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Rigidity for Anosov actions of
higher rank lattices

By Steven HurDER*

1. Introduction

The natural action of the determinant-one, integer n X n matrices SL(n, Z)
on R" preserves the integer lattice Z"; hence for each subgroup I' € SIL(n, Z)
there is an induced “standard action” on the quotient n-torus,

e: ' XT" > T".

This is the simplest example of a large class of analytic “standard” actions of
lattices in semisimple Lie groups on locally homogeneous spaces. A basic
problem is to understand the differentiable actions near to such a standard action
in terms of their geometry and dynamics (cf. [13], [50], [51]).

A CT-action ¢: I' X X = X of a group I" on a compact manifold X is said to
be Anosov if there exists at least one element, y, € T, such that ¢(y,) is an
Anosov diffeomorphism of X.

We begin in this paper to study the Anosov differentiable actions of lattices,
including many standard algebraic examples, and especially to study their
stability properties. Our main theme is that either the C’-rigidity or the
C’-deformation rigidity of an Anosov action (for 1 < r < , or even for the real
analytic case) can be shown just by studying the behavior of the periodic orbits
for the action.

There are two notions of “structural stability” that appear in this paper,
rigidity and deformation rigidity. A C'-perturbation of a C"-action ¢ is simply
another C"-action ¢, such that for a finite set of generators {8, ..., 8,} of T, the
C-diffeomorphisms ¢(§;) and ¢ (8,) are C'-close for all i. An action ¢ is said to
be CT-rigid (or topologically rigid if r = 0) if every sufficiently small C!-
perturbation of ¢ is C"-conjugate to ¢, for 0 < r < @, or r = @ in the case of
real analytic actions.

A C'-deformation of an action ¢ is a continuous path of C’-actions ¢,
defined for some 0 < t < ¢ with ¢, = ¢. An action ¢ is said to be C’-deform-
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ation rigid (or topologically deformation rigid if r = 0) if every C'-deformation
of ¢, with ¢, contained in a sufficiently small C'-neighborhood of ¢, is C’-
conjugate to ¢ by a continuous path of C’-diffeomorphisms.

Our strategy for studying the C"-rigidity and C"-deformation rigidity prop-
erties of Anosov actions has two steps. The first is to focus on the intermediate
task of showing the topological rigidity and topological deformation rigidity of
the given action (the cases where r = 0). For an Anosov action with dense
periodic orbits we observe that it suffices to control the behavior on the periodic
orbits to obtain a topological conjugacy of the full group action.

A higher rank lattice group always contains a maximal rank abelian sub-
group generated by semisimple elements (cf. [37], and see Theorem 7.2). The
second step in proving rigidity is to use both the restricted actions of these
abelian subgroups and the associated concept of a trellis structure for the
abelian action (see Section 2) to prove that a topological conjugacy between
trellised actions must be as smooth as the actions involved. The dynamical data
obtained from restricting a given action to an action of a maximal abelian
subgroup are formalized in the definition of a Cartan action, Definition 2.13. We
prove that a volume-preserving Cartan action is smoothly determined by its
exponents at periodic points, Theorem 2.19, and that a Cartan action with
constant exponents is necessarily affine, Theorem 2.21.

Our rigidity results for Anosov actions, as detailed in Section 2, are
illustrated in this Introduction by applying them to the case of the standard
action of a subgroup I' € SL(n, Z) on the torus T". These and other applications
are discussed in detail in Section 7.

A finitely generated group I' is said to be a higher rank lattice if T is a
discrete subgroup of a connected semisimple algebraic R-group G, with the
R-split rank of each factor of G at least 2, G having finite center and G having
no compact factors, and such that G/T" has finite volume.

Tueorem 1.1. Let I' € SI(n, Z) be isomorphic to a subgroup of finite index
of a higher rank lattice (hence n > 3) and suppose that T contains a hyperbolic
matrix. Then the standard action of T on T" is topologically deformation rigid
under continuous deformations in the C'-topology on differentiable actions.

The conclusion of Theorem 1.1 is false for SL(2,Z): Example 7.21 and
Theorem 7.22 show that the standard action of SL(2,Z) on T? can be smoothly
deformed through volume-preserving C“-actions that are not topologically con-
jugate to linear actions.

The approach to geometric rigidity developed in this paper is based on
ideas from dynamical systems and especially follows the philosophy that an
Anosov dynamical system is determined by its behavior at periodic orbits. We
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use the Anosov hypothesis repeatedly to reduce proofs to questions about the
behavior at periodic orbits. This is a standard method for the study of Anosov
diffeomorphisms (cf. especially [2], [23], [8], [28], [18], [39], [40]), and we show
that similar techniques also work for group actions.

For example, our approach to topological deformation rigidity is to study
the behavior of the periodic orbits for the system under deformation. The
Anosov hypothesis guarantees that these periodic orbits are always isolated, with
a unique fixed point for their associated linear isotropy actions. We impose an
additional hypothesis on the first cohomology of the group I' (the “strong
vanishing cohomology” condition SVC(N) of Definition 2.7) so that by the
stability theorem of D. Stowe ([41], [42]), the periodic orbits are stable under
perturbation. For example, the hypothesis that the group has higher rank implies
the condition SVC(N), as a consequence of a deep result of G. A. Margulis
(Theorem 2.1 of [33]; see also Theorem 2.8 below). These ideas lead to the proof
of Theorem 2.9, which together with Theorem 2.8 implies Theorem 1.1.

The central problem for Anosov dynamical systems with one generator is to
find conditions under which topological conjugacy implies smooth conjugacy
([9], [10], [11], [18], [26], [27], [29], [28], [31], [32], [36], [35)). A second theme of
this paper is to develop criteria when topological conjugacy of Anosov group
actions implies smooth conjugacy. This leads to the notion of a trellised action,
Definition 2.11. Briefly this is an Anosov action with sufficiently many hyper-
bolic elements that preserve a maximally transverse system of “sufficiently
regular” one-dimensional foliations of X. These foliations yield a dynamically
defined affine structure on X, which is stable under perturbations. Theorems
2.12 and 2.15 formulate hypotheses on a trellised group action, sufficient to
prove the differentiable regularity of topological conjugacies between Anosov
actions. These two theorems, applied to the case of the standard action on the
torus, yield:

Tueorem 1.2. Let I' € SL(n, Z) be isomorphic to a subgroup of finite index
of a higher rank lattice and suppose there is a linear trellis 7, for which the
standard action of T on T" is trellised, with associated hyperbolic elements
A= {71""’711}-

(1) Let{¢,|0 <t < 1} be a one-parameter family of C"-actions, which lie in
a sufficiently small C'-neighborhood of ¢, and let {H,|0 < t < 1} be a continu-
ous family of homeomorphisms conjugating each ¢, to ¢. Then the maps H, are
C’-diffeomorphisms, and the family is continuous in t for the C’-topology on
maps, forr =1 or .

(2) Let H: T" - T" be a topological conjugacy between the standard
action ¢ and a C™-action ¢, of T on T" such that H maps 9, to another trellis
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I, on T" with the same associated hyperbolic elements A. Suppose that the
group elements A commute, the subgroup &/ C " generated by A is a cocompact
lattice in a maximal R-split torus of G, and the restriction of ¢, to A defines an
abelian Cartan action; then H is a C"-diffeomorphism, for r = 1 or . Moreover,
if ¢, is a real analytic action and I, is an analytic trellis, then the conjugacy H,
is real analytic.

The proof of Theorem 1.2 follows from Theorems 2.8, 2.12, 2.15 and 5.1,
Propositions 4.1 and 5.11 and the remarks at the beginning of Section 7.

The results of this paper developed from the study of rigidity and stability
of the standard action for subgroups of finite index in SL(n,Z). R. Zimmer
obtained the first rigidity result for higher rank lattice actions on compact
manifolds: he proved that an ergodic, volume-preserving C!-perturbation of an
isometric action of a higher rank lattice is again isometric (see [49], [51]). Later
he proved [52] the infinitesimal rigidity for ergodic actions on locally homoge-
neous spaces by higher rank cocompact lattices (cf. also [50], [51]). J. Lewis [22]
showed in his Thesis that for n > 7, the standard action of SL(n,Z) on T" is
infinitesimally rigid. (Note that the Weil approach [45] to deducing differentiable
stability from infinitesimal rigidity encounters serious difficulties when applied
to deformations of lattice actions, as one needs tame estimates on the cobound-
aries produced, which for lattice actions are notoriously difficult to establish.

There have been a number of subsequent developments since the main
results of this paper were announced in a preliminary form in August, 1989, and
appeared in [14]. (Portions of the manuscript circulated in Fall, 1989, and the
first version appeared in June, 1990.)

A. Katok and J. Lewis proved in [21] that the standard action of a subgroup
of finite index, I' € SL(n,Z), is topologically rigid for n > 4. Their method
continues the approach of this paper, in that they construct the topological
conjugacy on the periodic orbits. However, in place of the repeated application
of Stowe’s theorem made in this paper (cf. Remark 3.9), they require only one
application to ensure the existence of a fixed point for the perturbation. Katok
and Lewis then construct the conjugacy on the full set of periodic points by
making use of the combinatorial structure of a subgroup I' of finite index in
SL(n,Z) and the additional structure provided by the abelian Cartan subaction
for I'.

J. Lewis and R. Zimmer announced [53], among other rigidity results, that
Zimmer's cocycle super-rigidity theory ([46], and also Theorem 5.2.5 of [48]) and
techniques of Anosov diffeomorphisms yield the C®-rigidity of the standard
action of T’ C SL(n,Z) on T" for n > 3.

Zimmer's cocycle super-rigidity theorem is a very deep dynamical extension
of the Margulis super-rigidity theorem for lattices. Its application, in combina-
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tion with Theorem 2.21 of this paper, has yielded numerous definitive results on
the rigidity of volume-preserving Anosov actions of higher rank lattices ([19],
[17], [20]). We formulate one of these applications for the case of the standard
action, based on Theorem 2.22:

Tueorem 1.3 (see [19]). Let ¢: ' X T" = T" be a standard action and
suppose that:

(1) T c SL(n,Z) is a subgroup of finite index for n > 3; or

(2) T c Sp(n,Z) C SL(2n,Z) is a subgroup of finite index of the group of
integer symplectic matrices Sp(n,Z), for n > 2; or

3 I'cl, X -+ XTI, cSLn,R) is a subgroup of finite index, where
each factor group T, satisfies one of the two above cases, and T contains a

hyperbolic element.
Then ¢ is C™-rigid for r = 1, and for r = w.

We conclude this Introduction with a conjecture from [16], supported by
the available results to date:

Conjecture 1.4 (Anosov Rigidity). Let T' be a lattice of higher rank and
¢: ' X X > X be a C™-Anosov action on a compact smooth manifold X of
dimension n, for r > 1. Then

(1) there is a finite covering of X by a nilmanifold X;

(2) there is a subgroup I' € T' of finite index so that the action ¢|T" lifts to
an action @ on X;

(3) the C"-conjugacy class of @ is determined by the homotopy type of the
action. That is, ¢ is topologically conjugate to the standard algebraic action
induced on the nilmanifold # (X)/7(X), where #,(X) denotes the Malcev
completion of the fundamental group of X.

Acknowledgement. The author is indebted to A. Katok, R. de la Llavé,
R. Spatzier, D. Stowe, T. N. Venkataramanan and R. Zimmer for helpful
conversations during the development of this work. The support of the NSF and
the University of Colorado at Boulder for the special Conference on Geometric
Rigidity, May, 1989, is also gratefully acknowledged.

2. Statement of results

In this section we will formulate the definitions and notions used through-
out the paper. We then state the precise form of our theorems, some of whose
applications were discussed in the Introduction. Proofs of the theorems are in
following sections, and further applications are discussed in Section 7.

Let T' be a finitely generated group and choose a set of generators
{8,,...,8,). Let X be a compact Riemannian manifold of dimension n without
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boundary. Here ¢: I' X X —» X will denote a C™-action of T' on X. We will
either assume that r = 1 or o for a differentiable action or set r = w if the
action is real analytic. All of the results of this paper have counterparts for
CT-actions with 1 < r < %; however there is some loss in regularity in applying
the Sobolev lemma for finite degrees of differentiability (cf. Theorem 2.6, [18]).
For reasons of exposition we omit discussion of the intermediate differentiability
cases.

Recall first the definition of C'-topology on the space of C-actions on X.
Given & > 0, two C'-actions ¢,, ¢,;: [ X X > X are &-Cl-close if for each
generator §; of T, the diffeomorphism ¢((8;) of X is e-close to ¢,(8,) in the
uniform C'-topology on maps. The &-C-ball about ¢ is the set of all C"-actions
¢, that are &-C'-close to ¢.

Given & > 0, an &-Cl-perturbation of ¢ is a C"-action ¢;: ' X X - X with
¢, contained in the &-C'-ball about ¢.

An e-C*'-deformation of an action ¢ is a one-parameter family of C’-
actions, {¢,: I' X X — X[0 < ¢t < 1} so that ¢, = ¢ and

(1) ¢, is in the e-C'-ball about ¢ for each 0 < ¢ < 1 (note that & refers to
the C'-topology);

(2) for each y €T’ the map ¢,(y) varies C* on the parameter ¢ in the
C'-topology on maps.

A “sufficiently small C'-deformation” of an action ¢, as in the Introduction, is
simply an e-C®!-deformation for & > 0 appropriately chosen.

Note that evaluating an e-C*'-deformation of ¢ at a particular value of ¢
yields an &-Cl-perturbation of ¢. However not every &-Cl-perturbation is
a priori obtained from an &-C* '-deformation.

An e-Cl-perturbation {¢,} of ¢ is differentiably trivial if there is a C’-
diffeomorphism, H;: X — X, such that for each y € ' we have

(1) Hi'eg(y)oH, = ¢(y).

When ¢ is an analytic action, there is the corresponding notion of analytically
trivial perturbation, where we require that H, be an analytic diffeomorphism.
The perturbation is topologically trivial if there exists a homeomorphism {H,}
satisfying (1).

An &-C*!.deformation {¢,} is differentiably trivial if there is a one-
parameter family of C’-diffeomorphisms, H,: X — X, varying C* with the
parameter t in the C'-topology on diffeomorphisms, and if for each y € I' and
0 <t <1 we have

H'og(y)°H, = o(y),
H, = Id,.

(2)
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When ¢ is an analytic action and the deformation is through analytic actions,
there is the corresponding notion of analytically trivial deformation, where we
require that each H, be an analytic diffeomorphism varying C* with ¢ in the
C'-topology on diffeomorphisms. The deformation is C*-topologically trivial if
there exists a C*-family of homeomorphisms {H,} satisfying (2).

Definition 2.1. Let ¢ be a C™-action of T" on X, for r = 1,0, .

e ¢ is C’-rigid (respectively, topologically rigid) if there exists ¢ > 0 so
that every &-C'-perturbation of ¢ is differentiably trivial (respectively, topologi-
cally trivial). ‘

o ¢ is C*ldeformation rigid (respectively, C*-topologically deformation
rigid) if there exits ¢ > 0 so that every e-C*'deformation is differentiably
trivial (respectively, every e-C* !-deformation is C*-topologically trivial).

We summarize the differing roles that the indices “r, k, [” play in this work:

e “r” is always the differentiability of the action;

* “k” is the differentiability of the path involved, if any;

» “I” indicates the topology on the space of actions, which is usually taken
to be | = 1, although [ = = is possible for C*-actions when a path of diffeo-
morphisms is C* for the C*-topology on actions;

e finally all of this takes place in an &-ball about the given action in the
C'-topology on actions.

Remark 2.2. These definitions have natural interpretations in terms of the
representation “variety” of I' into the manifold &= Diff"(X) equipped with
the C"-Frechet topology, for 1 <r < o. Let Z(I',#) denote the set of
representations, where each action ¢: I' X X = X determines ¢ € Z(T', ).
For each 0 < I < r we can also consider the C'-Frechet topology on (T, &).

e An &-C'-perturbation of ¢ is a “point” $, € R(T, &), which is e-C'-close
to ¢.

e An &-CF'.deformation {¢,} of an action ¢ corresponds to a path d:
[0,1] = R(T, &), which is C*-differentiable (in ¢) in the C'-topology on maps,
&(0) = ¢, and ®(¢) lies within the e-C'-ball about ¢ for all ¢.

The group & acts on H(I', &) via conjugation, and the action is continuous in
the C"-topology. Introduce the quotient topological space

BT, Z)=R(T,£)/Z.

e ¢ is C'-differentiably rigid implies that ¢ € (T, &) is isolated in the
quotient C"-topology. )

* ¢ is C*'-deformation rigid implies that the point ¢ € Z(I, ) is an
isolated C*-path component in the quotient C"-topology on (T, £).
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Let us now introduce three ideas which are central to the methods of this
paper. A point x € X is periodic for ¢ if the set

I'(x) &{e(y)(x)ly €T}

is finite. Let A = A(¢) C X denote the set of periodic points for ¢. For each
x €A let T, cT denote the isotropy subgroup of x. Note that the index
[T.:T] < o(x)!, where o(x) = |T'(x)| is the order of the orbit of x (cf. Lemma
3.3).

A C!'-diffeomorphism f: X — X is said to be Anosov (cf. [2], [40)) if there
exist

 a Finsler on TX,

* a continuous splitting of the tangent bundle into Df-invariant subbundles,
TX=E*® E",

e constants A > 1> pu >0and ¢ > 0
such that for all positive integers m,

3) ID(™) @) > exn - ol 0% 0 e B,
D)) < o« loll; 0 %0 € B

The property that a diffeomorphism f is Anosov is independent of the choice of
a Finsler on TX. One can also “re-norm” the bundle TX so that ¢ = 1 and
A = 1/u (cf. Mather, Appendix to [40]).

We say that y € T is @-hyperbolic if ¢(7y) is an Anosov diffeomorphism of
X. Recall from the Introduction that ¢ is said to be an Anosov action if there is
at least one ¢-hyperbolic element in T

The stable bundle E~ of an Anosov C’-diffeomorphism f does not usually
have any invariant (proper) subbundles. We single out one case where there is
such a subbundle, which is dynamically determined. An Anosov diffeomorphism
f has a one-dimensional, strongest stable distribution if there exists a Df-
invariant, one-dimensional vector subbundle E** C E~, which satisfies an expo-
nential dichotomy; that is, there exist

e a Finsler on TX,

* a continuous splitting of the tangent bundle into Df-invariant subbundles,
TX = E°° ® E*,

e constants A > land 1 > ¢ >0
such that for all positive integers m,

) ID(f™)()I > (A =€) ™ lloll;  0#0e€E™,
ID(f™)(v)l< (A +&) " llvll; 0*0veE™.
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The strongest stable distribution E*° is necessarily integrable, and the
leaves of the resulting foliation #*° are C’-immersed, one-dimensional sub-
manifolds (cf. [12], [5], Chapter 6, [39)).

Finally we introduce the important notion of infinitesimal local stability of
fixed points. This requires several preliminary notions to be set. Let E denote a
finite-dimensional, real vector space, I" a finitely generated group and T,
generically, a subgroup of finite index of T.

Definition 2.3. A representation pg: I' — GL(E) is said to be

e compact if its image is contained in a compact subgroup of GL(E);

e noncompact if for every invariant subspace F C E, the restriction
pp: I = GL(F) is not compact;

* hyperbolic if there exists vy, € I" such that 5(y,) is a hyperbolic matrix.

Note that for a hyperbolic representation p of TI', the restriction of p to
every subgroup I of finite index in ' is noncompact, as y¥ € T for some k > 0.

Definition 2.4. A representation p: I' = GI(E) is infinitesimally rigid if

(1) the linear action of p(I") on E has 0 as the unique fixed point;

(2) the first cohomology group of I' with coefficients in the I-module E is
trivial: H(T; Ep) = 0.

For this work we introduce a strengthening of the above notion of rigidity,
so that the hypotheses of the new definition are themselves stable under
perturbation (cf. the proof of Proposition 3.6).

Definition 2.5. A representation p: I' — GL(E) is strong-infinitesimally
rigid if

(1) p is hyperbolic;

(2) for all noncompact representations p: I' = GL(E), the first cohomology
group of T' with coefficients in the -module E is trivial: H'(['; E ;) =0.

Note that a strong-infinitesimally rigid representation is infinitesimally
rigid.

The standard definition of infinitesimal rigidity at a fixed point is formulated
in terms of the linear isotropy representation. The following is a very useful
extension of this idea:

Definition 2.6. An action ¢ of I' of X is (strong)-infinitesimally rigid at a
periodic point x € A if the isotropy representation p, = D_¢: I', = GL(T,X) is
(strong)-infinitesimally rigid.

We formulate a condition on the group I', which ensures that the hypothe-
ses of Definition 2.6 are satisfied for every Anosov action of T'.
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Definition 2.7. A group I' satisfies the strong vanishing cohomology condi-
tion if
H 1(f*;Bi\;) = {0} for every subgroup I' €T of finite index and

SVC(N) -
representation g: I' = GL(N, R).

Observe that if T satisfies SVC(N), then every subgroup I" € T' of finite index
also satisfies SVC(N). ’

A lattice is a discrete subgroup I' € G of a Lie group G such that the
quotient G/T" has finite volume. By a very remarkable result of G. A. Margulis,
condition SVC(N) for arbitrary N holds for any subgroup I' of finite index in
SL(n,Z) for n > 3, as well as for many other lattices in higher rank semisimple
Lie groups. The following is a special case of Theorem 2.1 [33]:

Tueorem 2.8 (Margulis). Let I' € G be an irreducible lattice in a con-
nected semisimple algebraic R-group G. Assume that the R-split rank of each
factor of G is at least 2 and that G has no compact factors. Then T satisfies
condition SVC(N) for every N > 0. O

The Kunneth formula in cohomology implies that a product of groups
satisfying condition SVC(N) will also satisfy SVC(N), so that Margulis’ theorem
implies that SVC(N) holds for products of lattices, as in Theorem 2.8.

Here is our main theorem on topological rigidity:

Tueorem 2.9 (Topological Deformation Rigidity). Let ¢ be an Anosov
C'-action on a compact manifold X such that

(1) the periodic points A are dense in X;

(2) ¢ is strong-infinitesimally rigid at each periodic point x € A.
Then for all k > 0, ¢ is C*-topologically rigid; that is, there exists € > 0 such
that every e-C* '-deformation is C*-topologically trivial.

The existence of the conjugating homeomorphisms {H,|0 < ¢ < 1} is proven
in Section 3. The C*°-dependence of H, on the parameter ¢ is a consequence of
Theorem A.1 of [28] and our method of proof, which exhibits H, as the
conjugating map between the Anosov diffeomorphisms ¢,(7y,) and ¢,(y,).

We next consider the problem of showing that topologically conjugate
actions are smoothly conjugate. Our methods depend upon the action preserving
an additional structure, a “trellis” on X. The name is chosen to suggest the
intuitive parallel with the cross-thatching of a vine trellis.

Definition 2.10 (Trellis). Let X be a compact smooth n-manifold without
boundary. Let 1 <r < o, or r = w for the real analytic case. A C"-trellis 7 on
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X is a collection of one-dimensional, pairwise-transverse foliations {#|1 < i < n}
of X such that

(1) the tangential distributions have internal direct sum T & - ®
T¥#, = TX;

(2) for each x € X and 1 <i < n, the leaf L(x) of & through x is a
C"-immersed submanifold of X;

(3) the C"-immersions L(x) < X depend uniform-Hélder continuously on
the basepoint x in the C"-topology on immersions.
T is a regular C"-trellis if it also satisfies the additional condition:

(4) each foliation %, is transverse absolute-continuous, with a quasi-

1

invariant transverse volume form that depends smoothly on the leaf coordinates.

The relation between a group action and a trellis on X is formulated in the
definition of a trellised action. All methods of proving regularity of a topological
conjugacy between Anosov actions seem to require, in some form, this additional
structure.

Definition 2.11 (Trellised Action). A C™-action ¢: I' X X" — X" is trellised
if there exist:

(1) a regular C™-trellis ={%]|1 <i <n}on X;

(2) hyperbolic elements A ={y,,...,y,} €T such that % is invariant
under the Anosov diffeomorphism ¢(y,). That is, ¢(y,) maps each leaf of & to
a leaf of %,

We say that ¢ is an oriented trellised action if (2.11.1) and (2.11.2) hold, and in
addition:

(3) each of the tangential distributions T%, is oriented and the Anosov
diffeomorphism ¢(y;) preserves the orientation of T.%,.

We say that ¢ is a volume-preserving trellised action if (2.11.1) and (2.11.2)
hold, and in addition:

(4) there is a C"-volume form on X, which is invariant under the action of
the hyperbolic elements y, € A.

The elements vy, are not required to commute in the definition of a trellised
action. Moreover we do not require that %, be the stable, or even the strongest
stable foliation of ¢(%y,). The present definition allows, for example, that there is
one fixed y € I' such that y, =y for all 1 <i < n; such a y would then be a
“dynamical-regular” semisimple element for T

Our first regularity result is formulated for deformations in the generality of
Theorem 2.9:
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TueoreM 2.12 (Deformation Regularity). For a closed n-manifold X sup-
pose that:

(1) ¢o: T X X = X is a C"-action with dense periodic orbits, for r = 1, o
or w;

(2) T is a finitely generated group that satisfies the cohomology condition
SVC(n® — 1);

(3) ¢, is trellised by a regular trellis ,, with associated hyperbolic
elements A = {y,,..., v}

(4) {10 <t < 1} is a C*'-deformation of ¢, such that ¢y, is Anosov
foralll1 <i<nand 0 <t <1
_ (5) ¢, is conjugate to ¢, by a continuous family of homeomorphisms

{H: X > X|0 <t < 1)

(6) there is a C'-trellis F, on X such that H, maps the leaves of %, to
those of &, ..

Then H, is a C'-diffeomorphism for all 0 < t < 1.

Suppose, in addition, that {¢,|0 < t < 1} is a C*'-deformation for | = 1, or
l=wifr =0 br w, and the leaves of the foliations {#, ;} depend continuously
on the parameter t in the C'-topology on immersions. Then the diffeomorphisms
H, depend continuously on t in the C'-topology on maps.

The cohomology hypothesis on I' in Theorem 2.12 is used to control the
type of linear isotropy representations at fixed points for the action under the
deformation. For a topological conjugacy between two trellised actions we can
prove the regularity of the conjugacy, given that the corresponding linear
isotropy representations are conjugate. The conjugacy of the linear isotropy
representations follows, for example, if we require that the hyperbolic elements
v; commute. This suggests the following definitions:

Definition 2.13 (Cartan Action). Let &/ be a free abelian group with a
given set of generators A = {y,...,v,}. Then (¢, A) is a Cartan C™-action on
the n-manifold X if

e ¢: X X = X a C"-action on X;

* each y; € A is ¢-hyperbolic and ¢(y,) has a one-dimensional, strongest
stable foliation %,**;

* the tangential distributions E}* = T#** are pairwise transverse with
their internal direct sum E{* @ --- ® E’* = TX.

We say that (¢, A) is a maximal Cartan action if ¢ is a Cartan action and,
for each 1 < i < n, the stable foliation &, of the Anosov diffeomorphism ¢(7y,)
is one dimensional; hence %, = %;*.

1
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We will call a Cartan action of an abelian group &7 an abelian Cartan
action to distinguish it from the full action of a lattice group, which possesses an
abelian Cartan subaction:

Definition 2.14 (Cartan action for lattices). Let ¢: I' X X - X be an
Anosov C"-action on a manifold X. We say that ¢ is a Cartan (lattice) action if
there is a subset of commuting hyperbolic elements A ={y,,...,y,} CT,
which generate an abelian subgroup &7, such that the restriction of ¢|%7 is an
abelian Cartan C"-action on X.

The existence of an abelian Cartan subaction for a standard (algebraic)
lattice action is in many cases a consequence of the work of Prasad and
Raghunathan [37]. (See Theorem 7.2 below.)

A well-known theorem of J. Franks [7] states that if a compact n-dimen-
sional manifold X admits an Anosov diffeomorphism with a one-dimensional,
orientable, stable foliation, then it is diffeomorphic to the standard torus T™".
Therefore, if one of the Anosov diffeomorphisms ¢(y;) in a Cartan action has
F.** as its stable foliation, then X = T". In particular, X = T" for a maximal
abelian Cartan action. Also note that for a maximal abelian Cartan action, &7
must have rank at least n — 1.

Our approach to regularity then yields the following general result about
smoothness of a topological conjugacy between trellised Cartan actions:

Tueorem 2.15 (Regularity). For a closed n-manifold X suppose that

(1) ¢o: ' X X = X is a C'-action of T with dense periodic orbits, for
r=1,or w;

(2) @, is trellised by a regular trellis F, whose associated hyperbolic
elements A = {y,,...,v,} determine an abelian Cartan subaction ¢,|2Z;

(3) T is a higher rank lattice in a Lie group G, and the subgroup &/ C T
generated by A is a cocompact lattice in a maximal R-split torus of G;

(4) ¢;: T' X X - X is a C-action such that ¢,|&7 is an abelian Cartan
subaction;

(5) ¢, is conjugate to ¢, by a homeomorphisms H: X — X.
Then H is a C"-diffeomorphism.

Note that the action ¢, in Theorem 2.15 preserves a dense set of atomic
measures on X rather than an absolutely continuous measure.

The notion of an abelian Cartan action is the analogue in topological
dynamics to the concept of a Cartan subgroup for a lattice (cf. [3]). The smooth
classification of abelian Cartan actions is a developing topic (cf. [18], [26], [29],
[36], [35]). Let us first note three preliminary results about Cartan actions:
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Tueorem 2.16. (1) For a Cartan C"-action (¢, A) the collection of strongest
stable foliations T = {F*, ..., F*°} is a C'-trellis on X.

(2) For a maximal Cartan C"-action (¢, A) the collection of stable foliations
T ={F,...., %)} is a regular C"-trellis on X.

(3) For a volume-preserving, maximal Cartan C"-action (¢, A), with r > 3,
each stable foliation &, is transversally C*** for some 0 < a < 1.

1

The content of (2.16.1) and (2.16.2) is the regularity of the trellis foliations,
which is a consequence of the stable manifold theory of Hirsch and Pugh [12],
and its subsequent embellishments (cf. [39]). Our (2.16.3) follows from Lemma
5.2 and the regularity theory of Hasselblatt [11]. Theorem 2.16 is proved in
Section 6.

ProposiTion 2.17 (C!-Stability). Let (¢, A) be a Cartan C'-action on the
closed, n-dimensional, infra-nilmanifold X for r > 1. There exists € > 0 such
that if ¢,: /X X — X is e-C'-close to ¢, then (¢,, A) is again a Cartan action.

Proof. The Anosov condition given in (3) and the strongest stable condition

in (4) are both stable under C'-perturbations, as they are equivalent to a
contraction principle on an appropriate Banach space of sections of a Grassmann
bundle over X (cf. Mather, Appendix A of [40]; and Appendix A of [28]). The
splitting of TX is determined by an invariant section in this Banach space, and
this section depends continuously on the action. Therefore € > 0 can be chosen
sufficiently small so that the perturbed, strongest stable foliations { %%, . .., %,**}
are pairwise transverse and the internal direct sum T#** ® --- & T%* = TX.
O

It is folklore that a transitive Anosov action of an abelian group on a torus
with a common fixed point is topologically equivalent to an algebraic action. A
slightly stronger result is possible:

Prorosition 2.18 (Topological Rigidity for Cartan Actions). Let (¢, A) be a
Cartan C'-action on the closed, n-dimensional, infra-nilmanifold X for r > 1.
Then

(1) ¢ has periodic orbit x,, and therefore there is a positive integer p so that
the action of the p™-powers A? = {y?,... yP} is topologically conjugate to a
standard (algebraic) Cartan action induced by the map on homotopy,
p: AP X (X5 x0) = 7(X; %)

(2) ¢ is C*-topologically deformation rigid for all k > 0.

(3) A topological conjugacy H between ¢ and a standard Cartan action on
X maps the trellis F for (@, AP) to a linear trellis for the standard action.
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Proof. The results of Franks [7] and Manning [30] imply that an Anosov
diffeomorphism of an infra-nilmanifold X is topologically conjugate to the linear
action induced from the action on first homology. We can thus assume that 7y,
acts as a linear hyperbolic matrix, which therefore has a finite set of fixed points.
The action of the generators A must permute the fixed points of y, so there
exists an exponent p > 0 in order that the action of each y? fixes this set. We
then have a common fixed point x, € X for the action of A”, and hence there is
an induced action of &7 on (X, x,). The same argument as the one used in
Proposition 0 of [35], with Aut(7 (X)) in place of GL(n,Z) = Aut(H(X;Z)),
shows that a family of commuting homeomorphisms of a compact nilmanifold,
with one element algebraic Anosov, must be an algebraic action.

The conclusion of deformation rigidity follows immediately from (2.18.2)
and Theorem A.1 of Appendix A, [28]. The topological invariance of the trellis
follows from Theorem 1.1, [54]. O

Note that there are examples of abelian Cartan actions that do not have a
fixed point for the full action [15] so that the reduction to t’zc subgroup
generated by A” is necessary.

The next two results, Theorems 2.19 and 2.21, generalize to higher dimen-
sions a combination of theorems of R. de la Llavé, J. M. Marco and R. Moriyon
([26], [27], [29], [28], [31], [32]) for X = T2.

Tueorem 2.19 (Differential Rigidity for Cartan Actions). Let & be an
abelian group generated, not necessarily freely, by the set A ={y,,...,vy}.
Given volume-preserving Cartan C'-actions (¢,, A) and (¢,, A) on an n-mani-
fold X, for r = 1, © or w, suppose that

(1) ¢, is a trellised action;

(2) H: X — X is a homeomorphism conjugating ¢, to @,;

() for all 1 <i <n and for each x € A(p,) the maximally contracting
exponent of D, ¢(y,) equals the maximally contracting exponent of Dyy® (7).

Then H is a C'-diffeomorphism. Moreover for | = 1 (or l =  if r = o or
w) suppose there are given

(4) a C®'-deformation {(¢,, A)|0 < t < 1} through volume-preserving Car-
tan C"-actions, and

(5) a continuous family of homeomorphisms {H,|0 <t < 1} conjugating ¢,
to @,
which satisfy (2.19.2) and (2.19.3) for all 0 <t < 1. Then the C'-diffeomor-
phism H, varies C° with t in the C'-topology on C"-maps.

Cororrary 2.20. Let (¢, A) be a volume-preserving, trellised Cartan
C'-action on an n-manifold X, for r = © or w, with & the abelian group
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generated, not necessarily freely, by the set A ={y,,...,v,}). Suppose that
H: X = X is a C'-conjugacy between an arbitrary C"-action ¢,: /X X — X
and the given action ¢,. Then (¢, A) is a volume-preserving Cartan C"-action,
and H is a C"-diffeomorphism.

Proof of corollary. Here H induces a continuous splitting of TX, corre-
sponding to the stable and unstable foliations of ¢,, which is invariant under
D¢,. The Anosov condition given in (3) requires only a continuous decomposi-
tion of TX, so the C'-diffeomorphisms ¢ (vy,) are Anosov. For the same reason,
the C’-diffeomorphisms ¢,(y,) have one-dimensional, strongest stable foliations,
which are transverse. Thus ¢, is a Cartan C"-action on X. The invariant volume
form Q for ¢, is conjugated by H to a continuous volume form H*({) on X,
which is ¢, (97)-invariant. The theorem of Livsic and Sinai [25] implies that
H*(Q) is C". We then apply Theorem 2.19 to conclude that H is C". a

Our second result is a higher-dimensional generalization of Theorem 1 of
[32]. For an oriented Cartan action ¢ let x € A be a periodic point and let &7
be the isotropy subgroup of x. The linear isotropy representation

D,¢: o, - GL(T,X)

has its image in a maximal diagonal subgroup. The choice of a trellis {.%} for the
action defines a basis in each tangent space T, X for which the action is diagonal.
Introduce the abelian (multiplicative) diagonal group R*® --- & R™; then we
can consider the isotropy representations as homomorphisms D_¢: &7, — A" A
Cartan action is said to have constant exponents if there exist homomorphisms
Ay &Z— R* for 1 <i <n such that, for each x € A and y € &7,

D.o(y) =AMi(y) @ - ® A, (y)

Tueorem 2.21. Let (¢, A) be an oriented Cartan C"-action on the n-torus
T", for r =1, © or w. If ¢ has constant exponents, then there is a subgroup
o/ C & of finite index so that the restriction ¢|&Z is CT-conjugate to a standard
linear action, and ¢ is C"-conjugate to an affine action of & on T™.

The proof of this result is given in Section 6. Theorem 2.21 has the
following application [19]:

Tueorem 2.22 (Rigidity). Let ¢: I' X T" — T" be a Cartan C"-action on
the n-torus T", for r = 1, © or w. Suppose that T is a higher rank lattice and the
subgroup &/ C T generated by the A (cf. Definition 2.13) is a cocompact lattice
in a maximal R-split torus in G. If the action ¢ preserves an absolutely
continuous probability measure on T", then ¢ is C"-conjugate to an affine action

of T.
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Remark 2.23. Theorem 2.22 extends a previous, unpublished result of
J. Lewis and R. Zimmer that applied to the case of the standard action of a
subgroup I' € SL(n,Z) of finite index, for n > 3. There are three essential
points to the proof of Theorem 2.22: an &-C'-perturbation of the action ¢ has an
invariant, absolutely continuous probability measure, by the Kazhdan property
T, and this measure must be smooth by the theorem of Livsic and Sinai [25]
characterizing the invariant measures for a smooth Anosov diffeomorphism.
Furthermore a sufficiently small C'-perturbation of a Cartan action is a Cartan
action by Proposition 2.18. Thus one need only consider the case of Cartan
actions that preserve a C"-volume form. From the cocycle super-rigidity theo-
rem of Zimmer ([51], [48], [47]) and the measurable Livsic theorem ([23], [24])
one deduces that the Cartan subaction must have all exponents equal. It is then
immediate that the action is algebraic for the coordinates on T" that are
provided by Theorem 2.21. The complete proof is given in [19)].

Remark 2.24. The methods of this paper all require the existence of a
dense set of periodic orbits for the action under study. The periodic points can
be viewed as an “atomic” invariant measure for the group action whose closed
support is all of X. On the other hand, the Zimmer super-rigidity theorem is
applied (in geometric contexts) when there is given an absolutely continuous
invariant measure whose closed support is all of X. Atomic measures and
absolutely continuous measures are “dual” under Fourier transform, so one
surmises that there is a common rigidity principle underlying Theorems 2.9, 2.19
and 2.22.

3. Topological rigidity for Anosov actions

As noted in the Introduction, studying rigidity of group actions naturally
breaks into two parts: topological equivalence and smooth equivalence. We say
that two actions have the same topological dynamics if there is a topological
conjugacy between them. This is the natural notion of equivalence for dynamical
systems generated by one endomorphism (cf. [39], [40]). Anosov showed that two
Anosov diffeomorphisms, which are C'-close, are topologically conjugate ([2];
cf. also Mather, Appendix to [40]) so that an Anosov diffeomorphism is always
topologically stable. Anosov actions of groups with more than one generator
need not be topologically rigid or deformation rigid; it then follows that
topological conjugacy is a nontrivial notion of equivalence.

Let ¢: T'X X —> X be a smooth Anosov action that is strong-
infinitesimally- rigid at each periodic orbit, and with a dense set of periodic
orbits. In this section we prove that there exists £ > 0 so that given an
e-C'-deformation {¢,|0 < ¢ < 1} of ¢, which varies C* with the parameter ¢ in
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the C'-topology on maps, there exists a C*°family of homeomorphisms
{H,|0 <t < 1} satisfying the conjugacy equation (2).

Fix vy, € I, which is ¢-hyperbolic. Choose &, > 0 so that every diffeo-
morphism that is £,-C'-close to ¢(y,) is necessarily Anosov. Then choose £ > 0
so that, for every e-perturbation ¢, of ¢, the diffeomorphism ¢,(y,) is &,-C'-
close to @,(y,). (For example, if v, is one of the generators of ' used to define
the C'-norm on I'-actions, then & = ¢,.) It follows that for an e-C'-deformation
{¢,/0 <t < 1} of ¢, each ¢,(vy,) is an Anosov diffeomorphism for 0 <t < 1.

The C'-topological stability of Anosov diffeomorphisms in the C'-topology
on maps (Appendix A, [28]) implies that we can find a C*°-family of homeo-
morphisms {H,|0 < ¢ < 1} such that H, is the identity and

5 H 'og,(y,)e H, = o(y forall0 <t < 1.
t 0

We will show that this family of homeomorphisms satisfies (2) for all y € T'.
We first observe that the set of periodic points Per(¢(y,)) of ¢(y,) contains the
dense set A of periodic points for the full action of ¢. Therefore the family {H,}
is uniquely determined on the closure of the periodic points A. The strategy is
to show that (2) holds on the set A for all y € I'. Then we invoke the continuity
of the actions to deduce that (2) holds on the closure of A, which is all of X.

A set 3, C X is said to be ¢, saturated if x, € 3, implies that ¢,(y)(x,) €
3, forall y eT.

Definition 3.1. A @-filtration of A is an ascending sequence of ¢-saturated,
finite sets A, CA, C -+ CA, C -+ whose union is all of A.

Lemma 3.2. An Anosov action ¢ admits a natural e-filtration.

Proof. For each positive integer p let A, C A be the subset of points
whose ¢-orbit I'(x) contains at most p points. Clearly A, C A ., with the
union over all p yielding A. We must check that each A, is a finite set. Observe
that each x € A is a periodic point for ¢(y,) and hence is a fixed point for
some power ¢(y,)? with 0 < g < p. Thus A, is contained in the set of fixed
points for the Anosov diffeomorphism ¢(vy,)?'. The fixed-point set is isolated in
the compact manifold X; hence it is finite. O

We call the filtration produced in Lemma 3.2 the length filtration of A. For
an Anosov action of an arithmetic lattice A there is another natural filtration, the
congruence filtration, corresponding to the chain of congruence subgroups in T
A paradigmatic example of this is discussed in Example 7.3, as part of our
analysis of the rigidity of SL(n, Z)-actions.
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Fix a ¢-filtration {Ap} of A. For each p > 1 define T, to be the stabilizer
subgroup of A . That is,

yET, ®@(y)(x)=x forallx €A,

Clearly I',,, € T,, and A dense in X implies that the intersection over all I, is

the set of y € I, which acts as the identity on X.

Lemma 3.3. T, is a normal subgroup of T with finite index:

[T,:T] < {Card(A,)}!.

Proof. The action of I on A, defines a representation I' - Perm(A ) into
the permutation group on the set A, with kernel A ; and the finite group of
permutations has order {Card(A )}!. a

For each 0 < ¢ < 1set A (t) = H(A)). For x € A let x, = H/(x).

The strategy for the proof of Theorem 2.9 is to prove that (2) holds on each

subset A, successively. We use a theorem of Stowe, whose hypotheses involve
the isotropy action of I" at each x € A . Let us first give the necessary notation
and some preliminary remarks. For each x € A let I', denote the stabilizer
subgroup of x. Thus T, C T, if x € A,. The differential at x of the restricted
action ¢: I, X X — X yields the isotropy linear representation denoted by
(6) D,¢: T, » GL(T,X).
The subgroup I, has finite index, so there is a positive integer m for which
yo' € T,. The spectrum of the linear automorphism D, ¢(yg) is bounded away
from 1 in modulus by the Anosov property of (3). Thus 0 € T X is the unique
fixed point for the linear action of D _¢(y{') on T.X and so is also the unique
fixed point for the linear action of the larger groups D, ¢(T,) and D, ¢(T’), when
x € A,. Note that the corresponding remarks are true for the Anosov diffeo-
morphism ¢,(y¢') and all x € A (2).

We quote Stowe’s result (Theorem A, [41] and Theorem 2.1, [42]) for the
case of an isolated fixed point for a differentiable group action:

Tueorem 3.4 (Stowe). Let a: G X X = X be a C'-action of a finitely
generated group G, for 1 <r < ». Let x € X be an infinitesimally rigid fixed
point for the action. Then x is stable under perturbations of the action. In fact,
for each CT-action B near a in the C'-topology, there exist C"-embeddings
W,: T, X — X such that

(1) ¥(0) ==x, DY, = Idlrx;

(2) W,(0) = x, is the unique fixed point of the action B in the open set
‘I’B(TXX ); \

(3) W, varies continuously with B in the C’-topology on embeddings.
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We deduce from Stowe’s theorem the following application to our family of
actions:

CoroLrary 3.5. Fix 0 <s <1 and suppose there is given a subgroup
G C T such that

(1) there exists y € G such that ¢ (y) is Anosov;

(2) y € X is a fixed point for ¢ (G) with H'(G;(T,X),, 0.) = 0.
Then there exists € = £(G) > 0 and embeddings V,: T, X = Xfors—e<t<
s + € such that y, = V,(0) is the unique fixed point of the action ¢(G) in the
open set V,(T,X). Moreover the embeddings V¥, depend continuously on t.

We combine the stability under perturbation of the hypotheses of strong-
infinitesimal rigidity with Corollary 3.5 to deduce the following key result for the
proof of topological rigidity. It implies that each x, € A, is a periodic point of
the action ¢,, for all ¢ uniformly in the range 0 <t < 1 independent of the
choice of «x.

ProrosrrioN 3.6. For each x € A, x, = H/(x) is an isolated fixed point of
the action ¢(T) forall 0 <t < 1.

Proof. Fix p > 0 and choose m = m(p) > 0 so that yJ*® € [,. The repre-
sentation D,¢: [, - GL(T.X) is not compact, as it contains in the image the
hyperbolic llnear automorphism D_¢(y{"). Thus conditions (3.5.1) and (3.5.2)
are satisfied for s = 0 and we obtain:

e t, >0

* a continuous path {y,|0 < ¢t < ¢} with y, = x;

* y,, an isolated fixed point for ¢(T).

In particular y, is a fixed point for the Anosov diffeomorphism ¢,(y*). The path
{x,0 <t <t} also consists of fixed points for the family of actions {¢@,(y7")}.
The fixed points of an Anosov diffeomorphism are isolated so that x, = x = y,
implies that these two continuous paths must coincide for all 0 < ¢ < t,. We
conclude, for some ¢, > 0, that x, is an isolated fixed point for the action e{T,)
forall0 <t <¢,.

Let s > 0 be the supremum of values of ¢ < 1 such that «x, is an isolated
fixed point for ¢(T’)) for all 0 <t < e. Suppose that s < 1. We show that this
leads to a contradiction.

It is given that (I’ Xx,) = x, for all 0 <t < s. The continuity of ¢, in ¢
implies that the limit point y = x, is a fixed point for the action @,(I).
Moreover it is a fixed point for the Anosov diffeomorphism ¢ (y) and hence
is also isolated for the action of [,. The image of the representation

D,p,: T, — GI(T,X) contains the hyperbohc element D, ¢ (y¢'), so it is not
compact The condltlons of Corollary 3.5 are therefore satisfied, and we obtain a
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continuous path of isolated fixed points {y,Is — & <t < s + &} for @{T,), with
Ys =y = x,. By the local uniqueness of the isolated fixed points for qot('y0 ), it
must follow that y, = x, for s — & <t <'s. The path {y,} thus extends the path
{x,}, contradicting the maximality of s.

We conclude that s = 1. The proof above also established that ¢,(y2") is
Anosov so that x, = H\(x) is an isolated fixed point for the action ¢(T). O

The proof of Theorem 2.9 is completed by the next proposition and its
corollary.

Prorosrtion 3.7. For each x € A and y € T,

(7) H'og(y)eH(x) = p(y)(x) forall0<t<1.

Proof. Let x € A,y €T, and set z = @(yXx), x, = H(x) and z, = H,(2).
Then (7) is equivalent to showing that

e(y)(x,) =2, foro0<t<l.

Choose p > 0 with x € A,. Then z € A, also, and by Proposition 3.6 each z,
is an isolated fixed point for @{T)). On the other hand, T, is a normal subgroup
of I' so that ¢,(y)(x,) is also an isolated fixed point for qot(F ). As both families
of fixed points agree at t =0, ¢y (y)x,) =2z =z, we therefore find that
e y)x,) =z, forall0 <t < 1. O

CoroLrLary 3.8. For each y €I and 0 <t < 1, H, conjugates ¢,(y) to
e(y).

Proof. All of the mappings in (7) are continuous; so for each y € I' we have
(7) holding for x in the closure of the periodic set A, which is all of X. O

Remark 3.9. The constant t, appearing in the proof of Proposition 3.6,
which exists by Stowe’s theorem, depends upon the subgroup [, and there is no
a priori estimate of its size. It may, for example, tend to 0 as p tends to infinity.
We overcome this limitation in the above proof by using a supremum-principle
to obtain a path of fixed points defined for all 0 < ¢ < 1. Our method depends
upon the connectivity of the interval [0, 1], and therefore this approach does not
directly apply to the study of topological stability under perturbations of the
action. One approach toward proving topological stability in the generality of
Theorem 2.9 would be to obtain a uniform estimate on the constant ¢,, which
bounds it away from 0 independent of p. Katok and Lewis’ proof [21] of
topological rigidity for I' € SI(n,Z) of finite index for n > 4 circamvents the
above dlfﬁcultles by using Stowe’s theorem only once to obtain the stability of
the “origin”. The authors then rely on additional algebraic properties of the
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group I and on dynamical properties of the standard algebraic action to identify
the other periodic points under a perturbation.

4. Rigidity of linear isotropy representations

In this section we give two results concerning the rigidity of the linear
isotropy representations of an Anosov action. These results are used in the proof
of the regularity of a homeomorphism H: X — X, which conjugates two Anosov
actions.

Proposition 4.1. Let ¢, ' X X = X be a C'-action of T on a closed
n-manifold X such that

(1) T is a higher rank lattice subgroup of a connected semisimple Lie
group G;

(2) @, is trellised by a regular trellis F, whose associated hyperbolic
elements A = {y,,...,7,} determine an abelian Cartan subaction ¢,|Z;

(3) the set A extends to a commuting set A of semisimple elements, which
span a lattice in a maximal R-split torus in G;

(4) ¢;: T X X - X is a C'-action such that ¢,|&7 is an abelian Cartan
subaction;

(5) ¢, is conjugate to ¢, by a homeomorphism H: X — X.
Then for each periodic point x € A(g,) there are a subgroup T, C T of finite
index and a linear isomorphism ®,: T, X — Ty, X so that

(1) ®, maps the tangent space T, F,; at x to the tangent space Ty, ;;

(2) ®, conjugates the linear isotropy representation D, ¢,: T, = SI(T,X) to
Dyoy@r: T = STy, X).

x

Proof. Let G be a semisimple Lie group with at most a finite number of
connected components such that I is a lattice in G. Let G? denote the universal
covering group of the connected component G° and I" C T denote a finite-
index subgroup that is the monomorphic image of a subgroup fcaG.

For each point x € A(g,) choose a linear isomorphism L : T, X = Ty,X,
which for 1 <i <n maps T,%,; to Ty, %, ; and is oriented with respect to
the restriction of the homeomorphism H to the leaf of &%, through x. Let
po = D,¢, and p, = L;' o Dy @, ° L, be the isotropy representations of the
isotropy subgroup T, on T,X. We must show that there is a choice of L, such
that the representations p, and p, are equal when restricted to a subgroup of
finite index.

There are two ideas used in the proof. First we conclude that the represen-
tations p, and p, extend to the universal covering group : G — G. We then
use the classification of the finite-dimensional representations of a semisimple
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Lie group by their weight spaces to show that the topologlcal type of the action
of the lattice T, on T, X determines the representation of G and hence the linear
type of p, and p,.

Let G, , be the algebraic closure of p(T,) € SI(T,X) for ¢t = 0,1 and let
G?, be the connected component of the identity.

Lemma 4.2. G, is semisimple with finite center 22, and without compact
factors.

Proof. Let G?, =L X U, where L is reductive and U is the unipotent
radical. Then U must be trivial, as it is contained in a conjugate of the unipotent,
lower-triangular, matrix subgroup of SL(n, R) and is normalized by the hyper-
bolic elements p[y,), which have one-dimensional, maximally contracting
eigenspaces. The reductive factor L must have finite center, as every homo-
morphism I, = R is trivial by Theorem 2.8. The existence of a compact factor
would imply that the eigenspaces of the matrices p,(y;) have dimension greater
than 1, contrary to our assumption. a

The Margulis super-rigidity theorem (Theorem 2, p. 2 in [33]) and Lemma
4.2 imply that the quotient homomorphisms p,: - PG,, =G,/ 2., onto
the group modulo its center, extend to homomorphisms pt G° - PG, ,. The
group G° is simply connected; so g, lifts (possibly nonuniquely) to a homo-
morphism §,: G° — G? ,, with the ambiguity determined by the elements of the
finite group 2?,. Therefore there is a subgroup I} C T, such that the restriction
of p, to T is uniquely determined. The claim is that the restricted representa-
tions to I/ are conjugate in SL(T, X).

Consider first the case where T is a lattice in G = SL{(n, R). There are two
conjugacy classes of nontrivial representations of SL(n,R) into SI(T,X ) =
SL(n, R): the conjugates of the identity and the conjugates of the contra-gradient
representation. Note that the contra-gradient representation reverses the signs of
the weights of the representation and so replaces a contracting eigenvalue of a
hyperbolic element 7y, with an expanding eigenvalue, and vice versa. The
existence of a topological conjugacy between the actions of @(y;) and ¢,(y;) in
a neighborhood of x implies that the signs of the weights of the representations
must agree on y,, and hence the representations g, and p, are both equivalent
to lifts of the identity, or to the contra-gradient representation. Finally the
hyperbolic element p(y,) has a maximally contracting direction, which is
tangent to %, ; at x for ¢ = 0,1 by our choice of L,. The intertwining operator
must preserve this direction; so it will be a dlagonal matrix with respect to the
basis of T,X by vectors tangent to the leaves of F,; at x. We then adjust the
choice of L, by this intertwining operator to obtain our conclusion.
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For the general case we use the classification of finite-dimensional repre-
sentations by their weights. The Lie algebra a of the algebraic hull of & consists
of semisimple elements, as they can be diagonalized in the representation onto
SL(T_X). Extend a to a maximal, R-split, Cartan subalgebra a for the Lie algebra
g of G, with & the abelian extension of 2 to a lattice in the connected abelian
Lie subgroup of G defined by a.

Next note that a topological conjugacy between Anosov C!-actions must be
Holder continuous (this follows from H being defined globally on a compact
manifold X). Restricting the homeomorphism H to a neighborhood of the
periodic orbit x, we obtain a local Holder conjugacy between the actions of
¢o(T.) and ¢(T,) in a neighborhood of x. The Holder topological type near x of
the C'-actions of I, determines the dimensions of the expanding, contracting
and invariant weight spaces for the representations p, and p, on T, X for the
elements of 7. This suffices to determine two things: first the irreducible
summands of T, X for the representations; and secondly the maximal weight
vector in each irreducible summand, and from this, the maximal weight. It
follows that the representations have isomorphic irreducible summands and
hence are isomorphic. The fact that the intertwining operator preserves the
strongest stable direction follows, as before. O

The proof of differentiable deformation rigidity requires the rigidity of
representations under continuous deformation, which is a direct consequence of
the well-known rigidity theory of Weil ([43], [44], [45]; cf. also Chapter VI
of [38]). Let T" be a finitely generated group and G be a Lie group. Let Z(T', G)
be the set of all homomorphisms of I' in G with the topology of pointwise
convergence on a fixed set of generators of I'. A representation p € Z(I', G) is
locally rigid if the orbit of p in (T, G) under the conjugacy action of G is
open in Z(I", G). Let g denote the Lie algebra of G and Ad: G — SL(g) denote
the adjoint representation.

Tueorem 4.3 (Weil). p € R(T, G) is locally rigid if H\(T; gad.,) =0. O

Cororrary 4.4. Let T be a finitely generated group satisfying the vanishing
cohomology condition SVC(N). Then for every subgroup of finite index T c T
and any Lie group G whose Lie algebra g has dimension at most N, every point
p € AT, G) is locally rigid. a

We now apply this corollary to the case of a group action.

Cororrary 4.5. Let T be a finitely generated subgroup satisfying condition
SVC(n® — 1) and let X be a closed smooth manifold of dimension n. Given a
continuous one-parameter family of C'-actions, ¢,: T X X = Xfor 0 <t < 1, let
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x, € A, be a continuous path of fixed points for a finite-index subgroup T.. Then
the conjugacy class of the isotropy representation D, ¢,: I, - GI(T, X) is
constant. a

5. Regularity theory for trellised actions

In this section we will prove the regularity of a homeomorphism H:
X — X, conjugating two trellised Anosov actions. The following is the main
technical result from which Theorems 2.12, 2.15 and 2.19 are deduced.

Tueorem 5.1. Let X be a compact Riemannian manifold of dimension n and
let r = 1, © or w. Assume that the following data are given:

(1) Two CT-actions ¢, ¢,: I' X X = X, such that the set of periodic orbits
A, for @, is dense, and H{(T; R) = 0 for each subgroup T c T of finite index;

(2) An oriented regular trellis 7, ={F, |1 <i <n} and ¢,hyperbolic
elements y; € I' such that &, is invariant under the orientation-preserving
Anosov diffeomorphism ¢(y,);

(3) An oriented trellis 7, = {& ;|1 <i < n} such that &, is invariant
under the orientation-preserving Anosov diffeomorphism ¢ (y,);

(4) A homeomorphism H: X — X conjugating ¢, to ¢, and mapping the
trellis I, to I;

(5) For each x € A, a linear equivalence ®_: T X — Ty X between the
isotropy representations D,¢, and Dy, ¢, so that ®_ maps each one-
dimensional tangent space T, %, ; to the corresponding space Ty, ;.

Then the homeomorphism H is C'.

Remark. Conditions (2) and (3) of Theorem 5.1 require that the same
elements of I' be hyperbolic and trellis preserving for both actions, while we
only require regularity for the source trellis.

Proof. There are three steps in proving the regularity of the homeomor-
phism H:

(1) Construct a map of tangent bundles ®: TX — TX, which covers the
map H;

(2) Show that H restricted to each leaf of the trellis foliations is smooth,
with the derivative given by a scalar multiple of the restriction of ®;

(3) Invoke the web regularity theorem for smooth Anosov systems (cf.
Lemma 2.3 of [28] for the case n = 2, Theorem 2.6 of [18] for the case n > 2,
and [27] for the analytlc case) to conclude that H has the same regularity as the
actions.
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In addition, if the homeomorphism H = H, is part of a one-parameter
family, then we also will show in Proposition 5.11 that the C"™-map H, varies C°
continuously with the parameter in the C'-topology on maps.

We first require a preliminary result for Anosov diffeomorphisms that arise
from the restriction of group actions with vanishing first cohomology:

Lemwma 5.2. Let X be a closed manifold of dimensionn and let ¢: T X X - X
be a C"-action on X by orientation-preserving diffeomorphisms, for r = 1 or .
Assume that the periodic orbits of ¢ are dense and that H(T',R) = 0 for each
subgroup T C T of finite index. Then for each hyperbolic element v, €T there is
a unique C"-volume form ., on X, which has total mass 1 and is invariant
under the action of ¢(y,).

Proof. Fix a smooth volume form Q, on X. For each k € Z there is a
smooth function f, ;: X — R defined by the relation

(8) o(v*)" Q. = exp(f, 1(x)}Ql..

The functions {f, ;} satisfy the cocycle equation over the action ¢:

©)  frren(x) =f1(e(y")(x)) +f, (x)  forallk,p €Z xeX.

At a periodic point x € A with period p(x), the function k = f, ;.. (x) is
a homomorphism into the additive group R. Let T, be the isotropy subgroup of
x and recall the divergence representation Div,: I, = R at x: For each § € T,
Div,(8) = log(|det(D, ¢(8))]}. Clearly the function k = f, ;. . (x) is obtained
by restricting the divergence representation of I, to the subgroup generated by
the powers of y”®,

The hypothesis that HYT,R) = 0 implies Div, is the trivial homo-
morphism and hence that f, ;. ,.(x) = 0 at each periodic orbit x € A and each
k eZ

Now fix a hyperbolic element ). Then f, . (x) =0 for a dense set of
periodic points of the smooth Anosov diffeomorphism ¢(y,). By the Livsic
theorem ([23], [24], [28]; cf. also [8], [18]) there is a C"-function F: X — R such
that f, (x) = F(e(y,)(x)) — F(x) for all x € X. We then define a volume form
Q, = exp{—F}Q,, which is invariant for ¢(y,), by an elementary calculation.

By the theorem of Livsic and Sinai [25] there is a unique, absolutely
continuous, invariant density for ¢(y,), up to constant scalar multiples. Rescale
(), so that it has total mass one, and then it is unique. O

Let us return now to the proof of Theorem 5.1. We can assume without loss
of generality that the foliations %, ; are orientable. (There always exists a finite
cover of X so that the lift of the foliations to the cover becomes orientable, and
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there is a subgroup of finite index in I' whose action also lifts to the cover. The
hypotheses of the theorem are again satisfied for this lifted action.) For each
1 <i<nandt=0,1 choose unit vector fields X, ; on X tangent to the leaves
of &, ,. Each vector field X, ; is Holder continuous by hypothesis (2.10.3).

Next construct the map ® on tangent bundles. Fix 1 < i < n. The diffeo-
morphism ¢,(y;) preserves the foliation %, ; so that the differential Dg(y,)
maps the vector field X, ; into a multiple of itself. Moreover, by replacing each
element y; with its square y?, we can assure that De(y,)(X, ;) is a positive
multiple of X, ;. Introduce the Holder continuous cocycle u, ;: Z X X — R over
the action of ¢,(y,), defined by the relation

(10) Dq’t(yik)(xt,i(x)) = exp‘{/“l’t,i(k’ x)} ’ Xt,i(ﬁot(')’ik)(x))-
For notational convenience set x, = x and x, = H(x) for any x € X. For

x € A recall that p(x) is the least positive integer ! such that ¢(y')(x) = x for
all y eT.

Lemma 5.3. For each x € Ay, pg (p(x), xy) = py (p(x), x)).

Proof. We have y/® €T, so that D, ¢,(y!®) is linearly equivalent to
D, ¢,(y!™), and the similarity ®, sends the tangent space T, &, ; to T, & ;.
By its definition, exp{u, (p(x),x)} is the exponent of D, ¢ (y/™) in the
one-dimensional subspace T, &, ;, and the lemma follows. O

LEmma 5.4. There exists a Holder continuous, vector bundle map ®:
TX — TX covering H so that

(11) q)<p0(y)(xo) ° DxO‘PO(‘y) = Dx1¢1(7)° (I)xo fOT all Y E L.

In particular, for x € A, ®, conjugates the linear isotropy action of Dqupo(yp(x)),
restricted to the tangent space to F,, at x,, to the corresponding restricted
linear isotropy action of D, ¢ (y/™), restricted to the tangent space to &, ,
at x,.

Proof. Fix 1 < i < n. Define a Hélder continuous 1-cocycle over the action
900(71‘)3
(12) M;:Z X X - R,

M(k,x) = pyi(k, x,) = mo (k. x0).
Our hypotheses and Lemma 5.3 imply that M,(p(x),x) = 0 for all x € A. By
Lemma 5.2 there exists a C"-volume form €, which is ¢(y,;)-invariant.
Therefore by the Livsic theorem ([23], [24]) there exists a Holder continuous
function F;: X — R such that M,(k,x) = F(¢,(y,)(x)) — F(x) for all x € X,
and F, is unique up to an additive constant.



388 STEVEN HURDER

Set )ﬂ('u = exp{ —F}X,; and define the map ® by specifying it on the
frame field {X, ,,..., X, ,},

P(Xo,(x)) = il,i(H(x))’
and extending it linearly on each of the fibers of TX. The choice of F; ensures
that equation (11) holds when @ is restricted to any of the frame fields X, ; in
TX; hence it holds on all of TX. O

For each 1 <i < n and each x € X let

. R-oX

ti,x
be the smooth immersion obtained by integrating the vector field X, ; with an
initial condition ¥, (0) =x,. The image of V¥, is the stable manifold
through x,, denoted by L, ; . = X. The homeomorphism H restricted to L, .,
maps into the stable manifold L, ; , so that, composing with these coordinates,

we obtain a family of functions of one variable:

(13) H, .:R >R,
. -1 .
Hi,x(r) = (‘Ifll,xl) ° HO\I,(;,xo(r)’

A key point in the proof of Theorem 5.1 is that it suffices to show that the
restricted maps H, , are smooth, with uniform estimates on all derivatives; the
same will then hold for the restrictions of H composed with the inclusion
H, .:R - L, . C X (as a consequence of our assumption that the leaves of the
trellis foliation & ; are smoothly immersed, with uniform estimates on the
derivatives of the inclusion maps).

LemMma 5.5. Let ¢, ¢, and H satisfy the hypotheses of Theorem 5.1. Then
for all 1 <i <n and x € X the function H; , is C’, and the C'jet depends
continuously on x. If the actions ¢, and ¢, are analytic, then H; _ is analytic and
admits an analytic extension to a strip, with uniform width as a function of x.

Proof. The proof is an adaptation with a few technical modifications of the
proof of Theorem 2 in [29]. We indicate the steps and necessary modifications,
and leave the remaining details to the reader. First observe the following:

LemMa 5.6. There exists a nonzero integer k; so that the restriction of
Do y") to the tangential distribution T, ; is uniformly contracting.

Proof. For t =0 or 1, ¢,(y,) is Anosov, so there is a dichotomy: an
invariant one-dimensional distribution E C TX for the diffecomorphism must be
contained either in the expanding subbundle E;*; of ¢,(;) or in the contracting
subbundle E; ;. In particular T.%, ; must be a subbundle of either E;"; or E ;.
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Choose k; >0 if TS, CEy;, and k; <0 if T, C Ej,, with |k,]
sufficiently large so that, for both t =0 and t =1, De/(y,) is uniformly
contracting on E; and D¢/(y,) is uniformly expanding on E;. For ¢t = 0 this
implies the claim of the lemma.

For ¢t = 1 note that H conjugates the leaves of the foliation & ; to those of
F1; so that @o(v¥) uniformly contracting on the leaves of &,.; implies the
same holds (topologically) for ¢ (y*) on &, ;- Hence the sign of k; is also
correct for ¢ = 1. , O

We next show that the function H; , is C" with uniform estimates in the
C’-norm.

The first step is to show that the maps H, . are uniformly Lipshitz. Apply
the lemma (p. 187, [29)]) to the trellis foliation % ; to obtain a homeomorphism
H, which is C°close to H and maps the foliation Fo.; to &, and which is
uniformly monotone increasing and C” along the foliation % ,. Introduce
corresponding coordinate maps H; ,. We show that the composition H; !« H,
is uniformly Lipshitz, and our claim for H; , follows.

The argument at the top of page 188, [29] requires only that %, be an
invariant, uniformly contracted, one-dimensional foliation for the Anosov map
¢(y,); so it also proves the following lemma:

LEmMmaA 5.7.
(14) H™'oH = lim {cpoytOﬁ_locpl)_tOH'}. O
t—

o

The existence of a Holder continuous, tangent-bundle map ®, intertwining
the (uniformly contracting) linear actions of ¢,(yf?) on the leaves of %, for
t = 0,1, allows us to make uniform estimates on the derivatives of the restric-
tions of the compositions ¢, ,c H 'ep, _, o H to the leaves of .+ These
uniform estimates and the uniform convergence in (14) above imply that
H;!eH, . is a Lipshitz map (cf. pp. 188-9, [29).

A Lipshitz continuous map has a derivative almost everywhere, and the
derivatives of the maps H; , form a 1-coboundary for the differential 1-cocycle
M defined in equation (12) over the Anosov map ¢,(y}:). The absolute continu-
ity of the foliation &%, implies that the coboundary is defined almost every-
where for the standard Lebesgue measure on X. Then by the measurable Livsic
theorem ([23], [24]) the derivatives of the Lipshitz maps H, . exist everywhere
(cf. Theorem 3, [26]; and also the proof of Proposition 6.3, [18]) with uniform
estimates on their norms.

When r > 1, we next apply the standard “bootstrap” technique (cf. Lemma
2.2, [28] and Theorem 1, [26]) to the derivative of H; . along &, to deduce
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that the function H;, must be C". This step in the argument works for any
1<r<oo

For the case r = w we are given that the actions ¢, are analytic and that
the associated trellises are real analytic. Then the coordinate maps ¥, , |
uniformly analytic. We modify the bootstrap method to include radius-of-conver-
gence estimates. (This approach is worked out in detail in the proof of Theorem
2, [27]) This yields uniform estimates on the rate of decay of the Fourier
coefficients for the smooth functions H; ., with the conclusion that each function

H; , extends to an analytic function in a uniform strip (cf. §3, [27]). O

are

ProrosiTion 5.8. Let ¢, and H satisfy the hypotheses of Theorem 5.1. Then
H is a C*-diffeomorphism. If the actions ¢, are analytic, then H is a real analytic
diffeomorphism.

Proof. Theorem 2.3 of [28] characterizes the smooth functions on an open
set by their restrictions to a pair of transverse foliations satisfying a regularity
hypothesis: The smooth functions are precisely those functions whose restric-
tions to individual leaves are uniformly smooth. The web regularity theorem,
Theorem 2.6 of [18], reproves this theorem by elementary methods of Fourier
series and also extends the characterization of smooth functions to include
restrictions to multiple transverse foliations. The regular trellis 7, associated to
the action ¢, exactly satisfies the necessary foliation regularity hypotheses to
apply Theorem 2.6, [18].

Lemma 5.5 establishes that H restricts to uniformly smooth functions on
leaves of the trellis foliations % ;. Thus H is locally smooth on X and hence is
smooth.

We have used so far only that the trellis 7, is regular to obtain that H is
smooth. We prove that H™! is smooth without a regularity assumption of the
trellis 7, via a technical observation:

Lemwma 5.9. The tangent bundle maps ® and DH agree up to fiberwise-scale
factors {C,, ..., C,}, which are constant on X.

Proof. With the notation of Lemma 5.4 let XAU = DH(X, ;). Then there
exist functions F, on X so that )21,1. = exp{E} - X, ;> and hence F, is also a
coboundary for the cocycle M;. By uniqueness of solutions there exist constants
¢; so that E, = F, + ¢,. Introduce the tangent bundle map C: TX — TX, which
on the typical fiber T, X acts on X, ,(x) by multiplication by C, = exp{c,}. We
then have DH = C- ®. O

Lemma 5.9 implies that DH is uniformly injective, as ® is injective. It
follows that H™! is also a C'-diffeomorphism; hence H is C” implies that H is a-
C’-diffeomorphism.
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The analytic case of Proposition 5.8 follows from the analytic extension of
the web regularity theorem. The Fourier series method of [18] is used by
R. de la Llavé in [27] to characterize the real analytic functions as those
functions which are (locally) uniformly real analytic when restricted to the
individual leaves of a foliation whose leaves are analytically immersed submani-
folds, with appropriate transversal hypotheses. The proof in [27] is only for a pair
of foliations, but the method extends directly to the case of multiple transverse
foliations. We then apply the analytic conclusion of Lemma 5.5 to obtain that H
is a real analytic diffeomorphism (cf. §3, [27]). |

Proof of Theorem 2.12. We apply Theorem 5.1 to the topological conjuga-
cies H,, which are given between the trellised action ¢, and the actions ¢,, for
0 <t <eé&. The condition SVC(n®> — 1) on I' implies the vanishing of the
cohomology groups H'(T'; R). The Weil rigidity theorem, as applied in Corollary
4.5, implies that the isotropy representations at x € A are independent of ¢ up
to a linear isomorphism of tangent spaces, which yields hypothesis (5) of
Theorem 5.1. Thus by this theorem we have each H, is C". The C°-dependence
of H, on t in the C'topology follows from Proposition 5.11 below.

Proof of Theorem 2.15. We apply Theorem 5.1 to the topological conjugacy
H between the trellised action ¢, and the action ¢,, and we need to verify
hypotheses (1) and (5). First observe:

Lemma 5.10. Assume that T is topologically determined in dimension
N > 1. Then for every subgroup T' C T of finite index, H((T; R) = 0.

Proof. If H (T, R) # 0, then there exists a nontrivial representation I' = R
with discrete image, which induces a hyperbolic action on the line. The
topological type of a discrete hyperbolic action on R does not determine the
exponent of the action, which yields a contradiction. a

Next observe that, at each periodic point x € A for the action ¢, = ¢, the
representations of the isotropy group I', on R" are topologically determined.
Moreover we are given that H conjugates the action ¢(I’,) to the action ¢(T,)
in a neighborhood of x. The trellis structure on each action implies these are
hyperbolic representations; therefore the isotropy representations D, ¢,: I', —
GL(n,R) are linearly conjugate, which establishes (5). Theorem 2.15 now
follows.

The last result of this section addresses the regularity of an &-C* -deforma-
tion {¢,|0 <t < 1} of a trellised action, which is assumed to be topologically
trivial by a continuous family of homeomorphisms {H,/0 <t < 1}. We have
established in Theorem 5.1 that the conjugating map H, is C”" for each
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0 <t < &. Let Maps'(X) denote the set of C"-maps of X to itself, endowed with
the C'-Frechet topology.

ProrosiTioN 5.11. Let {¢,|0 <t < 1} be a C*'-family of Anosov actions,
with ¢, trellised. Suppose that {H,|0 < t < 1} satisfies the conjugating equation
(5) with each map H, a C"-diffeomorphism for r > 1. Suppose also that the image
trellis 7,, whose foliations {F, ;} are the push-forward of the foliations {F, ;} of
the trellis 7, has leaves that vary C° continuously with the parameter t in the
C'-topology on immersions. Then the curve

H:[0,1] - Maps(X); ¢t = H,
is continuous.

Proof. Fix a C’-Riemannian metric on TX and define the vector fields X, ;
for all 0 <t <& as the unit, positively oriented, tangent field to the trellis
foliation %, ;. The hypothesis on the trellises implies that these vector fields
depend contmuously on t in the C'topology. Define vector fields Xt . = DH/(X))
and 1ntr0duce the corresponding scale functions 13"\“ such that )2“. =
exp{ —F, }X, ;, as in the proof of Lemma 5.4.

The differential DH, is completely determined by the functions F, , and
the vector fields X, ;; so the claim for [ =1 follows by showing that the
functions Ft . depend continuously on t in the C'-topology. Each function Ft ;
solves the t-dependent cocycle equation (12), for M, (k,x) = u, (k,x,) —
o ik, x,). The family of diffeomorphisms ¢,(y,) varies C° continuously with ¢
in the C’-topology by hypothesis; hence in the direction of X, ;, the expansion
function exp(u, ,(k,x,)) and the difference of the exponents M, , depend
continuously on ¢ in the C'-topology. By Livsic theory, the solution functlon Ft ;
will vary C° continuously with ¢ in the C'-topology (cf. Theorem 2.2 of [28])
when [ =1 or | = o,

The proof that H, is C®! is more delicate. First note that the functions of
one variable H, ; , defined in (13) have derivatives determined by the restric-
tions of 15'\“. and therefore vary C° continuously with the parameter ¢ in the
C'-topology. For I = 1 we are then done. For [ = » note that the proofs of the
regularity results (Theorem 2.3, [28] and Theorem 2.6, [18]) give explicit control
over the local Fourier transforms of H, in terms of the Fourier transforms of the

functions H on the line. As the latter data depend continuously on the

t i, x
parameter, the local Fourier transforms of H, vary continuously with ¢ in
the Schwartz topology. We obtain that H, varies C** with ¢t by the Fourier
inversion formula.

The cases 1 <1 < o are excluded above, but the reader can now see the

nature of the extension to these intermediate cases. The point is that we obtain
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continuous control in ¢ on the local Fourier transforms of H, in the I-Schwartz
norms. Applying the inverse Fourier transform yields only that H, varies C*'~”
with ¢ for some 0 < v < n. a

6. Differential rigidity for Cartan actions

The classification of Cartan C"-actions on a closed manifold X of dimension
n > 2 is a special case of the problem of classifying the centralizers of Anosov
C"-diffeomorphisms (cf. [35], [36]). We give the proofs of Theorems 2.19 and
2.21 in this section, which show that volume-preserving Cartan actions can be
classified by their linear isotropy data at periodic orbits. Cartan actions thus
admit a complete generalization of the smooth stability and rigidity theory for
a single Anosov diffeomorphism of T2, developed in a series of papers by
R. de la Llavé, J. M. Marco and R. Moriyon ([26], [27], [29], [28], [31], [32]).

The results of this section do not give the definitive classification of Cartan
C’-actions (except possibly in the case of constant exponents), and it remains an
interesting problem to develop moduli for them. For example, the classification
of a single, volume-preserving, Anosov diffeomorphism of T2 was investigated
by S. Hurder and A. Katok [18], where the Anosov class of a codimension-one
Anosov diffeomorphism of T? was introduced. This is a cohomology invariant of
the action, constructed as an obstacle to the differentiability of the stable and
unstable foliations of the given Anosov diffeomorphism. It provides a very
effective parameter on the space of volume-preserving Anosov diffeomorphisms
on T2, The study of the regularity of the invariant foliations for a Cartan action
on T" for n > 2 is expected similarly to yield cohomology invariants, which are
effective for the C’-classification of Cartan actions.

We first establish that a Cartan C*-action, which is “volume preserving” at
periodic points, always preserves a smooth volume form. Hence by Moser’s
theorem [34] such an action can be assumed to preserve (up to smooth
conjugacy) the “standard” smooth volume form on X.

Theorem 2.16 is a key technical result and is proven next, establishing that
a Cartan action always preserves a (not necessarily regular) trellis.

Theorem 2.19 states that a smooth Cartan action on X is determined by the
exponents of the group action at periodic orbits. Equivalently by the Livsic
theorem ([23], [24]) the cohomology class of the diagonal exponent 1-cocycle
Dp: /X X > R"® -+ & R also parametrizes the smooth Cartan actions.
This is proven next. Moreover a C®!-deformation of a Cartan action, whose
exponents at periodic orbits are independent of ¢, is implemented by conjugat-
ing with a C%!-path of diffeomorphisms. A similar result holds for C® *-deforma-
tions.
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We finally consider Cartan actions with constant exponents and show that
they must be algebraic. This is a critical ingredient for establishing perturbation
rigidity of Cartan lattice actions.

The first result extends Lemma 5.2 to Cartan actions:

Lemma 6.1. Let ¢: &/ X X — X be a Cartan C"-action with dense periodic
orbits, for r = 1,0. Assume that for each periodic orbit x € A the divergence
homomorphism

Div_: I, - R,
Div, (8) = log{|det(D,¢(5))|},

is trivial. Then there exists a unique C"-volume form Q on X of total mass 1,
which is invariant for the action ¢.

Proof. Fix a hyperbolic element y € &7. By the proof of Lemma 5.2 there
is a unique invariant C”-volume form Qy of total mass 1, which is invariant
under ¢(7y). For each 8§ € & the volume form ¢(8)*(2, is again ¢(7y)-invariant
and so must equal (1,. m]

Proof of Theorem 2.16. Assume that we are given a Cartan C’-action
¢: F'X X — X, with hyperbolic generating set A ={§,,...,8,}. The stable
manifold theory of Hirsch and Pugh ([12]; see also [39]) implies that each leaf of
the one-dimensional, strongest stable foliation %,*° is a C"-immersed submani-
fold of X, and the immersion depends continuously on the point in X. We have
assumed that the strongest stable foliations are pairwise transverse; so this shows
that the collection 9 = {F*,..., & *} is a C'-trellis on X.

Let ¢: &/X T" = T" be a maximal Cartan C"-action. Anosov proved that
the stable foliation of an Anosov diffeomorphism is absolutely continuous ([2],
[1]; a more detailed proof following Anosov’s ideas is given in Lemma 2.5, [28]).
Thus the collection I of stable foliations of the Anosov maps {¢(7,)} is a regular
C’-trellis on X.

The third part of Theorem 2.16 follows from the next lemma:

Lemma 6.2. Let (¢, A) be a smooth Cartan CT-action for r > 3, which
leaves invariant a smooth volume form Q on T". Then for each 1 <i < n the
stable foliation &, is C** for some a > 0.

1

Proof. By Moser’s theorem [34] we can assume without loss of generality
that () is the standard volume form for the euclidean metric on T". Let %, be
the stable foliation of the Anosov diffeomorphism ¢(8,). Choose a (continuous)
Riemannian metric on TT" so that the foliations &, are pairwise orthogonal,
the volume form of the new metric is the standard volume form on T" and the
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Anosov condition (3) holds for ¢ = 1 and A = 1/u. Let X’ be the correspond-
ing oriented, unit, tangent vector field to &%,. For any point x € T" let
~ py(x) = u(8;, x) denote the exponent of ¢(8,) at x for the action on &. Then

pi(x) <0< pi(x), 2<i<n,

0=py(x) + - +p,(x),

which together imply that —pu,(x) > p,(x) > 0 for all 2 < i < n, uniformly in
x. Thus there exists some a; > 0 so that the flow is «;-spread in the sense of
Definition 1.1 (Hasselblatt, [11]). The stable foliation regularity theory of
Theorem I ([11]) implies that the foliation is C*“. The same will hold for all
1 < i < n by the same method, and we take « to be the infimum of the a;. O

Proof of Theorem 2.19. Recall that, for this, we are given two volume-
preserving Cartan C"-actions (¢,, A) and (¢,, A) on a closed manifold X, for
r = 1 or , with ¢, a trellised action preserving the regular trellis 7. For each
¥; € A the Anosov diffeomorphism ¢(y;) is volume preserving and hence is
transitive. We deduce that the set of periodic orbits for ¢(y,) is dense, and as
& is abelian, the set A of periodic orbits for the full action ¢(&7) must be
dense.

It is also given that

(1) H: X — X is a homeomorphism conjugating ¢, to ¢,;

(2) ¢,(8,) is Anosov for each 1 <i < n;

(3) for all 1 <i <n and for each x € A(¢,) the maximally contracting
exponent of D, ¢,(8,) equals the maximally contracting exponent of Dy .,¢,(8,).

We apply the method of proof of Theorem 5.1 to deduce that H is C”. First
we note that an invariant volume form is given for the action ¢, so that we
obtain the conclusion of Lemma 5.2 automatically.

The action of ¢, is Cartan; so by Theorem 2.16 there is a C'-trellis Z, on
X, which is invariant under the action of ¢(&7). By passing to covers, we can
assume without loss of generality that the trellises 7, and J, are oriented.

Hypothesis (5) of Theorem 5.1 on the linear isotropy representations was
used to identify the exponents along the strong stable foliations at fixed points
for the action of the elements of A. This conclusion is part of the given data (see
2.19.3).

The regularity of H now follows by the same proof as that given for
Theorem 5.1. It remains to note that we can apply the method of proof of
Proposition 5.11 to obtain the C*-dependence of H, on the parameter t¢. a

Proof of Theorem 2.21. We formulate the proof for a Cartan action on an
infra-nilmanifold X. It is only at the last step that we require X = T".
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Let (¢, A) be a Cartan C’-action on an infra-nilmanifold X. Manning [30]
proved that an Anosov C'-diffeomorphism of an infra-nilmanifold has a dense
nonwandering set and hence, by the Anosov closing lemma, has dense periodic
orbits. It follows that the abelian group ¢(&7) also acts with dense periodic
orbits. We then make an elementary observation.

LEmMA 6.3. A Cartan action on an infra-nilmanifold with constant expo-
nents preserves a smooth volume form.

Proof. The sum of the exponents for each § € & is constant after scaling
by the reciprocal of the length of an orbit. The proof of Lemma 5.2 (which uses
Livsic’s theorem and thus requires that the periodic orbits be dense) shows that
there is a volume form € on X, which is uniformly expanded by the exponential
of this average sum of exponents. As a diffeomorphism must preserve the total
volume, the sum of the exponents must be zero. We then apply Lemma 5.2 to
obtain the invariant volume form (. O

Proposition 2.18 implies that there is a subgroup &7C & of finite index,
generated by the set A?, so that the restricted action ¢|&7 is topologically
conjugate, via a homeomorphism H, to a linear action ¢, on X, which is
determined by the action ¢,: A% m(X) = 7(X) induced from ¢.

The Cartan action ¢ has an invariant trellis (which need not be regular); via
the topological conjugacy H, we obtain a “topological trellis” on X, which is
invariant under the linear action ¢ (7). As (¢, A?) is an abelian linear action
with constant exponents, the existence of a topological trellis, which is invariant
under~¢*(M ), implies there exists a linear (hence regular!) trellis, which is
¢ + (& )-invariant. Thus the action ¢, is trellised.

It remains to show that the exponents of the action ¢ at periodic orbits
x, € A equal the exponents at the periodic orbits A, = H(A) for the algebraic
action ¢,. We can then invoke Theorem 2.19 to conclude that H is a
C"-conjugacy. '

We restrict ourselves now to the case where X = T". Corresponding to
each one-dimensional foliation % of the trellis J, for ¢ is an asymptotic,
nonzero, one-dimensional homology class [C;,] € H(T"; R). The induced action
of ¢ on homology defines a “homology expansion rate” for each a € &7, given
by ¢4 (a)[C,] = A,(a)[C,]. The homology expansion rates form a homomorphism
X: &> R*® -+ @ R*. This homomorphism is clearly a homeomorphism
invariant of the action ¢ so that the linear action ¢, has the same exponent
function (this is actually a tautological fact).

Lemma 64. Let x4 € Ay and let &7, be the isotropy subgroup for
¢y at x,. Then the restriction of the linear isotropy representation
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D, ¢y: &, — R'® - & R" equals the restriction of the homology homo-
morphism A: &, —>R'®- - ®R"

Proof. The action ¢, is linear, so its exponents at a periodic orbit equal its
expansion rate along an integral curve through the orbit and hence its homology
expansion rates. O

Lemma 6.5. Let x € A and let o7, be the isotropy subgroup for ¢ at x.
Then the restriction of the linear isotropy representation
De¢: o ->R"'® --- ® R*
equals the restriction of the homology homomorphism

i o/ >R*® - @ R™.

Proof. It is given that the restriction D ¢: &, > R*® - & R" is inde-
pendent of the point x € A (up to congruence equivalence of subgroups of &),
so we must establish the seemingly obvious, except that an application of the
Livsic theorem is required to prove it.

Use the technique in the proof of Proposition 5.1 (hence the Livsic
theorem) to continuously parametrize the line fields T.%, so that the differential
D¢ acts via a constant scale multiplier in each strong-stable manifold. Let X, be
the oriented unit vector fields for this parametrization, with X, tangent to %..
Each integral curve for X, defines an asymptotic cycle in the class of [C,]; so we
can use this cycle to determine the homology expansion rate of an element
a € .. Since we have linearized the action of ¢(a) along %, the exponents at
a periodic point x determine the expansion rates of the integral curves through

this point and thus the expansion rate on homology. a

We have now shown that H conjugates the action ¢|.27 to a linear action.
The full action of &7 commutes with the subgroup action and so must be affine
in the coordinates provided by H.

7. Applications and examples

The purpose of this section is to discuss some of the examples of algebraic
lattice group actions, which are rigid by the theorems of the previous sections.
The list is not exhaustive, but it is sufficient to give the reader an idea of the
available constructions. We discuss in each case the applications of the theorems
of Section 2, as to whether the actions are topologically deformation rigid,
C’-deformation rigid or C’-rigid for r = 1,%, w. Theorems 1.1, 1.2 and 1.3 of
the Introduction follow from the lemmas and discussion of this section.

We start with the central example of integer matrices acting on the torus.
The constructions of the congruence filtration of the periodic orbits are com-
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pletely natural in this context, and there are several elementary observations that
apply in full generality to all of the arithmetic examples discussed afterwards.

The second class of examples presented is the subgroups of the integer
symplectic matrices. These lattices always contain Cartan subgroups whose
standard action is Cartan.

Weyl’s restriction-of-scalars technique gives a third construction of basic
examples. The issue with these examples is to obtain the Anosov condition; if the
standard action of such a lattice is Anosov, then it will also be Cartan.

The three basic classes of examples can be combined via the constructions
of geometric sums, products, diagonal actions and what we will call arithmetic
products (see Example 7.20) to obtain many examples that are C"-deformation
rigid by Theorems 2.9 and 2.12 (e.g., the tensor product examples and the
diagonal actions); the remainder are C’-rigid by Theorem 2.22.

The last example of this section gives a construction of an analytic deforma-
tion of the standard action of SL(2,Z) on the 2-torus, which is not topologically
trivial. Thus the standard action of SI(2,Z) is not topologically rigid for n = 2.

We begin by recalling some standard facts regarding lattices. The funda-
mental result on the existence of lattices is due to Borel and Harish—Chandra
([4]; cf. also Ch. X1V, [38).

Tueorem 7.1 (Borel-Harish-Chandra). Let G € SL(N, C) be a semisimple
algebraic group defined over Q. Then the group of integer points G is a lattice
in the group of real points Gg. a

The group I = G, preserves the integer lattice in RN and so descends to a
standard action on TY.

The Margulis vanishing theorem (Theorem 2.8) discussed in Section 2
implies that SVC(N) holds for all N > 1 for every subgroup I' C G, of finite
index, where G is as in Theorem 7.1, (Gg), has no compact factors and Gy has
R-split rank at least 2. Applying Theorem 2.9 to a standard action requires only
this and the existence of at least one hyperbolic element in T

Theorems 2.15 and 2.22 require the additional data of a Cartan subaction,
which for a standard action require a commuting subset A C I' of hyperbolic
elements with one-dimensional maximal eigenspaces. The existence of these
subgroups for any I' € SL(n,Z) of finite index can be shown by number-
theoretic methods. However there is a much more powerful existence theorem,
which applies to every subgroup I' € G, of finite index, due to G. Prasad and
M. S. Raghunathan (Theorem 2.8 and Corollary 2.9, [37]):

TueoreMm 7.2 (Prasad—Raghunathan). Let G be a semisimple analytic Lie
group and T be a lattice in G. Let H be a Cartan subgroup of G; then there exists
g € G such that T, = T N g~ 'Hg is a uniform lattice in g~ 'Hg.
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If G is a semisimple linear group with no compact factors, then we can
apply Theorem 7.2 for H a maximal R-split torus to conclude that a lattice ' in
G always contains a free abelian subgroup & of rank equal to the rank of G
such that the generators of &7 are represented by commuting hyperbolic
elements that can be made diagonal. We call the resulting subgroup I'; a Cartan
subgroup for T. The standard action of T on T will be a Cartan action if the
Lie group H can simultaneously be made diagonal by a basis {v,, ..., vy} of RY
so that each v, is the (unique up to scalar multiples) maximal eigenvector for
some g; € H. This is a Lie algebraic question, which can be easily determined
in all examples.

Example 7.3 (SL(n,Z)). Let Z/pZ denote the finite cyclic group of order
p. Reducing the entries mod (p) defines a natural quotient homomorphism of
groups SL(n,Z) — SL(n,Z/pZ) whose kernel f'p is called the p-congruence
subgroup. It is clearly of finite index. For any subgroup I' € SL(n, Z) we call the
sequence of normal subgroups formed by the intersections I, = (I' N f'p) the
congruence fultration of I'. Technically these do not form a filtration of T, as
they are not successively included into each other. To obtain a filtration, as
defined in Section 3, we can take the subsequence {FP,Ip =12 ...}

Let Z" C R" be the standard embedding, which is an SL(n,Z)-invariant
lattice. For each integer p > 0 introduce the lattice ((1/p)Z)", characterized by
the property that

1 n
v e (—Z) o pov e Z".
p

Each lattice descends to a finite subgroup of the torus ((1/p)Z)"/(Z)" € T". Let
(Q/Z)" denote the rational torus in T". The following is an easy exercise, left to
the reader:

Lemma 7.4. Let T' € SL(n, Z) contain a hyperbolic element for the standard
action of T on T™.

(1) The periodic points of the standard action of T are A = (Q/Z)" and
hence are dense;

(2) the fixed-point set A, for the congruence filtration subgroup T, contains
the p-torus ((1/p)Z)"/(Z)" C T"; for the full congruence subgroup f'p it is
exactly the p-torus ((1/p)Z)" /(Z)" C T™. O

For a subgroup I' € SL(n,Z) of finite index for n > 3, the Margulis
vanishing theorem (Theorem 2.8) implies that SVC(N) holds for all N > 1.
Theorem 2.9 therefore applies to the standard action of I' to show that it is
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topologically deformation rigid. For C"-rigidity we require the additional data of
an invariant regular trellis:

Lemma 7.5. Let T C SL(n,Z) be a subgroup of finite index. Then there is a
subset of commuting hyperbolic elements A CT so that each y, € A has a
one-dimensional contracting eigenspace E, C R" with internal direct sum
E, ® -+ ® E, = R". Consequently the standard action of I' on T" is maximal
Cartan.

Proof. Let &/CT be a Cartan subgroup obtained from the Prasad-
Raghunathan theorem. The Zariski closure of &7 in SL(n,R) is isomorphic to a
rank (n — 1) subgroup of a “diagonal” subgroup R*@® --- & R*C SL(n,R) of
rank (n — 1). Via the logarithm map applied to the diagonal entries we identify
&/ with an additive lattice in the codimension-1 subspace of R" consisting of
vectors whose coordinate sum is zero. For each 1 <i < n this hyperplane
intersects the sector of R", where x; < 0 and the other coordinates of R" are
positive. By the Zariski dense condition there is an element 7y, € & whose
image is in this sector. From the definitions we see that vy, is a matrix that can
be made diagonal with exactly one contracting eigendirection, and all other
eigendirections expanding. The collection of these elements forms the set A. O

Combining the above remarks with Lemmas 7.4 and 7.5, we conclude that
the standard action of a subgroup of finite index of SL(n,Z) on T", for n > 3, is
CT-rigid for r = 1, © and w.

Example 7.6 (Sp(n,Z)). The previous example of SL(n,Z) corresponds to
the “A” series of simple Lie groups. There are corresponding Anosov actions for
the symplectic groups, or the “C” series. The rigidity of the standard action of
one Anosov element in Sp(2, Z) was studied in [6].

Lemma 7.7. Letn > 1 and let T € Sp(n,Z) € SL(2n,Z) be a subgroup of
finite index. Then the standard action of T on T*" is Anosov.

Proof. The real Lie group Sp(n,R) contains a Cartan subgroup H with a
noncompact factor whose Lie algebra has a basis of n semisimple hyperbolic
elements (as matrices in SL(2n,R)). Theorem 7.2 states that I' intersects a
translate of H in a cocompact subgroup; so I' must contain a hyperbolic element
for the standard action on R%" and hence on T>". ]

This lemma suffices to establish the topological deformation rigidity of the
standard action for n > 2. Differential rigidity will follow by showing that the
action is also Cartan with invariant linear foliations, and hence that the action is
C-trellised.
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Lemmva 7.8. Let n > 1 and let T C Sp(n,Z) be a subgroup of finite index.
Then there exist commuting matrices 8,,...,8, € I such that the set A =
{6,,87%,...,8,,8, "} generates an abelian subgroup & whose standard action

on T2" is trellised.

Proof. There exists a Cartan subgroup &/C I by the Prasad—Raghunathan
theorem, and we can assume without loss of generality that the eigenvalues of
the elements of &7 are all positive. The algebraic hull of &7 will be an
n-dimensional, “diagonal,” R-split, Cartan, connected subgroup € C Sp(n, R).
The subgroup ¢ is identified (via the logarithm map followed by a symplecto-
morphism) with the maximal Lagrangian subspace

L={(xy, x5 %, —x,)|(x),...,x,) € R"} c R*".

The pairing of the coordinates corresponds to the fact that the eigenvectors for a
symplectic semisimple hyperbolic matrix are naturally paired by the invariant
symplectic form.

The algebra &7 maps to a lattice & in _#. Therefore we can choose
8, € & whose image in &7 has coordinates satisfying x,(8,) < x(8,) < 0 for all
J # i. The matrix §; has a one-dimensional, maximal contracting eigenspace, and
the same holds for its inverse. The set of maximal eigendirections for the
collection A is the same as the basis making the algebra &/ diagonal; so we
obtain a linear trellis, which is invariant for the standard action of &7, O

Example 7.9 (SL(n, £(k))). Let k C R be an algebraic number field of
degree d over Q, let Z(k) be the ring of integers for the field and let
SL(n, &(k)) be the subgroup of SL(n,k) with entries from &(k). The restric-
tion-of-scalars technique of Weil yields a wide range of lattice actions.

Proposition 7.10. For n > 2 and T C SL(n, &(k)) a subgroup of finite
index,

(1) there exists an analytic “standard” action of T on T, and

(2) if the group Gy = R, ,o(SL(n,R))y of real points (for the group G
obtained by the restriction of scalars) has no compact factors, then the standard
action of T is Anosov.

Proof (cf. pp. 115-6, [48]). Let {0, ..., o} be distinct field embeddings of
k into R with o, the identity inclusion. Each embedding o, defines a map
o": k" = R", and so we get a Q-linear map
o": k" - R,
o"(w) = (oy(w), ..., 0y(w)),

whose extension to R over Q is an isomorphism. This induces an isomorphism of
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SL(n, k) with an algebraic subgroup G C SL(dn, R), which is defined over Q.
The image of the group SL(n, £/(k)) is then seen to equal the integral points G,
of G. We define the standard action of SL(n, #(k)) on T9" via this embedding.

The group G defined over k is equal to the product of the embeddings

G% = 0,(SL(n, k)), and the set of real points has a similar product structure
d

(15) Gg = [ (G

i=1

The image of o™(I') C Gy is a lattice by Weil's theory of the restriction of
scalars so that if no factor (G %)y is compact, then we can find a Cartan subgroup
for Gy containing a hyperbolic element for the standard action. Then by
Theorem 7.2 of Prasad and Raghunathan the image of I' will contain a
hyperbolic element. |

The usual application of Weil's restriction-of-scalars theory is to produce
cocompact lattices in an arithmetic Lie group (cf. Ex. 6.1.5, [48], or
p. 216, [38]). In these constructions the field extension has degree 2, with (G”)g
isomorphic to (SL(n, k))x and (G)g isomorphic to a compact Lie group. These
examples do not give Anosov standard actions.

CoroLLARY 7.11. Letn > 3 and let k be an algebraic number field of degree
d over Q such that the group R, ,o(SL(n,k))g has no compact factor. For any
subgroup T C SL(n, &#(K)) of finite index the standard action of T on T is
C’-rigid for r = 1,0, .

Proof. The action has dense periodic orbits, by Lemma 7.4, and is Anosov
by Proposition 7.10. The product IT% (G%) of (15) has R-rank d(n — 1), as no
factor is compact; and by the Prasad—Raghunathan theorem there is a Cartan
subalgebra &7C T'. The standard action of & on T9" is Cartan with linear
trellising, as this is true for each of the real Cartan Lie algebras in the
factorization (15) (cf. the next example). We can thus apply all of the results of
Section 2 in this case; in particular, by Theorem 2.22, the standard action is
CT-rigid. a

Example 7.12 (Geometric sums and products). Let {¢;: [, X X; = X;[1 <
i < d} be given C"-actions. Then the direct product action of ' =T’} X - -+ X T},
on X = X, X --- X X, is obtained by letting the subgroup I act on the factor

X, via ¢, and via the identity on X; for j # i, and then extending to all of I via

1

products.

LemMma 7.13. Suppose that each action ¢, for 1 < i < d is Anosov (respec-
tively, trellised and Cartan). Then the direct product action ¢: I' X X — X is
Anosov (respectively, trellised and Cartan).
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Proof. For each 1 <i < d choose a ¢;-hyperbolic element vy, € I, Then
¥ = (yy,...,7v,) is hyperbolic for ¢, as the product of Anosov diffeomorphisms
is Anosov.

If the action ¢, is trellised, then for each foliation %, ; of the trellis &;

there is a hyperbolic element vy, ; € T; whose action leaves %, ; invariant. We

define a foliation .97: ; on the product space X whose leaves are one-
dimensional and obtained by taking thg product of those of &, ; with the point
foliations on the other factors. Then %, ; is invariant for any extension ¥, ; of
¥,; to an Anosov diffeomorphism of X via products, as before. Note that if %
is the strongest stable foliation of 7, ;, then it remains so for positive powers
y?,;. By choosing a sufficiently large power p =p, ;, we can ensure that the

extended foliation %, ; is the strongest stable foliation for the hyperbolic

~

element ¥, ;. The collection of all such foliations I = {#,. ;} forms a trellis for
the product space X, which is invariant for the set of Anosov extensions {7, j}.

Finally the Anosov elements A; in a Cartan action for ¢ commute, and
their extensions A can be chosen to commute, yielding a collection of commut-
ing elements A=A, U --- U Ad, which preserves the trellis 7. By the
previous remark we can chose each ¥, ; so that 9," ; 1s its strongest stable
foliation; hence the product action ¢ is Cartan. a

Cororrary 7.14. For 1 <i <d let T, C SW(n;Z) be isomorphic to a
higher rank lattice and so that the standard action ¢;: I; X T" — T" is Cartan
with linear trellising. Then the product action ¢ = ¢, X +++ X ¢, on T" =
T™ X «++ X T" js C"-rigid for r = 1,0, w.

Proof. The product action is Cartan by Lemma 7.13, and an Anosov action
of a product of higher rank lattices satisfies Zimmer’s super-rigidity theorem
(Theorem 2.2, [47]). We can then apply our Theorem 2.22 to obtain the
conclusion. m]

Theorem 1.3 of the Introduction is deduced by applying Corollary 7.14 to
Examples 7.3 and 7.6. Note that an explicit construction of Anosov arithmetic
examples, as discussed in Example 7.9, would greatly extend the list in
Theorem 1.3.

Suppose that each space X; = T"™ for integers n; > 2, and I C
SL(n;, Z). The geometric tensor product of the standard actions
{p;: T, X T" — T"™|1 < i < d} is obtained by taking the induced action of the
lattices T; on the tensor product R™ ® - -+ ® R" and observing that this

preserves the tensor product lattice Z™ ® -+ ® Z"i. We obtain the tensor
product action ¢ of ' =T, X -+ X [, on TV, where N = n,...n,.
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Lemma 7.15. Suppose that each action ¢; for 1 <i < d is Anosov (respec-
tively, trellised). Then the tensor product action ¢: T X TN — TY is Anosov
(respectively, trellised).

Proof. The proof is virtually identical to that of Lemma 7.13. We need only
note that the exponent spectrum of a product element ylr X oo Xyl is the
sum of the exponent spectrum of the individual factors (in contrast to the direct
product case, where the spectrum is the union). Thus by varying the choices of
the factors y; and the powers p,, we can obtain one-dimensional, contracting
eigenspaces, which span RY. |

Remark. Note that a tensor product action will never be a Cartan action, as
it is impossible to have a basis of maximally contracting eigenspaces.

Cororrary 7.16. For 1 <i <d let T, C SL(n,;,Z) be isomorphic to a
higher rank lattice and so that the standard action ¢;: T, X T™ — T" is linearly
trellised. Then the tensor product action ¢ = ¢, ® -+ ® ¢, on TV, for N =
n, ' ng, is C*"-deformation rigid for r = 1, », w. a

Example 7.17 (Diagonal actions). The d-fold diagonal action of an action
¢: I} X X| > X, is obtained by restricting the product action of d-copies of ¢,
to the d-fold diagonal. There is a slightly more general construction available.
Let actions {¢;: ' X X; = X,|1 <i < d} be given; then we obtain an action of
I'on X =X, X -+ X X, by setting

P(Y)(x1s- 5 x0) = (2(¥)(x1)s -5 0a(¥)(x4))-

Lemma 7.18. Let ¢ be the generalized diagonal action obtained from the
Anosov actions {¢,|1 < i < d}. If there exists v € T such that vy is ¢,-hyperbolic
forall 1 <i < d, then ¢ is an Anosov action. a

Cororrary 7.19. Let {o;: I' X X; = X,|1 < i < d} be Anosov actions with
dense periodic orbits and with a common hyperbolic element y. If T satisfies the
cohomology condition SVC(n) forn =n, + - -+ +n, then ¢ is C*-topologically
deformation rigid. O

A diagonal action with p, = p the same for all i cannot be Cartan for
d > 2, as the dimensions of the eigenspaces for the hyperbolic elements are
always at least d; hence the strongest stable direction is always of dimension at
least d.

Diagonal actions provide a large collection of examples where topological
deformation rigidity is the best result known. It seems difficult, at the present
state of research, to decide whether these actions are differentiably rigid. A
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natural test case is to show they are C'-deformation rigid; for example, by
studying the properties of cocycles over product actions.

Example 7.20 (Arithmetic products). Let {¢;; I}, X T™ — T™[1 <i < d}
be Anosov standard actions of arithmetic subgroups I = (G,),, where G, C
SL(n;, R) is a connected, semisimple, algebraic group defined over Q, with real
rank at least 2. There is an alternate construction of a standard action of a group
I" on a torus constructed from this data, which we call the arithmetic product.

The product group G = G, X - - X G, C SL(n, R) is defined over Q, for
n=mn,+ - +n, The group of real points Gy admits an arithmetic irre-
ducible lattice subgroup I' € G. That is, for some N > n there exists a group
G c SL(N,R) _containing a lattice I= Gz, and there is a natural homo-
morphism m: G — G whose restriction to [ is an isomorphism.

The arithmetic product of the actions {¢,} is the action of I on TV via the
inverse map

(wlr) T - SL(N,Z).

This construction is similar to that of Example 7.9. To determine whether
such an action is Anosov or Cartan, we first must determine whether G contains
a nontrivial compact factor. This entails a more extensive discussion of cases,
which we omit.

Example 7.21 (A deformation of the standard action of SL(2,Z)). We
construct an example showing that the standard action of SI(2,Z) on T? is not
topologically deformation rigid, even though the actions are real analytic. Thus
the Anosov hypothesis is not sufficient for the topological rigidity of a group
action with more than one generator, and additional hypotheses are necessary to
obtain rigidity; for example, on the cohomology of the group, as used in this

paper.

Tueorem 7.22. There exists an analytic family {¢,|0 <t < 1} of volume-
preserving, real analytic actions of SI(2,Z) on T?, with ¢, = ¢ the standard
action, such that ¢, is not topologically conjugate to ¢ for all 0 <t < 1.

Proof. Let us first note some standard facts about the algebraic structure of
S1(2,Z):

LemMma 7.23. (1) The pair of matrices A = [(1) _(1)] and B = [i _é] gener-
ates S1(2,7Z).

(2) A has order 4, B has order 6, and A> = B> = —1.

(3) SL(2,Z) is isomorphic to the amalgamated product (Z/4Z) X ,5,(Z./6Z)
generated by (A, B}. O
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Let Z, = x(8/dy) — y(3/3x) be the rotational vector field about the origin.
Then for any smooth function #(s), the vector field Zw = Yy(x® + y?) - Zl is
divergence free.

We first form a nontrivial family of C*-deformations, then indicate the
modifications necessary for the real analytic case. Choose a smooth function ¥
such that (0) = 1, ¢(s) > 0 for all s, and ¢(s) = 0 for s > 10~ % Form the
translate of the vector field Zw, centered at the point [1/2,0] € R%:

(16) Z,= DT[I/Q,O](ZJJ).

Introduce the companion vector field Z_= D(A®*X(Z,) = D(—IXZ,) and form
the sum Z = Z,+ Z_. Note that D(A’X(Z) = Z.

We want the vector field Z to be invariant under the translation action of
the lattice Z2; so we form the infinite sum

(17) Z= Z DT[m,n](Z)’
[m,n]leZ

which is well defined since the supports of the translates are disjoint.
Let F(t): R2 = R? be the flow of the vector field Z and observe that

(18) F(t)o A> = A%o F(t),
(19) Tipm© F(t) = F(£)o T,

[m,n] m,n]*

From equation (19) the maps F(t¢) descend to a family of diffeomorphisms of T?>
denoted by F(t). Moreover from the identity (18) we have

(20) (F-1(t)e p(A)e F(1) = -1,

which by Lemma 7.23 implies there is a well-defined C”-deformation of the
standard action ¢ of SI(2,Z), by the declaration

(21) 0, (A) = F(t) "' o p(A)° F(t),
(22) ¢.(B) = ¢(B).

Lemma 7.24. If there exists a homeomorphism H: T2 — T? conjugating o,
to ¢, thent = 0.

Proof. The standard action of SI{2,Z) on T® has a unique fixed point
x, € T? corresponding to the coset of the origin [0,0] € R?, which also remains
fixed for the perturbed actions ¢,. The homeomorphism H must preserve x; so
H admits a unique lift H: RZ > R2, which fixes the origin [0, 0] and conjugates
the given action @,: SI(2,Z) X R® - R? to the linear action of SI(2,Z). We
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then have a pair of identities for the actions on R*:

(23) HoA=¢,(A)0H,
(24) HoB=BoH.
Observe that (23) implies

(25) GoAoG ' =A,

where G = F(t)o H so that G fixes the origin [0,0] and commutes with the
period-4 rotation.

The action of the element B on R? has period 6. A fundamental domain for
the action is given by the cone

S, = {[r cos(8), rsin(0)]10 <r,0 <0 < m/3)}.

Label the translates of this domain by S; = B/~ !S,. For example, S, is the
second quadrant of the plane. Label the restrlctlons of H to these sectors by
H = ; H |S; so that (24) becomes the identity

(26) B™'-H,, ,°B=H,

We then need two more observations: the restriction of F(¢) to the sectors S,
and S; has support either outside the ball of radius V2 or on the x-axis. And
secondly the element A™'B? fixes the x-axis, and the element B®A~"' fixes the
y-axis so that the homeomorphism H must map each sector S; to itself,
excluding the “spill-over” in a neighborhood of B/~'[0,1/2] contained in the
ball of radius 1/50, and its Z>-translates.

The identity (23), the two observations above and then (26) imply that

(27) AoF(t)oH oA~ = H,,
(28) C 'eF(t)oH,oC=H,

where C = A7'B? = [(1) _i] The action of C on R? is the identity along the

x-axis and preserves the lines y = c¢. So restricting to the line y = 0 in (28)
yields

(29) F(t)o H,[x,0] = CoH,[x,0].

The identity (29) is impossible for ¢ # 0, however: C preserves lines y = c,
while the rotational flow F(¢) does not preserve any of the lines y = ¢ for ¢
sufficiently small. The curve x — H(¢#)[x, 0] lies in the x-axis for x away from
1/2; so there must exist ' such that H(¢)[x’,0] = [x", ¢] with ¢ sufficiently
small, and (29) cannot hold for this [x’, 0].
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Analytic deformations are easily obtained by using the cut-off function
¥(s) = exp{—(100s)?}. The support of the exponential function is no longer
compact, but the sum (17) will still yield an analytic vector field, for the index
set grows linearly with the weight [n| + |m|, and the function exp{ — 10000(n? +

m?)} decays super-exponentially fast in this weight. The remainder of the proof
is essentially the same as for a compactly supported cut-off function. O

UniversiTy orF ILLinois, CHicaco, ILLINOIS
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