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Abstract

This note gives a product decomposition theorem for the space ΩBΓG of loops on the
classifying space of G-foliations. The proof is based on some observations about the inter-
relation of G with FΓG, the homotopy fiber of the natural map ν : BΓG → BG. Some
applications and consequences of the main theorem are given. We make a conjecture, which is
confirmed in low codimensions by our results, about the loop space ΩBΓq for the classifying
space BΓq of smooth codimansion-q foliations.
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1 Main Theorem

A G-foliation F on a manifold M is a foliation of codimension q whose normal bundle has
a G-structure which is invariant under the natural parallelism along the leaves of F , where
G ⊂ GL(q,R), (cf. [3, 9]). A special example consists of the integrable G -structures, where F
is modeled on a manifold B of dimension q with a G-structure on the tangent bundle TB, and
the transverse transition functions of F preserve this G-structure. Foliations with a transverse
G-structure arise in many areas of foliation theory: a Riemannian foliation is an O(q)-foliation;
a foliation with a closed non-vanishing transverse q-form is an SL(q,R)-foliation; a symplectic
foliation is an Sp(q,R)-foliation.

Let BΓG denote the classifying space for G-foliations constructed by Haefliger ([3], cf. also
Milnor [10]) and let ν : BΓG → BG denote the classifying map for the normal G-vector bundle
to the canonical foliated microbundle over BΓG. The homotopy fiber of ν is denoted by FΓG.
One of the themes of the “homotopy theory of foliations” is to compare the homotopy types of
the spaces BΓG and BG. Usually, this consists of calculations of the homotopy groups of the
fiber FΓG (cf. [3, 2, 4, 5, 7, 8, 11]). In this note we point out a novel fact about the homotopy
type of the loop space of BΓG:

THEOREM 1.1 Suppose that FΓG is an N-connected space, and there are subgroups K1, . . . ,K`

of G with dimKj ≤ N for each 1 ≤ j ≤ ` such that the map

K1 × · · · ×K` → G (1)

induced by the product of the inclusions, is a homotopy equivalence. Then there is a natural
homotopy equivalence

ΩBΓG ' G× ΩFΓG. (2)

REMARK 1.2 The decomposition (2) is not an equivalence of H-spaces, if BG is not ratio-
nally trivial and BΓG classifies foliations with transverse differentiability at least C2. Other-
wise, one could “deloop” the equivalence to obtain that BΓG ' BG×FΓG, which implies that
ν∗ : H∗(BG; Q) → H∗(BΓG; Q) is injective. For BG not rationally trivial, the natural map
H∗(BG; R) → H∗(BGL(q,R); R) is onto some Pontrjagin class P ∈ H4k(BGL(q,R)), so by
naturality all of the powers Pn would be non-trivial in H4kn(BΓG; R). This contradicts the
Bott Vanishing Theorem [1], which implies that the Pontrjagin classes for the normal bundle
to a C2-foliation vanishes in degrees greater than twice the codimension.

The obstruction to (2) being an H-space equivalence manifests itself also in the non-trivial
action of G on FΓG, which was studied in [6]. This non-trivial action of G on FΓG is used
there to construct (in the homotopy theoretic sense) framed foliated manifolds with non-trivial
secondary classes. 2

The usefulness of Theorem 1.1 derives from the fact that FΓG is always (q − 1)-connected
[5], and further that FΓq ≡ FΓGL(q,R) is (q + 1)-connected [2, 11]. We will give several
applications of Theorem 1.1 in the next section. Let us state here two general consequences:
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COROLLARY 1.3 Let G ⊂ GL(q,R) be a Lie group such that the hypotheses of Theorem 1.1
hold. Then for all m > 0 there are split epimorphisms:

ν# : πm(BΓG)→ πm(BG). 2

COROLLARY 1.4 Let G ⊂ GL(q,R) be a Lie group such that the hypotheses of Theorem 1.1
hold. Suppose that M is a space with the homotopy type of a suspension of a finite CW complex
X. Then every map f : M → BG lifts to a map f̃ : M → BΓG. If, in addition, M is an open
manifold, then every q-plane field E ⊂ TM with a G-reduction (on the bundle of frames of E),
is homotopic to the normal bundle of a codimension-q G-foliation on M.

Proof. We are given that M ' ΣX. Form the adjoint f∗ : X → ΩBG of f . Theorem 1.1
implies that there is a lift f̃∗ : X → ΩBΓG, whose adjoint defines the lift f̃ . The second part
of the corollary follows from the lifting property above and Haefliger’s general theory on the
existence of G-foliations [3]. 2

2 Proof of Main Theorem

Consider the sequence of fibrations:

ΩFΓG → ΩBΓG
Ων→ ΩBG δ→ FΓG → BΓG

ν→ BG. (3)

Given the assumptions of Theorem 1.1, we show that the map δ : ΩBG→ FΓG is homotopic
to a constant. The fibration Ων : ΩBΓG → ΩBG is then trivial, as it is the pull-back under δ
of the path fibration PFΓG → FΓG. This implies that ΩBΓG ' ΩBG× ΩFΓG.

We work with pointed CW complexes. The base-point for a Lie group will always be the
identity element. Let CX denote the pointed cone on the pointed space X. Let K1, . . . ,K` be
the given subgroups of G, and let K1×· · ·×K` → G be induced from the group multiplication
applied to the inclusion maps on each of the factors. By the connectivity assumption on FΓG,
the composition K1 ⊂ G

δ→ FΓG is homotopic to the constant map to the base-point in FΓG.
If K1 ' G, then we are done.

For ` ≥ 2, first extend the inclusion of K1 to a map on the cone, CK1 → FΓG. We then
require a well-known result:

LEMMA 2.1 The fibration FΓG → BΓG has a natural fiber-preserving action (up to homo-
topy) of the H-space G. In particular, there is a canonical (up to homotopy) action

G× FΓG → FΓG. (4)

Proof. Our definition of FΓG as the homotopy fiber of ν endows it with the action of the
H-space ΩBG, via the Puppe sequence for fibrations (cf. [12]). We observe that the inclusion
G ⊂ ΩBG induces a homotopy equivalence of H-spaces, which then defines the H-space action
on the fibers FΓG. 2
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Now use (4) to define an extension of the map on the first two factors,

CK1 ×K2 → FΓG. (5)

The composition K2 ⊂ G → FΓG is contractible, so the extension (5) is also homotopic to a
constant map onto the base-point of FΓG. We can therefore extend it to a map C(CK1×K2)→
FΓG.

Continuing in the above manner, we obtain a map

K1 × · · · ×K` ⊂ C(C · · · (CK1 ×K2) · · · ×K`)→ FΓG (6)

which extends the map K1×· · ·×K` ⊂ G→ FΓG. The composition is homotopic to a constant
as the middle space in (6) is contractible, so that G → FΓG is also homotopic to a constant,
as was to be shown. 2

3 Applications

The first application of Theorem 1.1 is to the classifying spaceBΓ+
q ≡ BΓGL+(q,R) of codimension-

q smooth foliations with orientable normal bundles.

PROPOSITION 3.1 For q ≤ 4, ΩBΓ+
q ' SO(q)× ΩFΓq.

Proof. The space FΓq ≡ FΓGL(q,R) is (q + 1)-connected [2, 11], as noted above, and the
special orthogonal group SO(q) ' GL+(q,R) has dimension at most q for q ≤ 3, so we can
apply Theorem 1.1. For q = 4, we note that GL+(4,R) ' SO(4) ∼= S3 × SO(3), where each
factor has dimension 3, and observe that FΓ4 is 5-connected. 2

Let us apply Corollary 1.3 in this case, noting that SO(3) is doubly covered by S3 and
SO(4) is doubly covered by S3 × S3:

COROLLARY 3.2 For all m ≥ 1, there are split surjections:

πm+1(BΓ3) → πm(S3)
πm+1(BΓ4) → πm(S3 × S3)

Proposition 3.1 and Corollary 1.4 also have applications to the existence of foliations:

COROLLARY 3.3 Let Mn be an open n-manifold with the homotopy type of a suspension.
Then every m-plane field E ⊂ TM of codimension q = (n − m) ≤ 4 is homotopic to an
integrable distribution on M , and hence to the tangent field of a foliation F of codimension q
on M .

We speculate that the conclusion of Proposition 3.1 is true in all dimensions:

CONJECTURE 3.4 ΩBΓ+
q ' SO(q)× ΩFΓq for all q ≥ 1.
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An equivalent formulation of the Conjecture is to ask whether there exists a lifting g̃ of the
map g in the diagram:

BΓ+
q

?�
�
�3

νg̃

g
ΣSO(q) −→ BSO(q)

where g is the adjoint of the natural map SO(q)→ ΩBSO(q). One could hope to exhibit such
a lift g̃ by a direct geometric construction.

The second example where we apply Theorem 1.1 is to Riemannian foliations, which are
those foliations with a “transverse Riemannian metric” which is invariant under the natural
transverse parallelism (or linear holonomy). We assume the foliation is transversally oriented,
so that these are the G-foliations with G = SO(q). The classifying space FΓSO(q) is then
(q − 1)-connected, by a theorem of the author [5].

The group SO(2) ∼= S1 has dimension 2, so Theorem 1.1 yields

ΩBΓSO(2) ' S1 × ΩFΓSO(2). (7)

To further understand the homotopy type of BΓSO(2) requires a better understanding of the
space FΓSO(2). It is known that the volume form associated with the transverse SO(2)-
structure induces a fibration,

Vol : FΓSO(2) → K(R, 2) (8)

where K(R, 2) denotes the Eilenberg-MacLane space in dimension 2 for the group R (cf. [7]).
It is unknown whether the fiber F̂ΓSO(2) of Vol is 2-connected. However, π3(FΓSO(2)) is highly
non-trivial, as it has torsion subgroups which are not finitely generated, and also there are
uncountably-generated free Z-summands [5].

The decomposition as in (7) is not valid for ΩBΓSO(3), as a key step in the proof of
Theorem 1.1 fails:

PROPOSITION 3.5 The map

SO(q) ' ΩBSO(q) δ→ FΓSO(q) (9)

is homologically essential for q ≥ 3.

Proof. For q = 2k + 1, let S4k−1 → SO(2k + 1) be an essential map in real homology. This
class is detected by the transgression of the Pontrjagin class Pk ∈ H4k(BSO(2k + 1); R) to
P̂ ∈ H4k−1(SO(4k − 1) : R). The composition α given by

S4k−1 → SO(2k + 1) ' ΩBSO(q) δ→ FΓSO(q)

determines the foliated microbundle S4k−1×R2k+1 with the product foliation and the framing
twisted by the map S4k−1 → SO(2k + 1). The method of [6] shows that α determines a
non-trivial class in H4k−1(FΓSO(2k+1); R), which proves the proposition in this case.

For q = 2k + 2, the transgressed class P̂ still defines a characteristic class in
H4k−1(FΓSO(2k+2); R) as 4k exceeds the codimension for k > 1, so the inclusion of the cycle
α into the classifying space of one higher codimension is still homologically essential. 2
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