ≤ε

V (i)
y .

The non-uniformly hyperbolic stable manifold theorem (Pesin [17]; or Theorem 6.1, Ruelle
[19]) implies that for each point y ∈ Ym, there is a stable manifold νεy for the flow, such that

1. There are Borel functions β > α > 0 and γ > 1 defined on Ym such that

νεy(α(x)) =
{
w ∈ B(y, α(y)) | d(ft(w), ft(y)) ≤ β(y)et·ε for all t > 0

}
is a C1+α-submanifold of the closed ball B(y, α(y)), tangent at 0 to V ε

y

2. If w, z ∈ νεy(α(y)), then

d(ft(w), ft(z)) ≤ γ(y)d(w, z)et·ε for all t > 0. (28)

The reference [19] proves this for the discrete case f = f1 with the flow direction as the central
stable direction. The flow case is easily deduced from this.

For m-almost every point y ∈ V , the forward orbit {ft(y) | t > 0} is recurrent through
every open ball about y. We can therefore choose a recurrent point y∗ ∈ Ym.

Fix a constant c7 such that the ball B(y∗, c7 · α(y∗)) is contained in a regular foliation
chart φ : U → (−1,1)n−1 × (−1,1) with y∗ ∈ B(y∗, c7 · α(y∗)) such that φ(y∗) = (0, 0). (A
chart is regular if it admits an extension to a larger chart containing the closure of U .) Let
φv : U → (−1,1) be the projection onto the second factor, so that the leaves of FA in U are
the pre-images of points, Px = φ−1

v (x) for x ∈ (−1,1). (The level sets Px are called the plaques
of FA for this coordinate chart.)

The tangent space to the C1-stable manifold νεy∗(α(y)) contains the sub-bundle Dp∗(Tp)
which is transverse to the lifted foliation F̂A on V . Therefore, for c7 sufficiently small and the
foliation chart (φ,U) sufficiently small, we can assume that νεy∗(α(y)) is everywhere transverse
to F̂A in the closure of U . Choose a C1-curve ψ : (−1,1) → νεy∗(α(y)) such that ψ(x) and
φ−1(0, x) lie on the same plaque for all −1 ≤ x ≤ 1. This implies that the composition φv ◦ ψ
is the identity on [−1,1]. Then there exists a constant c8 > 0 such that

d(ψ(x), ψ(x′)) ≤ c8 · |x− x′| for all − 1 ≤ x, x′ ≤ 1; (29)
|φv(w)− φv(z)| ≤ c8 · d(w, z) for all z, w ∈ U. (30)

Choose a time t∗ >> 0 sufficiently large so that

ft∗(y∗) ∈ B(y∗, c7 · α(y∗))

γ(y∗)α(y∗)et∗·ε <
1

10(c8)2
(31)

Let us now construct a C1-map G : (−1,1)→ (−1,1) from the above data. For each point
x ∈ (−1,1), the image ft∗(ψ(x)) ∈ B(y∗, c7 · α(y∗)), so there is a unique point G(x) ∈ (−1,1)
such that ft∗(φ−1(0, x)) ∈ Px. This defines the map G, with G(0) = z∗ ∈ (−1,1) corresponding
to the plaque containing ft∗(y∗).
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LEMMA 4.2 The C1-map G is a strict contraction.

Proof. For two points x, x′ ∈ (−1,1), we observe that

|G(x)−G(x′)| ≤ c8 · d(ft∗(ψ(x)), ft∗(ψ(x′))) by (30)

<
1

10c8
· d(ψ(x), ψ(x′)) by (31) and (28)

≤ 1
10
· |x− x′| by (29). 2

It follows that there exists a unique fixed-point x∗ ∈ (−1,1) for the map G. The map G
is C1, so the estimate |G(x) − G(x′)| < 1

10 |x − x
′| obtained above implies that the derivative

|G′(x∗)| < 1
10 (cf. proof of Lemma 6.2, [19]). It remains to observe that the point x∗ is a

hyperbolic fixed-point for the transverse holonomy along a closed leafwise path in FA. To
see this, note that z∗ = φ−1(0, x∗) and ψ(x∗) lie on the same plaque, Px∗ , so can be joined
by a short geodesic path in the plaque. The geodesic segment ft(ψ(x∗) is certainly a path in
a leaf of FA. The image ft∗(ψ(x∗)) also lies on the plaque, Px∗ , so can be joined by a short
leafwise geodesic segment to z∗, and we then concatenate these leafwise paths to get a leafwise,
piecewise geodesic γ∗ starting and ending at z∗, whose transverse holonomy is given by the
map G.

Finally, note that the point z∗ is in the closure of the FA-saturation of the pushdown into
M of the forward orbit {ft(y∗) | t > 0}. These orbits are contained in the support of m
by ergodicity, so the hyperbolic fixed-point z∗ lies in the closure of the FA-saturation of the
pushdown of the support of m. 2

We call Proposition 4.1 the FA-closing lemma, as the transverse hyperbolicity et(m) < 0
is used to produce a linear contraction on the space of leaves in the ball B(y∗, c7 ·α(y∗)). Note
that we only show above that the plaque Pz∗ is fixed by the geodesic flow ft∗ . To get an actual
closed loop, we have to abandon the geodesic flow construction, and resort to closing up the
path by adding on short geodesics. Thus, we do not produce closed orbits for the flow ft, but
rather for the holonomy of the foliation that gave rise to the geodesic flow.

The proofs of Theorems 1.3 and 1.4 are now completed by observing:

COROLLARY 4.3 Let A : Γ× S1 → S1 be a C1+α-action, for α > 0, with E(A;K) > 0 on
a minimal set K ⊂ S1. Then there exist an element γ∗ ∈ Γ and x∗ ∈ K such that Aγ∗(x∗) = x∗
and 0 < A′γ∗(x∗) < 1.

Proof. Let FA be a C1+α-foliation of a compact manifold M obtained by the suspension
construction of the action A. By Corollary 3.4, there exists an ergodic invariant probability
measure m for the foliation geodesic flow ft with et(m) < 0. By Proposition 4.1, there exists
a closed leafwise path γ∗ with linearly contracting transverse holonomy, and γ∗ is contained in
the closure of the FA-support of m, all of which is contained in the closed set K̂. It therefore
remains to observe that the path γ∗ determines a closed path in the base space B, and hence
a class denoted the same in π1(B, b0) for appropriate basepoint b0 = p(z∗). The holonomy of
this element is C1+α-conjugate to the map G in a neighborhood of the fixed-point on the fiber
p−1(b0), so has a linearly contracting fixed-point in the set K. 2
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