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Abstract

A foliation is em almost compact if the set of non-compact leaves is countable, and es-
sentially compact if the set of non-compact leaves has Lebesgue measure zero. In this note,
we consider the question whether an almost or an essentially compact foliation must have all
leaves compact. Our first result is that if there exists at least one non-proper, non-compact
leaf, then there are uncountably many non-compact leaves. Our second result extends the
homology criteria of Edwrds, Millet and Sullivan, developed for compact foliations, to almost
compact foliations. This is used to show that an almost compact foliation with a closed com-
pact cross-section must be a generalized Seifert fibration. The third result is that an essentially
compact foliation of codimension 2 must be a generalized Seifert fiber space with all leaves
compact. This result has special interest in that we use the measurable Riemann mapping
theorem, which gives a new proof of the previous result of Epstein and its extensions by Ed-
wards, Millet and Sullivan and by E. Vogt. Several applications of these results are given;
in particular, we show that a C1-action of a finitely-presented group on a connected compact
metric space either has a continuum of infinite orbits, or the action factors through the action
of a finite group. Some elementary examples are given in the last section to illustrate the
results of the paper.
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1 Main theorems

A compact foliation is one in which every leaf is a compact submanifold. We propose to call a
foliation almost compact if there are at most a countable number of non-compact leaves, and
essentially compact if the set of non-compact leaves has Lebesgue measure zero. In this paper
we will address the following questions:

PROBLEM 1.0.1 Must an almost compact topological foliation of a compact manifold be a
compact foliation?

PROBLEM 1.0.2 Must an essentially compact C1-foliation of a compact manifold be a com-
pact foliation?

Problem 1.0.2 has been attributed to Michel Herman, while Problem 1.0.1 is a variant of
a question raised by Scot Adams: can a foliation of a compact manifold admit exactly one
non-compact leaf?

In this paper we give a partial answer to Problem 1.0.1, as discussed below. Our main
result is the following solution of Problem 1.0.2 for the case of group actions:

THEOREM 1.0.3 Let Γ be a finitely-generated group acting via C1-transformations on a
compact manifold X. Then either there is a finite quotient group Γf of Γ such that the action
factors through this quotient, or the set of non-closed orbits has positive Lebesgue measure.

Compact foliations of compact manifolds have been extensively analyzed. In codimension
one, a compact topological foliation has a double covering which fibers over a circle, and the
fibers are double coverings of the leaves. In codimension two, the celebrated theorem of D.
B. A. Epstein [7] for 3-manifolds and its generalization to higher dimensional manifolds by
R. Edwards, K. Millet and D. Sullivan [6] and E. Vogt [23, 24], showed that a compact C1-
foliation must be a generalized Seifert space (that is, the leaf space is Hausdorff in the quotient
topology). Each leaf then has finite holonomy and there is a global bound on the volumes of
the leaves of the foliation. In contrast, in codimension three or greater, there exist compact,
real analytic foliations of compact manifolds for which there is no upper bound on the volume
of the leaves, and hence the transversal structure of the foliation is very complicated. D.
Sullivan [22] gave the first such example of a compact (smooth) foliation, with each leaf a
circle and there is no upper bound on the total lengths of the leaves. Sullivan’s example was
in codimension four; subsequently examples were constructed in codimension three, and also
real analytic examples were produced.

The Epstein hierarchy [7, 6] is an order structure on the set of compact leaves which
measures of the global complexity of the foliation in terms of the (transverse) asymptotic
behavior of the leaf total-volume function. A compact foliation which is a generalized Seifert
fibration has Epstein heierarchy with one level containing all of the leaves of the foliation. In
general, a complicated Epstein heierarchy corresponds to more involved dynamical behavior
of the leaves. E. Vogt developed in [25] a procedure for constructing compact foliations with
arbitrarily complicated Epstein hierarchy. In particular, there is no upper bound on the
volumes of the leaves in the foliations Vogt constructed.

For a codimension one topological foliation of a compact manifold M , the set of compact
leaves is a closed subset, as a consequence of the well-developed structure theory for codimen-
sion one foliations (cf. Theorem 4.1.3, page 96, [12]). This implies that a codimension one
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foliation of a compact manifold is either compact, or there exists a non-empty open set of
non-compact leaves.

Recall that a leaf L of F is proper if the induced topology for the inclusion L ⊂ V agrees with
the manifold topology on L. Otherwise, we say that L is non-proper. A foliation F is proper
if every leaf is proper. K. Millett [14] generalized the Epstein hierarchy to proper foliations.
However, for a non-compact proper leaf, examples of Inaba [13] show that triviality of the
holonomy need not imply the leaf has a foliated open neighborhood, so the Epstein hierarchy
is simply defined in terms of the local holonomy groups. This failure of local stability is at
the heart of problems 1.0.1 and 1.0.2. The topological structure of proper foliations in higher
dimensions with non-trivial Epstein hierarchy is not very well developed, and in this paper we
investigate the special case of almost compact foliations.

We first describe some general results concerning the topological nature of non-compact
leaves.

THEOREM 1.0.4 Let L be a non-proper leaf of a topological foliation F . Then the topolog-
ical closure L contains uncountably many non-compact leaves.

COROLLARY 1.0.5 An almost compact foliation is proper.

We next address the basic question of whether there exist almost compact foliations which
are not compact. Our results in this direction are based on extending the techniques of
Edwards, Millet and Sullivan [6] to the case of almost compact foliations. The first result
corresponds to Theorem 1 of [6].

THEOREM 1.0.6 Let F be a almost compact C1-foliation of codimension n of a compact
manifold M of dimension m, with TF an oriented subbundle of TM . Suppose there is an open
half-space of Hm−n(M ; R) which contains all homology classes determined by a compact leaves
of F . Then F is a compact foliation, and hence is a generalized Seifert fibration.

The following observation is due to Edwards, Millet and Sullivan in the compact case, and
follows directly from Theorem 1.0.6 in the almost compact case.

COROLLARY 1.0.7 Suppose that every compact leaf of F has negative (respectively, pos-
itive) Euler characteristic. If F is almost compact, then F is a generalized Seifert fibration.

A compact leaf of an almost compact foliation also has restrictions on the Euler class
E(ν) ∈ H2n(M ; R) of its normal bundle. In a previous work, the self-intersection numbers of
the compact leaves of a C1-foliation were studied, in relation to the dynamics of the foliation
F . For the case of almost compact foliations, we have:

THEOREM 1.0.8 Let F be a C1-foliation of even codimension 2n, with orientable leaves of
dimension m. Then for each compact leaf L ⊂M , the self-intersection class

[L] ∩ [L] = 〈[L], E(ν)〉 ∈ Hm−n(M ; R).

is always zero.

COROLLARY 1.0.9 Let L ⊂ TM be a C1-embedded compact orientable submanifold with
self-intersection number [L]∩ [L] 6= 0. Then L is not homotopic to a leaf of an almost compact
C1-foliation F of M .
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A closed cross-section to F is an immersed compact manifold without boundary N ↪→ M
which is tranverse to F and intersects each leaf of F at least once. We have the following
partial answer to Problem 1.0.1:

THEOREM 1.0.10 Let F be an almost compact topological foliation of a compact manifold
which admits a closed cross-section. Then F is a generalized Seifert fibration.

Methods similar to those used to prove Theorem 1.0.10 apply also to continuous group
actions, to yield a generalization of the theorem of Montgomery and Zippin that a pointwise
periodic homeomorphism is periodic (page 224, [15]).

THEOREM 1.0.11 Let Γ be a finitely generated group. Suppose that φ : Γ × Y → Y is
a continuous action on a compact topological manifold Y, and all but a countable number of
orbits of φ are finite. Then there exists an integer K > 0 such that every orbit of φ has order
at most K.

In summary, we observe that if F is an almost compact, but not compact, foliation of a
compact manifold M , then:

• the codimension of F is at least 2, or at least 3 if F is C1;

• F does not admit a closed cross-section;

• all leaves of F are proper;

• each compact oriented leaf L has zero self-intersection class;

• the closure E of the set of all non-compact leaves E of F is nowhere dense;

• the bad set B is not empty.

Finally, we conclude this paper with three elementary examples. The first shows that the
hypothesis M is compact cannot be removed. The next example is a topological foliation
with uncountaby many non-compact leaves, but for which the set of non-compact leaves has
Lebesgue measure zero. The construction of this example yields a counter-example Theo-
rem 1.0.3 in the topological category, showing that the C1-hypothesis is necessary. The third
example illustrates the possibility that a minimal set in the closure of a proper leaf can contain
non-proper leaves.
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2 Topological dynamics

2.1 Non-proper leaves

We examine the geometry of a topological foliation in a neighborhood of a non-proper leaf in
a “foliated space”. Let L be a non-compact leaf, and denote:

• L is the closure of L;

• Lc is the union of the compact leaves in L;

• Lnc = L \ Lc is the union of the non-compact leaves in L.

A subset X ⊂ M is F-saturated, or just saturated, if for every point x ∈ X the leaf of F
through x is contained in X. If X is a closed set, the restriction of F to X then defines a
foliated space or foliated set in the sense of [8, 16]. That is, X is a topological space with a
covering by “flow boxes” for the “foliation” F|X, which consists of a disjoint union of flatly
embedded topological submanifolds.

The topological closure of a leaf is a saturated set, hence L with the restricted foliation
F|L is a foliated space.

Let X be a foliated space with foliation F|X. A leaf L ⊂ X is said to be without holonomy
for F|X if for every closed path γ ⊂ L, the holonomy of FX along γ is the identity map.
Let Xwoh ⊂ X denote the subset of leaves which are without holonomy for F|X. The main
theorem of [8] implies that Xwoh is a dense Gδ in X whenever X is a compact space.

Theorem 1.0.4 of the Introduction follows immediately from the following.

PROPOSITION 2.1.1 Let L be a non-proper leaf. Then U ∩ Lnc is an uncountable set for
every non-empty, saturated, relatively open U ⊂ L.

Proof. Consider an open transversal T ⊂ M to F which intersects L in a non-empty set
S = L ∩ T . The hypothesis that L is non-proper implies that the closure S of S is a perfect
set, hence must be uncountable. Consequently, L consists of an uncountable set of leaves.
Moreover, there is a dichotomy: either S is open, or it is locally homeomorphic to a Cantor
set (cf. Proposition 2.2.2, [12]).

Next note that a compact leaf L0 ⊂ L must have non-trivial holonomy for F|L; otherwise,
the structure theorem for topological foliations (Corollary 2, [10]) implies that there is a
relatively open neighborhood L0 ⊂ U ⊂ L which consists of a union of leaves, and F|U is a
product foliation. This implies no leaf of F|L is asymptotic to L0 contradicting that L0 is in
the closure of L. We conclude that Lwoh ⊂ Lnc.

Let U ⊂ L be non-empty, saturated and relatively open, then U ∩ Lwoh is a dense Gδ in
U . For the transversal T above, U ∩ T will be second category, and so a dense Gδ subset
must also be second category. If U ∩ Lnc is a countable union of leaves, then the subset
Lwoh ∩ T ⊂ Lnc ∩ U ∩ T is a countable set, giving a contradiction. 2
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2.2 Topological dynamics of proper leaves

In this section, we collect several observations about the “dynamics” of proper leaves, which
address two aspects of their geometry: the structure of the ω-limit set of the leaf, and the
relation between the endset of the leaf and its closure. We first recall a basic property of
proper leaves:

LEMMA 2.2.1 Let X be a compact foliated set. Then L is proper leaf if and only if (L \ L)
is compact.

Proof. Suppose that L is proper. Every point y ∈ L has an open neighborhood U which
intersects L in a connected disc contained in the leaf through y, and U contains no other
points of L. Thus, L is relatively open in the compact set L hence L \ L is compact.

Conversely, assume L \ L is compact then given y ∈ L there are disjoint an open neig-
borhoods (L \ L) ⊂ V and y ∈ U . Let P denote the open connected component of L ∩ U
containing y. Choose an open subset y ∈ U ′ ⊂ U which is disjoint from (L \ (L ∩ V )) \ P .
Then U ′ intersects L in the relatively open neighborhood P of y. 2

Define a partial ordering on leaves: L0 < L1 if L0 ⊂ L1.

COROLLARY 2.2.2 The partial ordering restricted to the set of proper leaves is strict. That
is, L0 < L1 < L0 implies L0 = L1.

Proof. Assume that L1 < L0 and L0 6= L1. By Lemma 2.2.1, L0 \ L0 is closed, so L1 ⊂ L0

implies L1 ⊂ L1 ⊂ (L0 \ L0), so that L0 ∩ L1 = ∅ and L0 6< L1. 2

For a proper foliation of codimension one, there is a close relation between the partial
ordering on the proper leaves and the structure of the ends of the leaves. This is part of the
theory of levels for proper leaves, as developed by Cantwell and Conlon [3, 2, 5] and Nishimori
[18, 17, 19, 20, 21]. (These papers consider C2-foliations mostly, but their arguments in many
cases apply also to proper leaves in topological foliations.) One consequence of these works is
that the partial ordering on the proper leaves can be of infinite length (except in the case of
analytic foliations [5].)

The theory of levels is not very well developed for foliations of higher codimension. The
basic strategy is to introduce the derived filtration on the endset ε(L) of the leaf, and compare
that to the derived filtration of the ω-limit set. Recall the construction of the topological space
E(L). Consider the collection of open subsets

{U | U is a connected component of L−K for some compact K ⊂ L}

This is ordered by inclusion, and E(L) is the set of ultrafilters obtained from this set, with the
natural topology. That is, a point ε ∈ E(L) is determined by a proper descending chain

U1 ⊃ U2 ⊃ · · · ⊃ Un ⊃ · · ·

where ∩Un = ∅. Two chains {Un} and {Vm} are equivalent, hence determine the same end,
if for each Un there exists Vm(n) ⊃ Un and vice versa. We call {Un} a defining chain for ε.
Topologize E(L) as follows: an open set U is a neighborhood of ε if there exists a defining chain
{Un} for ε so that Un ⊂ U for n sufficiently large. Each open set U determines an open set
Uε ⊂ E(L), which is just the collection of all ends for which U is a neighborhood.

The end set E(L), and also L itself, is said to have finite type if the rth-derived set E(L)r+1

is empty for some r < ∞. We call the least such r the depth of L. The endset is perfect if
E(L) = E(L)1.
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Each end ε ∈ E(L) has a well-defined ω-limit set

ε =
⋂
n

Un

Here are some well-known topological properties of the limit sets ε. For example:

LEMMA 2.2.3 (cf. 1.28, [9]) ε is connected.

Proof: Let ε be defined by {Un}. Suppose U and V are open sets in M which intersect ε
non-trivially. Then both U ∩L and V ∩L must contain Un for some n sufficiently large, hence
cannot be disjoint. 2

LEMMA 2.2.4 Let X be a compact foliated set. Then ε either contains a non-proper leaf,
or each minimal set in ε consists of a single compact leaf.

Proof. Zorn’s Lemma implies that every closed saturated subset of the compact space M
contains a minimal saturated closed subset. Every leaf in such a minimal set Z ⊂ ε must be
dense in Z. Thus, either Z consists of a single compact leaf or each leaf in Z must contain
itself in its closure, hence cannot be proper. 2

COROLLARY 2.2.5 Suppose that F is a proper topological foliation of a compact manifold
M , then every minimal set of F consists of a single compact leaf. 2

Even for a proper foliation, the structure of the foliated set ε can be complicated. For example,
ε can consist of a compact foliation on a proper submanifold (see Example 5.0.2 below). We
single out the special case when ε reduces to the simplest case:

DEFINITION 2.2.6 A proper leaf L has the Poincaré-Bendixson property if it has finite
type of depth r, and for each ε ∈ E(L)r the limit set ε consists of a compact leaf.

One of the main theorems of codimension one proper foliations is that every leaf has the
Poincaré-Bendixson property [2, 3, 4, 11], and there is a close relation between the dynamics
of L and the derived filtration of L. For higher codimensions, it is an open problem to develop
a similar relation, even for a leaf with the Poincaré-Bendixson property.

Note that if F has only a finite number of non-compact leaves, then all leaves must have
finite type as the compact leaves have type 0. This raises the question:

PROBLEM 2.2.7 Does every leaf of an almost compact foliation have finite type?

relation between the endset topology (intrinsic) and the derived set topology. for example:

LEMMA 2.2.8 Let L0 < L1 then there is an inclusion E(L0) ⊂ E(L1). 2 ???

another example: if εi → ε0 then ∪εi1 ⊂ ε0 That is, the derived operation is preserved by
realization

Then go into compact asympts in next section.
finally look into homology questions
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2.3 Asymptotics in almost compact foliations

In this section, we study the asymptotic properties of compact leaves in an almost compact
foliation. This leads to a type of structure theorem for almost compact foliations, in terms of
the possible asymptotic cycles defined by sequences of compact leaves.

We will assume given a “volume” function on the space of compact leaves, which assigns
to a leaf L its total volume V (L). For a C1-foliation, this can be defined by choosing a
Riemannian metric on TM . Then V (L) is the total volume of L for the induced Riemannian
metric on TL.

For a topological foliation, the volume function V (L) is integer valued, and defined via
a combinatorial approach. Cover M by a locally-finite collection of relatively compact, open
flow boxes for F . We moreover assume that the closure of each flow box is properly contained
in a larger (open) flow box. We obtain an open transversal T ⊂ M by taking T as the union
of the local transversals defined by each flow box of the covering of F . Then define V (L) as
the number of points in the intersection of L with the open transversal T . As a matter of
practice, one can define V (L) for any transversal T to F , where we require only that T be
locally flat, intersect every leaf of F and be open in the sense of transversals. Equivalently, T
intersects each leaf of F , and for each point x ∈ T there is an open subset Ux ⊂ T which is an
open subset of a local transversal to F defined by a local flow box. We will use the notation
VT (L) when necessary to indicate the choice of tranversal used in the definition of the volume
function.

The volume function V (L) defined as above enjoys several nice properties which relate it
to the behavior of the compact leaves of a foliation. For a point x ∈M , let Lx denote the leaf
of F through x. The following combination of Propositions 4.1 and 8.1 of [6] remains true for
the case of proper foliations. See sections 4 and 8 of that paper for details of the notation.

PROPOSITION 2.3.1 Suppose that F is a proper topological foliation of a compact man-
ifold M without boundary, and suppose that X is any locally compact saturated subset of M.
Then the restricted volume function V |X : X → (0,∞] has the following properties, at any
x ∈ X:

Compactness. V (Lx) is finite if and only if Lx is compact.

Semi-continuity. If Lx is compact, then V |X is lower semi-continuous at x, as follows: for
any integer n > 0 and ε > 0, then for any y in a sufficiently small neighborhood Uε of
x ∈ X, either:

• V (Ly) > nV (Lx), or
• there exists an integer j, 1 ≤ j ≤ n, such that |V (Ly)− j · V (Lx)| < ε

Continuity. For Lx compact, the following conditions are equivalent:

• the restricted volume function V |X continuous at x;
• the restricted holonomy group Hx|X of F|X at x is trivial;
• the local holonomy pseudogroup at x is stable and trivial.

Boundedness. For Lx compact, the following conditions are equivalent:

• the restricted volume function V |X is bounded on some neighborhood of x ∈ X;
• the restricted holonomy group Hx|X of F|X at x is finite.
• the local holonomy pseudogroup at x is stable and finite. 2
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The key concept for the study of compact foliations is Epstein’s idea of the bad set. We
extend this definition to almost compact foliations as follows:

DEFINITION 2.3.2 Let F be an almost compact foliation.

• The bad set B of F is the union of all leaves L such that there exists a sequence of
compact leaves {Li | i = 1, 2, . . .} such that

L ⊂
⋂
p>0


∞⋃
i=p

Li

 and lim
i→∞

V (Li) =∞ (1)

• The good set, G, of F is the union of the leaves not in the bad set;

• The exceptional set, E, is the union of the non-compact leaves.

LEMMA 2.3.3 1. the bad set B is closed;

2. B contains all non-compact leaves of F ;

3. the set of leaves without holonomy Gwoh ⊂ G is open and dense;

Proof. (1) Let {Lj} ⊂ B be a sequence of leaves, with L a leaf in their closure. For each j
there exists a sequence of compact leaves {Ljk} satisfying (1). Then there exists a subsequence
{ Ljk(j)} where k(j)→∞ with L in its closure, so L satisfies (1).

(2) Every leaf is in the closure of its nearby leaves, so a non-compact leaf in an almost
compact foliation is in the closure of the nearby compact leaves. The boundedness property
implies that every leaf in the closure of a sequence of leaves with uniformly bounded volumes
must have bounded volume, hence is compact. Thus, E ⊂ B.

(3) is a consequence of the genericity of the set of leaves without holonomy and the fact
that the set E is countable. 2

COROLLARY 2.3.4 Let F be an almost compact foliation of a compact manifold M, with
a non-compact leaf L. Then L ⊂ B, and in particular, B is not empty.

Proof. L ⊂ B which is a closed subset of M . 2

One of the key ideas in the Edwards, Millet and Sullivan [6] study of compact foliations is
the Moving Leaf Proposition, a version of which holds for almost compact foliations.

PROPOSITION 2.3.5 (Moving Leaf Proposition) Let F be an almost compact topolog-
ical foliation of a compact manifold M. Assume that the bad set B is not empty. Then there
exists a one parameter path {Lt | 0 ≤ t <∞ } where:

• Lt is compact without holonomy for all 0 ≤ t <∞;

• Lt depends continuously on t;

• V (Lt) tends to ∞ with t;

• For each saturated open neighborhood U of B ∪E, there is a number tU such that t > tU
implies Lt ⊂ U .

Proof. The good set G is a countable disjoint union of connected open sets, G =
⋃
`∈I G`. The

fixed-point set of a homeomorphism of finite order does not separate if the homeomorphism is
not the identity. Therefore, the intersections N` = G` ∩ Gwoh are again open connected sets,
and in particular are the path components of Gwoh.
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LEMMA 2.3.6 The restricted function V |N` is unbounded for some `.

Proof. Suppose first that the bad set B is not a subset of E. Then the proof of the moving leaf
proposition (pages 22-23, [6]) shows that for each point x ∈ B \ (E ∩B), there is a connected
component N`x containing x in its closure and V |N`x is unbounded.

Next, assume that B ⊂ E. The set E is countable, so the complement M \E is a connected
set. Therefore, the open connected components of G = M \E = M \ (B∪E) are in one-to-one
correspondence (via the obvious inclusions) with the open connected components of M \B. It
follows that for each leaf L contained in E, there is an open connected component NL of M \B
containing L. We can then follow the procedure of the proof of Proposition ?? to choose a
sequence of compact leaves {Li} ⊂ NL, with V (Li) tending to infinity. By our remarks, the
sequence {Li} is contained in NL ∩Gwoh which is one of the components N`. 2

Now to complete the proof of the Proposition, choose a sequence of leaves {Li} ⊂ N` for
some fixed `, with V (Li) tending to∞. The function V |N` is continuous by Proposition 2.3.1,
so we can join the leaves in this sequence by a continuous path of leaves in N` for which V (Lt)
tends to ∞ also. It only remains to observe that the leaf space of the restriction of F to N`

is Hausdorff, so for every closed saturated subset of N` we can choose T sufficiently large so
that Lt is disjoint from this set for t > T . 2
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2.4 Foliations admitting a closed cross-section

In this section we begin the study of the rôle of homology obstacles to the existence of non-
compact leaves in an almost compact foliation. We use an adaptation of the methods of Epstein
[7] and Edwards, Millet and Sullivan [6]. The case when there exists a closed cross-section is
simplest, and this is considered first.

Let Y ⊂M be a closed cross section to the topological foliation F . We assume Y is locally
a transversal as discussed in section 4. We can also assume without loss of generality, by
passing to appropriate finite covers as necessary, that the topological tangent bundle to M
and the normal microbundle to F are oriented (and hence each compact leaf of F is endowed
with a consistent orienteation), and that the transversal Y is an oriented compact manifold.

The proof of Theorem 1.0.10 follows from the next Lemma and Proposition 2.3.5.

LEMMA 2.4.1 Suppose that Y ⊂ M is a closed cross-section to F as above. Define the
volume function VY using the transversal Y . Then for each open connected component N` of
the set Gwoh, the restriction VY |N` is constant.

Proof. We briefly recall the proof from [6]. The compact leaves of F and the submanifold Y
are oriented and transverse, so the value of VY (L) is just the absolute value of the algebraic
intersection number of L with Y . The algebraic intersection is determined by their homology
classes, so that VY (Lt) is constant on a continuous family {Lt}. In particular, the set N` is
path connected, so VY is constant there. 2

Theorem 1.0.11 is a direct corollary of Theorem 1.0.10 if Γ is assumed to be finitely
presented. This is based on the observation that there then exists a compact oriented manifold
MΓ with fundamental group Γ, and the suspension construction yields a topological foliation Fφ
on the total space of a fibration M →MΓ, such that the holonomy action hFφ : Γ→ Homeo(Y)
is conjugate to the representation φ (cf. Chapter 5, [1]). The orbit structure of the action
φ is mirrored in that of the leaves of F , so the conclusions of Theorem 1.0.10 imply those of
Theorem 1.0.11.

For the case where Γ is only assumed to be finitely generated, we prove Theorem 1.0.11 by
following through the steps of the above lemmas and propositions, replacing leaves with the
orbits of points of Y . The hypotheses of Theorem 1.0.11 imply that there is a countable set of
points I ⊂ Y whose orbits under the action hF are infinite, and all points in the set F = Y \ I
have finite orbit. The “volume” function will be defined by V : Y → [1,∞], where V (y) =∞
for y ∈ I and V (y) is the number of points in the orbit of y for y ∈ F . This function has the
properties discussed in Proposition 2.3.1.

The good, the bad and the exceptional sets are similarly defined, and we observe that the
proofs of the lemmas of section 3 hold more generally for topological group actions. We leave
to the reader the task of checking the remaining details. It remains to show:

LEMMA 2.4.2 Let φ : Γ → Homeo(Y) be a representation of a finitely generated group Γ
and K > 0 a constant such that every orbit of φ has order at most K. Then there is a finite
group Γ̃, a representation φ̃ : Γ̃ → Homeo(Y) and a homomorphism ρ : Γ → Γ̃ such that
φ = φ̃ ◦ ρ.

Proof. Let Γ0 be the normal subgroup of Γ generated by the pth powers of the elements of Γ,
where p = K!. By assumption, φ(Γ0) acts trivially on Y , and therefore φ induces an action
φ̃ of Γ̃ = Γ/Γ0 on Y . We then observe that Γ̃ is a finitely generated p-group, which must be
finite. 2
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3 C1-foliations with a homology condition

tototo

4 Measurable theory

4.1 Essentially compact foliations

This is the hardest section.

5 Examples

We give examples to illustrate some of the behavior of non-compact proper leaves and their
limit sets.

EXAMPLE 5.0.1 Consider the foliation of R3 obtained by deleting one point from the
Hopf foliation of S3 by circles. The resulting foliation has all leaves circles, except for the one
exceptional line corresponding to the circle containing the deleted point. This trivial example
shows that compactness, either of M or of a closed transversal to F , is absolutely required in
the results of this paper. 2

EXAMPLE 5.0.2 Construct any compact foliation of N then extend to N times [0,1] so that
the leaves are proper and converge to all of N. 2

EXAMPLE 5.0.3 This example shows that the set of non-compact leaves need not have
positive Lebesgue measure for a topological foliation, even though there are uncountably many
non-compact leaves.

Construct the “Cantor function” f : [0, 1] → [0, 1] which is continuous, has range in the
dyadic rationals on the complement of the “middle third” Cantor set K ⊂ [0, 1], and is in-
creasing on the complement. The range of f is all of [0, 1], and the image of the Cantor set
K (which has Lebesgue measure zero) is a set of full measure 1. In particular, the Cantor
function f is not absolutely continuous.

Define an “exotic” action φ of Z on the cylinder [0, 2] × S1 using the Cantor function to
define a homeomorphism: For [r, θ] ∈ [0, 2]× S1, set

φ[r, θ] =

{
[r, θ + 2πf(r)] for 0 ≤ r ≤ 1

[r, θ + 2πf(2− r)] for 1 ≤ r ≤ 2

}
Clearly, the set of periodic orbits for φ has full measure, and the set of non-periodic orbits

is non-empty. The circles {0}×S1 and {2}×S1 are fixed by the action, so we can identify them
to points to obtain homeomorphism φ̂ : S2 → S2 which is a counter-example to Theorem 1.0.3
in the topological category.

The suspension of this example yields a 1-dimensional foliation of the manifold

S1 × S2 ∼= (R× S2)/(x, [r, θ]) ∼ (x+ 1, φ̂[r, θ])

where almost every leaf is a circle. 2
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EXAMPLE 5.0.4 We give an elementary example to show that the closure of a
2

EXAMPLE 5.0.5 This example takes the Reeb foliation of T 2 and suspends it to get leaves
spiraling in on T 2 with the circle foliation. 2
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