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Topology of covers and the spectral theory of
geometric operators

Steven Hurder

1 Introduction

For a compact smooth manifold M , the spectrum σ(DM ) ⊂ R of a sym-
metric elliptic differential operator DM acting on the sections of an Hermitian
vector bundle EM → M is discrete, and the points λ ∈ σ(DM ) correspond to
smooth “eigensections” of EM of finite multiplicity. If the manifold M is com-
plete but non-compact, the action of DM on the compactly supported sections
of EM is still essentially self-adjoint, and the spectrum can be defined as the
points λ ∈ R so that DM − λ does not admit a densely-defined left or right
(bounded) inverse. In this situation, the spectrum of DM can a priori be any
closed subset of R. A point λ ∈ σ(DM ) which is isolated must correspond
to an eigensection in H(EM ) ∩ C∞(EM ). In general, though, a cluster point
λ ∈ σ(DM ) need not coincide with an eigensection, but rather to a sequence of
“approximate eigensections” which eventually vanish on compact sets. We thus
expect there to be a correspondence between the essential spectrum σe(DM ),
especially the topology of its derived set, and the behavior of M “near infinity”.

A typical example of how the essential spectrum of elliptic operators on open
manifolds can be related to geometric properties was discovered by R. Brooks
[8, 9]. Brooks considered a normal covering M̃Γ of a compact manifold M with
Galois covering group Γ, and showed that the essential spectrum σe(∆Γ) of the
Laplacian on functions on M̃Γ contains 0 if and only if the group Γ is amenable.
Equivalently, Γ is non-amenable if and only if there is a gap about the origin
in the spectrum of the Laplacian. Brooks’ methods are based on the relation
between the Cheeger isoperimetric constant for M̃Γ and the spectrum of the
Laplacian.

Coarse cohomology theory, introduced by John Roe [47, 48, 49], gives a
precise meaning to the concept of the “topology at infinity” for an open complete
manifold. Roe showed that if there is a gap containing zero for the spectrum of
a uniform geometric operator D on a complete, non-compact even-dimensional
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Riemannian manifold of bounded geometry, then the “exotic analytic index” of
the operator must vanish (Proposition 4.33 [49].) For odd dimensional mani-
folds, the conclusion is stronger, that if there is a gap anywhere in the spectrum
of the operator, then its exotic analytic index class vanishes (Proposition 4.46,
[49].) Roe established topological obstructions to the existence of a gap in the
spectrum of geometric operators (Proposition 5.21, [49]) by combining these
vanishing results with an “exotic index theorem” which relates the exotic ana-
lytic index with the coarse cohomology of the ambient manifold.

In this paper we further investigate the dependence of the spectrum of an
operator D̃ on the topology at infinity of an open manifold of odd dimension,
either in the case of a covering M̃Γ of a compact manifold M , or for a leaf L of a
foliation of a compact manifold V . The leafwise operator D̃ will be an essentially
self-adjoint, elliptic, first-order pseudo-differential operator which is a relatively
compact perturbation of the lift DΓ of a first order geometric (or generalized
Dirac) operator DM on M , as in Definition 3.2. Our approach combines the
“Vafa-Witten method” (section III, [52] & section 3, [2]) with the foliation index
theorem for leafwise Toeplitz operators ([13, 23, 24, 25]) to obtain topological
obstructions to the existence of a gap in the spectrum σ(D̃). The Vafa-Witten
method is compared with the coarse cohomology method for detecting gaps in
Remark 7.8 and Example 3 in section 7.

Perhaps the most important aspect of our method is that it also provides
estimates on the spectral density function for the operator D̃ in terms of the
topology at infinity of M̃Γ and of the symbol of the operator DM on M . The
spectral density estimates introduce a new concept for a finitely-generated group
Γ, Definition 2.8, the non-commutative isoperimetric function IΓ,u(ε). The
function IΓ,u(ε) depends upon the choice of an element of odd K-theory u ∈
K1(BΓ), and measures how “efficiently” the K-theory class u can be realized on
the open manifold M̃Γ in terms of volume. For ε > 0 sufficiently large and u 6= 0,
IΓ,u(ε) > 0. If BΓ is realized by a finite CW complex, then the equivalence
class of the function ε 7→ IΓ,u(ε) is a group invariant of Γ (Proposition 2.9.)
The terminology for IΓ,u(ε) is chosen due to an analogy with the function IΓ(ε)
which gives the reciprocal of the minimum volume of a region in M̃Γ having
isoperimetric constant ε.

Here is our main result for the case of coverings:

THEOREM 1.1 • Let M be a compact orientable odd-dimensional Rie-
mannian manifold with fundamental group Λ = π1(M,y0).

• For a quotient group ρ : Λ→ Γ, let π : M̃Γ →M be the associated normal
covering.

• Fix an element of odd K-theory u ∈ K1(BΓ).

• Given a first-order, symmetric, geometric operator DM acting on the sec-
tions of a Hermitian vector bundle EM →M , let DΓ : C1

c (EΓ)→ C1
c (EΓ)

denote the lifted operator acting on the compactly supported sections of
the lifted Hermitian bundle EΓ = π!(EM )→ M̃Γ.
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• D̃ is a Γ-invariant, relatively compact perturbation of DΓ as in Defini-
tion 3.2.

Then there exists a constant κ(D̃) > 0, defined in (9), which depends on the
Riemannian geometry of M and the perturbation D̃, so that for all λ ∈ R and
all ε > 0,

TrΓ

(
{χ[λ,λ+ε)(D̃)}

)
≥ 1

4
· | 〈ch∗(Bρ∗u), ch∗[DM ]〉 | · IΓ,u(ε/4κ(D̃)) (1)

where

• TrΓ is the Γ-trace of Atiyah [1],

• χ[λ,λ+ε](D̃) is the spectral projection associated to the characteristic func-
tion χ[λ,λ+ε]

• the pairing in (1) is the (integral) odd Toeplitz index of the compression
of the unitary multiplier for Bρ∗u with the positive projection of DM .

In particular, if 〈ch∗(Bρ∗u, ch∗[DM ]〉 6= 0 for some u ∈ K1(M), and IΓ,u(ε) > 0
when ε > 0, then the spectrum σ(D̃) = R.

The number TrΓ

(
{χ[λ,λ+ε)(D̃)}

)
is the “average spectral density” for the

operator D̃ in the interval [λ, λ + ε). If the spectrum of D̃ is isolated in this
interval, then TrΓ

(
{χ[λ,λ+ε)(D̃)}

)
is the integral over a fundamental domain

in M̃Γ of the Γ-periodic function
∑
n ‖ fn ‖2, where {fn} is an orthogonal

basis for the eigensections of D̃ in [λ, λ+ ε). The result is a type of dimension:
for a compact manifold, this integral will be the dimension of the sum of the
eigenspaces in this interval. More generally, it is an average density of the
eigenspaces in the interval [λ, λ+ ε), which makes sense whether the spectrum
is isolated or not. (For more discussion of the interpretation of this number, see
[1, 5, 21, 37].)

A fundamental point of Theorem 1.1 is that the function class of the right-
hand-side of (1) is a topological invariant of the symbol of the operator DM and
the K-theory class u, so that when the index pairing is non-trivial we obtain a
topologically determined lower bound on the Γ-spectral density function for the
Γ-periodic lift DΓ. For example, when Γ ∼= Zn for n odd and u is the top odd
dimensional K-theory generator, then IΓ,u(ε) ∼ εn for ε small.

Results which link topology to spectral properties of operators ultimately
rely on an appropriate index theorem, formulated for the context under consid-
eration. In the present paper, the relevant index theorem is that for Toeplitz
operators formed from the spectral projections associated to self-adjoint op-
erators on normal coverings as in [34]. This “odd” index theorem is based
on Connes’ index theorem for measured foliations [13] and the foliation spectral
flow theory for measured foliations developed by Douglas, Hurder and Kaminker
[23, 24, 25].
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The new “topological” idea of the present work is based on the fact that the
index theory of self-adjoint operators requires the choice of a Toeplitz multiplier
function, and the index of the resulting Fredholm operator depends upon the
geometric properties of this multiplier. Considering the effect of the choice of
this multiplier on the index leads to the Γ-isoperimetric function in section 2,
which is a new tool for exploring the topology-at-infinity coverings and leaves
of foliations. This topological data is used to detect gaps in the spectrum of an
operator and to estimate its spectral density properties, by an open manifold
version of the “Vafa-Witten method” relating commutator estimates to spectral
flow (cf. section III, [52]; section 3, [2]; Theorem 6.4, [32]).

A preliminary form of Theorem 1.1 was announced in [35]. The formulation
of the isoperimetric theory was introduced in [36]. Related results are contained
in the papers [38, 39].

The paper [10] by U. Bunke discusses ideas which are very similar to those
of this work, but in the context of a single open manifold and for geometric
operators with a gap in their spectrum.

The author is indebted to Nigel Higson for explaining the ideas of “asymp-
totic K-theory” and discussions related to this paper, to John Roe for ongoing
discussions about coarse geometry, and to Ulrich Bunke for pointing out a mis-
take in the proof of Theorem 4.3 in a preliminary version of this paper.

2 Non-commutative isoperimetric functions

The notion of almost flat vector bundles was introduced by Connes, Gromov
and Moscovici for the study of the Novikov conjecture for compact manifolds
[17, 18], motivated by the work of Gromov and Lawson [29]. These special
bundles generate a subgroup K0

af (M) ⊂ K0(M) of the Grothendieck group of
the manifold M , and a fundamental point is that the index of the Dirac operator
paired with an element of K0

af (M) is a topological invariant [33].
The construction of an index class for a self-adjoint elliptic operator requires

pairing a spectral projection obtained from the given operator with a unitary
multiplier, to obtain a generalized Toeplitz operator [4, 25]. The work of this
paper is based on estimating the index of the generalized Toeplitz operator
constructed from a Γ-almost flat unitary map for M , where Γ is an infinite
quotient of the fundamental group of M . This leads to the concept of the Γ-
almost flat odd K-theory, KΓaf (M), which is the K-theory associated to the
Γ-almost flat unitaries. This is just a special case of F-almost flat odd K-
theory for a foliated manifold (V,F). In fact, the definition of KΓaf (M) requires
formulating these ideas in the generality of foliated spaces, so there is where we
begin.

Let (V,F) be a compact foliated measure space with leaves of dimension m
(cf. section 2, [40]). In particular, this implies there is a finite covering of V by
“flow boxes” {φα : Uα ∼= Dm×Xα | α ∈ I} so that the intersections of the leaves
of F with each Uα are given by the level sets (plaques) Pα(x) = φ−1

α (Dm×{x}).
Here Dm = (−1, 1)m and Xα is a Borel measure space. We assume there is
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given a transverse measure µ for F , whose measure class is invariant under the
transverse holonomy transformations. That is, the measure structures on the
local transversals Tα = φ−1

α ({0} × Xα) are determined by the restrictions µα
of µ, and the local holonomy maps γαβ from a subset of Tα to a subset of Tβ
pulls the measure class of µβ back to that of µα. For each leaf L ⊂ V , we also
assume there is given a Riemannian metric 〈·, ·〉L of bounded geometry, so that
the leafwise metrics vary bounded measurable with the transverse parameter.
Let ∇L denote the associated Riemannian connection on the leaf L, and let ∇F
denote the collection of all the leafwise connections.

A Hermitian vector bundle E→ V is a foliated Hermitian flat bundle if for
each foliation chart Uα, there is a trivialization Φα : E|Uα ∼= CN ×Dm ×Xα,
such that
• On the overlap of Uα ∩ Uβ , the transition function

Φ−1
β ◦ Φα : CN × φα(Uα ∩ Uβ) −→ CN × Φβ(Uα ∩ Uβ)

is a constant Hermitian isomorphism when restricted to the “horizontal
sets” Dm × {x}

• Φ−1
β ◦ Φα(~v, x) depends measurably on the parameter x for all ~v ∈ CN ;

Let ∇EL denote the leafwise Hermitian connection for EL

U(E) denotes the U(N)-principal bundle of unitary fiberwise automorphisms
of E. Let C1

F (U(E)) denote the measurable sections whose restrictions to leaves
are C1. In the case where V = M with the one leaf foliation, with L = M , we
write C1(U(E)) = C1

F (U(E)).
Define a C1-pseudo-norm for g ∈ C1

F (U(E)): Let {h̃1, . . . , h̃N} be a local
∇EL-synchronous orthonormal framing about x ∈ L. For example, fix a triv-
ialization Φα : E|Uα ∼= CN × Dm × Xα with x ∈ Uα. Choose an Hermitian
framing {~v1, . . . , ~vN} for CN for the induced metric on CN , then set

h̃`(v) = Φ−1
α (~v`, ϕα(v))

The restriction of {h̃1, . . . , h̃N} to the plaque of L containing x gives a local
synchronous framing.

For g ∈ C1
F (U(E)), let gL denote the restriction to a leaf L. We use a

synchronous framing on L about x ∈ L to express gL in matrix form:

gL · h̃j =
∑

1≤i≤N

(gL)ij · h̃i

for local C1-functions gLij defined on an open neighborhood in L of x. Then
define

‖g‖(1) = sup
L⊂V

sup
x∈L

√ ∑
1≤i,j≤N

‖ ∇L(gL)ij |x ‖2 (2)

A map g ∈ C1
F (U(E)) is admissible if ‖g‖(1) <∞.
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DEFINITION 2.1 (cf. Definition 5.1 [33]) An almost flat odd cocycle for
(V,F) consists of the data gaf = {(gi, Ni) | i ≥ 1} such that for each i ≥ 1:

• Ei → V is a foliated Hermitian flat bundle of dimension Ni

• gi ∈ C1
F (U(Ei)) is an admissible map with ||gi||(1) ≤ 1/i

• The stabilized vector bundles Ei ⊕ C∞ are all isomorphic to a common
Hermitian vector bundle E∞ → V

• there is a continuous family of admissible maps gt ∈ C1
F (U(E∞)) for

i ≤ t ≤ i+ 1 interpolating between the stabilized sections gi and gi+1.

We say that two almost flat odd cycles {gaf} and {haf} are equivalent if
there exists admissible maps Hi(t) ∈ C1

F (U(E∞)) interpolating between gi and
hi for all i ≥ 0.

PROPOSITION 2.2 The set of equivalence classes of almost flat odd cocycles
for (V,F) forms a group, K1

af (V,F), called the almost flat odd K-theory of F .
2

Suppose that M is a compact Riemannian manifold with fundamental group
Λ = π1(M,y0), and M̃Γ →M is the covering associated to a surjection ρ : Λ→
Γ, with the covering group Γ acting on the left on M̃Γ. We recall the suspension
construction of a foliation associated to each action of Γ on a measure space
X (cf. Chapter 5 [11]). Let X denote a standard, second countable Borel
measure space, with µ̃ a Borel probability measure on X. Consider a Borel
action ϕ : Γ × X → X which preserves µ̃. The product of the deck action on
M̃Γ with the ϕ-action on X defines an action of Γ on M̃Γ ×X. Introduce the
quotient measure space,

Vϕ = Γ \ (M̃Γ ×X).

The product foliation on M̃Γ × X, with typical leaf L̃ = M̃Γ × {x} for
x ∈ X, descends to a measurable foliation denoted by Fϕ on Vϕ. The measure
µ̃ descends to a holonomy-invariant transverse measure µ for Fϕ.

Let Kϕ ⊂ Λ denote the subgroup of elements which act trivially on X under
ϕ, and let Γϕ = Λ/Kϕ denote the quotient group. The global holonomy group
of Fϕ is the isomorphic image

Γϕ
ϕ∼= HFϕ ⊂ Aut(X ).

The typical leaf of Fϕ is diffeomorphic to the covering M̃Γϕ .
The projection onto the first factor map, M̃Γ × X → M̃Γ, descends to a

map π : Vϕ → M , and π restricted to the leaves Fϕ is a covering map. The
Riemannian metric on TM lifts via π∗ to a leafwise metric on TFϕ.
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There is a natural construction of Borel measure space (XΓ, µ̃Γ) associated
to a group Γ, equipped with a measure preserving ergodic action ϕ of Γ. Endow
the two-point space Z2 = {0, 1} with the “ 1

2 −
1
2” probability measure, and set

XΓ =
∏
γ∈Γ

(Z2)γ

equipped with the product topology from the factors, and the product measure
µ̃Γ =

∏
γ∈Γ µγ .

A typical element of XΓ is a string x = {aγ} = {aγ | aγ ∈ Z2 for γ ∈ Γ}. Let
ϕ : Γ×XΓ → XΓ be the “shift” action of Γ onXΓ, defined by ϕ(δ, {aγ}) = {aδγ}.
The shift action is continuous, transitive, measure-preserving, ergodic and free
for µ̃Γ-a.e. x ∈ XΓ.

For each quotient group Λ→ Γ, introduce the foliated measure space VΓ =
Γ\(M̃Γ×XΓ) with foliation FΓ, transverse invariant measure µΓ and µΓ-typical
leaf isometric to M̃Γ.

DEFINITION 2.3 A Γ-almost flat odd cocycle for M consists of the data
gaf = {(gi,Ei, Ni) | 0 ≤ i} which satisfy:

1. E0 →M is the product bundle with fibers of dimension N0

2. Ei → M is an Hermitian flat bundle of dimension Ni associated to a
holonomy homomorphism Λ

ρ→ Γ α→ U(Ni)

3. gi ∈ C1(U(Ei)) is an admissible map with ||gi||(1) ≤ 1/i

4. Each stabilized vector bundle Ei⊕C∞ is isomorphic to a fixed Hermitian
vector bundle E∞

5. For each i ≥ 0, there is an admissible map gt ∈ C1
FΓ

(U(π!E∞)) for i ≤
t ≤ i + 1 interpolating between the stabilized sections π∗gi and π∗gi+1,
where π : VΓ →M .

[gaf ] ∈ K1(M) denotes the class of the map g0 considered as a map g0 : M →
U(N0).

DEFINITION 2.4 For a quotient group ρ : Λ → Γ, the Γ-almost flat odd
K-theory of M is the subgroup K1

Γaf (M) ⊂ K1(M) of elements [gaf ], where gaf

is a Γ-almost flat odd cocycle for M.

DEFINITION 2.5 The almost flat odd K-theory of M is the group K1
af (M) =

K1
Λaf (M) associated to the fundamental group Λ of M .

Almost flat odd K-theory has the following functoriality:

PROPOSITION 2.6 Let Λ
ρ→ Γ

q→ Γ′ be a composition of submersions. Then
there is a natural map

q! : K1
Γ′af (M)→ K1

Γaf (M).

In particular, for all ρ : Λ→ Γ, there is a map ρ! : K1
Γaf (M)→ K1

af (M). 2
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PROPOSITION 2.7 There is a natural map

π! : K∗Γaf (M)→ K∗af (VΓ,FΓ). (3)

which is injective on rational K-theory.

Proof: The lift of a flat bundle π!E→ VΓ is again leafwise flat, so the cocycles
of Definition 2.3 lift to cocycles of Definition 2.1. The equivalence relations on
the two types of cocycles coincide by construction.

The real Chern character ch∗ : K∗(M) ⊗R → H(∗)(M ; R) is injective, so
to prove the injectivity of π! it suffices to show that π∗ is injective on real
cohomology. The existence of a transverse invariant measure µΓ for FΓ implies
that there exists an “integration along the fiber map”, π∗, from the leafwise
deRham complex for FΓ to the deRham complex of M , with π∗ ◦ π∗ = Id on
cohomology. The injectivity on cohomology, hence on real K-theory, follows
from this. 2

There is an alternate approach to “almost flat” theory, based on the asymp-
totic K-theory of Connes and Higson [19, 20]. They define asymptotic K-theory
groups Ka

∗ (A) for an arbitrary C∗-algebra A. This leads to a definition of
“almost flat K-theory” of a space M as follows: let C∗(Λ) be the C∗-algebra
generated by the fundamental group of M , then there is a natural map

Ka
∗ (C∗(Λ))→ K∗(C0(M)) ∼= K∗(M).

The Connes-Higson “almost flat K-theory” is the image subgroup K̃∗af (M) ⊂
K∗(M). One can show that the group K1

af (M) defined above is the sub-
group of K̃1

af (M) generated by the Kaf -cocycles which are represented by
finite-dimensional flat bundles over M . The estimates obtained in our work,
especially (1), requires forming Toeplitz compressions with automorphisms of
finite-dimensional bundles.

For a manifold V with a topological foliation F , the foliation groupoid GF
plays the rôle of the fundamental group Λ for a compact manifold M (cf. Hae-
fliger, [31]). Corresponding to the group C∗-algebra C∗(Λ), there is the foliation
C∗-algebra C∗(V,F) introduced by Connes [13, 14], which is the C∗-completion
of the convolution algebra of GF . The Connes-Higson asymptotic K-functor can
be applied applied to C∗(V,F) to obtain an alternate definition of almost flat
theory for foliations:

K̃∗af (V,F) = Ka
∗ (C∗(V,F)) (4)

It is natural to inquire when the subgroup K∗af (V,F) ⊂ K̃∗af (V,F) is the full
group, and whether the difference of these K-groups depends upon the geometry
of the foliation. The answer is unknown to the author in both cases.

We next introduce the non-commutative isoperimetric function. Fix u ∈
K1(M). Realize the classifying space of the discrete group Γ with a simplicial
space BΓ endowed with a compatible Riemannian metric on the simplices (cf.
[26]). For each ε > 0, let DΓ,u(ε) denote the minimum dimension of a Hermitian
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flat bundle Eε → BΓ so that u is represented by a fiberwise unitary gε ∈
C1(U(Eε)) with ||uε||(1) ≤ ε. If no such bundle exists, set DΓ,u(ε) =∞.

DEFINITION 2.8 (Non-commutative Γ-isoperimetric function) For
ε > 0, set

IΓ,u(ε) =
1

DΓ,u(ε)
(5)

Introduce an equivalence relation on positive functions, where f ∼ g if
there exists a constant a > 0 such that

g(
ε

a
) ≤ f(ε) ≤ g(aε) for all ε > 0.

PROPOSITION 2.9 Let Γ ∼= π1(B, b0) where B is a compact simplicial space
with contractible universal covering. Then for each u ∈ K1(BΓ), the class of
IΓ,u(ε) is a topological invariant.

Proof. Let Γ̃ have classifying space B̃ ' BΓ̃ a compact simplicial complex. An
isomorphism θ : Γ̃ → Γ induces a homotopy equivalence Bθ : B̃ → B, and we
set [ũ] = Bθ∗u ∈ K1(B̃). The assertion of the proposition is that IΓ̃,ũ ∼ IΓ,u.

There exists finite simplicial subdivisions of B and B̃ so that Bθ is homotopic
to a simplicial map. By the compactness of B̃ there is a constant A > 0 so that

||f ◦Bθ||(1) ≤ A · ||f ||(1)

for all piecewise smooth maps f : B̃ → R. Thus, if E → B is a Hermitian
flat bundle and g ∈ C1(U(E)) is an admissible map with ||g||(1) ≤ δ, then
Bθ∗g ∈ C1(U(Bθ!E)) is an admissible map with ||g||(1) ≤ Aδ.

Conversely, the inverse map θ−1 : Γ → Γ̃ determines a simplicial map
B(θ−1) : B → B̃ for which there is a similar constant Ã > 0.

Take a = max{A, Ã}. Then note that if u can be realized with an automor-
phism g of a bundle of dimension N and ||g||(1) ≤ ε, then via B(θ−1) we obtain
that [ũ] can be realized with g̃ = B(θ−1)∗g having ||g̃||(1) ≤ aε. The reciprocal
relation also holds, hence

DΓ,u(ε/a) ≤ DΓ̃,ũ(ε) ≤ DΓ,u(aε)

which implies that IΓ̃,ũ ∼ IΓ,u. 2

There is a similar definition of the non-commutative isoperimetric function
for foliated manifolds. Let (V,F) be a compact foliated measure space. Fix
u ∈ K1

af (V,F) represented by a fiberwise Hermitian automorphism g ∈ C1
F (E).

For each ε > 0, let DF,u(ε) denote the minimum dimension of a foliated Her-
mitian flat bundle Eε → V so that u is represented by a fiberwise unitary
gε ∈ C1

F (U(Eε)) with ||gε||(1) < ε. If no such bundle exists, set DF,u(ε) =∞.
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DEFINITION 2.10 The non-commutative foliated isoperimetric function is
defined by

IF,u(ε) =
1

DF,u(ε)
(6)

The same ideas as used in the proof of Proposition 2.9 also establish:

PROPOSITION 2.11 Let (V,F) be a C1-foliation of a compact manifold V .
Then for each u ∈ K1

af (V,F), the class of IF,u(ε) is a topological invariant.
2

Let us conclude this section with a discussion of profinite K1-cocycles for
Kaf (M).

For each N > 0, U(N) ⊂ M(N,C) ∼= CN2
denotes the group of N × N -

unitary matrices considered as a subspace of the vector space of all matrices.
Let U(∞) denote the stabilized super-group with the weak limit topology. The
C1-semi-norm of a C1-function g : M̃ → U(N) is defined as the supremum of
the norms of the covariant derivatives of its matrix entries,

||g||(1) = sup
x∈M̃

sup
1≤k,`≤N

||∇gk`||x (7)

DEFINITION 2.12 (Profinite K1-Γ-cocycles) Let ρ : Λ→ Γ be a submer-
sion. A profinite Γ-cocycle for M consists of the data gpf = {(gi,Γi, Ni) | 0 ≤ i}
which satisfy:

1. Γi is a finite quotient group of Γ, with Γ0 = Γ

2. πi : M̃i →M is the covering of M associated to the surjection Λ→ Γ→ Γi

3. gi : M̃i → U(Ni) is a C1 mapping with ||gi||(1) < 1/i

4. For each i ≥ 0, |Γi| · [gi] = [g0 ◦ πi] ∈ K1(M̃i).

[gpf ] ∈ K1(M) denotes the homotopy class of the stabilized map g0 → U(N0) ⊂
U(∞).

Let K1
Γpf (M) ⊂ K1(M) denote the subset of classes represented by profinite

K1-Γ-cocycles. When Γ = Λ = π1(M,x0), then we simply write K1
pf (M).

PROPOSITION 2.13 K1
Γpf (M) is a subgroup of K1

Γaf (M).

Proof. The inverse of a profinite cocycle gpf = {(gi,Γi, Ni) | 0 ≤ i} is given
by the obvious candidate (gpf )−1 = {(g−1

i ,Γi, Ni) | 0 ≤ i}. The sum operation
is slightly more subtle: given {(gi,Γi, Ni) | 0 ≤ i} and {(g′i,Γ′i, N ′i) | 0 ≤ i}, we
define the “sum” {(g′′i ,Γ′′i , N ′′i ) | 0 ≤ i} as follows:

For each i ≥ 0 let Γ′′i be the image of the “diagonal map” Γ→ Γi×Γ′i. The
covering M̃ ′′i →M associated to Γ′′i has order at most |Γi| · |Γ′i|. Then set

g′′i : M̃ ′′i −→ M̃i × M̃ ′i −→ U(Ni)× U(N ′i) ⊂ U(Ni +N ′i)
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which is the push-out product. The uniform pointwise norm of the gradient
of g′′i is at most that of the factors, so {(g′′i ,Γ′′i , N ′′i ) | 0 ≤ i} is a profinite
K-cocycle.

Note that the sum on the set K1
Γpf (M) is induced by the operation [g0] +

[g′0] = [g′′0 ], which coincides with the standard sum operation on K1(M).
The most interesting part of the proposition is the assertion that the sub-

group K1
Γpf (M) is contained in K1

Γaf (M). Fix gpf = {(gi,Γi, Ni) | 0 ≤ i}.
For each i ≥ 0, there is a natural diffeomorphism of the finite covering M̃i

∼=
Γ \ (M̃Γ × Γi), so that the unitary gi can be considered as a Γ-equivariant map
gi : M̃Γ × Γi → U(Ni), for the trivial action of Γ on U(Ni).

The space Maps(Γi, U(Ni)) is a compact group under pointwise multiplica-
tion, and acts naturally on the Hermitian vector space

Ẽi = Maps(Γi,CNi) ∼= C|Γi|·Ni

by which Maps(Γi, U(Ni)) ⊂ U(Ẽi). Then gi is equivalent by adjunction to a
Γ-equivariant map g̃i : M̃Γ → Maps(Γi, U(Ni)).

Define a foliated Hermitian flat bundle

Ei = Γ \
(
M̃Γ × Ẽi

)
−→M

with dimension |Γi| · Ni. By the above discussion, gi determines a section
ĝi ∈ C1(U(Ei)), and ‖ ĝi ‖(1) ≤ ‖ gi ‖(1) < 1/i where the left-hand-side is given
by (2) and the middle term by (7).

The lift of the extended unitary g0 ◦ πi : M̃i → U(N0) ⊂ U(Ni) can also
be “pushed-forward” to a fiberwise unitary automorphism ĝ0,i ∈ C1(U(Ei)).
A homotopy {gt} between |Γi| · gi : M̃i → U(|Γi| · Ni) and g0 ◦ πi : M̃i →
U(N0) ⊂ U(|Γi| ·Ni) pushes forward to an admissible homotopy {ĝt} between
|Γi| · ĝi and ĝ0,i. We leave it to the reader to check that the lift of ĝ0,i to
π∗(ĝ0,i) ∈ C1

FΓ
(U(π!Ei)) is homotopic to π∗(|Γi| · ĝ0,i) ∈ C1

FΓ
(U(π!Ei)). It

follows that there is a homotopy {ĝt} between π∗(ĝi) and π∗(ĝi+1) as required
for an almost flat odd cocycle. 2

3 Some foliation spectral analysis

Fix a foliated measure space V with foliation F having leaves of odd di-
mension m, and let µ be a transverse measure for F whose measure class is
invariant under the transverse holonomy transformations. For each leaf L ⊂ V ,
we assume there is given a fixed Riemannian metric 〈·, ·〉L on TL such that L
becomes a complete manifold with bounded geometry; and the leafwise metrics,
with the C2-topology, vary bounded measurably with the transverse parame-
ter. Recall that ∇L is the associated Riemannian connection on the leaf L with
∇F denoting the family of leafwise connections. The injectivity radius of F is
the infimum of the injectivity radii of the leaves of F , considered as complete
Riemannian manifolds.
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For each leaf L ⊂ V , let SL → L denote the Clifford bundle of spinors asso-
ciated to the Clifford algebra bundle C(TL), and let D/ L : C∞c (SL) → C∞c (SL)
be the corresponding Dirac operator. S → V denotes the union of the leafwise
Spinor bundles, viewed as a (measurable) Hermitian bundle over V

Consider an Hermitian vector bundle E0 → V of dimension q whose re-
strictions E0

L → L to the leaves L of F are smooth, and the curvature forms
ΩL of the leafwise Hermitian connections ∇E0

L are bounded with respect to
the leafwise Riemannian metrics. We can then form the leafwise “geometric
operators”

DL = D/ L ⊗∇
E0
L (8)

defined on the (leafwise) compactly supported sections C∞c (EL) of the bundle
E = S ⊗ E0 restricted to the leaves of F . The most natural definition of
the operators in (8) is to form the leafwise Clifford bundles SL ⊗ E0

L → L,
and then declare DL to be the associated “Dirac operator” (cf. Definition 2.4,
[46]): At a point x ∈ L, choose an orthogonal framing {e1, . . . , em} of TxL
and extend these to local synchronous vector fields {ẽ1, . . . , ẽm} about x (cf.
(1.29) of [46].) The Clifford algebra C(TxL) is spanned by the monomials {eI =
ei1 ⊗ · · · ⊗ eip | I = (11 < · · · < ip)}. Define |I| = p for I = (11 < · · · < ip).
Choose also a unitary framing {f1, . . . , fq} of E0

x and extend to local ∇E0
L-

synchronous sections {f̃1, . . . , f̃q}. Then for a general local section

s =
∑
|I| ≤ m

1 ≤ j ≤ q

sI,j · ẽI ⊗ f̃j set

DL(s)(x) =
∑
|I| ≤ m

1 ≤ α ≤ m
1 ≤ j ≤ q

∇Leα(sα,j)|x · eα ⊗ ẽI(x)⊗ f̃j(x)

DEFINITION 3.1 A foliation geometric operator D for (V,F) is a collection
of leafwise geometric operators {DL | L ⊂ V } defined as in (8) for some leafwise
Riemannian metric for F and some Hermitian vector bundle E0 as above.

We also introduce the algebra ΨDO0
c(E,F) of leafwise pseudo-differential

operators of order ≤ 0, acting on the leafwise sections C∞c (EL). This is defined
in detail in (section A, Chapter 7 of [43]), with further properties of the leafwise
pseudo-differential operators discussed in (section 3, [24]). Note that our defini-
tion of a leafwise pseudo-differential operator P = {PL | L ⊂ V } ∈ ΨDO0

c(E,F)
includes the important hypotheses that there is given a constant ε > 0 such that
for each leaf L, the operator PL is represented by a distributional kernel sup-
ported in an ε-tube around the diagonal in the leaf L. Let ε(P) < ∞ denote
the least such ε so that this holds for every leaf L. The condition on supports
for P implies that PL : C∞c (EL)→ C∞c (EL).

DEFINITION 3.2 We say that a family D̃ = {D̃L | L ⊂ V } of leafwise
pseudo-differential operators is a compact perturbation of a geometric operator
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if there is a foliation geometric operator D acting on the leafwise sections of the
bundle E = S⊗E0, and a leafwise pseudo-differential operator P ∈ ΨDO0

c(E,F)
so that D̃L = DL + PL for each leaf L ⊂ V of F .

We allow V = M in this definition foliated by the single leaf L = M , and
D̃M = DM + PM with PM a zero order pseudo-differential operator on M .

Introduce a constant which will appear repeatedly in the formulas that fol-
low:

κ(D̃) = {1 + ε(P) · ‖P‖} (9)

where ‖P‖ denotes the operator norm of P.
We next establish an elementary estimate on the commutator of a compact

perturbation of a geometric operator D̃ with a unitary multiplier. This is the
key estimate for the entire paper.

Let E1 → V be a foliated Hermitian flat vector bundle of dimension N .
Given g ∈ C1

F (U(E1)), we define for each leaf L a multiplier operator

M(gL) : C1
c (EL ⊗E1

L)→ C1
c (EL ⊗E1

L)

which acts by fiberwise multiplication with gL on the factor E1
L.

A leafwise geometric operator DL on C1
c (EL) extends to the space of sections

C1
c (EL ⊗ E1

L) by means of a synchronous frame, exactly as for the coefficients
E0. An operator P ∈ ΨDO0

c(E
L,F) such that ε(P) is less than the injectivity

radius of the leaves has a similar extension, where the synchronous frame field
is used to “freeze coefficients” for the auxiliary bundle E1 in a neighborhood of
a point. Denote these extensions by D̃1 and P1 respectively.

Form the leafwise Hilbert space closures H(EL ⊗ E1
L) of C1

c (EL ⊗ E1
L) for

each leaf L. For a family of bounded operators AL ∈ B(H(EL⊗E1
L)), let ‖AL‖

denote the leafwise operator norms and set

‖A‖ = sup
L⊂V

‖AL‖

LEMMA 3.3 (Key estimate) Let D̃ = D + P be a compact perturbation of
a geometric operator acting on the sections of E = S ⊗ E0 with the injectivity
radius of F greater than 2ε(P). Let g ∈ C1

F (U(E1)) be admissible for E1
L a

foliated Hermitian flat bundle. Then for each leaf L, the operator norm of the
commutator of the extension D̃1

L with the unitary multiplier M(gL) satisfies:

‖ [D̃1
L ,M(gL)] ‖ ≤ ‖g‖(1) · κ(D̃). (10)

Proof: The commutator of a geometric operator with a C1-multiplier has the
standard estimate

‖ [D1
L,M(gL)] ‖ ≤ ‖g‖(1). (11)

so we need to estimate ‖ [P1
L ,M(gL)] ‖. This will follow from explicit consid-

eration of the action of P1
L on sections. Choose a locally finite covering of L by

geodesic balls {B(xα, ε′)} with centers xα ∈ L and radius ε′ < ε(P). Let {λα}
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be a partition-of-unity subordinate to this cover. Write s ∈ C∞c (EL) as a finite
sum s =

∑
sα where sα = λαs has support contained in B(xα, ε′). Fix syn-

chronous orthonormal framings {ẽI} of SL, {f̃1, . . . , f̃q} of EL, and {h̃1, . . . , h̃N}
of E1

L over B(xα, 2ε(P)) with center at xα. Then the operator P1
L acting on

the sections of EL ⊗ E1
L supported in a disc B(xα, ε′), expressed in these syn-

chronous framings, is represented by a matrix whose entries are scalar-valued
distributional kernels kPα,ij(y, y

′) for 1 ≤ i, j ≤ q. We estimate:

‖ [P1
L,M(gL)](s) ‖ = ‖ [P1

L,M(gL)](
∑

λαs
α
I,j,` ẽI ⊗ f̃j ⊗ h̃`) ‖

= ‖
∑∫∫

B(xα,2ε(P))×B(xα,2ε(P))

{
(gL)k`(y)kPα,ij(y, y

′)− kPα,ij(y, y′)(gL)k`(y′)
}

·λα(y′)sαI,j,`(y
′)ẽI ⊗ f̃j ⊗ h̃` ‖ (12)

≤ sup
y, y′ ∈ L

|y − y′| < ε(P)

|(gL)k`(y′)− (gL)k`(y)| · ‖PL‖ · ‖s‖ (13)

≤ ‖g‖(1) · ε(P) · ‖PL‖ · ‖s‖ (14)

where the estimate (14) follows by noting that the frame field {h̃1, . . . , h̃N}
of E1 over B(xα, 2ε(P)) is synchronous at each point as E1

L is flat, and then
applying elementary calculus to the difference term in (13). 2

Assume that D̃1
L is essentially self-adjoint on H(EL ⊗ E1

L). Let dσ(D̃1
L)(λ)

denote the spectral measure for D̃1
L, and introduce the (leafwise) spectral pro-

jections

χ[λ0,λ1](D̃1
L) =

∫ λ1

λ0

dσ(D̃1
L) ∈ B(H(EL ⊗E1

L)) (15)

where −∞ ≤ λ0 < λ1 ≤ ∞. Lemma 3.3 is the first step in the following key
estimate:

PROPOSITION 3.4 Let D̃ be a compact perturbation of a geometric opera-
tor, and g ∈ C1

F (U(E1)) be admissible with E1
L Hermitian flat for each leaf L.

For λ ∈ R let ΠL(λ)(g) be the projection onto the closed Hilbert subspace

Range
(
χ[λ,∞)(D̃1

L)
)
∩ Range

(
M(g∗L) ◦ χ(−∞,λ](D̃1

L)
)

(16)

Then for all ε > 0 there is the following estimate on the operator norms

||χ[λ+ε,∞)(D̃1
L) ◦ΠL(λ)(g)|| ≤

√
‖g‖(1) · κ(D̃)/ε (17)
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Proof: First note that

Range
(
M(g∗L) ◦ χ(−∞,λ](D̃1

L)
)

= Range
(
M(g∗L) ◦ χ(−∞,λ](D̃1

L) ◦M(gL)
)

= Range
(
χ(−∞,λ](M(g∗L) ◦ D̃1

L ◦M(gL))
)

Set K = ‖g‖(1) · κ(D̃), then Lemma 3.3 yields the estimate

||D̃1
L −M(g∗L) ◦ D̃1

L ◦M(gL)|| ≤ K (18)

Since

χ[λ+ε,∞)(D̃1
L) ◦ΠL(λ)(g) = χ[λ+ε,∞)(D̃1

L) ◦ΠL(λ)(g) ◦ΠL(λ)(g)

it suffices to estimate the norm of χ[λ+ε,∞)(D̃1
L)◦ΠL(λ)(g) restricted to the range

of ΠL(λ)(g). Let φ ∈ Range (ΠL(λ)(g)) have norm 1, and write φ = φ1 + φ2

where

φ1 = χ[λ,λ+ε)(D̃1
L)φ

φ2 = χ[λ+ε,∞)(D̃1
L)φ

so that we must estimate ||φ2||. Use (18), Cauchy-Schwartz inequality, the
spectral theorem, orthogonality of the ranges of χ[λ,λ+ε)(D̃1

L) and χ[λ+ε,∞)(D̃1
L),

and their invariance under D̃1
L to deduce

K ≥ 〈
(
D̃1
L −M(g∗L) ◦ D̃1

L ◦M(gL)
)
φ, φ〉

≥ 〈
(
D̃1
L − λ

)
φ, φ〉

= 〈
(
D̃1
L − λ

)
φ1, φ1〉+ 〈

(
D̃1
L − λ

)
φ2, φ2〉

≥ 〈
(
D̃1
L − λ

)
φ2, φ2〉

≥ ε · 〈φ2, φ2〉

which yields (17). 2

4 Estimates for the odd foliation index

In this section, we construct the index data for a foliated space (V,F) with
an invariant transverse measure µ, a leafwise essentially self-adjoint operator D̃
which is a compact perturbation of a geometric operator, and u ∈ K1

af (V,F)
represented by g ∈ C1

F (U(E1)) for E1 a foliated Hermitian flat vector bundle.
The “index theory” for self-adjoint operators along foliations, as used in this
section, is developed in detail in the papers (section 5, [15]; Appendix A, [24];
[25].)

Extend D̃ to the operator D̃1 on C1
c (E ⊗ E1) and define M(gL) as in the

last section. Let λ:V → R be a Borel function which is constant on the leaves
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of F . We write λ(L) for the value of λ(x) at any point x ∈ L. For each leaf L
construct the spectral projections:

P+
L (λ) = χ[ λ(L),∞)(D̃L) ∈ B(H(EL)) (19)

P 1+
L (λ) = χ[ λ(L),∞)(D̃1

L) ∈ B(H(EL ⊗E1
L)) (20)

and the leafwise “λ-Toeplitz compressions” of the unitary multipliers M(gL)

T+
L (λ)(gL) = P 1+

L (λ) ◦M(gL) ◦ P 1+
L (λ) (21)

The range of the operator P 1+
L (λ) is a closed Hilbert subspace H+

L (λ) ⊂
H(EL ⊗ E1

L). The correspondence L 7→ H+
L (λ) forms a measurable field of

Hilbert spaces over the foliated space (V,F) in the sense of Connes [12, 13].
Introduce the foliation von Neumann algebra W ∗µ(V,F) associated with the
transverse measure class of µ; then there is the basic fact from [25]:
PROPOSITION 4.1 Suppose that g ∈ U1

F (E1) with ‖ g ‖(1) < ∞. Then the
family of operators {T+

L (λ)(gL)} = {T+
L (λ)(gL) | L ⊂ V }, where T+

L (λ)(gL) ∈
B(H+

L (λ)), is Fredholm in the sense of Breuer [6, 7]. The von Neumann index
of {T+

L (λ)(gL)} is the K0-class

I(D̃, g) = [{I+
L (λ)(g)}]− [{I−L (λ)(g)}] ∈ K0(W ∗µ(V,F)) (22)

where for each leaf L

I+
L (λ)(g) = Π(ker{T+

L (λ)(gL)})
I−L (λ)(g) = Π(ker{T+

L (λ)(g∗L)})

are the leafwise projection operators onto the the kernels of T+
L (λ)(gL) and

T+
L (λ)(g∗L), respectively.

Let us now assume that the transverse measure µ for F is invariant under
the leafwise holonomy transformations, so that it determines a trace trµ on the
algebra W ∗µ(V,F) and induces a homomorphism Tµ : K0(W ∗µ(V,F)) → R. A
basic observation of Connes is that the family of leafwise operators {I±L (λ)(g)}
obtained from leafwise elliptic pseudo-differential operators are in the domain of
the trace trµ for any invariant transverse measure for F . The analytic µ-index
of the family of leafwise Toeplitz operators {T+

L (λ)(gL)} is defined as

Tµ(I(D̃, g)) = trµ
(
{I+
L (λ)(g)}

)
− trµ

(
{I−L (λ)(g)}

)
(23)

The measured foliation index theorem of Connes [13, 14] yields a topological
formula for Tµ(I(D̃, g)). Let σ+(D̃1, g) : SF → Aut(E⊗E1) denote the symbol
of the compression of M(g) to the fiberwise positive eigenspace for the symbol of
P+(λ), where SF is the unit cosphere bundle over V consisting of unit cotangent
vectors to the leaves of F . Let Td(F) denote the Todd class of TF , and [Cµ] the
Ruelle-Sullivan class of µ. Let ψ : H∗F (V ) → H∗+m−1

F (SF) denote the Thom
isomorphism for the leafwise deRham cohomology of F . The index theorem
for Toeplitz compression operators along leaves (Appendix B, [24]; [25]) then
states:
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THEOREM 4.2 (Odd index theorem for foliations)

Tµ

(
I(D̃, g)

)
= (−1)m

〈
ψ−1(ch∗(σ+(D̃1, g))) ∪ Td(F), [Cµ]

〉
. 2 (24)

We can now prove the main technical result of this paper:

THEOREM 4.3 (Foliation spectral estimate) Let D̃ = D + P be a com-
pact perturbation of a geometric operator, and g ∈ C1

F (U(E1)) admissible. Set
K = ‖g‖(1) · κ(D̃). For any λ ∈ R and ε > K

|Tµ
(
I(D̃, g)

)
| ≤ 2

1−
√
K/ε

· trµ
(
{χ[λ(L),λ(L)+ε)(D̃1)}

)
(25)

Proof: Fix a leaf L. Observe that the range of I+
L (λ)(g) is contained in the

closed Hilbert space (16), which is the range of the leafwise projection operator
ΠL(λ)(g). Thus, we have the operator estimates

I+
L (λ)(g) ≤ ΠL(λ)(g)

Apply Proposition 3.4 to obtain

trµ
(
P+
L (λ+ ε) ◦ΠL(λ)(g)

)
= trµ

(
P+
L (λ+ ε) ◦ΠL(λ)(g) ◦ΠL(λ)(g)

)
≤

√
K/ε · trµ (ΠL(λ)(g)) (26)

Then by positivity of the trace trµ and the estimate (26) we have

trµ
(
I+(λ)(g)

)
≤ trµ ({ΠL(λ)(g)})

= trµ

({
χ[λ(L),λ(L)+ε)(D̃1

L) + P+
L (λ+ ε)

}
◦ΠL(λ)(g)

)
= trµ

(
{χ[λ(L),λ(L)+ε)(D̃1

L) ◦ΠL(λ)(g)}
)

+ trµ
(
{P+

L (λ+ ε) ◦ΠL(λ)(g)}
)

≤ trµ

(
{χ[λ(L),λ(L)+ε)(D̃1

L) ◦Π(λ)(g)}
)

+
√
K/ε · trµ ({ΠL(λ)(g)})

≤ trµ

(
{χ[λ(L),λ(L)+ε)(D̃1

L)}
)

+
√
K/ε · trµ ({ΠL(λ)(g)})

Thus,

(1−
√
K/ε) · trµ

(
{I+
L (λ)(g)}

)
≤ (1−

√
K/ε) · trµ ({ΠL(λ)(g)})

≤ trµ

(
{χ[λ(L),λ(L)+ε)(D̃1

L)}
)

Replacing M(g∗L) with M(gL) we get a similar estimate for trµ({I+
L (λ)(g)}),

and (25) follows by combining these two estimates. 2
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COROLLARY 4.4 Let D̃ = D + P be a compact perturbation of a geometric
operator, and g ∈ C1

F (U(E1)) admissible. Suppose there exists ε > ‖g‖(1) ·κ(D̃)
and a Borel function λ:V → R which is µ-almost everywhere constant on leaves
of F , such that χ[λ(L),λ(L)+ε)(D̃L) = 0 for µ-almost every leaf L ⊂ V . Then

Tµ

(
I(D̃, g)

)
= 0. 2

COROLLARY 4.5 (Foliated isoperimetric estimate) Let (V,F , µ) be a
measured foliation endowed with a leafwise Riemannian metric, and leaves of
odd dimension m. Suppose that L is simply connected for µ-almost every leaf
L ⊂ V . Let D̃ = D + P be a compact perturbation of a foliation geometric
operator. Then for each u ∈ K1

af (V,F), ε > 0 and Borel function λ:V → R
which is µ-almost everywhere constant on leaves of F ,

trµ

(
{χ[λ(L),λ(L)+ε)(D̃L)}

)
≥

1
4
|
〈
ψ−1(ch∗(σ+(D̃1, g))) ∪ Td(F), [Cµ]

〉
| · IF,u(ε/4κ(D̃)) (27)

where g ∈ C1
F (U(E1)) represents u ∈ K1

af (V,F).

Proof. Fix ε > 0. Choose a foliated Hermitian flat bundle E1 with minimum
dimension Nε = DF,u(ε) so that u is represented by gε ∈ C1

F (U(Eε)) with
||gε||(1) < ε/4κ(D̃). Then apply Theorem 4.3 and the Foliation Index Theo-
rem 4.2 to obtain

4 · trµ
(
{χ[λ(L),λ(L)+ε)(D̃1

L)}
)
≥

2 · trµ
(
{χ[λ(L),λ(L)+ε)(D̃1

L)}
)

1−
√
κ(D̃)||gε||(1)/ε

(28)

≥ |
〈
ψ−1(ch∗(σ+(D̃1, g))) ∪ Td(F), [Cµ]

〉
|

It is given that the fundamental group of µ-almost every leaf L is trivial.
For such a leaf, the holonomy transport defines an Hermitian isomorphism of
flat bundles, UL : E1

L
∼= L × CNε , between the restricted bundle E1

L → L
and the trivial bundle. The holonomy transport depends continuously on the
initial parameter, so if we let Lx denote the leaf of F through x ∈ V , then the
correspondence x 7→ ULx is a µ-measurable family of unitary maps. Each map
UL induces an isomorphism between leafwise Hilbert spaces

ŨL : H(EL ⊗E1
L) ∼= H(EL ⊗CNε) (29)

The family of maps x 7→ ULx defines a unitary in the foliation von Neumann al-
gebra W ∗µ(V,F) associated to the measure µ. By the definition of the extension
D1
L, the Hermitian isomorphism ŨL conjugates D1

L with the “diagonal” exten-
sion of DL to Nε-copies of itself. Therefore, the spectral projection χ[λ,λ+ε](D̃1)
is unitarily conjugate to Nε-copies of the the spectral projection χ[λ,λ+ε](D̃),
which implies

trµ

(
{χ[λ(L),λ(L)+ε)(D̃1

L)}
)

= Nε · trµ
(
{χ[λ(L),λ(L)+ε)(D̃L)}

)
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Combining this last estimate with (28) and dividing through by 4Nε yields (27).
2

REMARK 4.6 There is yet another way to define “almost flat odd K-theory”,
which allows for unitary automorphisms of Hermitian bundles which are “almost
flat”. This definition has the advantage that there is a natural module action
of the even almost flat theory on the odd almost flat theory. We have avoided
this possibly more general definition, due to a point which the reader may have
noted in the above proof. It is critical for our calculation of the spectral density
that there exists a global unitary between the Hilbert spaces H(EL ⊗E1

L) and
H(EL ⊗ CNε) which depends measurably on the leaf. It is not clear how to
construct such isomorphisms for almost flat bundles.

5 Applications to coverings

In this section, we derive applications of Theorem 4.3 to the compact per-
turbations of a Γ-periodic geometric operator on a normal covering MΓ →M .

Baum and Douglas define a Chern character on K-homology [3, 4] which for
the odd K-theory of M is a homomorphism ch∗ : K1(M)→ Hodd(M ; R). This
map is characterized by an evaluation property: for DM a symmetric elliptic
operator on M with K-homology class [DM ] ∈ K1(M) and g : M → U(N) a
continuous unitary with K-cohomology class u ∈ K1(M),

〈ch∗(u), ch∗([DM ])〉 = Index
{
χ[0,∞)(DM ) ◦M(g) ◦ χ[0,∞)(DM )

}
∈ Z (30)

THEOREM 5.1 (No gaps) Suppose that there is u ∈ K1
Γaf (M) ⊂ K1(M)

such that

〈ch∗(u), ch∗([DM ])〉 = (−1)m
〈
ψ−1(ch∗(σ+(D1

M , g))) ∪ Td(M), [M ]
〉
6= 0. (31)

1. Let D̃Γ : C1
c (EΓ) → C1

c (EΓ) be the lift to M̃Γ of a pseudo-differential
operator D̃M on C∞(EM ) which is a compact perturbation of DM , then
σ(D̃Γ) = R.

2. Let D̃ be a compact perturbation of the leafwise operator DΓ obtained from
the lift of DM to the foliation FΓ of VΓ. Then for µΓ-almost every leaf L
of FΓ, the spectrum σ(D̃L) = R.

REMARK. Note that in the first case (5.1.1) the compact perturbation D̃Γ

is Γ-periodic on M̃Γ, while for the second case (5.1.2) we allow for a Γ-random
compact perturbation within the context of the foliation FΓ. In the latter case,
the the foliation index theorem technique only yields that σ(D̃L) = R for almost
all perturbations.

Proof of Theorem 5.1: Introduce the foliated space (VΓ,FΓ), and lift DM to
a leafwise operator DΓ for FΓ. D̃ will denote a compact perturbation of DΓ.
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The case (5.1.1) assumes that D̃ is a lift of a pseudo-differential operator on M ,
hence the restriction D̃L = D̃Γ for each leaf L, and thus (5.1.1) follows from
(5.1.2).

Observe that the measure space XΓ
∼= {y0} × XΓ → VΓ is a complete

transversal for F , so we can (non-uniquely) parametrize the leaves of FΓ by the
points of this space. Let Lx denote the leaf through x ∈ XΓ.

LEMMA 5.2 The spectral projection operators x 7→ χ[λ0,λ1](D̃Lx) are mea-
surable functions for the operator topology on B(HLx) where HLx ∼= HΓ is the
Hilbert space closure of C1

c (EΓ).

Proof: The characteristic function χ[λ0,λ1](ξ) is the limit of continuous func-
tions ϕt → χ[λ0,λ1] for t→ 0 and each 0 ≤ ϕt(ξ) ≤ 1 with support(ϕt) ⊂ [−1, 2].
Thus, the spectral projection χ[λ0,λ1](D̃Lx) is the limit in the operator topology
of the sequence of operators ϕt(D̃Lx), and the convergence is uniform in x. The
spectral theorem implies that ϕt(D̃Lx), for all t > 0, depends continuously on x
(cf. Proposition 5.8, [46]) and hence the limit χ[λ0,λ1](D̃Lx) depends measurably
on x. 2

Suppose that there exists a set of positive µ̃-measure Z ⊂ XΓ such that for
each x ∈ Z, the spectrum σ(D̃Lx) 6= R. Countable additivity of the measure
µ̃ implies that there exists λ ∈ R, ε > 0 and a µ̃-measurable subset Zε ⊂ Z of
positive µ̃-measure so that χ[λ,λ+ε](D̃Lx) = 0 for all x ∈ Zε.

Note that if x, x′ ∈ XΓ are Γ-equivalent - that is, there is γ ∈ Γ such
that γx = x′ - then the leaves Lx and Lx′ are the same for FΓ, and hence
σ(D̃Lx) = σ(D̃Lx′ ). We can therefore assume that Zε is Γ-invariant with positive
measure. The action of Γ on XΓ is ergodic for the measure µ̃, hence Zε has full
measure µ̃(Zε) = 1.

Let u be represented by the Γ-almost flat K-cocycle, gaf , which determines
a sequence of elements ĝi = π∗gi ∈ C1

FΓ
(π!E1

i ) with ||ĝi||(1) ≤ 1/4iκ(D̃) and
[ĝi] = [ĝ0] ∈ K1

af (V,F), where E1
i →M is a Hermitian flat bundle of dimension

Ni. Fix an i so that 1/i < ε.
For µ-almost every leaf L, the restriction π!E1

i |L is a Hermitian flat bundle
with trivial holonomy, hence there is an Hermitian equivalence of flat bundles
Ui : π!E1

i
∼= L×CNi . Let D̃1,i denote the extension of D̃ to sections of E⊗E1

i as
in the proof of Corollary 4.5. The existence of a leafwise unitary trivialization
of the flat coefficient bundle then implies that σ(D̃Lx) = σ(D̃1,i

Lx
) for µ̃-almost

every x, and thus χ[λ,λ+ε](D̃1,i
Lx

) = 0 for µ̃-almost every x ∈ Zε. By formula (25)
it follows that the analytic µ-index Tµ(I(D̃, gi)) = 0.

On the other hand, the topological formula (24) for Tµ(I(D̃, gi)) depends
only on the K-theory class of ĝi and the principal symbol of D̃, which is the lift
of the symbol for DM . Hence, the topological pairing in (24) equals the pairing
in (31) which does not vanish. This contradiction implies that that the set of
leaves of F with gaps in their spectrum must have µ-measure zero. 2

Our second result for coverings is an application of Theorem 4.3. We first
formalize the expression appearing on the left-hand-side of (27). Let (V,F , µ)
be a foliated measure space with an invariant transverse measure µ. Fix a
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leafwise essentially self-adjoint, pseudo-differential operator P ∈ ΨDOrc(E,F)
for some degree r > 0. For example, let P = D̃ be a compact perturbation of
a geometric operator. For −∞ < λ0 ≤ λ1 < ∞, the family of leafwise spectral
projections associated to P determines a class [χ[λ0,λ1](P)] ∈ K0(W ∗µ(V,F)),
and we introduce the µ-average spectral density function for P:

Den(V,F , µ)(P;λ0, λ1) = trµ
(
{χ[λ0,λ1](PL)}

)
= Tµ

(
[χ[λ0,λ1](P)]

)
(32)

Consider the special case where (V,F , µ) = (VΓ,FΓ, µΓ) and P is the leafwise
Γ-periodic lift of a pseudo-differential operator PM on M . We identify each
leafwise operator PL with the lift PΓ of PM to the covering M̃Γ with dense
domain in the closure HΓ of C1

c (EΓ). The trace trµΓ is then identified with the
Atiyah’s Γ-trace trΓ on B(HΓ), and we write

DenΓ(P;λ0, λ1) = trΓ

(
χ[λ0,λ1](PΓ)

)
= TµΓ

(
[χ[λ0,λ1](P)]

)
(33)

Let us note some elementary properties of the average density function (cf.
[39]):

PROPOSITION 5.3 Den(V,F , µ)(P;λ0, λ1) is monotone decreasing in λ0

and monotone increasing in λ1. 2

PROPOSITION 5.4 Let (V,F) be a foliated measure space with a invariant
transverse measure µ, and let P ∈ ΨDOrc(E,F) for r > 0 be a leafwise es-
sentially self-adjoint, pseudo-differential operator. If Den(V,F , µ)(P;λ, λ) 6= 0,
then there is a saturated subset Z ⊂ V with positive µ-measure, so that for each
L ⊂ Z the kernel of the operator PL − λ has infinite multiplicity, spanned by
smooth L2-eigensections of EL → L. That is, PL has pure-point spectrum of
energy λ for all L ⊂ Z. 2

The works of Novikov & Shubin [45, 44], Gromov & Shubin [30] and Lott [42]
study the asymptotic growth type about λ = 0 of the function

ε 7→ DenΓ(∆Γ; 0, ε)

where ∆Γ is the lift to the covering M̃Γ of the Laplacian on forms on M . The
asymptotic growth depends only on the germ of the function about ε = 0,
and Gromov and Shubin prove that this germ is a topological invariant of the
manifold.

The methods of this paper yield topological estimates for the germ of the
function
DenΓ(∆Γ; 0, ε) about ε = 0: the first is in terms of a new pseudo-norm on
geometric operators; and then in the next section, we prove our most general
spectral estimate for coverings in terms of the non-commutative isoperimetric
function of section 2.

Introduce the Γ-ε-almost flat pseudo-norm on the K-homology K1(M) of a
compact manifold M
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‖ [DM ] ‖Γε = sup
u∈K1

Γaf (M)

| 〈ch∗(u), ch∗([DM ])〉 | · IΓ,u(ε) (34)

The norm measures the “co-mass” of the K-homology cycle when paired with
increasingly diffuse K-cocycles, so is similar to the Thurston norm [51] and
Gromov norm [28] on homology. Proposition 2.9 and the topological invariance
of the index class ch∗([DM ]) (cf. [33]) imply

PROPOSITION 5.5 Let M be a compact oriented manifold without bound-
ary, and let Γ be a group whose classifying space BΓ is homotopic to a compact
simplicial space. Then for a fixed surjection ρ : Λ→ Γ, the quasi-isometry class
of the Γ-ε-almost flat pseudo-norm on K1(M) is a topological invariant. 2

The next result gives a lower bound estimate for the spectral density func-
tion of a compact perturbation of a geometric operator DM lifted to a normal
covering M̃Γ →M , in terms of the Γ-ε-almost flat norm.

THEOREM 5.6 (Covering spectral estimate) Let D̃M = DM + PM be a
compact perturbation of a geometric operator on C1(EM ) with 2ε(PM ) less than
the injectivity radius of M . Let M̃Γ → M be a normal covering, with D̃Γ the
lift of D̃M to C1

c (EΓ). Then for ε ≤ (λ1 − λ0)/4κ(D̃M )

DenΓ(D̃Γ;λ0, λ1) ≥ 1
4
· ‖ [DM ] ‖Γε (35)

Proof: Lift the operator D̃M to a leafwise operator D̃Γ for (VΓ,FΓ, µΓ). Let
E1
M →M be an Hermitian flat bundle of dimension N such that the holonomy

homomorphism Λ → U(N) factors through the quotient group Γ. The restric-
tion of the lift E1 = π!E1

M → V to a typical leaf of FΓ is Hermitian trivial,
and we can apply the method in the proof of Corollary 4.5 to obtain leafwise
unitary equivalences as in (29).

Let g ∈ C1(U(E1
M )) with ‖g‖(1) < ε and lift ĝ ∈ C1

FΓ
(E1). Set K = εκ(D̃),

then by Theorem 4.3

| 〈ch∗(u), ch∗([DM ])〉 | = |
〈
ψ−1(ch∗(σ+(D̃1

M , g))) ∪ Td(TM), [M ]
〉
|

= |
〈
ψ−1(ch∗(σ+(D̃1

Γ, ĝ))) ∪ Td(TFΓ), [CµΓ ]
〉
|

= |TµΓ

(
I(D̃, ĝ)

)
|

≤ 4 · trµΓ

(
{χ[λ,λ+K](D̃1

Γ)}
)

= 4N · trµΓ

(
{χ[λ,λ+K](D̃Γ)}

)
(36)

The last step uses the observation from the proof of Corollary 4.5 that the
leafwise unitary maps UL induce a unitary in W ∗µ(V,F) conjugating the spectral
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projections of D̃1
Γ with N copies of those for the operator D̃Γ. Then from (36)

and by Proposition 5.3, we have

| 〈ch∗(u), ch∗([DM ])〉 | ≤ 4N · trµΓ

(
{χ[λ0,λ1](D̃Γ)}

)
(37)

from which (35) is deduced. 2

6 Application to random perturbations

The results of the last section addressed the spectral properties of a Γ-
periodic geometric operator on a normal covering M̃Γ. In this section, we show
how the results of section 4 can be applied to geometric operators on M̃Γ which
are obtained from random perturbations of the lift of the Riemannian metric
to TM̃Γ. This case has relevance to problems in solid state physics (cf. [5];
Chapter 4, [16]), where spectral density results for random geometric operators
imply conductivity estimates for electron models in the presence of a force field.

Fix a quotient group ρ : Λ→ Γ and a Riemannian metric hM on TM , with
lift hΓ to the covering TM̃Γ. The idea of a “random perturbation” h̃ of a tensor
field on M̃Γ such as hΓ is that it should be close to the original metric in some
sense, and the set of translates {γ · h̃ | γ ∈ Γ} should be pre-compact in a
suitable topology. Moreover, we demand that the “closure” of {γ · h̃ | γ ∈ Γ} be
a Borel measure space Ω - the space of nearby random perturbations - endowed
with a Γ-invariant measure. These ideas are discussed further in (section 5, [39])
for random perturbations of unitary multipliers on M̃Γ. We use the following
definition:
DEFINITION 6.1 A random perturbation of hΓ consists of the data
(Ω, µ̃, ϕ, hFϕ), where

• (Ω, µ̃) is a Borel measure space of total mass 1

• ϕ : Γ× Ω→ Ω is an ergodic action preserving the measure µ̃

• hFϕ is a measurable family of C2-Riemannian metrics on the tangent
spaces TFϕ of the foliation on Vϕ constructed from the suspension of ϕ

• There exists a constant K > 0 so that for each leaf L, the restriction hL
of hFϕ to L is within distance K of the lifted metric hΓ, for the uniform
C2-topology on tensors.

The metrics are required to be at least C2 in the definition, in order to guarantee
that the corresponding Dirac operators have at least C1-coefficients, hence are
essentially self-adjoint.



24 Steven Hurder

THEOREM 6.2 Let DM be a geometric operator associated with the Rieman-
nian metric hM on TM and a Hermitian coefficient bundle E0

M → M , and
u ∈ K1

Γaf (M) ⊂ K1(M) such that 〈ch∗(u), ch∗([DM ])〉 6= 0 and

• (Ω, µ̃, ϕ, hFϕ) a random perturbation of hΓ

• D the associated leafwise geometric operator on Fϕ with coefficients in
E = π!EM

• D̃ = D+P a compact perturbation of D with 2ε(P) less than the injectivity
radius of M ,

the spectrum σ(D̃L) = R for µ-almost every leaf L ⊂ Vϕ. Moreover, there is a
lower bound for the average spectral density function, for all λ ∈ R and ε > 0

Den(Vϕ,Fϕ, µ)(D̃;λ, λ+ ε) ≥ 1
4
| 〈ch∗(u), ch∗([DM ])〉 | · IΓ,u(ε/4κ(D̃)) (38)

Proof: The coefficients of the leafwise foliation Dirac operator DL depend
continuously on metric h on TFϕ, for the C1-topology on tensors, so the coeffi-
cients of a random perturbation D vary measurably within a bounded distance
of those for the Γ-periodic operator DΓ. It follows that the “random geomet-
ric operator” D is leafwise homotopic in the transversally measurable category
to the Γ-periodic operator DΓ. Let u be as in the theorem, represented by a
Γ-almost flat K-cocycle gaf which determines lifts ĝi ∈ C1

Fϕ(E1) to (Vϕ,Fϕ)
with ‖ ĝi ‖(1) < 1/i. Recall that [ĝi] = [ĝ1] ∈ K1

af (Vϕ,Fϕ) is constant in i, so
that the topological Toeplitz index class ch∗(σ+(D1, ĝi)) is also independent of
i, and cohomologous in the leafwise deRham complex to that for the periodic
lift DΓ. Thus, the cohomology index pairing

(−1)m
〈
ψ−1(ch∗(σ+(D1, ĝi))) ∪ Td(Fϕ), [Cµ]

〉
=
〈
ch∗([gaf ]), ch∗([DM ])

〉
6= 0

Now apply Corollary 4.4 to obtain that σ(D̃L) = R for almost every leaf L.
The proof of the spectral density estimate (38) follows from Corollary 4.5,

where we note that IF ĝ1(ε) ≥ IΓg1(ε). 2

Theorem 1.1 of the Introduction is deduced from Theorem 6.2 by taking
Ω = XΓ and letting hFϕ = hΓ be the periodic lift of a metric from M . The
estimate (1) of Theorem 1.1 for D̃ = D̃Γ is a consequence of (38). 2

7 Examples

EXAMPLE 1 (Periodic Operators on Rm) The universal covering of the
m-torus Tm is Rm with the fundamental group Λ of Tm identified with the
covering group Zm acting by translations. A Riemannian metric on Tm lifts to
a Zm-periodic Riemannian metric on Rm, and an Hermitian vector bundle
E0

Tm → Tm lifts to a Zm-periodic coefficient system E0 → Rm.
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A more general construction is to introduce a random perturbation (cf.
Chapter 9 of [21]) of the Zm-periodic operator DZm , in the form of the data
(Ω, µ̃, ϕ, hFϕ). Each x ∈ Ω determines a leaf Lx and by restriction a geometric
operator D̃x on Lx ∼= Rm, which is a compact perturbation of D̃x acting on
the sections over the leaf Lx. The action of ~v ∈ Zmon Rm translates D̃x to the
operator D̃~v·x. Restricting D̃ to the leaves of Fϕ through the orbit of x ∈ Ω
thus yields the set of translates {D̃~v·x | ~v ∈ Zm}, which is a random sequence of
operators. An almost periodic perturbation is a random perturbation D̃ where
Ω is a compact connected, locally connected abelian group, the action of Zm is
transitive on Ω and the operator D̃ has continuous coefficients. One observes
that the set of translates {D̃~v·x | ~v ∈ Zm} is precompact in the uniform topology,
so this recovers the usual notion of almost periodic operators.

A typical example is to give Tm the standard flat metric, and introduce
an almost-periodic “force field” on Rm. That is, we take an almost-periodic
Hermitian coefficient system E0 → Rn with an Hermitian connection ∇E0

.
Then the lifted flat Dirac operator couples to the bundle E0 to yield a geometric
operator DZm = D/ Zm ⊗ ∇E0

on Rm which is the quantum almost-periodic
generator for a particle moving in the “force field” ∇E0

.

THEOREM 7.1 Let hZm be a Zm-periodic Riemannian metric on Rm for m
odd, and DTm a geometric operator on Tm.

1. σ(D̃Zm) = R for D̃Zm the Zm-periodic lift to Rm of a compact perturba-
tion of DTm .

2. σ(D̃x) = R for almost every x ∈ Ω, where D̃ is a compact perturbation
of the lifted geometric operator D̃F associated to a random perturbation
(Ω, µ̃, ϕ, hFϕ) of the periodic metric hTm .

Proof: The conclusions will follow from Theorems 5.1 and 6.2, if we show
the existence of a class u ∈ K1

af (Tm) so that 〈ch∗(u), ch∗([DTm ])〉 6= 0. First
note that for an arbitrary compact Spin manifold M , the odd index pairing
Ind : K1(M)⊗K1(M)→ Z is non-singular with the formula (Theorem 4, [4])〈

ch∗(u), ch∗([D/ ⊗∇E0
M ])
〉

=〈
ch∗(u) ∪ ch∗([E0

M ]) ∪ ch∗(σ+([D/ ])) ∪ Td(TM), [M ]
〉

(39)

Thus, given any geometric operator DTm there is u ∈ K1(Tm) so that
〈ch∗(u), ch∗([DTm ])〉 6= 0. Represent u by a C1-map g0 : Tm → U((m+ 1)/2).

We follow the re-scaling method of of Gromov and Lawson [29]: For each
integer i > 0 let πi : M̃i → Tm denote the covering corresponding to the
subgroup Λi = i · Zm ⊂ Zm with index [Λ : Λi] = im. Let Φi : M̃i

∼= Tm be
the canonical diffeomorphism which decreases distances by the factor 1/i and
define a unitary gi = g0 ◦ Φi : M̃i → U . Thus, each map gi is topologically the
same as the map g0 but is considered as a map on the covering M̃i which is a
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metric re-scaling of the base torus. The sequence gpf = {(gi,Λi, Ni) | 0 ≤ i} for
Ni = (m+ 1)/2 clearly satisfies the conditions of Definition 2.12. 2

Given a C1-map g:M → U(p), set

‖[g0]‖(1) = inf
{
‖ g ‖(1) | g:M → U(p) and g ∼ g0

}
Combine the proof of Theorem 7.1 with that of Proposition 2.13 to obtain:

PROPOSITION 7.2 Let 0 6= u ∈ K1(Tm) be represented by g0 : Tm →
U((m+ 1)/2).

DZm,u(‖[g0]‖(1)/`) ≤
(m+ 1) · `m

2
(40)

and hence IZm,u(ε) ∼ εm for ε small. 2

COROLLARY 7.3 Let hZm be a Zm-periodic Riemannian metric on Rm for
m odd. Let DTm be a geometric operator on Tm, and g0: Tm → U((m+ 1)/2)
so that 〈ch∗([g0]), ch∗([DTm ])〉 6= 0. Let D̃ = D + P be a compact perturbation
of the geometric operator on Fϕ associated to a random perturbation hFϕ of the
periodic metric hZm . Then for λ1 − λ0 > 4‖[g0]‖(1)κ(D̃)/`,

Den(Vϕ,Fϕ, µ)(D̃;λ0, λ1) ≥ 1
2(m+ 1)`m

2 (41)

REMARK 7.4 The motivation for calling IΓ,u(ε) an “isoperimetric function”
appears in the above derivation of the estimate (40). Recall the usual isoperi-
metric constant for a complete Riemannian manifold X (cf. Theorem 1, [53]):

h(X) = inf
U⊂X

inf
f∈C1

c (U)

∫
U
‖∇f ‖ dvol∫
U
| f | dvol

(42)

For a typical test function f which satisfies |f | ≤ 1, the isoperimetric constant
is dominated by the ratio of the supremum of ‖∇f ‖ on U to the mass of U .
Observe that for a class u ∈ K1

Γpf (M), the function IΓ,u(ε) is dominated by the
ratio of the supremum of ‖∇g ‖, for g : M̃i → U(∞) in the class of u, to the
number |Γi| which is proportional to the mass of M̃i.

EXAMPLE 2 (Compactly enlargeable manifolds) The above example
M = Tm is a special case of a general class of manifolds for which one can de-
rive an estimate for IΛ,u(ε). Recall the definition of an a compactly enlargeable
manifold due to Gromov and Lawson ([29]; see also page 302, [41]). A Rieman-
nian manifold is enlargeable of dimension m if for every ε > 0, there exists a
covering (possibly infinite) M̃ε →M and a degree one map fε : M̃ε → Sm which
is constant at infinity and has ‖∇fε ‖ < ε. The manifold M is compactly en-
largeable if for each ε > 0, there exists a finite covering M̃ε with these properties.
There are many examples of compactly enlargeable manifolds:
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THEOREM 7.5 (Theorems 5.3, 5.4, [41]) The following are compactly
enlargeable:

1. A compact Riemannian manifold which admits a globally expanding self-
map.

2. A compact arithmetic manifold with constant non-positive sectional cur-
vatures.

3. The product of compactly enlargeable manifolds.

4. The connected sum of any compact manifold with a compactly enlargeable
manifold.

5. Any manifold which admits a map of non-zero degree onto an enlargeable
manifold.

Recall that a map f from a metric space (X, dX) to a metric space (Y, dY )
is called globally expanding if for any two points x1, x2 ∈ X with x1 6= x2, one
has dY (f(x1), f(x2)) > dX(x1, x2). John Franks proved that the fundamental
group Λ = π1(M,x0) of a compact Riemannian manifold M which admits a
globally expanding self-map has polynomial growth, hence by the celebrated
theorem of Gromov, Λ must contain a nilpotent subgroup of finite index. Thus,
by Shub’s criteria the map f is topologically conjugate to an expanding infra-
nil-endomorphism of M . See the Introduction and section 1 of the paper of
Gromov, [27], for a discussion and references concerning globally expanding
self-maps.

The covering degree function of a compactly enlargeable Riemannian mani-
fold M is defined for all ε > 0:

CDM (ε) = inf{[Λ : Λi] | Λi = π1(M̃i) and there exists a degree one map
fε : M̃i → Sm with ‖∇fε ‖ < ε}.

The proof of Proposition 2.13 yields the estimate:

LEMMA 7.6 Let M be a compactly enlargeable, odd dimensional Riemannian
manifold with fundamental group Λ, and u = [ι◦f ] ∈ K1(M) the K-theory class
of ι:Sm → U((m + 1)/2) composed with a degree-one map f :M → Sm. Then
there exists a constant C(M) > 0 so that

DΛ,u(ε) ≤ C(M) · CDM (ε)

In particular, this implies that the reciprocal function IΛ,u(ε) > 0 when ε > 0.
2

COROLLARY 7.7 Let M be a compactly enlargeable Riemannian manifold of
odd dimension m, f :M → Sm a degree-one map, and DM a geometric operator
on M so that the push-forward class in K-homology f∗[DM ] ∈ K1(Sm) is non-
zero. Let D̃M = DM + PM be a compact perturbation of DM , with 2ε(PM ) less
than the injectivity radius of M .
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1. σ(D̃Λ) = R for D̃Λ the lift of D̃M to a periodic operator on the universal
covering of M ,

2. for u = [g0] where g0 = ι ◦ f :M → U((m + 1)/2) there is a lower bound
estimate on the Λ-spectral density function

trΛ

(
χ[λ,λ+ε)(D̃Λ)

)
≥ 〈ch∗(u), ch∗([DM ])〉

2(m+ 1)C(M) · CDM (ε/4κ(D̃Λ))
> 0 2

(43)

REMARK 7.8 Theorem 6.9 of Roe [49] implies that σ(D) = R for a random
geometric perturbation D of D̃Λ, which implies the conclusion of Corollary 7.7.1.
It is an appropriate point to compare the foliation index method of this paper
and the exotic index method of Roe. The homology Chern character of a geo-
metric operator DΓ on M̃Γ lies in the homology theory of locally-finite, but not
necessarily compactly supported chains (cf. comments in section 4, [24]). Both
approaches build upon this basic homological data, and the strategy is to formu-
late a cohomology theory that pairs with such chains, then relate the values of
the pairing to the spectrum. In coarse cohomology, the pairing factors through
the complex of cochains with compact supports on M̃Γ. Thus, the theory de-
tects the non-triviality of index via an essentially local method. However, one
of the main points of coarse cohomology theory is that there is a subcomplex of
the complex of compactly supported cochains whose cohomology groups “come
from infinity”; or more precisely, from the Higson Corona of M̃Γ (cf. section
5, [49]). The compactly supported classes which arise from the Higson Corona
pair trivially with a K-homology class that arises from a geometric operator
with a gap in its spectrum, and this is the source of the “no-gap” theorems
proved using coarse cohomology theory.

The method of this paper pairs homology with infinite supports with renor-
malized bounded cochains on M̃Γ. This requires that the terms in the pairing be
“renormalizable”, which in practice requires that the data on M̃Γ be the restric-
tion to a leaf L ∼= M̃Γ of global data defined on a foliated manifold (Vϕ,Fϕ, µ)
with an invariant transverse measure (cf. discussion of section 5, [34]). The
“renormalization” aspect of the foliation index theorem pairing implies that it
also detects classes “from infinity”. On the analytical level, renormalization
amounts to forming a sequence of Toeplitz compression operators using multi-
pliers whose gradients tend to zero, and hence the pairing localizes to a given
region of the spectrum. The existence of a compact setting for the analysis, the
foliated total space Vϕ, conveys an additional advantage: the renormalization
procedure produces an explicit measure of the renormalized spectral density, so
that the method yields more than simply the assertion that the spectrum is all
of R.
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EXAMPLE 3 (Partially enlargeable manifolds) The next family of ex-
amples consist of manifolds which map to the examples in Example 2. We
say that M is partially compactly enlargeable if there exists a continuous map
q : M → B to a compactly enlargeable manifold B inducing a surjection on
fundamental groups.

THEOREM 7.9 Let M be partially compactly enlargeable, with B a compactly
enlargeable manifold with fundamental group Γ = π1(B, b0), and q : M → B
a continuous map inducing a surjection q# : Λ → Γ on fundamental groups.
Denote the kernel of q# by Λ(q) ⊂ Λ. Suppose that DM is a geometric operator
on M with the push-forward class in K-homology (g0 ◦ q)∗[DM ] ∈ K1(Sm) non-
zero for a degree-one map g0:B → Sm. Then for every normal covering M̃Γ′ →
M with the kernel of Λ→ Γ′ contained in Λ(q):

1. σ(D̃Γ′) = R for D̃Γ′ the lift to M̃Γ′ of a compact perturbation of DM ,

trΓ′

(
{χ[λ,λ+ε)(D̃Γ′)}

)
≥ | 〈ch

∗([ι ◦ g0 ◦ q]), ch∗([DM ])〉 |
4Nu · CDM (ε/4κ(D̃Γ′))

(44)

2. σ(D̃L) = R for almost every L ⊂ Vϕ, where D̃ is a compact perturbation
of the geometric operator associated to a random perturbation hFϕ of a
periodic metric hΓ′ on M̃Γ′ . 2

Let us point out a simple application of Theorem 7.9.

COROLLARY 7.10 Let M be a compact manifold admitting a continuous
map q : M → Tm which induces a surjection q# : Λ → Zm on fundamental
groups, with kernel Λ(q) ⊂ Λ. Suppose that DM is a geometric operator on M
so that for the top dimensional class u ∈ K1(Tm), represented by ι ◦ g0 : Tm →
U(N), 〈

ch∗(q!u), ch∗([DM ])
〉
6= 0. (45)

Then for every normal covering M̃Γ′ →M with the kernel of Λ→ Γ′ contained
in Λ(q), there is a uniform estimate on the Γ′-spectral density function of an
operator D̃Γ′ which is the lift to M̃Γ′ of a compact perturbation of the geometric
operator DM , for ` > 0 and ε(`) = 4κ(D̃Γ′)/`

trΓ′

(
{χ[λ,λ+ε(`))(D̃Γ′)}

)
≥
|
〈
ch∗(q!u), ch∗([DM ])

〉
|

4N · `m
2 (46)

It is not known whether there exists a normal covering M̃Γ′ with no coarse
fundamental class. The existence of such a covering would provide an example
of a geometric operator on an open manifold where the renormalization method
of this paper implies that σ(D̃Γ′) = R, but the coarse cohomology method of
Roe does not apply.
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EXAMPLE 4 (Asymptotic estimates) The spectral density estimate (35)
involves the Chern character of the defining data for the elliptic problem. This
allows one to construct estimates on the spectral density function which grow
with the “degree” of the data, in a way reminiscent of the various Demailley
estimates for holomorphic bundles [22, 50].

Let Σ denote a compact Riemann surface of genus ≥ 2, and let κ⊗p → Σ
denote the pth-power of the canonical bundle. We let M = Σ × S1 be the
product of the surface with a circle, and choose a Riemannian metric hM on
TM . The fundamental group Λ = πi(Σ) × Z, so there is a natural surjection
onto Z with kernel π1(Σ). Apply Corollary 7.10 to obtain

THEOREM 7.11 Let ∂⊗pM be the geometric operator obtained from the Dirac
operator for hM with coefficients in the lifted bundle κ⊗. Let M̃Γ be a normal
covering associated to a homomorphism Λ → Γ whose kernel is contained in
π1(Σ).

1. σ(D̃⊗pΓ ) = R for each operator D̃⊗p which is the lift to M̃Γ of a compact
perturbation of the operator ∂⊗pM .

2. σ(D̃⊗pL ) = R for almost every L ⊂ Vϕ when D̃⊗p is a compact perturbation
of the geometric operator associated to a random perturbation hFϕ of the
periodic metric hΓ′ on M̃Γ.

3. The spectral density function of a random perturbation D̃⊗p of ∂⊗pΓ satis-
fies

Den(Vϕ,Fϕ, µ)(D̃⊗p;λ0, λ1) ≥ p

4`
(47)

whenever λ1 − λ0 > 4κ(D̃⊗p)/`. 2
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[31] A. Haefliger. Groupöides d’holonomie et classifiants. In Structures Transverses
des Feuilletages. TOULOUSE 1982, pages 70–97, 1984. Astérisque No. 116.
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