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Abstract

We prove that the transverse Euler class of a foliation vanishes in the measurable
leafwise cohomology theory for an amenable foliation. When there exists a holonomy
invariant transverse measure for the foliation, we prove that the corresponding average
transverse Euler class vanishes if the foliation is amenable with respect to this measure.
These results generalize the Hirsch-Thurston vanishing theorem for the Euler class of
foliated sphere bundles with amenable holonomy. The average transverse Euler class
is also shown to vanish for a transverse invariant measure which satisfies one of the
conditions: the measure is defined as the limit of an amenable averaging sequence; or,
it is a discrete measure defined as the ω-limit of an averaging sequence; or, it is non-
atomic with closed support in a tubular neighborhood of an almost tangent submanifold
for the foliation.
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1 Introduction and results

The purpose of this paper is to investigate the relationship between the values of the
transverse Euler class E(ν,F) of a C1-foliation F and the dynamics and geometry of
F . In particular, we give several vanishing theorems for the Euler class of the normal
bundle to a C1-foliation of a compact manifold. The first of these generalize a well-
known vanishing result of Hirsch and Thurston [13] for the Euler class of flat vector
bundles over a compact base. We then study the measured transverse Euler class, and
its relationship to the dynamics of the foliation near the support of the measure.

The Euler class E(E) ∈ H2n(M ; R) of a 2n-dimensional flat vector bundle E over
a compact manifold M need not vanish, but there are strong restrictions on its values
arising from geometric considerations. A famous result of J. Milnor [23] strictly bounds
the Euler number of a flat oriented 2-plane bundle E → Σ over a compact oriented
surface Σ by one-half of the Euler characteristic χ(Σ) of Σ. J. Wood [37] generalized
Milnor’s inequality to foliated circle bundles V → Σ over a compact surface Σ, but
with upper bound χ(Σ). Later work of D. Sullivan, M. Gromov and J. Smillie extended
these results to flat oriented vector bundles with arbitrary even dimension, and odd-
dimensional sphere bundles over a compact manifold with a C1-foliation transverse to
the fibers [9, 33].

There is a second type of restriction on the Euler class of a flat vector bundle, given
in terms of the linear holonomy group Γ ⊂ GL(2n,R) of the bundle. For example,
the theorem of Hirsch and Thurston [13] cited previously implies that if the holonomy
group Γ is amenable, then the Euler class E(E) ∈ H2n(M ; R) vanishes. There is also
the remarkable result of P. Deligne and D. Sullivan [4], which states that if the linear
holonomy group Γ is conjugate to a subgroup of the complex subgroup GL(n,C) ⊂
GL(2n,R), then a finite multiple of the bundle is trivial as a flat bundle. In particular,
the real Euler class E(E) = 0. Both of these results are special cases of a more general
phenomenon which is a consequence of the van Est theorem for flat bundles [18, 30, 31]:
Let H(Γ) ⊂ GL+(2n,R) be the algebraic hull of the holonomy group; if the universal
Euler class Ẽ ∈ H2n

c (GL+(2n; R); R) in continuous cohomology restricts to zero in
H2n
c (H(Γ); R), then E(E) = 0.

In this paper, we will consider a C1-foliation F of a compact oriented manifold V
of dimension p, even codimension 2n, and leaf dimension m = p − 2n. Let ν denote
the normal bundle to F . The Bott connection on ν is a natural, flat partial connection,
ωB , ([1]; see also Chapter 3, [19]) with covariant derivative operator denoted by ∇F .
The defining property of ∇F is that it equals the Lie derivative operator on smooth
sections of ν when evaluated on vector fields along the leaves of the foliation. For the leaf
Lx ⊂ V through a point x ∈ V , ωB restricts to an affine flat connection on ν|Lx → Lx.
(This is a consequence of the Jacobi identity for the Lie derivative operator.) Thus, a
C1-foliation yields a family of flat bundles, endowed with flat affine connections, over
its leaves, parametrized by the points of V .

The leafwise deRham cohomology of F is the cohomology H∗(F) of the complex of
leafwise forms on V which are smooth when restricted to leaves, and continuous as global
forms. Assume there are given orientations on the tangential distribution TF and the
normal bundle ν. The transverse Euler class for F is defined as the “Euler characteristic
class” of ν for this cohomology theory, and is denoted by E(ν,F) ∈ H2n(F).

Recall that a transverse measure µ for a foliation F is quasi-invariant if the property
that a transversal X ⊂ V has µ-measure zero is invariant under the transverse holonomy
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of F .
Given a transverse measure µ to F which is quasi-invariant, we can also consider the

complex of leafwise smooth, transversally µ-measurable forms on F , with cohomology
groups denoted H∗µ(F) (cf. Zimmer [39]). The measurable transverse Euler class is
the “Euler class” for ν in this cohomology theory, denoted by Eµ(ν,F). For the special
case of transverse Lebesgue measure on V , we denote this class by E(ν,F).

A measured foliation is a pair (F , µ), where F is a C1-foliation and µ is an invariant
transverse locally finite measure. The existence of a non-trivial transverse invariant
measure is a dynamical hypotheses about F (cf. [28, 32].) A measured foliation (F , µ)
with TF oriented has a Ruelle-Sullivan foliation cycle [29], Cµ, which is a closed current
on V . Its cohomology class, [Cµ] ∈ H2n(V ; R), plays the role of the fundamental class
[M ] of the base M for the study of the Euler characteristic of a flat bundle.

Assume that the leaf dimension equals the codimension, m = 2n, for a measured
foliation (F , µ) with TF oriented. The (real-valued) average transverse Euler charac-
teristic of the measured foliation is obtained by pairing the foliation class [Cµ] with the
µ-transverse Euler class Eµ(ν,F):

χµ(ν) = 〈[Cµ], Eµ(ν,F)〉 = 〈[Cµ] \ Eµ(ν,F), [V ]〉

This yields a subtle invariant of the foliation, as it is formed from a primary class for
the flat normal bundles over the leaves. The general principle we will develop is that
χµ(ν) is a measure of the “complexity” of the transverse holonomy of the foliation in a
neighborhood of the support of µ. For example, our results support the conjecture that
if the transverse measure µ has no atoms (compact leaves of F with positive µ-measure),
then χµ(ν) = 0.

The definition of χµ(ν) is similar to that of the average (leafwise) Euler charac-
teristic, χµ(F), of a measured foliation [3, 27], which is obtained by evaluating the
leafwise Euler class E(TF) on the foliation class [Cµ]. The number χµ(F) measures
the “average Euler characteristic of ‘large’ compact subsets of a ‘µ-typical leaf’ of F”.

The average transverse Euler class of an oriented measured foliation (F , µ) is de-
fined for even codimension, but without restriction on the leaf dimension. It is the
the homology slant product of the Ruelle-Sullivan homology class [Cµ] with the Euler
cohomology class E(ν):

E(ν, µ) = [Cµ]\E(ν) = [Cµ] \ Eµ(ν,F) ∈ Hm−2n(V ; R)

For the case m = 2n, this reduces to the average transverse Euler invariant, E(ν, µ) =
χµ(ν), via the identification H0(V ; R) ∼= R.

Let us now state the theorems which relate the “Euler invariants” introduced above,
E(ν,F), E(ν,F), Eµ(ν,F), E(ν, µ) and χµ(ν), to the geometry and dynamics of the
foliation. Our first result, Theorem 1.1, generalizes the Hirsch-Thurston Theorem for
amenable flat bundles, and is the counterpart for the Euler class of the vanishing theo-
rems for the Weil measures of amenable foliations [15].

THEOREM 1.1 Let F be a codimension 2n, C1-foliation of a compact manifold V .
Suppose that the measured equivalence relation R(F) ⊂ V × V determined by F is
amenable with respect to the Lebesgue measure class on V × V . Then the measurable
transverse Euler class E(ν,F) vanishes.

The proof of Theorem 1.1 follows from Lemma 3.6 and Corollary 4.2 below.
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COROLLARY 1.2 Let (F , µ) be a measured C1-foliation with R(F) amenable with
respect to Lebesgue measure, and assume µ is an absolutely continuous transverse mea-
sure. Then the average transverse Euler class E(ν, µ) = 0.

Corollary 1.2 follows directly from Proposition 2.8 below.
Theorem 1.1 has a novel application which provides an effective obstacle to the

amenability of foliations. The leafwise Euler class can be paired with any transverse
closed form on V with maximal transverse rank (the residual forms of Heitsch and
Hurder [12]) to yield a cohomology class on V . In particular, for a codimension 2n,
C2-foliation the nth-Pontrjagin class, Pn(ν) ∈ H4n(V ; R), is represented by a residual
form. Pairing the class E(ν,F) with Pn(ν) yields the third power of the Euler class,
E(ν)3 ∈ H6n(V ; R).

COROLLARY 1.3 Suppose that F is a C2-foliation on a smooth manifold V with
E(ν)3 6= 0. Then the equivalence relation R(F) is not amenable for the Lebesgue
measure class. 2

There exist transversally C1-foliations on compact oriented manifolds with E(ν)3 6=
0, using the recent work of T. Tsuboi [36] and the Thurston realization theorem [35],
but it is not known whether there exists a C2-foliation with E(ν)3 6= 0.

For a measured foliation (F , µ), the natural measure class on the equivalence relation
R(F) is that determined by the measure µ. In section 3 we introduce the definition of
a completely amenable foliation.

THEOREM 1.4 Let (F , µ) be a measured C1-foliation on a compact manifold V .
If the equivalence relation R(F) is completely amenable with respect to the transverse
measure class of µ, then the µ-measurable transverse Euler class Eµ(ν,F) = 0. Conse-
quently, the average transverse Euler class E(ν, µ) = 0, and when m = 2n the average
transverse Euler characteristic χµ(F) = 0.

Theorem 1.4 follows from Lemma 3.5 and Corollary 4.2 below.
Recall briefly the strategy of the the proof of the Hirsch-Thurston Theorem: The

flat structure ∇ on the bundle E implies there exists a foliation F∇ on the unit sphere
bundle S(E) → M of E, transverse to the S2n−1-fibers. The leaves of F∇ are Galois
coverings of the base M , associated to the holonomy homomorphism of the bundle. The
amenability hypothesis implies there exist a holonomy invariant transverse measure for
this foliation, which is a probability measure when restricted to the fibers. Hirsch and
Thurston then observe that the existence of such a measure implies that the Euler class
of E must vanish (cf. section 4 below.)

We wil adopt a similar approach for the case of the normal bundle to a foliation,
which leads to the proofs of Theorems 1.1 and 1.4 in sections 3 and 4. Let π : V̂ → V
denote the unit normal sphere bundle to F . The Bott connection defines a C0-foliation
F̂ of V̂ , where the leaves of F̂ cover those of F (cf. Chapter 2, [19]). We are given
a transverse measure class for F , and to obtain the vanishing of the corresponding
transverse Euler class it suffices to exhibit a measure µ̂ on the fibers of the projective
normal bundle which is defined almost everywhere for µ, and is invariant under the
holonomy of F̂ . The idea of the proofs of both Theorems 1.1 and 1.4 is to formulate
the appropriate amenability hypotheses which imply that such a measure exists, then
follow the Hirsch-Thurston method to obtain vanishing in the appropriate cohomology
theory.
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Our considerations of transverse Euler invariants suggest formulating a concept of
much weaker form of “amenability” for foliations, by specializing to the linear holonomy
action on the projective normal bundle of the foliation groupoid. The following question
is based on this notion, and by the Hirsch-Thurston method as applied in this paper
to foliations, is the key dynamical concept for proving the vanishing of the transverse
Euler class.

PROBLEM 1.5 Find general criteria, in terms of the dynamics of F , for when there
exists a family of probability measures µ̂ on the fibers of the projective normal bundle
P+(ν) which is holonomy invariant for the foliation F̂ .

Our next two results address how the values of the transverse Euler invariants depend
on the dynamics of the foliation in a neighborhood of a given transverse measure.

An amenable sequence for F is a collection {Zi | i = 1, . . .} of closed subsets of leaves
of F such that they are an averaging sequence for F (cf. [6], and section 5 below) , and
for each i the holonomy group Γi of F generated by the closed paths in the subset Zi
is an amenable group.

THEOREM 1.6 Let µ be an invariant transverse measure for F defined as a weak-*
limit of an amenable sequence for F . Then the average transverse Euler class E(ν, µ) =
0. Consequently, for m = 2n, the average transverse Euler characteristic χµ(ν) = 0.

Theorem 1.6 follows directly from Corollary 5.7.
No assumption is made about the support of the measure µ in Theorem 1.6. Let

us introduce some standard terminology concerning the topological properties of the
leaves in the support of a transverse measure µ. We say that it is:

• atomic if there is a compact leaf L of F with full µ-measure, and we then write
µ = µL.

• (countably) discrete if it is a finite (countable) sum of atomic measures.
• compact if there is a Borel set in V consisting of a union of compact leaves with

full µ-measure.
• continuous if every leaf of F has transverse measure equal to zero.

Every locally-finite invariant transverse measure can be decomposed into a disjoint sum
of a countably discrete measure and a continuous measure, µ = µa+µc (cf. Introduction,
[16]). The compact leaves in the support of µa are called the atoms of µ.

Now assume that µ is discrete, and also require that there exist an averaging sequence
{Zi | i = 1, . . .} which defines µ as a weak-* limit and is disjoint from µ. “Disjoint”
means that for a compact leaf L in the support of µ, the intersection L∩Zi is empty for
all i. Section 6 introduces a technique of “blowing-up” along compact leaves, or more
generally along compact foliated submanifolds, and we use this to prove:

THEOREM 1.7 Let µ be a discrete invariant transverse measure for F , which is a
weak-* limit of an averaging sequence for F that is disjoint from the support of µ. Then
for each leaf L in the support of µ, the Euler class E(ν|L) ∈ H2n(L; R) vanishes. In
particular, the average transverse Euler class E(ν, µ) = 0.

The proof of Theorem 1.7 follows from Proposition 6.4 below. There is a special case of
this theorem, which generalizes the usual result that the Euler class of a bundle admit-
ting a non-vanishing cross-section is zero. The following corollary also has applications
to the vanishing of residues for foliations (cf. [11]):
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COROLLARY 1.8 Let L be a compact leaf of a C1-foliation F . Then the normal
Euler class E(ν|L) for L vanishes if L is the ω-limit set of an averaging sequence.

The main theorem of [16] states that the self-intersection class [Cµ] ∩ [Cµ] vanishes
for a transverse measure with no atoms; and when there are atoms, it is equal to the
average transverse Euler characteristic of the atomic part of the measure. This suggests
the following:

CONJECTURE 1.9 Let µ be an invariant transverse measure for F . Suppose that µ
is continuous; or more generally, that no atom of µ is isolated (for the ambient topology
on V ) in the support of µ. Then the average transverse Euler class E(ν, µ) = 0.

Our last result gives a partial solution to this conjecture. A transverse measure
µ is said to be almost compact if the closed support of µ is contained in a tubular
neighborhood π : UN → N of an almost tangent closed submanifold N ⊂ V . We say
that the measure µ covers the submanifold N . (See section 7.)

THEOREM 1.10 Let µ be an almost compact invariant transverse measure which
covers an oriented submanifold N ⊂ V . Assume either that µ is not atomic, or µ
is atomic with support on the compact leaf L ⊂ U → N which multiply covers the
submanifold N under the projection π. Then

E(ν, µ) = 0 and [Cµ] ∩ [Cµ] = 0

As a corollary of the methods used to prove Theorem 1.10 in section 7, we obtain a
vanishing theorem for the Euler class of vector bundles complementary to the Hirsch-
Thurston results:

COROLLARY 1.11 Let E→M be an oriented D2n-bundle over a compact manifold
M, with a C1-foliation F that is transverse to the fibers. Assume there exists a non-
trivial holonomy invariant transverse measure µ for F with compact closed support in
E, whose support does not consist of a single compact leaf that singly covers M, then
the Euler class E(E) = 0.

Section 8 of the paper gives examples of foliated manifolds which illustrate the main
results of this paper, and describe for the reader’s convenience the known constructions
of foliations relevant for understanding the properties of the transverse Euler class.

Finally, let us note that the extension of Milnor’s inequality for flat bundles over
surfaces to the average transverse Euler characteristic of a measured foliation has been
considered by the second author in [24, 25]. For example, when the leaf dimension
and codimension are both 2 and the transverse measure µ is defined by an averaging
sequence of a leaf of subexponential growth (cf. [28]), then there is an estimate |χµ(ν)| ≤
1
2 |χµ(F)|. Partial extensions of this estimate to arbitrary transverse measures and to
foliations with leaves of dimension greater than two are given in [24], but the general
extension remains an open problem.
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2 Transverse Euler class

The Euler cohomology class, viewed as a characteristic class on real vector bundles,
is characterized by a set of four axioms (cf. Chapter XII, section 5, [20]). There are
several concrete realizations of the Euler class, each revealing a different aspect of its
relation to geometry, and the equivalence of the various constructions is one of the
basic exercises in differential topology (cf. sections 11 and 12, [2]). We will define the
transverse Euler class using the differential form approach to this characteristic class. It
is first necessary to introduce the various measurable cohomology theories associated to
a foliated manifold, and for each cohomology theory there is a corresponding transverse
Euler class. The main result of this section is that the transverse Euler class satisfies
two “axioms”, comparable to those for the usual Euler class. These axioms are the
key to implementing the Hirsch-Thurston method of proving vanishing theorems for
amenable holonomy.

Fix an oriented C1-vector bundle E → V with even fiber dimension 2n. Let π :
P+(E)→ V denote the associated bundle of positive rays, with fibers diffeomorphic to
S2n−1.

DEFINITION 2.1 A global angular form for E → V is a C1-exterior differential
(2n-1)-form ψ on P+(E) such that:

1. For each x ∈ V , the cohomology class of the restriction of ψ to the sphere fiber
π−1(x) equals the (integral) orientation cohomology class of the fiber.

2. The exterior differential dψ of ψ on the total space P+(E) is the lift of a closed
2n-form e(E) on V .

The existence of the angular form can be shown by several methods. Chern-Weil
theory gives an abstract construction when the unit sphere bundle has differentiability
class at least C2 (cf. Theorem 3.30, [19]). The angular form can also be directly
constructed for sphere bundles using the transgression sequence for Cech cohomology
of the fibration (cf. page 121, [2]).

PROPOSITION 2.2 The cohomology class of the form e(E) on V is independent of
the choice of angular form ψ. The Euler class of E is defined to be its class E(E) =
[e(E)] ∈ H2n(V ; R). 2

A foliation F on a C∞-manifold V without boundary is said to be transversally Cr

if the tangent bundle TF is a Cr-subbundle of TV , and the leaves of F are smoothly
immersed C∞-submanifolds of V .

Assume that π : ν → V is the normal bundle to a transversally Cr-foliation F on
V , for r > 0. The Bott connection ωB on ν defines a transversally Cr−1-foliation F̃ on
ν: the tangential distribution to F̃ is defined as the horizontal vectors for ωB which lie
over TF , so that T F̃ = π−1(TF)∩ker(ωB). The basic property of the Bott connection
on ν is that its restriction to leaves is flat, which is equivalent to the integrability of
the distribution T F̃ . The restriction of π to a leaf of F̃ is local diffeomorphism, so is
a Galois covering of a corresponding leaf of F . The foliation F̃ is invariant under the
radial dilation on ν (cf. pages 25-27, [19]), and we define F̂ as the quotient transversally
Cr−1-foliation on P+(ν). Note that the leaves of F̂ also cover those of F .
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There is a second foliation on P+(F), denoted by π∗F . The leaves of π∗F are the
oriented projective normal bundles over the leaves of F . Note that π∗F and F have
the same codimension, but their leaf dimensions differ by 2n-1.

Let TF∗ denote the dual vector bundle to the tangent bundle of F , and let Λ·(TF∗)
be the corresponding bundle of real exterior algebras. Observe that a vector ω ∈
Λq(TF∗) is only defined on q-frames of vectors tangent to the leaves of F . (A choice of
a supplemental bundle TM ∼= TF ⊕ Q is necessary to define an embedding of graded
algebra bundles, Λ·(TF∗) ⊂ Λ·(TV ∗). )

Let Ωq(F) denote the exterior algebra of smooth q-forms along the leaves of F .
That is, φ ∈ Ωq(F) is a section of the bundle Λq(TF∗) which is Cr on V , and smooth
when restricted to the leaves of F . The leafwise exterior differential defines a map
dF : Ωq(F) → Ωq+1(F) for each 0 ≤ q ≤ m. The cohomology of this complex, H ·(F),
is called the smooth leafwise cohomology .

The leafwise differential dF is defined on any section of Λ·(TF∗) which is smooth
when restricted to leaves of F . Also, dF preserves transverse measurability of sections.
We can therefore introduce modifications of the smooth leafwise cohomology, based on
allowing more general classes of sections with respect to their transverse behavior. Let
Ω·r′(F)

def
= Γr′(Λ·(TF∗)) denote the space of sections φ which are smooth along leaves,

and for which both φ and dF (φ) have regularity class “r′” transverse to the foliation.
When r′ = 0, these are the sections for which φ and dFφ are continuous on V and
C∞ along leaves. The cohomology groups for these complexes are denoted by H ·r′(F).
When r′ = r, we omit the subscript “r′” from the notation.

Given a transverse quasi-invariant measure µ, we write Ω·µ(F) to denote the sections
which are smooth along leaves and such that both φ and dF (φ) are µ-measurable and
bounded almost everywhere with respect to µ. Moreover, we identify two sections if they
differ on a µ-measurable set of leaves with µ-measure zero. (A form φ in this complex is
allowed to be undefined on a set which is a union of leaves of measure zero, by the device
of declaring it equal to the zero section on this set.) The resulting cohomology theory
is denoted H ·µ(F). This measurable cohomology theory for foliations is suggested by
the works of G. Mackey [22], and was introduced by R. Zimmer in the preprint [39] for
the study of foliation ergodic theory. For a C1-foliation, Lebesgue measure is always
quasi-invariant. We denote by H ·(∞)(F) the cohomology theory for Lebesgue measure.

LEMMA 2.3 For every quasi-invariant transverse measure µ for F , there exist natu-
ral maps

1. H ·(F)→ H ·0(F)→ H ·µ(F);

2. π∗ : H ·µ(F) −→ H ·µ(π∗F).

Proof. (1) There are well-defined inclusions of complexes Ω·(F) ⊂ Ω·0(F) ⊂ Ω·µ(F)
which commute with the differentials. (2) The differential of the fibration map π induces
a map on leafwise differential forms for any µ. 2

DEFINITION 2.4 Let F be a C1-foliation of the smooth manifold V , with oriented
normal bundle ν. A global angular F-form for ν is a (2n-1)-form ψF ∈ Ω2n−1

0 (π∗F)
such that

1. ψF restricts to each fiber of π to yield the orientation class of ν;

2. dπ∗F (ψF ) = π∗(eF (ν)) for a dF -closed continuous 2n-form eF (ν) ∈ Ω2n
0 (F).

7



The construction of a global angular F-form on P+(ν) follows by the same methods
as for bundles over V . The proof of Proposition 2.2 is also local, so equally applies to
the form eF (ν).

DEFINITION 2.5 (Transverse Euler Class) Let F be a C1-foliation on V with
oriented normal bundle ν.

• The transverse Euler class E(ν,F) ∈ H2n(F) is the cohomology class of the closed
form eF (ν) considered as an element of the complex Ω2n(F).

• The measurable transverse Euler class E(ν,F) is the image of E(ν,F) in H2n
(∞)(F)

• The µ-transverse Euler class Eµ(ν,F) of a measured foliation (F , µ) is the image
of E(ν,F) in H2n

µ (F).

There are two key properties of the transverse Euler class that are used in the proof
of the vanishing theorems of section 1.

PROPOSITION 2.6 (Naturality) Let F be a C1-foliation on V with oriented nor-
mal bundle ν, and F ′ a C1-foliation on V ′ with oriented normal bundle ν′. Let f :
V ′ → V be a C1-mapping sending leaves of F ′ to those of F , and which is transverse
to F . Then E(ν′,F ′) = ±f∗(E(ν,F)), with sign according to whether f is orientation
preserving or reversing.

Proof. Transversality of the map f implies that there is an induced map of the foliated
normal sphere bundles, f̂ : P+(F ′) → P+(F) which covers the map f . Therefore, the
pull-back form ψ′F ′ = f∗(ψF ) ∈ Ω2n−1

0 (π∗F ′) is a global angular F̂ ′-form for ν′, and
thus E(ν′) is represented by f∗(eF (ν)). 2

PROPOSITION 2.7 (Vanishing) Let F be a C1-foliation with oriented normal bun-
dle ν of dimension 2n. If the normal bundle ν admits a continuous non-vanishing vector
field on V which is C∞ along leaves of F , then E(ν,F) = 0.

Proof. On the total space P+(F) the form π∗(e(ν)) = dπ∗F (ψF ). The existence of
a non-vanishing vector field implies that there is a cross-section σ : V → P+(F) to π,
and thus eF (ν) is exact in the complex Ω2n

0 (F). 2

The cohomology groups H ·µ(F) can be difficult to compute, so the main application
of the leafwise cohomology theory is via its rôle in pairing with other geometric data.
There are two examples of this which arise in this paper: pairing with a Ruelle-Sullivan
class to obtain invariants of measured foliations [14]; and pairing with primary classes
of the normal bundle, as in the definition of Weil measures for a foliation [12].

PROPOSITION 2.8 Let (F , µ) be a measured C1-foliation of the compact manifold
V with both TF and ν oriented bundles, where the leaves of F have dimension m. Then
there exists a bilinear pairing

×µ : Hq
µ(F)×Hm−q(V ; R) −→ R (1)

8



Proof. For a closed form ψ ∈ Ωm−q(V ), the exterior product φ ∧ ψ ∈ Ωmµ (F) is again
a closed leafwise smooth form. The integral of φ ∧ ψ against the transverse measure µ
is then well-defined (using the partition-of unity method [29, 14]), and we set

×µ(φ, ψ) =
∫
V

φ ∧ ψ dµ . (2)

The leafwise Stokes’ Theorem then implies that the pairing (2) does not depend on the
representatives φ and ψ chosen from their respective cohomology classes (cf. proof of
Theorem 1.6, [14] or Proposition 2.6, [12]). 2

The cohomology theory H ·µ(F) is a module over the algebra B∞(V/F) of Borel
functions on V which are constant on leaves, so the method of (section 2, [12]) yields:

COROLLARY 2.9 For each class [φ] ∈ Hq
µ(F), there is a well-defined, countably

additive measure on the Σ-algebra B∞(V/F) of measurable F-saturated sets in V , rep-
resented by the linear functional

[φ]µ : B∞(V/F) −→ Hm−q(V ; R) (3)
[φ]µ(f) = ×µ(f · φ, ψ) , f ∈ B∞(V/F). 2

COROLLARY 2.10 Let (F , µ) be a codimension-2n measured C1-foliation of the
compact manifold V with both TF and ν oriented bundles. Then there exists a well-
defined average transverse Euler class,

E(ν, µ) = [E(ν,F)]µ(1) ∈ Hm−2n(V ; R). 2 (4)

For the second application of leafwise cohomology, let A·(V/F) ⊂ Ω·1(V ) denote the
ideal of differential forms on V which vanish when restricted to the leaves of F . Define
R(V/F) = ∧2nA·(V/F) to be the 2n-power of this ideal. Recall from (section 2, [14];
and also [12]) that a form ψ ∈ R(V/F) is said to be residual. Locally, such ψ has a
factorization ψ = ψ0 ∧ ω0, where ω0 is a transverse 2n-form. The Frobenius theorem
implies that d = dF on R(V/F), so that this is a differential ideal in Ω·1(V ) for the full
exterior differential d. Its cohomology groups are denoted by H ·(V,F).

Observe that Hq(V,F) = 0 for 0 ≤ q < 2n, and that H2n(V,F) consists of invariant
transverse measures for F which are represented by closed C1-forms on V . The interest
in this cohomology theory is that for a C2-foliation and for every Chern form C of
degree 2n on GL(2n,R), the Chern-Weil construction of characteristic classes using
the Bott connection for ν ([1]; or see Chapter 4, [19]) yields a well-defined invariant
∆(C) ∈ H4n(V,F) of the foliation F . It is straightforward to show:

PROPOSITION 2.11 For a C1-foliation F on V , there is a well-defined pairing

Hq
(∞)(F)×Hq′(V,F) −→ Hq+q′(V ; R). 2 (5)

COROLLARY 2.12 Let F be a C2-foliation with oriented normal bundle ν. Let
E(ν) ∈ H2n(V ; R) denote the Euler class of ν. Then E(ν)3 = E(ν,F)∧∆(C2n), where
C2n = Pn is the nth-Pontrjagin symmetric polynomial. Consequently, E(ν)3 vanishes
if E(ν,F) = 0. 2
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3 Amenability for foliations

Amenability for foliations is formulated in terms of properties of the affine cocycles
over measurable equivalence relations. We will introduce a related notion of complete
amenability, which is based on the affine cocycles for the fundamental groupoid of
a foliation, and depends also on the topological structure of the equivalence relation
defined by a foliation. The definitions of this section set-up the framework for the
proofs of “Hirsch-Thurston vanishing theorems”, which are discussed in the following
section.

We begin with a discussion of cocycles and amenability for topological group actions.
First, suppose that G is locally compact second countable topological group. G is
amenable if for every continuous G-action on a compact metrizable space, X, there
is a G-invariant probability measure on X. Given a group action, Zimmer defines
amenability for the action (cf. section 4.2, [40]) in terms of fixed-point properties of
measurable cocycles over the action. Amenability for actions has the effect of extending
the classical notion of amenability to the “virtual subgroups” of G, in the sense of
Mackey [22] (section 1, [38]; cf. also section 4.3, [40]).

Let (S, µ) be a G-space. That is, S is a standard Borel space, µ is a σ-finite measure
on S, and the action S × G → S is Borel with the measure µ quasi-invariant under
the action of G. Given a second countable topological group, H, a Borel function
α : S ×G→ H is a cocycle over the G-action if for µ-almost all s ∈ S,

α(s, gh) = α(s, g)α(sg, h) for all g, h ∈ G.

Two cocycles α, β : S ×G→ H are cohomologous, and we write α ∼ β, if there is a
Borel function φ : S → H such that for µ-almost all s ∈ S,

β(s, g) = φ(s)α(s, g)φ(sg)−1 for all g ∈ G.

We say that α is a coboundary if it is cohomologous to the trivial cocycle into H.
Let E be a separable Banach space and Iso(E) the group of isometric isomorphisms

of E. Let E∗1 denote the unit ball in the dual space E∗, and H(E∗1 ) the group of
homeomorphisms of E∗1 with the topology of uniform convergence. The induced map
Iso(E)→ H(E∗1 ) is continuous and Borel (Lemma 1.3, [38]).

A Borel field of compact convex sets over S is an assignment As ⊂ E∗1 for each
s ∈ S such that each As is a non-empty convex compact subset, and the fiber product
{(s, λ)|λ ∈ As} is a Borel subset of S ×E∗1 . Given a Borel cocycle α : S ×G→ Iso(E),
there is an induced Borel adjoint cocycle α∗ : S × G → H(E∗1 ) defined by the rule
α∗(s, g) = (α(s, g)−1)∗. A Borel field of compact convex sets {As|s ∈ S} is said to be
α-invariant if

α∗(s, g)Asg = As for each g ∈ G and for µ− almost all s ∈ S.

DEFINITION 3.1 (Amenable group action) (S, µ) is an amenable G-space if for
every separable Banach space E, cocycle α : S × G → Iso(E), and α-invariant Borel
field {As|s ∈ S}, there is a Borel function φ : S → E∗1 such that for µ-almost all s ∈ S,
φ(s) ∈ As and α∗(s, g)φ(sg) = φ(s) for all g ∈ G.

When S is a singleton space, the trivial action of G on S is amenable if and only
if the group G is amenable (Proposition 1.5, [38]). More generally, for an amenable
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topological group G, every G-space (S, µ) is an amenable G-space. Conversely, if µ is a
G-invariant probability measure on S, then (S, µ) is an amenable G-space only if G is
amenable.

We next discuss two generalizations of amenability for actions to amenability of
foliations. The first is a standard extension of the above ideas to the case of measured
equivalence relations (cf. section 4, [26]). Let R(F) ⊂ V ×V be the equivalence relation
determined by the leaves of F , where two points in V are equivalent if they lie on the
same leaf. The smooth structure on the leaves determines a natural Lebesgue measure
class on the leaves denoted by ˜dvolF . Each quasi-invariant transverse measure µ has a
locally-defined product measure with ˜dvolF to yield a measure class µ̃ on the set R(F).
A cocycle over R(F) is a Borel function α : R(F)→ H such that for µ̃-almost all x ∈ V ,

α(y, x)α(x, z) = α(y, z) for all (z, x), (x, z) ∈ R(F).

Given a separable Banach space E, a Borel field of compact convex sets over V is an
assignment Ax ⊂ E∗1 for each x ∈ V such that each Ax is a non-empty convex compact
subset, and the fiber product set {(x, λ)|λ ∈ Ax} ⊂ V × E∗1 is a Borel subset. Given a
Borel cocycle α : R(F)→ Iso(E), the Borel field {Ax|x ∈ V } is said to be α-invariant
if for µ̃-almost all x ∈ V , α∗(y, x)Ay = Ax for all (y, x) ∈ R(F). We call the induced
action of R(F) on the fibers of this field the α-holonomy of F .

DEFINITION 3.2 (Amenable foliation) (F , µ) is an amenable foliation if for ev-
ery separable Banach space E, cocycle α : R(F)→ Iso(E), and α-invariant Borel field
{Ax|x ∈ V }, there is a Borel function φ : V → E∗1 such that for µ̃-almost all x ∈ V ,
φ(x) ∈ Ax and α∗(y, x)φ(y) = φ(x) for all (y, x) ∈ R(F).

The geometric interpretation of the amenability condition is straightforward. The
data given is a field of compact convex sets over each point in V . The cocycle data
consists of “transfer operators” between the fiber sets over the points. (This is exactly
analogous to the holonomy operators usually encountered for transverse structures to
foliations, which is the reason for the notation “α-holonomy”.) Amenability then states
that for every such structure, there exists a Borel section of the Borel field which is
invariant under the α-holonomy.

The α-holonomy defined by a cocycle is via isomorphisms, so while the compact
convex fiber sets may not be constant, their isomorphism type is constant on leaves,
and so will be constant on the ergodic components of the equivalence relation R(F).

Recall the definition of the normal linear holonomy cocycle of F . Given x ∈ V and
an arbitrary y ∈ Lx, for each leafwise path γ : [0, 1]→ Lx from y to x, there is a linear
transformation h([γ]) : ν(y) → ν(x) which depends only upon the homotopy class of
the path γ. This is defined by integrating the Bott connection on ν along the curve
(cf. chapter 2, [21]). The fact that the Bott connection is flat when restricted to leaves
implies that the holonomy transport depends only on the (leafwise) homotopy class of
the path.

For any bundle with Riemannian metric over a manifold, there always exists an
everywhere defined, Borel orthonormal framing of the bundle. In particular, for ν we
can choose such a framing which has a positive orientation, and then the normal linear
holonomy takes values in the matrix group GL+(2n,R).

If the linear holonomy along a path γ in a leaf Lx depends only on the endpoints of
the path, then we say that Lx has trivial linear holonomy. A result of Hurder and Katok
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(Lemma 7.1, [15]) states that for a C1-foliation, Lebesgue almost every leaf has trivial
linear holonomy. We can therefore define, Lebesgue almost everywhere, the transverse
linear holonomy cocycle over R(F).

The definition of amenability for foliations above applies only to α-holonomy which
depends strictly upon the pair of points (y, x) ∈ R(F) for µ̃-almost all x ∈ V , and
not on any other geometric data. For the transverse Lebesgue measure class, it applies
to the transverse linear holonomy cocycle. However, if the transverse measure class
in consideration is not absolutely continuous with respect to Lebesgue measure, then
on a set of positive measure the transverse linear holonomy can depend also on the
leafwise path between the two endpoints, and therefore the usual notion of amenability
for the equivalence relation of a foliation is not applicable. This motivates introducing
the following definition of complete amenability for a foliation.

The fundamental groupoid P(F) of a foliation is the set

P(F) = {(y, x, [γ]) | (y, x) ∈ R(F), [γ] ∈ πF1 (V, x, y)}.

The set πF1 (V, x, y) consists of the homotopy classes of paths γ : [0, 1]→ Lx into the leaf
Lx of F through x with γ(0) = x and γ(1) = y. Composition is defined by concatenation
of paths. This definition is comparable to the that of the holonomy groupoid G(F) of a
foliation (cf. [10]), except that we do not impose any condition involving the transverse
holonomy of the path γ. There are natural “forgetful maps” of groupoids

P(F)→ G(F)→ R(F).

The groupoid P(F) is a countable-to-one space over the equivalence relation R(F), so
that an equivalence class of measures µ̃ on R(F) determines such a class of P(F), which
we again denote by µ̃.

A Borel cocycle α : P(F)→ H is defined as before, and will naturally act on a given
field of compact convex sets over V .

The normal linear holonomy naturally defines a Borel cocycle hF : P(F)→ GL+(2n,R).
A different choice of orthonormal framing results in a cohomologous cocycle, so that
the cohomology class of hF is a well-defined invariant of F .

DEFINITION 3.3 (Completely amenable foliation) (F , µ) is a completely amenable
foliation if for every separable Banach space E, cocycle α : P(F) → Iso(E), and α-
invariant Borel field {Ax|x ∈ V }, there is a Borel function φ : V → E∗1 such that for
µ̃-almost all x ∈ V , φ(x) ∈ Ax and α∗(y, x, [γ])φ(y) = φ(x) for all (y, x, [γ]) ∈ P(F).

Observe that complete amenability implies amenability, as every cocycle over R(F)
lifts to a cocycle over P(F). In both definitions, we are given a field of compact convex
sets over each point in V . The cocycle data for complete amenability also consists of
“transfer operators” between the fiber sets over the points. However, the dependence
of the transfer data on the leafwise path chosen makes complete amenability a more
subtle property of the foliated manifold.

There is an alternative description of the transfer maps associated to a cocycle
over the homotopy groupoid. Choose a covering for V by foliation charts, so that in
each chart the foliation is diffeomorphic to a foliation by discs (the plaques) with a
transversal disc. Moreover, require that the intersection of adjacent charts be either
empty, or a contactable set. The bundle {Ax|x ∈ V } can then be “trivialized” over
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each such open chart. The holonomy data, for x and y are in adjacent open sets with
intersecting plaques, will consist of an identification map between the sets Ay and Ax,
and is required to be locally constant in x and y. For arbitrary (y, x) ∈ R(F) and a
leafwise path γ between them, we compose the adjacent trivializations along the path
from y to x to obtain the α-holonomy. This description is the same as the construction
used for the transverse linear holonomy cocycle of the normal bundle to a foliation, in
which case we take Ax to be the normal vector space to F at x.

For a foliation of a compact manifold V , with V as the only leaf, the equivalence
relationR(F) ∼= V ×V is trivial and (F , µ) is trivially amenable. On the other hand, the
homotopy groupoid P(F) fibers over V × V with fiber isomorphic to the fundamental
group π1(V ), so that (F , µ) is completely amenable only if π1(V ) is a discrete amenable
group. This distinction between the two notions of amenability persists whenever the
transverse measure µ for F has non-trivial atoms, as the example above can be easily
embedded into higher codimension foliations. This raises an interesting open question:

PROBLEM 3.4 Let µ be a transverse quasi-invariant measure for a C1-foliation F
on a smooth manifold V . Suppose that (F , µ) is amenable and µ has no non-trivial
atoms, then is (F , µ) completely amenable?

We now apply the above definitions to the normal linear holonomy cocycle. P+(R2n)
will denote the space of positive rays in R2n, which is diffeomorphic to the unit sphere
S2n−1. Let E denote the Banach space of continuous functions on P+(R2n) equipped
with the sup-norm. Then the projective action of GL(2n,R) on P+(R2n) is norm-
preserving, and we obtain a cocycle αF = PhF : P(F)→ Iso(E). The unit ball in the
dual space E∗ is identified with the space of probability measures on P+(R2n).

LEMMA 3.5 Let (F , µ) be a completely amenable foliation. Then there exists a Borel
family of probability measures {µ̂x| µ− almost all x ∈ V } which are invariant under the
projective action of the normal linear holonomy of F , where µx is defined on the fiber
P+(ν(x)) over x of the projective normal bundle P+(ν). 2

Proof. Follows from the definition of complete amenability. 2

LEMMA 3.6 Let (F , µ) be an amenable foliation, with µ absolutely continuous. Then
there exists a Borel family of probability measures {µ̂x| almost all x ∈ V } which are
invariant under the projective action of the normal linear holonomy of F .

Proof. It was shown in (Proposition 7.1, [15]) that for Lebesgue almost every leaf Lx
of F , the linear holonomy hF (y, x, [γ]) depends only on the endpoints (y, x) ∈ R(F),
and not on the path between them. The cocycle αF therefore descends to a cocycle
α̃F : R(F) → Iso(E), and the amenability of R(F) implies there exists a family of
holonomy invariant measures, defined on almost every fiber. 2

The existence of these holonomy invariant measures on the transverse projective
bundle will be shown to imply vanishing of the normal Euler class in the next section.
It would be interesting to better understand, in terms of the geometry of the foliation
F , when such measures exist.
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4 Hirsch-Thurston vanishing criterion

The purpose of this section is to show that the existence of a Borel family of probability
measures {µ̂x| µ− almost all x ∈ V } on the fibers P+(ν(x)) which are invariant under
the projective action of the normal linear holonomy of F , implies that the transverse
Euler class Eµ(ν,F) ∈ H2n

µ (F) vanishes. We follow the outline of the proof of the Hirsch-
Thurston theorem, except that the ideas are formulated for leafwise cohomology. There
are two steps, beginning with a technical result:

PROPOSITION 4.1 Let F be a C1-foliation on V with quasi-invariant transverse
measure µ. Suppose that there exists a Borel family of probability measures {µ̂x| µ −
almost all x ∈ V } on the fibers P+(ν(x)) which are invariant under the action of the
projective action αF of the normal linear holonomy. Then the natural map

π∗ : H ·µ(F) −→ H ·µ(π∗F)

of Lemma 2.3 is injective.

Proof. We use the family of measures {µ̂x} to construct a map Av(µ̂) : H ·µ(π∗F) →
H ·µ(F) such that Av(µ̂) ◦ π∗ = Id. Given a form ψ ∈ Ωq0(π∗F) and exterior frame
~v = v1 ∧ · · · ∧ vq of tangent vectors to F at x ∈ V , we must define Av(µ̂)(ψ)(~v). The
leaves of the foliation F̂ are submanifolds of the leaves of π∗F and cover those of F ,
so for each point on the fiber θ ∈ P+(ν(x)) over x, we can lift ~v to an exterior frame
~v(x, θ) of tangent vectors to F̂ . Then define

Av(µ̂)(ψ)(~v) =
∫
P+(ν(x))

ψ(~v(x, θ)) dµ̂x(θ) (6)

To show that Av(µ̂) is a well-defined map of complexes, note first that the integral in
(6) is defined for µ-almost all x ∈ V , and the averaging over a probability measure has
sup-norm one on leafwise forms. It is seen to commute with the leafwise differentials,
by expressing the integral (6) in local foliation charts, and then represent the transverse
measures µ̂x by coordinate measures which are constant along the leaves of F̂ (this is
possible by holonomy invariance). The map Av(µ̂) in these coordinates is integration of
ψ over a transverse parameter, which is seen to commute with the leafwise derivatives.
2

COROLLARY 4.2 With the hypotheses of Proposition 4.1, Eµ(ν,F) ∈ H2n
µ (F) is

zero.

Proof. The pull-back vector bundle π∗(ν) → P+(ν) has a canonical non-vanishing
leafwise smooth section, given by choosing a representative vector in ν for each point in
the fiber over x ∈ V . (If we identify P+(ν) with the unit sphere bundle of ν, then we
are simply choosing the unit vector in ν over the point in P+(ν) corresponding to that
vector.) It follows from Proposition 2.7 that the Euler class E(π∗(ν), π∗F) = 0, as the
global angular form for the bundle π∗(ν) is defined on P+(ν). Naturality of the Euler
class, Proposition 2.6, then implies that π∗(E(ν),F) = E(π∗(ν), π∗F) ∈ H2n(π∗F).
The inclusion maps (2.3.1) are natural, so commute with the map π∗. From these
remarks we observe that

π∗(Eµ(ν,F)) = Eµ̂(π∗(ν), π∗F) = 0

and so the injectivity of π∗ on this cohomology theory yields the corollary. 2
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5 Amenable sequences

In this section we develop geometric conditions on a foliation which ensure that the
average transverse Euler class vanishes. We first recall two well-known geometric con-
structions of invariant transverse measures for foliations, Fölner sequences (cf. Plante
[28]), and their extension to the averaging sequences of Goodman and Plante [6]. We
then introduce amenable sequences, which are Fölner sequences with the additional
hypotheses that the transverse holonomy groups of the leafwise sets in the averaging se-
quence are also amenable. The main technical result of the section is that an amenable
sequence gives rise to an averaging sequence in the unit normal sphere bundle to F ,
whose associated closed current pushes forward to the current in the ambient manifold
V defined by considering the the amenable sequence simply as an averaging sequence.
We use this to conclude that the average Euler class E(ν, µ) = 0 for a measure µ defined
by an amenable sequence.

Let F be a C0-foliation of V . Endow TV with a Riemannian metric, gV , which
induces Riemannian metrics on each leaf Lx ⊂ V .

DEFINITION 5.1 (Plante [28]) A leaf Lx is Fölner for F if there exists an in-
creasing sequence of compact connected submanifolds with piecewise smooth boundary,
Z1 ⊂ · · · ⊂ Zn ⊂ · · · ⊂ Lx so that the ratio of the Riemannian volume of the boundary
∂Zn relative to the volume of the interior of Zn satisfies

volgV (∂Zn)
volgV (Zn)

→ 0 as n→∞. (7)

A leaf Lx has subexponential growth if the condition (7) is satisfied for some x0 ∈ Lx,
with Zn = B(x0, n) ⊂ Lx the leafwise metric ball of radius n centered at x0. A
mild generalization of this is to allow leaves with non-exponential growth, where (7) is
satisfied for some subsequence of metric balls, {Zn = B(x0, kn)|kn →∞}. Compactness
of V implies that these definitions are independent of the choices of metric gV and of
basepoint x0 ∈ V . The notation “Lx is Fölner” is suggested by the analogy with
amenable Lie groups, which always admit a Fölner sequence Zn ⊂ G which satisfies the
conditions (7) for the left-invariant metric on G.

DEFINITION 5.2 (Goodman-Plante [6]) An averaging sequence for F is a se-
quence of compact connected submanifolds {Zn|n = 1, 2, . . .} with piecewise smooth
boundaries, where each Zn ⊂ Ln (for some leaf Ln that need not be fixed,) which satis-
fies (7).

Averaging sequences were introduced by Goodman & Plante as a very general mech-
anism to construct invariant transverse measures for foliations. Let us recall a primary
result of [6], and then an application of interest:

PROPOSITION 5.3 (Proposition 1.1,[6]) Let Z = {Zn|n → ∞} be an averaging
sequence for F . Then there exists a non-trivial invariant transverse measure µZ for F
with support contained in the ω-limit set of the sequence Z. 2

COROLLARY 5.4 Let Z = {Zn|n → ∞} be an averaging sequence for F . Then
Z determines a foliation cycle CZ for F , which induces a linear mapping [CZ ] :
Hm(V ; R)→ R, where m is the leaf dimension of F .
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Proof. We recall the proof of this corollary for later application. Let {ψi|i = 1, 2, . . .}
be a countable set of m-forms on V which are dense in the set of all continuous m-forms.
The integration map

〈CZn , ψ〉 = volgV (Zn)−1

∫
Zn

ψ

is a continuous linear map on the space of continuous m-forms ψ on V , with an estimate
on its norm independent of n. We can therefore choose an infinite subsequence {Zk|k ∈
I1}, where I1 ⊂ Z+ = {1, 2, . . .}, such that for each fixed i, 〈CZk , ψi〉 converges as
k → ∞. The current CZ is determined by its values on the set {ψi|i = 1, 2, . . .} as
the limiting value of this subsequence. Stokes’ Theorem and the Fölner condition (7)
implies that the resulting current vanishes on coboundaries. 2

Note that the homology class [CZ ] ∈ Hm(V ; R) obtained in the above proof may
depend upon the subsequence chosen, and hence [CZ ] is not necessarily an invariant of
the averaging sequence. The main point of the method of the proof above is to show that
some non-trivial foliation cycle exists. The same process applied to transverse functions
shows that some invariant transverse measure exists, and the cycle constructed above
is the corresponding homology class.

We come now to the main definition of this section. Assume that F is a C1-foliation,
and let {Zn|n→∞} be an averaging sequence for F . Select a base point xn ∈ Zn ⊂ Ln
for each n. Consider the maps of fundamental groups,

π1(Zn, xn)→ π1(Ln, xn)→ P(F).

The linear holonomy cocycle hF : P(F)→ GL(2n,R) restricts to the image of π1(Zn, xn)
to define the normal linear holonomy homomorphism of the set Zn. The image group
Γn ⊂ GL(2n,R) is called the normal linear holonomy of Zn.

DEFINITION 5.5 An amenable sequence for F is an averaging sequence {Zn|n ∈
Z+} such that the normal linear holonomy group Γn of each Zn is amenable as a discrete
group.

For example, if the foliation F is without holonomy (the holonomy is trivial along
every closed leafwise path), then every averaging sequence is an amenable sequence. Or
if the holonomy group of each leaf of F is amenable, then every averaging sequence is
an amenable sequence.

The main technical result is now:

PROPOSITION 5.6 Let {Zn|n ∈ Z+} be an amenable sequence for F , with {Zk|k ∈
I1} a subsequence so that the m-currents CZk converge to an m-current CZ . Then there
exists an averaging sequence Ẑ = {Ẑk|k ∈ I1} for the foliation F̂ on P+(ν) such that:

1. The interior of each Ẑk is a finite covering of the interior of Zk

2. There is an infinite subsequence {Ẑj | j ∈ I2 ⊂ I1} so that the m-currents
CẐj converge to an m-current CẐ , and π∗(CẐ) = CZ .

Proof. Let Z̃n denote the holonomy cover of Zn. For x ∈ V and x̂ ∈ P+(ν), the leaf
L̂(x̂) of F̂ through x̂ is the covering of L(x) associated to the isotropy subgroup of the
projective action of the linear holonomy homomorphism of L(x) on the ray in P+(ν(x))
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determined by x̂. Therefore, the holonomy covering L̃(x) of L(x) is a covering of L̂(x̂).
It follows that the preimage of Zn in a leaf L̂n of F̂ which covers Ln consists of disjoint
connected components each isometric to Z̃n. We use amenability of the holonomy
group Γn to produce a compact connected submanifold with corners Ỹn ⊂ Z̃n, so that
the sequence {Ỹn|n ∈ I1} satisfies (7), and then let Ẑn be the push-forward of Ỹn into
L̂n ⊂ P+(ν).

Let Kn ⊂ Z̃n be a fundamental domain for the covering Z̃n → Zn. By this we mean
that Kn is a compact submanifold with piecewise-smooth boundary, so that for any
element δ ∈ π1(Zn), the intersection of δKn ∩Kn is either a subset of the boundary of
Kn, or is all of Kn, and the union of the translates of Kn by elements of π1(Kn) equals
Z̃n.

Let ∆n(0) = {δ1, . . . , δd} ⊂ π1(Zn) be the finite subset of elements such that δKn ∩
Kn 6= ∅. It is elementary to check that ∆n(0) is a symmetric generating set for π1(Zn).

By hypotheses, the group π1(Zn) is amenable, hence by the Fölner criterion for
amenability [7], there exists an increasing sequence of finite subsets

∆n(0) ⊂ · · · ⊂ ∆n(k) ⊂ · · · ⊂ π1(Zn)

whose union is all of π1(Zn), and such that the symmetric differences

# (δi∆n(k) \∆n(k)) + # (∆n(k) \ δi∆n(k))
#(∆n(k))

−→∞ as k →∞ (8)

for all 1 ≤ i ≤ d.
The boundary of the set Kn has two components, ∂Kn = W+

n ∪W−n , where W+
n

maps into a component of the boundary of Zn, and W−n maps into the interior of Zn.
The restriction of the covering map, π : Z̃n → Zn, to the domain Kn is one-to-one
on the interior

◦
Kn and generically two-to-one on ∂Kn. Thus, the averaging sequence

criterion (7) on the sequence {Zn} implies there is an estimate

volgV (W+
n )

volgV (Kn)
→ 0 as n→∞. (9)

For the other component of the boundary, define constants

Cn =
volgV (∂Kn)
volgV (Kn)

≥ volgV (W−n )
volgV (Kn)

(10)

For each n we choose kn so that the quotient in (8) is less than (nCn)−1 and define

Ỹn =
⋃

δ∈∆n(kn)

δKn

Observe that there are two types of boundary components for the set Ỹn: the first
is the union over ∆n(kn) of the translates of the boundary sets W+

n , and by (9) these
have volume asymptotically small relative to the mass of Ỹn. The second consists of
translates of the boundary sets W−n , say δ′W−n . However, for a component of this type
to arise, it is necessary for there to exist some δ ∈ ∆n(0) for which δ(δ′W−n ) 6⊂ Ỹn,
for otherwise this boundary component of δ′W−n would be in the interior of Ỹn. We
conclude that the number of such boundary components arising from translates of W−n

17



are estimated by Cn times the quotient (8) so that this contribution also tends to zero
by the choice of kn. The sequence {Ỹn} therefore satisfies (7) and hence the image
{Ẑn} ⊂ P+(ν) is an averaging sequence for F̂ .

Let {Zk|k ∈ I1} be the subsequence so that CZk converges to the invariant current
CZ . Choose a countable dense set of continuous m-forms on P+(ν) and an infinite
subsequence I2 ⊂ I1 so that CẐi converges on this dense set for i ∈ I2. By the Fölner
condition, this will converge to a closed current CẐ on P+(ν). It remains to observe
that the boundary of each set Ẑn integrates to zero on any continuous m-form along
leaves, so the pushforward of the current CẐn under π∗ is equal to CZn . Continuity of
π∗ implies that π∗(CẐ) = CZ . 2

COROLLARY 5.7 Let (F , µ) be a C1-measured foliation with µ defined as the asymp-
totic limit of an amenable sequence. Then for any closed (m− 2n)-form φ on V ,

〈[Cµ], [φ] ∪ E(ν)〉 = lim
k∈I1

{
volgV (Zk)−1

∫
Zk

φ ∧ e(ν)
}

= 0 (11)

Proof. With notation as in Definition 2.4 and the proof of Proposition 5.6, the right
side of (11) equals

lim
j∈I2

{
volgV (Ẑj)−1

∫
Zj

π∗(φ ∧ e(ν))

}
= lim
j∈I2

{
volgV (Ẑj)−1

∫
Zj

π∗(φ) ∧ d(ψF )

}
= 0 2

6 Blowing-up along foliated submanifolds

In this section we introduce the technique of “blowing-up” along compact foliated sub-
manifolds. The blow-up of a C1-foliation on V about a finite set of compact leaves
{L1, . . . , Ld} yields a C0-foliation F̃ on Ṽ , where each compact leaf Li is replaced with
the special fiber Wi = P+(ν|Li). The important property of this process is that it con-
verts asymptotic sequences for F with ω-limit {L1, . . . , Ld}, into asymptotic sequences
for F̃ with ω-limit in the special submanifolds {W1, . . . ,Wd}. We then use this technique
to prove prove Theorem 1.7 of the introduction.

Let F be a codimension q Cr-foliation of the closed manifold V . Let X ⊂ V be a
codimension s closed proper submanifold, with 0 < s ≤ q. We do not assume that X
is connected. We assume that F restricts to a Cr-foliation of X. Introduce the normal
Rs-bundle NX → X to X, the associated sphere bundle S(NX) and projective bundle
P (NX).

PROPOSITION 6.1 Let (V,F) as above, with X ⊂ V a closed foliated submanifold
of codimension s. Then there exists:

1. a closed manifold V and embedding P (NX) ↪→ V ;

2. a codimension q Cr−1-foliation F on V ;

3. a Cr−1-mapping Π : V → V

such that we have:

1. the restriction Π : V − P (NX)→ V −X is a Cr-diffeomorphism;

18



2. the restriction Π : P (NX)→ X is the fibration projection;

3. F restricts to a foliation of P (NX);

4. Π sends leaves of F to leaves of F , and the restriction of Π to the open manifold
V − P (NX) is a quasi-isometry along leaves of F .

5. If s = q and X is a finite union of compact leaves of F , then the restricted foliation
(P (NX),F) is Cr−1-diffeomorphic to the foliated P (Rq)-bundle over X with the
projectified linear holonomy foliation from the Bott connection on the restriction
of the foliation normal bundle ν|X.

Proof. Let V be the manifold obtained by blowing-up along the submanifold X (cf.
page 603, [8]). The map Π is the canonical map which is the identity off of X, and along
the fiber W = P (NX) is the fibration map collapsing the fiber P (NX(x)) to x ∈ X.
The foliation F is simply F away from the special fibers P (NX). The content of the
Proposition is that the Cr-foliation F on V −W limits in the Cr−1-topology to a linear
foliation on W . This will follow from:

LEMMA 6.2 The normal bundle NX → X admits a “Bott” connection, associated
to the foliation F .

Proof. The restriction of the normal bundle to F to the submanifold X, ν|X → X,
has a direct sum decomposition, ν|X ∼= NX(F) ⊕NX, where the first bundle consists
of the normal vectors to F which are tangent to the submanifold X. The holonomy
along leaves of F leaves the bundle NX(F) invariant, so the Bott covariant derivative
operator ∇F on ν|X also leaves this subbundle invariant. It therefore induces a partial
connection, defined along the leaves of F|X, on the quotient bundle NX and which is
flat when restricted to leaves. 2

Give TV a Riemannian metric, and choose ε > 0 sufficiently small so that the
exponential map on NX is a diffeomorphism into, when restricted to the ε-disc bundle
about the 0-section 0X ⊂ NX. For each ε ≥ δ > 0, letNδX denote the sphere subbundle
of NX consisting of vectors of length δ. The blow-up topology on V is defined (via
the normal exponential map) on the punctured bundle NX − 0X by rescaling the fiber
metric on each submanifold NδX so that it is isometric with NεX. At radius 0, we
identify antipodal points in the limiting sphere bundle, to obtain a bundle over X with
fibers P (Rq).

The normal holonomy for F along leafwise paths contained in X has a well-defined
germinal action around 0X ⊂ NX. It is straightforward to calculate that the rescaling
of the fibers NδX in the blowing-up process converts the germinal action into the
projective linear action associated to the Bott connection on NX. We therefore obtain
a C0-foliation F on V , which agrees with F on V −W .

The transverse structure of F depends Cr on the transverse coordinate on V . This
translates into local Taylor series, in terms of the transverse coordinates, for the in-
finitesimal holonomy of F . The blowing-up process scales the transverse coordinates
in the normal directions to X, which results in decreasing the exponents of the Taylor
series by one in the transverse variables. Thus, the Taylor series for the infinitesimal
holonomy of F about W is defined, but of one degree lower, which implies that F is
transversally of class Cr−1.

The leaves of F on W cover those of F on X, so we can give the tangential distribu-
tion TF a Riemannian metric induced from that on V restricted to TF . Complete this
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to a Riemannian metric on TV , and we observe that Π is actually an isometry when
restricted to leaves of F . 2

Recall that the ω-limit set of a leaf L of F is a closed union of leaves of F , defined
as the intersection over compact subsets of L:

ω(L) =
⋂
K⊂L

L−K

where L−K is the point-set closure in V . A similar definition can be made for an
averaging sequence Z = {Zn|n ∈ Z+}:

ω(Z) =
⋂
k≥1

⋃
n>k

(Zn − Zk) (12)

We use the technique of blowing-up to prove the vanishing of the normal Euler class
for compact leaves. The next lemma is the key step for the general result that follows.

LEMMA 6.3 Let (F , µ) be a codimension 2n C1-foliation with µ = µL an atomic
measure. Suppose that L = ω(Z) for an averaging sequence Z, then the Euler class
E(ν|L) ∈ H2n(L; R) vanishes.

Proof. First note that L = ω(Z) implies that there exists n0 so that for n > n0,
Zn ∩ L = ∅ for all i. The property of being an averaging sequence is a quasi-isometry
invariant, so the sequence Z = {Zn | n0 < n <∞} obtained by considering each Zn as
a set in V will again be an averaging sequence.

Let µ be an invariant transverse measure for F defined as a weak-* limit of Z.
ω(Z) = L implies that the support of µ is contained in ω(Z) = W . Therefore, µ is an
invariant transverse measure for the foliated projective bundle W → L. The transverse
measure lifts to the double covering of W , which is the normal sphere bundle over L
with induced linear foliation. The method of the Hirsch-Thurston Theorem then shows
that the Euler class of ν|L vanishes in real cohomology. 2

PROPOSITION 6.4 Let (F , µ) be a codimension 2n C1-foliation with µ =
∑d
i=1 ai ·

µLi a finite sum of atomic transverse measures, with each ai 6= 0. If µ is the weak-*
limit of an averaging sequence Z and each Li is disjoint from Z, then for each 1 ≤ i ≤ d,
the Euler class E(ν|Li) ∈ H2n(Li; R) is zero.

Proof. We follow the “blowing-up” method of proof as used above for Lemma 6.3,
applied to each leaf Li in the support of µ. Fix a leaf Li and fix an ε-tubular neigh-
borhood Ui ⊃ Li which is disjoint from the other leaves in the support of µ. Define
Zi = {Zin = Zn ∩ Ui | n ∈ Z+}. It is obvious that Li = ω(Zi), so to apply the
blowing-up method we need only check that there is a subsequence of Zi which satisfies
(7).

Fix a sequence of nested compact transverse discs {Di
k ⊂ V | k ∈ Z+} to the leaf

Li, with radius ε/k. For each k > 1, choose nk so that the transverse measure νnk
determined by Znk gives mass at least |ai|(1 − 1/n) to the disc Di

k, and mass at most
|ai|/n to the annulus Di

1 −Di
k. It is immediate that the sequence {Znk} satisfies (7).

2
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7 Almost compact transverse measures

In this section we consider the average Euler class for non-atomic transverse measures,
and show that Conjecture 1.9 is true with an additional topological hypothesis on the
support of the transverse measure.

Let F be a C1-foliation of the compact Riemannian manifold V with leaf dimension
m and oriented tangent bundle TF . The normal bundle ν is identified with the orthog-
onal complement of TF in TV . For each ε > 0, let νε denote the 2n-disc subbundle of
ν whose fibers are the open discs of radius ε. For an embedded submanifold N ⊂ V ,
let π : E

def
= ν|N → N denote the restriction of ν to N , and νε|N the corresponding

disc sub-bundle. The geodesic exponential map exp : ν → V × V is projected onto the
second factor of V to obtain a smooth map expr : ν → V , whose value at ~v ∈ ν is the
time one point of the geodesic starting at π(~v) with initial velocity ~v.

An embedded closed submanifold N ⊂ V is said to be almost tangent to F if
there exists an ε > 0 such that the restricted exponential map expr : νε|N → V is a
diffeomorphism onto an open tubular neighborhood Uε ⊃ N , and sends the fibers of
νε|N → N to transversal discs to the foliation F .

The closed support of a transverse measure µ is the smallest closed, saturated (i.e.,
a union of leaves of F) subset Z ⊂ V such that the restriction of µ to the complement
V \ Z is the zero measure.

A transverse measure µ is said to be almost compact if the closed support of µ is
contained in an open tubular neighborhood Uε of an almost tangent closed submanifold
N as above.

LEMMA 7.1 Let µ be an almost compact invariant transverse measure for F . Then
there is:

1. a codimension 2m-foliation FE of the restriction of the normal bundle E = ν|N ;

2. a transverse invariant measure µE for FE with closed support K ⊂ E a compact
set;

3. a diffeomorphism of fiber bundles, Φ : E ∼= νε such that expr ◦Φ maps

• the foliation FE to the restriction of F to Uε
• the transverse measure µE to the transverse measure µ.

Proof. The closed support of µ is compact and contained in the open set Uε by
hypothesis, so there exists an 0 < ε′ < ε such that the closed support of µ is contained
in the properly contained subset Uε′ = expr(νε′ |N) of Uε. Choose a diffeomorphism Φ of
bundles from E to νε which is the identity on the subbundle νε′ |N . The transversality
of expr on νε|N implies that F pulls back to a foliation FE on E. The measure µ
determines a transverse measure µE for FE, which by our choice of Φ has closed support
K ⊂ νε′ |N , hence K is compact. Clearly, with these constructions the conclusions of
the lemma are all satisfied. 2

Note that the foliated bundle (E,FE) is not complete, for the lift of a path in N to
an arbitrary leaf of FE can diverge to infinity in the fibers of E. This corresponds to the
“covering path” in the open set Uε drifting outside of this open set. However, the lift of
a path in N to a leaf contained in K will stay in K, as it is a saturated. As K is compact,
such a path can be continued indefinitely, and therefore the restriction FK defines a
foliation of the topological bundle π : K → N which is transverse to the fibers and
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complete. Choose a basepoint x0 ∈ N and set K0 = K ∩ π−1(x0). Then the holonomy
of FK induces a representation hFK

: π1(N,x0)→ Homeo(K0). The invariant measure
µE restricts to an invariant measure on K0 under this representation.

After these preliminaries, the proof of Theorem 1.10 will follow from the next three
lemmas.

LEMMA 7.2 Let µ be an almost compact invariant transverse measure for F . Then
the Ruelle-Sullivan class of µ is proportional to the homology class of the cycle N :

[Cµ] ∼ [N ] ∈ Hm(V ; R)

Consequently, E(ν, µ) is proportional to the cap product E(ν) \ [N ].

Proof. The tangent bundle to N receives an orientation from that of TF by the
transversality hypothesis. The open set Uε ⊂ V retracts onto N , and the fundamental
class of N is a generator of Hm(Uε; R). The closed support of µ is contained in Uε, so
the Ruelle-Sullivan class of µ is in the image of Hm(Uε; R)→ Hm(V ; R). 2

By Lemma 7.2 and functoriality of the Euler class, to prove that E(ν, µ) = 0 it
suffices to show that the Euler class E(E) = 0 for the bundle π : E = ν|N → N .
Recall that a Thom form for E is a closed, compactly supported 2n-form τ on E whose
compactly supported cohomology class is the Poincaré dual to that of the zero section
N0 ⊂ E. Then the Euler class E(E) ∈ H2n(N ; R) is obtained by restricting the Thom
form τ to the zero section N0 ⊂ E (see for example Proposition 12.4, [2]). Alternatively,
E(E) = π∗([N0] ∩ [N0]) via Poincaré duality.

LEMMA 7.3 Suppose that µE is a countably discrete invariant transverse measure for
FE with compact closed support. Then either E(E) = 0, or the support of µE consists
of a single compact leaf L and π|L : L→ N is a diffeomorphism.

Proof. Suppose first that the support of µE contains at least two disjoint compact
leaves, L0, L1 ⊂ E. Each homology class [Li] ∈ Hm(E; R) is proportional to a non-zero
multiple of [N0], so we can use these (disjoint) foliation cycles for FE to calculate

E(E) = π∗([N0] ∩ [N0]) ∼ π∗([L0] ∩ [L1]) = π∗(0) = 0

.
Assume the support of µE consists of a single compact leaf L and the map π|L :

L→ N has degree p > 1. Then [L] = p · [N0], and E(E) = p−2 · π∗([L]∩ [L]). However,
the self-intersection [L] ∩ [L] can be calculated as the sum of the homology classes of
the connected (m − 2n)-cycles obtained by taking a small perturbation of L which is
transverse to L. This self-intersection cycle increases by a factor of only p under covers,
so that [L] ∩ [L] = p · [N0] ∩ [N0], hence E(E) = p−1 · π∗([L] ∩ [L]), which for p > 1
forces E(E) = 0. 2

The decomposition of the transverse measure µ into countably discrete and continu-
ous parts, µ = µa +µc, also decomposes the Ruelle-Sullivan class, [Cµ] = [Cµa ] + [Cµc ].
The proof of Theorem 1.10 is completed by the next lemma:

LEMMA 7.4 Suppose that µ is an almost compact transverse measure, and the sum-
mand µc is not the zero measure. Then E(ν, µ) = 0.

22



Proof. By our previous remarks, it will suffice to show that E(E) = 0. The Ruelle-
Sullivan class for the continuous part, [Cµc ], is again proportional to the class [N ], so
that we can use [Cµc ] to calculate the average Euler class as an intersection product,
up to a non-zero constant:

E(E) = π∗([N0] ∩ [N0]) ∼ π∗([C(µcE)] ∩ [C(µcE)]) (13)

Theorem 1 of [16] can be applied to the invariant measure µcE, as the measure has
compact support. Theorem 1 implies that the intersection product [C(µcE)] ∩ [C(µcE)]
is determined by the discrete summand for µc. As this is zero, we obtain that (13)
vanishes, as was to be shown. 2

8 Examples

In this section we give a set of examples to illustrate our main theorems. The transverse
Euler class is a delicate invariant, as it is a characteristic class for the transversal space
to the foliation, and we are restricting it to leaves which are in a sense perpendicular
to this transverse space. Therefore, its non-triviality requires a form of “dynamical
transfer” from the leaf space V/F to the leaves of F . Our first example illustrates how
this can happen.

All of the examples with non-trivial transverse Euler class arise from the normal
bundles to compact leaves. The basic idea is to take a standard example of a flat vector
bundle with non-zero Euler class and embed this as the normal bundle to a compact
leaf. Conjecture 1.9 is that these are the only possible examples.

EXAMPLE 8.1 (Foliated sphere bundles) We begin with a general remark. Sup-
pose that M is a compact manifold with fundamental group Γ, and there is given a
representation ρ : Γ→ GL+(2n,R) so that the associated flat vector bundle E(ρ)→M
has non-zero Euler class, E(E(ρ)) ∈ H2n(M ; R). The group GL+(2n; R) acts on the
space R2n+1 via the natural action on the first 2n-coordinates, and as the identity on
the last coordinate. This induces an action of GL+(2n; R) on the space of positive
rays in R2n+1, which is identified with S2n. We compose the representation ρ with
this action to obtain an action ρ̂ : Γ × S2n → S2n. This action leaves invariant the
rays x± ∈ S2n corresponding to the vectors (0, . . . , 0,±1) ∈ R2n+1, and the isotropy
representation about these points is just ρ.

Construct a foliated manifold from ρ̂ via the suspension construction. That is, for
the universal cover M̃ with the left action of Γ via deck transformations, we have a
foliation F̃ of M̃ × S2n by the leaves M̃ × θ, for θ ∈ S2n. The group Γ acts on the left
on M̃ × S2n via γ · (x, θ) = (γx, ρ̂(γ)(θ)), and this leaves the foliation F̃ invariant. Let
Fρ denote the quotient foliation of V = Γ\(M̃ × S2n).

The fixed-points {x±} of the action ρ̂ give rise to two compact leaves, L± ⊂ V , each
diffeomorphic to M . The normal bundle ν|L± to each leaf L± is identified with the
bundle E(ρ), so the Euler class E(ν|L±) is non-zero. We therefore obtain the general
result:

PROPOSITION 8.2 Given a representation ρ : Γ→ GL+(2n,R) for which the asso-
ciated flat vector bundle E(ρ)→M has non-zero Euler class, there exists a codimension
2n real analytic foliation Fρ of an S2n-fibration V →M , transverse to the fibers, which
has two compact leaves, each with non-zero normal Euler class. 2
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There is a well-developed theory of the construction of representations satisfying the
hypotheses of Proposition 8.2 (cf. Goldman [5]). We recall here the most basic example.
Let Γ ⊂ SL(2,R) be a torsion-free cocompact discrete subgroup. SO(2) ⊂ SL(2,R)
will denote the maximal compact subgroup of matrices A such that AAt = I, where
At denotes the matrix transpose. The double quotient Σ = Γ\SL(2,R)/SO(2) is a
compact Riemann surface of negative curvature with fundamental group Γ. Take the
representation ρ to be the inclusion Γ ⊂ SL(2,R) ⊂ GL+(2,R).

Form the quotient manifold, V = Γ\{(SL(2,R)/SO(2)) × S2}, with the foliation
Fρ defined as the image of the product foliation on {(SL(2,R)/SO(2)) × S2} with
leaves (SL(2,R)/SO(2)) × θ, for θ ∈ S2. The fixed points {x+, x−} give rise to two
compact leaves, denoted by {L+, L−}. The flat normal bundle to each leaf has holonomy
associated given by the inclusion Γ ⊂ SL(2,R), and this bundle is well-known to have
non-zero Euler class (cf. [23, 5]).

The Euler class has a multiplicative property , so that given a collection of subgroups
{Γ1, . . . ,Γd} in SL(2,R) as above, the product representation of Γ = Γ1 × · · · × Γd on
R2d has non-zero Euler class. This shows that non-trivial examples exist satisfying the
hypotheses of Proposition 8.2 for all even codimensions.

Note that the examples constructed above involve a choice of the lattice subgroups,
so this construction yields many-parameter families of examples. There are also more
general constructions of representations of surface groups into SL(2,R), having non-zero
Euler class [5] which is distinct from the value of the Euler class produced by discrete
embeddings of Γ in SL(2, R). These alternate representations give rise to foliations
which are not topologically equivalent to those obtained from discrete embeddings, and
still have non-zero normal Euler classes on their compact leaves.

Let us also remark that we can obtain further examples, for which the transverse
Euler class is non-zero, by taking products of the above examples. This will result in a
foliated manifold with fibers a product of spheres,

S2n1 × · · · × S2np → V →M ∼= Σ1 × · · · × Σd,

where n1 + · · · + np = d, and Σi is a Riemann surface. The foliation F on V has 2p

compact leaves, each with non-zero normal Euler class. 2

EXAMPLE 8.3 (Riemannian foliations) Milnor observed in his seminal paper (The-
orem 3, [23]) that the Euler class for a flat bundle vanishes if the holonomy takes values
in a compact subgroup of GL+(2n,R). This is a straightforward consequence of Chern-
Weil theory. The corresponding geometric condition for foliations also forces the normal
Euler class to vanish.

A foliation F is Riemannian if there exists a Riemannian metric on the normal
bundle ν which is projectable. This means that on any foliation coordinate chart,
U ⊂ V with transverse coordinate function φ : U → Rq defining the foliation F|U as
the fibers of φ, the metric on ν|U is the pull-back under φ of a metric on TRq.

PROPOSITION 8.4 Let F be a C2-Riemannian foliation of codimension 2n. Then
the transverse Euler class E(ν,F) ∈ H2n(F) is zero.

Proof. The Bott covariant derivative operator ∇F preserves the metric on ν, so takes
values in the orthogonal Lie algebra so(2n). We can therefore calculate an Euler form
e(ν) on V using the Chern-Weil construction with the Bott connection. The curvature
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tensor of the Bott connection is projectable for a Riemannian foliation, so for each
foliation chart φ : U → R2n, the Euler form e(ν) is locally a pull-back of a 2n-form on
R2n. In particular, the restrictions of e(ν) to leaves of F vanishes identically for this
representative so that the leafwise class determined by e(ν) is zero. 2

Note that Proposition 8.4 does not assert that the Euler class of ν is zero for a
Riemannian foliation. For example, for the even dimensional sphere S2n with n > 1,
there exist a cocompact lattice Γ in a some connected Lie group G and a represen-
tation ρ : Γ → SO(2n) with dense image (cf. [34]). The suspension foliation of
V = Γ\(G × S2n) is Riemannian, with all leaves dense, and yet the Euler class of
ν restricts to a nonzero class on the submanifolds S2n ⊂ V . 2

EXAMPLE 8.5 (Amenable group actions) When the group Γ is amenable, then
every C1-action of Γ on a compact space is amenable. We thus obtain the general result:

PROPOSITION 8.6 Let M be a compact manifold with amenable fundamental group
Γ. Then for every orientation-preserving C1- action ρ̂ : Γ × X → X on a compact
oriented manifold X of dimension 2n, the measurable transverse Euler class E(ν,Fρ̂) ∈
H2n(Fρ̂) vanishes for the suspension foliation Fρ̂ of V . 2

For example, if Γ is a solvable group, then it is amenable. Therefore, given a fibration
π : V →M over a solv-manifold M , every foliation of V which is transverse to the fibers
of π is amenable for the Lebesgue measure class, so its measurable transverse Euler class
vanishes by Theorem 1.1.

It is also possible for a group action Γ × X → X on a compact manifold X to be
amenable, without Γ being amenable. The typical example of this phenomenon is for
Γ ⊂ G a subgroup of a Lie group, and X = G/P for a closed subgroup P ⊂ G. Then
a basic theorem of Zimmer ([38]; Proposition 4.3.2, [40]) states that the action of Γ on
X on the left is amenable whenever P is solvable. (If the group Γ is dense in G, then
there is a converse to this as well.) This gives the examples:

PROPOSITION 8.7 Let M be a compact manifold with fundamental group Γ. Let
P ⊂ G be a closed solvable subgroup of a Lie group G with compact quotient X = G/P
of even dimension 2n. Then for every homomorphism ρ : Γ → G, the induced action
of ρ̂ : Γ × X → X is amenable, and the measurable transverse Euler class E(ν,Fρ̂) ∈
H2n(Fρ̂) vanishes for the suspension foliation Fρ̂ of V . 2

The following examples are included to illustrate the complex behavior that can be
encountered with compact leaves in higher codimensions.

EXAMPLE 8.8 (Arithmetic foliations) Let G ⊂ GL(N,R) be an algebraic sub-
group. The intersection GZ = GL(N,Z) ∩ G with the integer matrices GL(N,Z) is
said to be an arithmetic lattice in G (cf. Chapter 6, [40]). The group GZ is always
discrete in G, and it is known that there is a subgroup Γ ⊂ GZ which is torsion-free.
We can therefore take a maximal compact subgroup K ⊂ G, and Γ acts freely on the
quotient space G/K. The quotient M = Γ\G/K is thus a manifold. We say that Γ is
a cocompact subgroup when M is compact.

The embedding of Γ ⊂ GL(N,Z) defines an action of Γ on RN which preserves the
integer lattice, and hence induces an analytic action ρ̂ : Γ×TN → TN on the N -torus.
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Note that every rational point in TN is periodic for the action of Γ, so that its isotropy
subgroup has finite index in Γ.

The suspension foliation Fρ̂ on V = Γ\(G/K ×TN ) has a compact leaf associated
to every periodic point x ∈ TN , which is diffeomorphic to the covering of Γ\G/K
associated to the isotropy subgroup of x. As the periodic points for this action are the
rational points, and these are dense, we obtain:

PROPOSITION 8.9 For each cocompact arithmetic subgroup Γ ⊂ GZ ⊂ G of an
algebraic Lie group G, the suspension foliation on V has dense compact leaves. 2

The interest in the family of examples given by Proposition 8.9 is that they are
in many ways very similar to the examples exhibited in Example 8.1. One notable
difference is that the lattice Γ utilized in Example 8.1 is not the set of integer points
in G = SL(2,R), and we conjecture that the transverse Euler class must be zero for
examples arising from the suspension of an integer lattice as in Proposition 8.9. This
would be a special case of the more general conjecture, based on the results of this
paper and the previous paper [16], that the transverse Euler class is zero unless there
is isolated compact leaf for F which “carries” the class.
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C. R. Acad. Sci., Paris, 281:1081–1083, 1975.

[5] W. Goldman. Representations of fundamental groups of surfaces. In J. Alexander
and J. Harer, editors, Geometry and Topology, Proceedings, University of Maryland
1983-84, pages 95–117, New York and Berlin, 1985. Lect. Notes Math. vol. 1167.

[6] S. Goodman and J. Plante. Holonomy and averaging in foliated sets. Jour. Dif-
ferential Geom., 14:401–407, 1979.

[7] F. P. Greenleaf. Invariant Means on Topological Groups and Their Applications.
Van Nostrand, New York, 1964.

[8] P. Griffiths and J. Harris. Principles of Algebraic Geometry. Wiley-Interscience,
New York, 1978.

[9] M. Gromov. Volume and bounded cohomology. Publ. Math. Inst. Hautes Etudes
Sci., 56:5–100, 1982.
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[11] J. Heitsch. Flat bundles and residues for foliations. Invent. Math., 73:271–285,
1983.

[12] J. Heitsch and S. Hurder. Secondary classes, Weil measures and the geometry of
foliations. Jour. Differential Geom., 20:291–309, 1984.

[13] M. Hirsch and W. Thurston. Foliated bundles, invariant measures and flat bundles.
Annals of Math., 102:369–390, 1975.

[14] S. Hurder. Global invariants for measured foliations. Trans. Amer. Math. Soc.,
280:367–391, 1983.

[15] S. Hurder and A. Katok. Ergodic theory and Weil measures for foliations. Annals
of Math., pages 221–275, 1987.

[16] S. Hurder and Y. Mitsumatsu. On the intersection product of transverse invariant
measures. Indiana Univ. Math. Jour., 40:1169–1183, 1992.

[17] S. Hurder and Y. Mitsumatsu. Transverse euler class of foliations on non-atomic
foliation cycles. In S.J. P.A. Schweitzer, S. Hurder, N. dos Santos, and J.L. Arraut.,
editors, Differential Topology, Foliations and Group Actions. Rio de Janeiro 1992,
Providence, 1994. Amer. Math. Soc. Contemp. Math. vol. 152.

[18] F. Kamber and Ph. Tondeur. Flat Manifolds, volume 67 of Lect. Notes Math.
Springer-Verlag, New York and Berlin, 1968.

[19] F. Kamber and Ph. Tondeur. Foliated Bundles and Characteristic Classes, volume
494 of Lect. Notes Math. Springer-Verlag, New York and Berlin, 1975.

27



[20] S. Kobayashi and S. Nomizu. Foundations of Differential Geometry I, II. Wiley-
Interscience, New York, 1963, 1969.

[21] H. B. Lawson, Jr. Quantitative Theory of Foliations, volume 27 of Conf. Board
Math. Sciences. Amer. Math. Soc., Providence, R.I., 1977.

[22] G.W. Mackey. Ergodic theory, group theory, and differential geometry. Proc. Nat.
Acad. Sci., U. S. A., 50:1184–1191, 1963.

[23] J. Milnor. On the existence of a connection with curvature zero. Comment. Math.
Helv., 32:215–223, 1958.

[24] Y. Mitsumatsu. Self-intersections and Transverse Euler Numbers of Foliation Cy-
cles. PhD thesis, University of Tokyo, 1985.

[25] Y. Mitsumatsu. Milnor’s inequality for 2-dimensional asymptotic cycles. preprint,
Chuo University, 10, 1989.

[26] C. C. Moore. Ergodic theory and von Neumann algebras. In R. V. Kadison,
editor, Operator Algebras and Applications, Part 2, pages 179–226. Amer. Math.
Soc., 1982.

[27] A. Phillips and D. Sullivan. Geometry of leaves. Topology, 20:209–218, 1981.
[28] J. Plante. Foliations with measure-preserving holonomy. Annals of Math., 102:327–

361, 1975.
[29] D. Ruelle and D. Sullivan. Currents, flows and diffeomorphisms. Topology, 14:319–

327, 1975.
[30] H. Shulman and D. Tischler. Leaf invariants for foliations and the van Est isomor-

phism. Jour. Differential Geom., 11:535–546, 1976.
[31] J. Stasheff. Continuous cohomology of groups and classifying spaces. Bulletin

Amer. Math. Soc., 84:513–530, 1978.
[32] D. Sullivan. Cycles for the dynamical study of foliated manifolds and complex

manifolds. Invent. Math., 36:225–255, 1976.
[33] D. Sullivan. A generalization of Milnor’s inequality concerning affine foliations and

affine manifolds. Comment. Math. Helv., 51:183–189, 1976.
[34] D. Sullivan. For n > 3, there is only one finitely-additive measure on the n-sphere

defined for all lebesgue measurable sets. Bulletin Amer. Math. Soc., 1:121–123,
1981.

[35] W. Thurston. The theory of foliations of codimension greater than one. Comment.
Math. Helv., 49:214–231, 1974.

[36] T. Tsuboi. On the foliated products of class C1. Annals of Math., 130:227–271,
1989.

[37] J. Wood. Bundles with totally disconnected structure group. Comment. Math.
Helv., 46:257–273, 1971.

[38] R. Zimmer. Amenable ergodic group actions and an application to Poisson bound-
aries of random walks. Jour. Func. Anal., 27:350–372, 1978.

[39] R. Zimmer. Global structure and measure theory : a new cohomology theory for
foliations and ergodic Lie group actions. preprint, 1979.

[40] R. Zimmer. Ergodic Theory and Semisimple Groups. Birkhäuser, Boston, Basel,
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