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1 Introduction

In this paper we begin the study of the index theory in coarse geometry for foliations – the
exotic index theory for leafwise elliptic operators on foliations. This is a parametrized form
of the index theory for complete open manifolds developed by John Roe [53, 56, 52, 54].
The last section of this paper applies exotic index theory to prove a general result on the
Foliation Novikov Conjecture, which extends previous results of Baum and Connes [4, 5]
and Takai [60]:

THEOREM 7.8 Let F be an oriented ultra-spherical foliation with uniformly contractible
leaves and Hausdorff holonomy groupoid. Then the Foliation Novikov Conjecture is true for
F .

A more painstaking application of the exotic index method will prove many other cases of
the Foliation Novikov Conjecture – this will be addressed in a subsequent paper. The ideas
of coarse geometry for foliations have their origins in techniques from dynamical systems,
and the basic framework we develop in the first part of this paper has other geometric
applications (cf. [38]).

Let F be a smooth foliation of a compact manifold M , E→M a continuous Hermitian
vector bundle which is leafwise smooth, and DF :C∞(E) → C∞(E) a leafwise first order
geometric operator. Connes [8, 9, 17, 47] introduced the reduced C∗-algebra C∗r (F) of F
and observed that DF is “invertible” modulo this algebra, hence has a K-theoretic index
Ind(DF , ε) ∈ K∗(C∗r (F)). Here is the basic problem:

PROBLEM 1.1 Develop methods for evaluating the foliation index Ind(DF , ε) ∈ K∗(C∗r (F)),
and relate Ind(DF , ε) to the geometry and topology of F .

For example, a holonomy invariant transverse measure µ for F induces a linear map
Tµ:K∗(C∗r (F)) → R. The real number Tµ(Ind(DF , ε)) is a “leafwise average index” for
DF restricted to the leaves in the support of µ (cf. [9, 35]). Connes’ measured foliation
index theorem states that the analytically defined real number Tµ(Ind(DF , ε)) is obtained by
pairing the degree n component of the deRham Chern character Ch∗(σ(DF , ε)) of the symbol
class of (DF , ε) with the degree n, Ruelle-Sullivan leafwise homology class determined by µ.

In general, the Chern character Ch∗(σ(DF , ε)) contains much more information than
simply its leafwise degree n component, and this extra information is part of what is cap-
tured by the K-theory index class Ind(DF , ε). For example, if the tangential distribution
TF admits a Riemannian metric so that the leaves of F are simply connected with non-
positive curvature and are Spin, then the leafwise “dual-Dirac” operator [9, 21, 59] induces a
pairing map ρ:K∗(C∗r (F))→ K∗(M). The “dual-Dirac” mapping captures the topological
information contained in the leafwise degree 0 component of Ch∗(σ(DF , ε)).

The applications of the foliation index theorem in the literature [3, 4, 6, 9, 12, 16, 18, 20,
36, 39, 35, 58, 60] employ either the transverse measure or dual Dirac method to evaluate
the foliation index.
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A main point of this paper is to generalize the “dual Dirac” construction for folia-
tions, which yields a new approach for the study of the the analytic index Ind(DF , ε) ∈
K∗(C∗r (F)). The key point is to introduce the corona ∂hF of a foliation, modeled on Hig-
son’s corona for a complete metric space [31, 56]. Each K-theory class [u] ∈ K∗(∂hF) of the
foliation corona yields a generalized “ρ-map”, ρ[u]:K∗(C∗r (F))→ K∗(M), which evaluated
on the analytic index Ind(DF , ε) yields an “exotic index” in the K-theory of the ambient
manifold. This recovers the dual Dirac map when the leaves of F are simply connected
with non-positive curvature. There is an index theorem to calculate the exotic indices
ρ[u](Ind(DF , ε)) in terms of the topology of their symbols. The combination of coarse ge-
ometry and index theory provides a very useful tool for studying the index and spectrum
of leafwise operators, and how they are related to the topology of the foliated manifold.

The foliation corona ∂hF is a topological space defined for any topological foliation F
of a compact manifold, and has many good properties making it useful for constructing
new invariants of foliations. For example, the homotopy type of ∂hF depends only on
the leafwise homotopy class of the foliation (Corollary 3.9) – in fact, its homotopy type
is determined by the topological groupoid induced on an open complete transversal to F .
Applying a homotopy invariant functor to ∂hF yields a leafwise homotopy invariant of F . In
particular, the Čech cohomology Ȟ∗(∂hF) and the K-theory groups K∗(∂hF) are leafwise
homotopy invariants of F .

A second fundamental property of ∂hF is that its homeomorphism type is determined
by the “coarse geometry” of a foliated compact manifold. That is, we form a parametrized
family of metric spaces over the ambient manifold, where for each x ∈ M , endow the
holonomy covering L̃x of the leaf Lx through x with the induced path length metric on L̃x.
Then the homeomorphism class of ∂hF depends only on the coarse geometry of this family
of metric spaces.

Coarse geometry for foliations has its antecedents in dynamical systems. The work
of Kakutani on measurable equivalences of ergodic Z-actions introduced ideas of coarse
geometry for measurable Borel equivalence relations, and the Kakutani equivalence in the
dynamics and ergodic theory literature (cf. section 1.2, [40]) is just measurable coarse
isometry. Sections 2, 3 and 4 of this paper further develop these ideas in the setting of
continuous dynamical systems.

In ergodic theory applications, the typical data about the coarse geometry is formulated
in terms of properties of measurable cocycles over the equivalence relation, then used to
define equivalence classes of with respect to growth rates (cf. [33, 40]). For example, the
Lyapunov exponents that arise in Pesin theory are invariants of the coarse geometry. The
use of coarse geometry to study index theory invariants in K∗(C∗r (F)) is intuitively parallel
to the ergodic theory applications. Cycles in K∗(∂hF) represent “almost flat” bundles
[14, 15] which are continuous versions of the ε-tempered cocycles of [33, 40].

In the first part of this paper, we define and study the foliation corona: Section 2 recalls
some basic properties of the geometry of foliations; section 3 defines the foliation corona, and
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establishes its topological functoriality; examples of coronas for several types of foliations
are presented in section 4. The second part of the paper studies the exotic index invariants.
After some analytic preliminaries, the definition of the abstract exotic index is given in
section 5. The fundamental pairing between the K-theory of the corona and K-theory for
uniform operators along the leaves is discussed in section 6, which can be evaluated via the
Atiyah-Singer index theorem for families. In section 7 the exotic index is used to produce
K-theory fundamental classes for foliations. This is applied to prove the foliation Novikov
Conjecture for ultra-spherical foliations with uniformly contractible leaves.

The methods of exotic index theory for families can also be applied to the Novikov
Conjecture for compact manifolds [37]. (The resulting method is similar to that of Connes,
Gromov and Moscovici for manifolds with word hyperbolic fundamental groups [13], except
the dual Dirac method is replaced with the exotic index map.)

The author is indebted to Nigel Higson and John Roe for numerous conversations about
index theory, coarse geometry and corona spaces. The author is especially grateful to John
Roe for numerous critical comments on preliminary versions of the manuscript.

2 Metric properties of the holonomy groupoid

A coarse metric on a set X is a symmetric pairing 〈·, ·〉 : X × X → [0,∞) satisfying the
triangle inequality

〈x, z〉 ≤ 〈x, y〉+ 〈y, z〉 for all x, y, z ∈ X

A map f : X1 → X2 is said to be quasi-isometric with respect to coarse metrics 〈·, ·〉i if
there exists constants d1, d2, d3 > 0 so that for all y, y′ ∈ X1

d1 ·
(〈
y, y′

〉
1 − d3

)
≤
〈
f(y), f(y′)

〉
2 ≤ d2 ·

(〈
y, y′

〉
1 + d3

)
(1)

A subset N ⊂ X is ε-dense for ε > 0 if for each x ∈ X there exists n(x) ∈ N so that
〈x, n(x)〉 ≤ ε. An ε-net is a collection of points N = {xα | α ∈ A} ⊂ X so that N is ε-dense,
and there exists c > 1 so that distinct points of N are at least distance ε/c apart. The net
N inherits a coarse metric from X.

DEFINITION 2.1 A map f : X1 → X2 is said to be a coarse isometry with respect to
coarse metrics 〈·, ·〉i if f is quasi-isometric and the image f(X1) is ε-dense in X2 for some
ε > 0.

Coarse geometry is the study of geometric properties of a complete metric space which
are invariant under coarse isometries. The fundamental property of coarse geometry is that
the inclusion of a net, N ⊂ X, is a coarse isometry, which is obvious from the definitions.
This has profound implications for what geometrical/topological invariants are preserved
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under coarse isometry (cf. Gromov [23]). The usual example to illustrate this phenomenon
is that for a connected Lie group G, a cocompact lattice Γ ⊂ G with the word metric is
coarsely isometric to G with the left invariant Riemannian path-length metric: the integers
Z are coarsely isometric to the real line R. Thus, coarse geometry detects only global
metric properties of a space, and ignores local properties. For further discussions of coarse
geometry for metric spaces, see Gromov [22, 23] or Roe [56].

In this section, we develop aspects of the coarse geometry for foliations. A topological
foliation F of a paracompact manifold Mm is a continuous partition of M into tamely
embedded submanifolds (the leaves) of constant dimension p and codimension q. We require
that these leaves be locally given as the level sets (plaques) of local coordinate charts. We
specify this local defining data by fixing:

1. a uniformly locally-finite covering {Uα | α ∈ A} of M ; that is, there exists a number
m(A) > 0 so that for any α ∈ A the set {β ∈ A | Uα ∩ Uβ 6= ∅} has cardinality at
most m(A)

2. local coordinate charts φα : Uα → (−1, 1)m, so that each map φα admits an extension
to a homeomorphism φ̃α : Ũα → (−2, 2)m where Ũα contains the closure of the open
set Uα

3. for each z ∈ (−2, 2)q, the preimage φ̃−1
α ((−2, 2)p × {z}) ⊂ Ũα is the connected

component containing φ̃−1
α ({0} × {z}) of the intersection of the leaf of F through

φ−1
α ({0} × {z}) with the set Ũα.

The extensibility condition in (2) is made to guarantee that the topological structure on the
leaves remains tame out to the boundary of the chart φα. The collection {(Uα, φα) | α ∈ A}
is called a regular foliation atlas for F .

The inverse images
Pα(z) = φ−1

α ((−1, 1)p × {z}) ⊂ Uα
are topological discs contained in the leaves of F , called the plaques associated to this atlas.
One thinks of the plaques as “tiling stones” which cover the leaves in a regular fashion. The
plaques are indexed by the complete transversal

T =
⋃
α∈A
Tα

associated to the given covering, where Tα = (−1, 1)q. The charts φα define tame embed-
dings

tα = φ−1
α ({0} × ·) : Tα → Uα ⊂M

We will implicitly identify the set T with its image in M under the maps tα, though it may
be that the union of these maps is only finite-to-one.

The foliation F is said to be Cr if the foliation charts {φα | α ∈ A} can be chosen to be
Cr-diffeomorphisms.
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A leafwise path γ is a continuous map γ : [0, 1]→M whose image is contained in a single
leaf of F . Suppose that a leafwise path γ has initial point γ(0) = tα(z0) and final point
γ(1) = tβ(z1), then γ determines a local holonomy map hγ which is a local homeomorphism
from a neighborhood of z0 to a neighborhood of z1. More generally, if the initial point
γ(0) lies in the plaque Pα(z0) and γ(1) lies in the plaque Pβ(z1), then γ again defines
a local homeomorphism hγ . Note that the holonomy of a concatenation of two paths is
the composition of their holonomy maps. We say that two leafwise paths γ1 and γ2 with
γ1(0) = γ2(0) and γ1(1) = γ2(1) have the same holonomy if hγ1 and hγ2 agree on a common
open set about z0.

Define an equivalence relation on pointed leafwise paths by specifying that γ1 ∼h γ2 if
γ1 and γ2 have the same holonomy. The holonomy groupoid GF is the set of ∼h equivalence
classes of pointed leafwise paths for F , equipped with the topology whose basic sets are
generated by “neighborhoods of leafwise paths” (cf. section 2, [62]). The manifold M
embeds into GF by associating to x ∈M the constant path ∗x at x.

The fundamental groupoid ΠF of F is the set of endpoint-fixed homotopy equivalence
classes of leafwise paths for F , equipped with the topology whose basic sets are gener-
ated by “neighborhoods of leafwise paths”. Two paths which are endpoint-fixed homotopy
equivalent have the same holonomy, so there is a natural map of groupoids ΠF → GF .

There are natural continuous maps s, r : GF → M defined by s(γ) = γ(0) and r(γ) =
γ(1). For a point x ∈ M , the pre-image s−1(x) = L̃x is the holonomy cover of the leaf Lx
of F through x; that is, the image of a closed curve γ ⊂ L̃x always has trivial holonomy as
a curve in M . We use the source map s to view the groupoid GF as a parametrized family
of open manifolds (the holonomy covers of leaves of F) over the base M .

Define the transversal groupoid TF ⊂ GF to be the preimage of T × T under the map

s× r:GF →M ×M.

That is, TF consists of all the equivalence classes of paths in GF which start and end at
points in the complete transversal T . For each x ∈ T the fiber (s|TF )−1(x) ⊂ L̃x is a net
in the holonomy cover L̃x, so that TF can be considered as a (locally) continuous selection
of nets for the fibers of s:GF →M .

The topological manifold structure on GF may not be Hausdorff: suppose there exists
a leafwise closed path γ with basepoint x which has non-trivial holonomy of infinite order,
but so that there is a family {γs |1 ≤ s ≥ 0} of closed paths, γ0 = γ, and which are the
transverse “push-off” of γ so that each γs has trivial holonomy for s > 0. Then every
iterate of the path γ is arbitrarily close to the push-offs γs for s small. That is, the path
{γs | s > 0} intersects every neighborhood of the iterates of γ. This property of paths that
there are nearby paths for which the holonomy degenerates is typical of the non-Hausdorff
aspect of GF . This was formalized by Winkelnkemper in the following result:

PROPOSITION 2.2 (Proposition 2.1, [62]) GF is Hausdorff if and only if, for all
x ∈ M and y ∈ Lx the holonomy along two arbitrary leafwise paths γ1 and γ2 from x to y
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are already the same if they coincide on an open subset U of their common domain, whose
closure U contains x.

For example, if the holonomy of every leaf has finite order, or is analytic, or is an
isometry for some transversal metric, then GF will be Hausdorff. In contrast, one knows
that the holonomy of the compact leaf in the Reeb foliation of S3 fails this criterion, so its
foliation groupoid is not Hausdorff at the compact leaf.

Let GnhF ⊂ GF be the union of the paths for which there exists another path which has
the holonomy property of Proposition 2.2. Then GhF = GF \ GnhF is a Hausdorff space.

A key property of the space GF is that given a compact set K ⊂ L̃x ⊂ GhF in a leaf which
is Hausdorff, there exists an open neighborhood U ⊂ M of x and an open set W ⊂ GF so
that s(W ) = U , K = W ∩ L̃x and there is a fiber-preserving homeomorphism W ∼= K ×U .
(This is a consequence of the previous remark that the normal foliated microbundle to the
topological embedding K ↪→ M has trivial holonomy along the slice K, hence the image
has a normal disc bundle whose pullback W to GF is foliated as a product.)

Let Fi be a topological foliation of Mi for i = 1, 2. Let f : M1 → M2 be a continuous
map which sends leaves of F1 into leaves of F2. Then the assignment γ 7→ f(γ) induces a
map Gf : GF1 → GF2 . It is clear from the definition that s(Gf(γ)) = f(s(γ)) and similarly
for the range map r. Thus, Gf maps the fibers of s over M1 into the fibers of s over M2.
We let Gfx : L̃x → L̃′f(x) denote the restriction of Gf from the fiber of s over x ∈ X1 to the
fiber of s over f(x) ∈ X2.

Let Fi be a topological foliation of Mi for i = 1, 2, f0, f1 : M1 → M2 be continuous
maps which sends leaves of F1 into leaves of F2. We say that f0 is leafwise homotopic to f1

if there exists a continuous map F : M1 × [0, 1]→M2 such that

• F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈M1

• F maps the leaves of F1× [0, 1] into the leaves of F2, where F1× [0, 1] is the foliation
of M1 × [0, 1] with typical leaf L× [0, 1] for L a leaf of F1.

The trace of a leafwise homotopy F is the collection of curves t 7→ F (x, t) for x ∈ M1 and
the special property of a leafwise homotopy is simply that the trace consists of leafwise
curves.

A continuous map f : M1 →M2 which sends leaves of F1 into leaves of F2 is a leafwise
homotopy equivalence if there exists a continuous map g : M2 → M1 which sends leaves of
F2 into leaves of F1 so that the compositions g ◦ f and f ◦ g are both leafwise homotopic
to the respective identity maps on M1 and M2.

We next formulate the coarse metric properties of the foliation groupoid (cf. Plante [48];
section 1, Hurder & Katok [40].) A coarse metric on GF will be a family of coarse metrics

〈·, ·〉x : L̃x × L̃x → [0,∞)
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parametrized by x ∈ M . It is natural to also require a type of “coarse continuity” of the
family, which is satisfied by the examples presented below, but we will not formalize this
notion.

Given groupoids s:Gi → Xi equipped with coarse metrics 〈·, ·〉ix for i = 1, 2, a groupoid
map F :G1 → G2 is a quasi-isometry if there exists constants d1, d2, d3 > 0 so that for all
x ∈ X1 and y, y′ ∈ s−1(x)

d1 ·
(〈
y, y′

〉1
x − d3

)
≤
〈
Fx(y), Fx(y′)

〉2
f(x) ≤ d2 ·

(〈
y, y′

〉1
x + d3

)
(2)

where f :X1 → X2 is the map on objects induced by F . We say that F is a coarse isometry
if there exists ε > 0 so that Fx(s−1(x)) ⊂ s−1(f(x)) is ε-dense for all x ∈ X1.

Fix a regular foliation atlas {(Uα, φα) | α ∈ A} for F . For x ∈ M and a leafwise
path γ: [0, 1] → L̃x, define the plaque length function NT (γ) to be the least number of
plaques required to cover the image of γ. Define the plaque distance function Dx(·, ·) on the
holonomy cover L̃x using the plaque length function: for y, y′ ∈ L̃x,

Dx(y, y′) = inf
{
NT (γ) | γ is a leafwise path from y to y′

}
In other words, Dx(y, y′) is the minimum number of plaques in L̃x such their union forms
a connected open set in L̃x containing both y and y′. Note that Dx(·, ·) is not a distance
function, for Dx(y, y′) = 1 if and only if y and y′ lie on the same plaque Pα(z). It is
immediate from the definitions that the pairings Dx satisfy the triangle inequality, so we
have

LEMMA 2.3 The family Dx is a coarse metric for the foliation groupoid GF . 2

LEMMA 2.4 Suppose that F is a topological foliation of a compact compact M , and there
are given two coverings of M by regular foliation atlases: {(U iα, φiα) | α ∈ {1, . . . , k(i)}}
for i = 1, 2, with corresponding plaque distance functions Di

x. Then there exists constants
c1, c2 > 0 so that for all x ∈M and y, y′ ∈ L̃x

c1 ·D1
x(y, y′) ≤ D2

x(y, y′) ≤ c2 ·D1
x(y, y′) (3)

Hence, the identity map is a coarse isometry of GF endowed with the coarse metrics D1
x and

D2
x.

Proof. Assume that {(U2
α, φ

2
α) | α ∈ {1, . . . , k(2)}} is a refinement of {(U1

α, φ
1
α) | α ∈

{1, . . . , k(1)}}. Thus, for each 1 ≤ β ≤ k(2) there is 1 ≤ α(β) ≤ k(1) so that U(β) ⊂
U(α(β)). Let c2 denote the maximum number of distinct open sets of the second cover
contained in any fixed open set of the first cover. This is called the subdivision number for
the refinement. Then a leafwise curve γ with D1

x-plaque-length |γ|1 has D2
x-plaque-length at

most c2 · |γ|1 which yields the right-hand-side of (3). Conversely, if γ has D2
x-plaque-length

|γ|2 then it clearly has D1
x-plaque-length at most |γ|2.
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For the general case, we form a common refinement {(U3
α, φ

3
α) | α ∈ {1, . . . , k(3)}} of

the two given covers. Then take c2 equal to the subdivision number of the first cover, and
c1 the reciprocal of the subdivision number of the second cover, and we obtain (3). 2

When the foliation F is at least C1, then we can give the leaves a Riemannian metric,
and define a leafwise Riemannian distance function dx on L̃x by taking the infimum over
the lengths of paths in the holonomy cover between y and y′. The family dx is a coarse
metric on GF .

LEMMA 2.5 Suppose that F is a C1-foliation, M is compact, and {(Uα, φα) | α ∈
{1, . . . , k}} is a regular foliation atlas with a finite number of open charts. Then there
exists constants c1, c2 > 0 so that for all x ∈M and y, y′ ∈ L̃x

c1 ·
(
Dx(y, y′)− 1

)
≤ dx(y, y′) ≤ c2 ·Dx(y, y′) (4)

Hence, the identity map is a coarse isometry of GF endowed with the metrics Dx and dx,
respectively.

Proof. The regular foliation atlas {(Uα, φα) | α ∈ {1, . . . , k}} defines a finite number of
transversals Tα with compact closures, and each closed set T α parametrizes a continuous
family of compact discs Pα(z) ⊂ M . By the continuity of the leafwise metrics dx(·, ·) and
the fact that each chart is regular, there is an upper bound c2 for the diameters in the
Riemannian metric of the plaques defined by {(Uα, φα) | α ∈ {1, . . . , k}}. Therefore, if
γ: [0, 1] → L̃x has Riemannian length |γ|, then it cannot be covered by fewer than |γ|/c2

plaques. Choose a leafwise path which realizes the distance dx(y, y′), then this estimate
yields the right-hand-side estimate in (4).

Let c1 = ε({Uα | α ∈ {1, . . . , k}}) > 0 be the Lebesgue number for the open covering.
Let y, y′ ∈ L̃x, then choose a path γ : [0, 1] → L̃x with length dx(y, y′). Divide the image
of γ into segments {Ii | 1 ≤ i ≤ `} of length exactly c1 each, except possibly for the last
segment I` which has length at most c1. Let d|γ|/c1e denote the least integer greater than
|γ|/c1. By the definition of the Lebesgue number, each segment Ii is contained in some
open set Uαi , and hence in some plaque Pαi(zi) for zi ∈ T . Therefore the path γ can be
covered by d|γ|/c1e plaques, which gives the estimate

Dx(y, y′) ≤ d|γ|/c1e ≤ (|γ|/c1 + 1)

from which the left-hand-side of (4) follows immediately. 2

LEMMA 2.6 Let M1 be a compact manifold, and f : M1 →M2 be a continuous function
which sends leaves of F1 into leaves of F2. Then there exists a constant d2 > 0 so that for
all x ∈ M1 and y, y′ ∈ L̃x, the induced map Gfx : L̃x → L̃′f(x) on holonomy covers satisfies
the estimate

Df(x)

(
Gfx(y),Gfx(y′)

)
≤ d2 ·Dx

(
y, y′

)
(5)

The induced map Gfx : L̃x → L̃′f(x) is said to be eventually Lipshitz.
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Proof. Let {(Ui, φi) | 1 ≤ i ≤ k} be a regular foliation atlas for F1. Each image f(U i)
is compact, hence is covered by a finite number Ni of foliation charts for F2. Let d2 =
max{Ni | 1 ≤ i ≤ k}. Then for y, y′ ∈ L̃x with a leafwise path γ between them with plaque-
length NT (γ), the image curve f(γ) has plaque-length at most d2 · NT (γ) from which the
estimate (5) follows. 2

The induced map Gfx : L̃x → L̃′f(x) need not be a quasi-isometry, or even proper,
though both M1 and M2 are assumed to be compact. The first inequality in (1) fails in
the following simple example. Let M1 = T2 be the 2-torus with F1 the linear foliation by
lines with irrational slope. Let M2 = T2 also, with F2 the foliation having exactly one leaf.
The identity map satisfies the estimate (5). On the other hand, the leaves of F1 contain
paths of arbitrarily long length, which map to segments in T2 which are ∼h equivalent to
a “shortcut” in T2 of length at most 2

√
2π, where we assume that each circle factor in T2

has length 2π. Thus, for this example there is no estimate for the minimum plaque-length
of a leafwise path for F1 in terms of the minimum plaque-length of its image in F2.

There is a natural condition to impose on f which forces the fiberwise maps Gfx to
be quasi-isometries whenever M1 is compact: f is injective on holonomy if, given two
paths γ1 and γ2 contained in a leaf of F1 with γ1(0) = γ2(0) and γ1(1) = γ2(1), then
f(γ1) ∼h f(γ2) implies that γ1 ∼h γ2. This property is satisfied whenever f is a leafwise
homotopy equivalence, which is the idea behind the proof of the next result.

PROPOSITION 2.7 Let Fi be a topological foliation of a compact manifold Mi for i =
1, 2 and f : M1 →M2 a leafwise homotopy equivalence. Then there exists constants d1, d2 >
0 so that for all x ∈ M1 and y, y′ ∈ L̃x with Dx (y, y′) ≥ d3, the induced map Gfx : L̃x →
L̃′f(x) satisfies the estimate

d1 ·Dx
(
y, y′

)
≤ Df(x)

(
Gfx(y),Gfx(y′)

)
≤ d2 ·Dx

(
y, y′

)
(6)

Thus, Gf :GF1 → GF2 is a coarse isometry with respect to the coarse metrics D1
x and D2

x.

Proof. Choose a leaf-preserving continuous map g : M2 → M1 and a leafwise homotopy
F :M1 × [0, 1] → M1 between g ◦ f and the identity. Let K denote the maximum plaque-
lengths of the leafwise traces t 7→ F (x, t) for x ∈M1. Let d′2 denote the constant for g and
d2 the constant for f given by Lemma 2.6. Given a leafwise path γ between z = Gf(y) and
z′ = Gf(y′), the images Gg(z) and Gg(z′) are connected to y and y′ by leafwise paths with
plaque-lengths at most K each. (This is true for their images in M1 so by the covering path
lifting property also holds for the points in L̃x.) Applying Lemma 2.6 to g we then obtain

Dx
(
y, y′

)
≤ Dx(Ggf(x)(z),Ggf(x)(z

′)) + 2K ≤ d′2 ·Df(x)

(
z, z′

)
+ 2K

hence
1/d′2 ·

(
Dx

(
y, y′

)
− 2K

)
≤ Df(x)

(
z, z′

)
Take d3 = 4K and d1 = 1/(2d′2) and the estimate (6) follows. 2
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COROLLARY 2.8 Let Fi be a topological foliation of a compact manifold Mi for i = 1, 2
and f : M1 →M2 a leafwise homotopy equivalence. Then Gf is a proper map.

Proof. Let K ⊂ GF2 be a compact set. Then there is a finite collections of leafwise paths
{γ1, . . . , γd} for F2 and a covering of K by basic foliation charts formed from the γi. It
follows that there is a constant CK so that K is contained in the diagonal set

∆(GF2 , CK) = {y ∈ GF2 | Ds(y)(y, ∗s(y)) ≤ CK}

where ∗s(y) is the canonical basepoint in the fiber L̃s(y). The inequality (6) implies that
the preimage Gf−1(K) is contained in the diagonal set ∆(GF1 , CK/d1). Hence Gf−1(K) is
a closed set contained in a finite union of basic foliation charts on GF1 so is compact. 2

We conclude this section with the foliation version of the fundamental property of coarse
geometry. Fix a regular foliation atlas {(Uα, φα) | α ∈ {1, . . . , k}} for F on the compact
manifold M , which defines the transversal T . The transversal groupoid TF has an intrinsic
transversal length function DT , defined analogously to the word length function for groups.
(The choice of the transversal T corresponds to the choice of a generating set for a group.)
We say that two points y ∈ Tα and y′ ∈ Tβ are adjacent if their plaques Pα(y)∩Pβ(y′) 6= ∅.
The choice of a path γy,y′ ⊂ Pα(y) ∪ Pβ(y′) connecting adjacent points y, y′ determines a
canonical equivalence class [γy,y′ ] ∈ TF . For [γy] 6= [γy′ ] ∈ TF define

DT ([γy], [γy′ ]) = min
{
n > 0 | there exits a chain of points y = y0, y2, . . . , yn = y′ (7)

with (yi, yi+1) adjacent for each 0 ≤ i < n and
[γy′ ] = [γy] ∗ [γy1,y2 ] ∗ · · · ∗ [γyn−1,yn ]

}
and set DT ([γy], [γy′ ]) =∞ if no such chain exists, and set DT ([γy], [γy]) = 0.

PROPOSITION 2.9 The inclusion T : TF ⊂ GF induces a coarse isometry for the transver-
sal length function DT on TF and the plaque distance function on GF .

Proof: It follows from definitions that

Dx(T [γy], T [γy′ ]) = DT ([γy], [γy′ ]) + 1

for all [γy], [γy′ ]) ∈ TF so that T is a quasi-isometry.

Each point y ∈ L̃x is within one plaque-distance from a point in a transversal Tα, so the
image T (TF ) ⊂ GF is ε = 2 dense in each fiber L̃x = s−1(x). 2

The main conclusion of the results of this section is that associated to a topological
foliation of a compact manifold, there is a unique (up to coarse isometry) coarse metric on
the foliation groupoid, which depends only on the leafwise homotopy class of the foliation,
and its coarse isometry class is determined by the canonical coarse metric on the transversal
groupoid to F . It remains to extract from this coarse metric on GF analytical and topological
information about F .
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3 The corona of a foliation

It is a fundamental problem to define a “good” compact boundary ∂X for a complete metric
space X (cf. § 2, [23]), so that a coarse isometry of metric spaces induces a homeomorphism
of their boundaries – in particular, ∂X should depend only on the coarse isometry class of X.
Higson (section 3, [31]) and Roe (Chapter 5, [56]) introduced the corona ∂hX of a complete
metric space X which is such a boundary, and is canonical with respect to certain pairings
with operator K-theory. In this section, we extend their construction of the corona to
topological foliations of compact manifolds, and show it also has good functorial properties.

We briefly recall the construction of the corona when X is a C1-manifold with a complete
Riemannian metric [31]. Let Ch(X) denote the C∗-algebra closure (in the sup norm on
functions) of the functions on X whose gradients tend to zero at infinity. The algebra of
continuous functions which vanish at infinity, C0(X), is a closed C∗-subalgebra of Ch(X).
The Higson corona of X, denoted by ∂hX, is defined to be the spectrum of the quotient
C∗-algebra Ch(X)/C0(X).

There is an inclusion of closed C∗-algebras, C0(X) ⊂ Ch(X) ⊂ C(X), so that ∂hX is an
intermediate boundary between the maximal Stone-Čech compactification X̌ = spec(C(X))
and the one-point compactification X ∪∞ = spec(C0(X)). One can show that if the coarse
metric on X is not bounded, then ∂hX is non-separable.

One motivation for introducing the algebra Ch(X) is that the vanishing gradient condi-
tion is exactly what is required to obtain a well-defined index pairing between the K-theory
groups K∗(Ch(X)) and first order geometric operators on X with “bounded geometry”. Roe
abstracted Higson’s construction to complete metric spaces, replacing the decay condition
on the gradient with a decay condition on the variation function (cf. Definition 3.1 below).

The construction of the corona for a foliation groupoid GF equipped with a coarse metric
uses a leafwise decay condition on the variation functions along the holonomy covers of the
leaves. There is a subtlety in the groupoid case, in that the space of continuous functions
on GF is closed under pointwise multiplication of functions only if GF is Hausdorff.

Let C(GF ) denote the topological vector space of continuous functions on the groupoid
GF , with the uniform norm topology obtained from the sup-norm on functions:

sup |h| = sup
y∈GF

|h(y)|

Recall that GF need not be Hausdorff, and hence C(GF ) is defined as the vector space
spanned by locally-finite sums

∑
i fi of continuous functions supported in basic open sets

Ui ⊂ GF (i.e., regular neighborhoods of paths γi ∈ GF ) on which the topology of GF
is Hausdorff (cf. [8, 9]). Denote by Cu(GF ) ⊂ C(GF ) the closed subspace consisting of
uniformly continuous functions, and Cc(GF ) ⊂ Cu(GF ) the subspace spanned by finite sums
of continuous functions supported in basic open sets in GF .
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When GF is a Hausdorff space, C(GF ) is an algebra. In general, the pointwise-product
of two functions h, k ∈ C(GF ) will have a set of discontinuities contained in the union of
the leaves in M at which GF fails to be Hausdorff.

Define Cu(F) to be the closed topological commutative algebra generated by Cu(GF ) .
Let C0(F) ⊂ Cu(F) denote the closed topological subalgebra generated by the functions
Cc(GF ).

DEFINITION 3.1 For x ∈M and r > 0, define the fiberwise variation function

Vs(x, r) : C(L̃x) → [0,∞)
Vs(x, r)(h)(y) = sup

{
|h(y′)− h(y)| such that Dx(y, y′) ≤ r

}

Here are the basic properties of the variation (cf. Chapter 5, [56]):

1. Vs(x, r)(h) ≤ 2 sup |h|

2. Vs(x, r)(h± k) ≤ Vs(x, r)(h) + Vs(x, r)(k)

3. Vs(x, r)(h · k) ≤ Vs(x, r)(h) · sup |k|+ sup |h| · Vs(x, r)(k)

4. If |h(y)| → 0 as Dx(y, ∗x)→∞ then Vs(x, r)(h)(y)→ 0 as Dx(y, ∗x)→∞

We say that f ∈ C(GF ) has uniformly vanishing variation at infinity if there exists
a function D : (0,∞) → [0,∞) so that if Dx(y, ∗x) > D(ε) then Vs(x, r)(i∗xf)(y) < ε.
Let Ch(F) ⊂ Cu(F) denote the subspace of uniformly continuous functions which have
uniformly vanishing variation at infinity. The proof of the following lemma is then exactly
the same as for Lemma 5.3 of [56]:

LEMMA 3.2 Ch(F) is a commutative C∗-algebra. C0(F) is a closed C∗-subalgebra of
Ch(F). 2

DEFINITION 3.3 Let F be a topological foliation of a paracompact manifold M equipped
with a regular foliation atlas. The corona, ∂hF , of F is the spectrum of the quotient C∗-
algebra Ch(F)/C0(F).

Introduce the topological Hausdorff spaces GdF = spec(C0(F)) and GdF = spec(Ch(F)).
Note that Ch(F) contains the constant function h = 1 which is the multiplicative unit,
so the topological space GdF is a compactification of GdF obtained by adding on the corona
Ch(F) at infinity. As sets, GdF = GF . The identity map GdF ⊂ GF is always continuous, and
is a homeomorphism if GF is Hausdorff. When GF is not Hausdorff, GdF is the topological
space obtained from GF by giving it the coarsest Hausdorff topology such that the inclusion
map is continuous. Note there is an exact sequence of algebras

0 −→ C0(F) −→ Ch(F) ∼= C(GdF ) −→ Ch(F)/C0(F) ∼= C(∂hF) −→ 0 (8)
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PROPOSITION 3.4 .

1. The source projection extends to a continuous map s:GdF −→M .

2. For each x ∈M there is an inclusion ιx: L̃x = spec(Ch(L̃x)) ↪→ GdF .

3. For each x ∈ M there is an inclusion ∂ιx: ∂hL̃x ↪→ ∂hF , where ∂hL̃x is the Higson
corona of L̃x.

Proof: 1) The inclusion of unital algebras s∗:C(M) ↪→ Ch(F) induces a continuous map
of spectra, s, whose restriction to the interior GdF ⊂ GdF is clearly s.

2) For each x ∈ M the restriction map ι∗x : C(GF ) → C(L̃x) into the continuous
functions on the fibers of s is a map of algebras, as the fiber L̃x is Hausdorff so the product
of continuous functions restricts to a continuous function of L̃x. Thus, ι∗x restricts to an
algebra map ι∗x:Ch(F)→ Ch(L̃x). Each function h ∈ Ch(L̃x) is absolutely continuous, and
an elementary extension construction shows that ι∗x is surjective, so ιx is injective.

3) ι∗x : Cc(GF ) ⊂ Cc(L̃x), hence the quotient map ι∗x : Ch(F)/C0(F) → Ch(L̃x)/C0(L̃x)
is surjective, so the induced map on boundaries ∂ιx is injective 2

We next establish three functorial properties of the foliation corona.

PROPOSITION 3.5 Let M1 be a compact manifold, and f : M1 → M2 be a continuous
function which sends leaves of F1 into leaves of F2 and induces a proper map of groupoids
Gf :GdF1

→ GdF2
. Then there is an induced map

f : GdF1
→ GdF2

.

Proof. By Lemma 2.6, the pull-back map f∗ : C(GF2)→ C(GF1) maps the subspace Ch(F2)
into the subspace Ch(F1), and hence induces a map f on spectrum. 2

PROPOSITION 3.6 For i = 1, 2, let Fi be a topological foliation of a compact manifold
Mi. Then a leafwise homotopy equivalence f : M1 →M2 induces a continuous map

∂hf : ∂hF1 → ∂hF2

Proof. By Corollary 2.8 the pull-back f∗ : Cc(GF2) → Cc(GF1), so f∗ induces a map on
quotients

f∗ : Ch(F2)/C0(F2) −→ Ch(F1)/C0(F1)

which yields the map ∂hf : ∂hF1 → ∂hF2. 2
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COROLLARY 3.7 For i = 1, 2, let Fi be a topological foliation of a compact manifold
Mi. Then a leaf-preserving homeomorphism f : M1 →M2 induces a homeomorphism

∂hf : ∂hF1
∼=−→ ∂hF2

PROPOSITION 3.8 Let F be a topological foliation of a compact manifold M and f :
M → M be a leaf-preserving continuous map which is leafwise-homotopic to the identity
map. Then ∂hf : ∂hF → ∂hF is the identity map.

Proof. Let F : M × [0, 1] → M be a homotopy from f to the identity. As noted in the
proof of Proposition 2.7 there is an upper bound K denote the maximum plaque-lengths
of the leafwise traces t 7→ F (x, t) for x ∈ M1, and therefore given x ∈ M and y ∈ L̃x the
lifted path t 7→ GF (y, t) is covered by at most K plaques. That is, Ds(y)(y, f(y)) ≤ K for
all y ∈ GF . We then follow the proof of Proposition 5.11 of [56], observing for h ∈ Ch(F)
that

|h(y)− h(f(y))| ≤ Vs(s(y),K)(h)(y)

which tends to 0 as Ds(y)(y, ∗s(y)) → ∞. This implies the difference h − f∗(h) ∈ C0(F)
and hence the induced map on Ch(F)/C0(F) equals the identity. 2

COROLLARY 3.9 For i = 1, 2, let Fi be a topological foliation of a compact manifold
Mi. Then a leafwise homotopy equivalence f : M1 → M2 induces a homeomorphism ∂hf :
∂hF1

∼= ∂hF2.

Proof. Let g : M2 → M1 be a leafwise-homotopy inverse for f . Then the composition
∂hg ◦ ∂hf = ∂h(g ◦ f) is the identity map by Proposition 3.8. 2

4 Topological aspects of the foliation corona

In this section we investigate some of the topological properties of foliation coronas. First
note that the foliation corona ∂hF of a topological foliation with non-compact leaves of a
compact manifold is non-separable, and is a truly enormous space. (The problem is that
the criteria for a function to be in Ch(GF ) imposes no restrictions on the rate of decay of
the variation. No decay estimates are needed to formulate the appropriate pairings with
operator K-theory in the next section, so no decay estimates are imposed!) On the other
hand, we are principally interested in the K-theory groups K∗(∂hF), which are determined
by maps of ∂hF to finite complexes. Our investigation of the topology of foliation coronas
will thus be restricted to studying them via their separable quotient spaces.

A separable corona (X, q) for F is a separable compact space X equipped with a contin-
uous surjection q: ∂hF → X. A separable corona (X, q) determines a separable subalgebra

AX = {f ∈ Ch(F) such that f |∂hF = g ◦ q for some g ∈ C(X)}
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Conversely, given a separable C∗-subalgebra A ⊂ Ch(F) containing C0(F) there is a natural
map

q: ∂hF → spec(AX) ≡ XA
which defines a separable corona for F . A natural way to obtain a separable corona for
F is to construct such a subalgebra A which is generated by functions in Ch(F) satisfying
a “rate-of-decay” condition on their variations. For example, the endset (or Freudenthal)
compactification of GdF is obtained by requiring that the variation vanish outside some
compact set. The Gromov-Roe boundary of F is obtained by requiring that the variation
have rapid decay.

Let Cε(F) ⊂ Ch(F) be the closed topological subalgebra generated by the functions
which are constant outside a compact set. That is, h ∈ Ch(F) is in Cε(F) if and only if
there is a compact subset Kh ⊂ GF so that the restriction of h to Cε(F) \Kh is constant.
Note that C0(F) ⊂ Cε(F).

DEFINITION 4.1 The endset of a foliation F is the compact topological space ε(F) de-
fined as the spectrum of the unital topological algebra Cε(F)/C0(F).

PROPOSITION 4.2 ε(F) is a corona for F .

Proof. A point in the spectrum of Ch(F)/C0(F) can be identified with an evaluation

ε̂ : Ch(F)/C0(F)→ C,

which naturally restricts to an evaluation ε̂ : Cε(F)/C0(F) → C. Thus, there is a natural
map ∂hF → ε(F). Cε(F)/C0(F) has a unit so ε(F) is compact. There is a countable
base for the space of the functions which are constant outside a compact set, hence ε(F)
is separable. Finally, let us show that ε(F) is the Freudenthal compactification for GdF .
A function which is constant outside of a compact set in GF extends continuously to the
Freudenthal compactification, hence Cε(F)/C0(F) is contained in the continuous functions
on the Freudenthal compactification. The functions in Cε(F)/C0(F) separate the ends on
GF , so by the Stone-Weierstrass Theorem it must equal the standard end compactification.
(We are indebted to John Roe for pointing out this last trick.) 2

The endset can be effectively described for the class of suspension foliations (cf. Chapter
5, [7]). Let X denote a compact topological manifold. Let Γ be a finitely-generated group
isomorphic to the fundamental group π1(B, b0) of a compact manifold B, with Γ acting on
the universal covering B̃ → B by deck translations on the left. Given a continuous action
ϕ : Γ × X → X, form the product of the deck action with ϕ to obtain an action of Γ on
B̃ ×X. Introduce the quotient compact topological manifold,

Mϕ = Γ \ (B̃ ×X).

The product foliation on B̃ × X, with typical leaf L̃ = B̃ × {x} for x ∈ X, descends to
a topological foliation on Mϕ denoted by Fϕ . The projection onto the first factor map,

15



B̃×X → B̃, descends to a map π : Mϕ → B, and π restricted to the leaves Fϕ is a covering
map. A Riemannian metric on TB lifts via π to a leafwise metric on TFϕ, so that the
foliation always carries a leafwise Riemannian distance function (even though Fϕ need only
be a topological foliation).

Let Kϕ ⊂ Γ denote the subgroup of elements which act trivially on X under ϕ, let Γϕ =
Γ/Kϕ denote the quotient group and B̃ϕ the covering of B corresponding to Γϕ. Then Γϕ is
isomorphic to a subgroup of Homeo(X ), called the global holonomy group HFϕ ⊂ Homeo(X )
of Fϕ.

The action ϕ is effective if for all open subsets U ⊂ X and all γ ∈ Γ, if ϕ(γ) restricts
to the identity on U , then ϕ(γ) acts as the identity on X. Winkelnkemper showed that
the holonomy groupoid of the suspension of an effective action is Hausdorff, and there is a
homeomorphism

GFϕ ∼= Γ \
(
B̃ ×X × B̃ϕ

)
(9)

PROPOSITION 4.3 Let Fϕ be the suspension foliation associated to an effective contin-
uous action ϕ. Then the foliation endset ε(Fϕ) fibers over Mϕ with fiber homeomorphic to
the endset ε(Γϕ) of the global holonomy group.

Proof: The endset ε(Γϕ) is homeomorphic to the usual endset of the connected topological
space B̃ϕ on which Γϕ acts freely with cocompact quotient. The action of Γϕ on B̃ϕ extends
to a continuous action on the endset compactification B̃ϕ ∪ ε(Γϕ). Thus, there is a natural
map

εΓ:GFϕ −→ E(B,Γ, ϕ) ≡ Γ \
(
B̃ ×X ×

{
B̃ϕ ∪ ε(Γϕ)

})
for which the subalgebra ε∗ΓC(E(B,Γ, ϕ)) ⊂ C(F) is seen to agree with C(ε(F)). We thus
obtain the more precise result identifying

ε(Fϕ) ∼= Γ \
(
B̃ ×X × εΓϕ

)
from which the claim of the proposition follows. 2

Let us next introduce a family of foliation coronas, parametrized by a real number τ > 0.
For f ∈ C(GF ), we say that the variation of f has uniform τ -decay if for each r > 0 there
exists C(f, k, r) > 0 and a uniform estimate

Vτ (x, r)(i∗xf)(y) < C(f, k, r) [Dx(y, ∗x) + 1]−τ for each x ∈M and all y ∈ L̃x (10)

The τ -decay condition is especially useful when τ > 1 for it then implies an estimate on the
change in the value of f along paths in the fibers (cf. the proof of Proposition 4.7).

Let Cτ (F) ⊂ Ch(F) be the closed topological subalgebra generated by the functions
whose variations have uniform τ -decay.
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DEFINITION 4.4 Let F be a topological foliation of a compact manifold M . For τ > 0
the τ -boundary ∂τF of F is the spectrum of the quotient C∗-algebra Cτ (F)/C0(F).

The variation of f has uniformly rapid decay if it has uniform τ -decay for all τ > 0.
Let C∞(F) ⊂ Ch(F) be the closed topological subalgebra generated by the functions whose
variations have uniformly rapid decay. Roe proved that for a complete metric space X
which is hyperbolic in the sense of Gromov, the spectrum of the algebra of functions with
rapid decay is homeomorphic to the geodesic compactification of X (Proposition 2.3, [54]).
This boundary is well-defined for any metric space, so we propose the

DEFINITION 4.5 Let F be a topological foliation of a compact manifold M . The Gromov-
Roe boundary ∂∞F of F is the spectrum of the quotient C∗-algebra C∞(F)/C0(F).

Let us consider an important class of examples of foliations for which these boundaries
can be effectively described. Assume there is given:

• a compact CW-complex Z and a fibration Π:Z →M ,

• a fiberwise metric <x:Zx × Zx → [0, 1] which varies continuously with x,

• a continuous “weight” function Φ:M × [0,∞) → [0,∞) with Φ(M × {0}) = 0 and
each restriction Φx: [0,∞)→ [0,∞) is monotone-increasing and unbounded.

The parametrized cone determined by the map Π is the fibration CΠ:C(Z,Π) → M ,
where for each x ∈M the fiber CZx ≡ CΠ−1(x) over x is the cone with vertex x and base
Zx = Π−1(x). The additional data < and Φ determines a fiberwise metric CΦ< on C(Z,Π),
where the fiber CZx has the cone metric determined by Φx and <x (cf. section (3.46)
of [56]). The data {CΠ:C(Z,Π) → M,C<} is called the parametrized metric cone on
{Π:Z →M,<,Φ}.

DEFINITION 4.6 A foliation F is cone-like with base Π:Z →M if there exists

• a parametrized metric cone {CΠ:C(Z,Π)→M,C<}

• a fiber-preserving map CF :C(Z,Π)→ GF which covers the identity on M ,

• constants d1, d2, d3, ε so that for each x ∈ M the restriction CFx:CZx → L̃x is a
coarse isometry with respect to these constants (cf. Definition 2.1).

PROPOSITION 4.7 Let F be a cone-like foliation with base Π:Z →M . Then there are
fiber-preserving continuous surjections

∂hF
∂CF−→ Z

∂τCF−→ ∂τF

for 1 < τ ≤ ∞ such that the composition is the canonical map ∂hF → ∂τF . In particular,
∂τF is a separable corona for 1 < τ ≤ ∞.
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Proof. Let Cρ(Z) ⊂ Cu(C(Z,Π)) be the C∗-subalgebra of functions which are uniformly
asymptotic along rays. That is, for each z ∈ Z parametrize the ray z × [0,∞) ⊂ CZx by
the arclength parameter t. Then for each f ∈ Cρ(Z) and ε > 0 there exists T (f, ε) so that
for all z ∈ Z,

|f(z × t)− f(z ×K(f, ε))| < ε for all t > K(f, ε)

Clearly, the quotient algebra Cρ(Z)/C0(C(Z,Π)) ∼= C(Z) so spec(Cρ(Z)) compactifies
C(Z,Π) by adding Z at infinity. The induced map CF∗:Cρ(Z) → C(F) is injective with
image in Ch(F), and maps C0(C(Z,Π)) into C0(F). Thus, there is an induced surjective
map on spectra ∂CF : ∂hF → Z.

Let f ∈ Cτ (F), the pull-back CF∗xf has uniform τ -decay along each ray z × [0,∞) ⊂
CZx. Let t denote the arclength parameter along the ray. Since τ > 1, for any ε > 0 there
exists Tε so that for for t0, t1 > Tε the difference

|CF∗xf(z × t0)− CF∗xf(z × t1)| <
∫ t1

t0
Vτ (x, 1)(i∗xf)(z × t)dt < C(f, k, 1)

∫ t1

t0
t−τdt (11)

Hence, there is a well-defined asymptotic value along each ray z× [0,∞). Asymptotic eval-
uation defines a map of algebras AτCF∗:Cτ (F)→ C(Z) which vanishes when restricted to
C0(F), and restricts to the identity on the subalgebra π∗1C(M). Hence, AτCF∗ determines
a continuous map ∂τCF :Z → ∂τF which covers the identity on M . The kernel of the
asymptotic evaluation map AτCF∗ consist of functions which uniformly tend to zero at
infinity, hence the factor map AτCF∗:Cτ (F)/C0(F)→ C(Z) is injective which implies that
∂τCF is surjective. 2

REMARK 4.8 The surjection ∂τCF :Z −→ ∂τF need not be a homeomorphism. For
example, when all leaves of F are metrically Euclidean of dimension greater than 1, then
it is a nice exercise to show that each fiber of ∂τF → M is a point for τ > 1. At the
other extreme, when the leaves of F admit metrics of uniformly negative curvature, the
arguments of Roe (cf. the proof of Proposition 2.3, [54]) show that ∂∞F is a fibration over
M with fibers Sp−1.

Our last set of examples and remarks concern foliations where the corona can be shown
to fiber over the base M . We first establish a general result, then consider geometric special
cases to illustrate it.

DEFINITION 4.9 A foliation F is said to be coarsely geodesic if

• GF is a Hausdorff space, with s:GF →M a fibration.

• For each x ∈ M there exists an open neighborhood x ∈ U ⊂ M and a trivialization
TU : s−1U → L̃x×U , so that for each y ∈ U the restriction TU,y: s−1(y)→ L̃x×{y} is
a coarse isometry, with uniform constants independent of y ∈ U .
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A coarsely taut foliation F has a “typical leaf” L̃ which is a complete metric space, so that
for all x ∈M the holonomy cover L̃x is diffeomorphic and coarsely isometric to L̃.

PROPOSITION 4.10 Let F be a coarsely geodesic foliation. Then the corona of F fibers

∂hL̃ −→ ∂hF
∂s−→M

Proof: Proposition 3.4 implies that the source map extends to a continuous map on the
boundary, ∂s: ∂hF → M . We need to show that for a sufficiently small open disk U ⊂ M
and x ∈ U , the fibrations

s: (∂s)−1(U) −→ U

π1: ∂hL̃x × U −→ U

are homeomorphic.

Choose a trivialization TU : s−1U → L̃x×U which restricts to a uniform coarse isometry
on fibers, TU,y: s−1(y)→ L̃x × {y}. There is an induced map of algebras

(π1 × TU )∗:Ch(L̃x)⊗ C0(U) −→ Ch((∂s)−1(U))

where the left-hand-side is the algebraic tensor product. The image is dense in the uniform
topology of functions, because Ch((∂s)−1(U)) ⊂ Ch(F) ⊂ Cu(F) – so (π1 × TU )∗ induces a
homeomorphism of their spectra,

π1 × TU : (∂s)−1(U) → L̃x × U ∼= L̃x × U

whose restriction to the boundary gives the desired trivialization. 2

There are many constructions which yield coarsely geodesic foliations.

Recall the construction of the suspension foliation Mϕ = Γ \ (B̃ × X) associated to a
continuous action ϕ : Γ ×X → X on a compact topological manifold X the fundamental
group Γ ∼= π1(B, b0) of a compact manifold B. Let Γϕ = Γ/Kϕ denote the quotient
by the maximal subgroup Kϕ which acts trivially on X under ϕ, and B̃ϕ the covering
of B corresponding to Γϕ. The deck translations act via isometries on B̃ϕ so induce a
continuous action on the compactification B̃ϕ = B̃ϕ ∪ ∂hB̃ϕ. There is a Γ-equivariant
homeomorphism of boundaries ∂hB̃ϕ ∼= ∂hΓ, so by the identification (9) and an application
of the Proposition 4.10 we obtain:

PROPOSITION 4.11 Let ϕ : Γ × X → X be an effective on a compact topological
manifold X. Then the foliation corona is homeomorphic to the suspension fibration obtained
from the induced action of Γ on the Higson corona of the global holonomy group Γϕ

∂hF ∼= Γ \
(
B̃ ×X × ∂hΓϕ

)
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Another class of examples are provided by locally free Lie group actions. Let G be a
connected Lie group. A topological action ϕ : G ×M → M is locally-free if for all x ∈ M
the isotropy subgroup Gx ⊂ G is a finite subgroup. The action is effective if g must be the
identity element whenever there is an open set U ⊂M so that ϕ(g) restricts to the identity
on U .

LEMMA 4.12 Let ϕ : G×M → M be a locally-free effective C1-action. Then the orbits
of the action ϕ define a C1-foliation Fϕ of M , and there is a natural homeomorphism

GFϕ ∼= G×M (12)

Choose an orthonormal framing of the Lie algebra of G, which determines a right-
invariant Riemannian metric on TG. At each x ∈ M the left action of G on M induces a
framing of the orbit of G through x. The action of G is locally free, so the resulting continu-
ous vector fields on M are linearly independent at each point, hence yields a global framing
of the leaves of Fϕ. Declare this to be an orthonormal framing to obtain a Riemannian
metric on the leaves. Note that the identification (12) maps G×{x} to the holonomy cover
of the orbit of G through x, which by the essentially free hypotheses is exactly the orbit Gx.
The induced Riemannian metrics on G and Gx are identical, hence hence they are trivially
quasi-isometric. By the identification (12) and an application of the Proposition 4.10 we
obtain:

PROPOSITION 4.13 The foliation corona of Fϕ is homeomorphic to a product, ∂hGFϕ ∼=
∂hG×M . 2

The coronas of Riemannian foliations on compact manifolds can be explicitly deter-
mined. As the leafwise geometric operators for Riemannian foliations are a generalization
of the study of almost-periodic operators, the study of their analysis and index theory is a
natural extension of more classical topics, and the corona construction gives an additional
topological tool for their investigation. Recall that a C1-foliation F is Riemannian [46, 49]
if there exists a Riemannian metric on the normal bundle to F which is invariant under
the linear holonomy transport. This has many consequences for the topology of M and the
structure of the foliation [46]. For example, for a compact manifold M there is an open
dense set of leaves in a Riemannian foliation which have no holonomy, and the holonomy
covers of all of the leaves of F are homeomorphic. The homeomorphisms are induced by
first forming the principal O(q)-bundle P → M of orthogonal frames to the foliation F ,
where q is the codimension. The foliation lifts to a foliation F̂ without holonomy, and the
leaves of F̂ cover those of F . The compact manifold P carries a collection of linearly inde-
pendent vector fields which span the normal bundle to F̂ , whose flows induce leaf preserving
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homeomorphisms of P and which are transitive on the leaf space of F̂ . Thus, given any
two leaves of F , there is a homeomorphism of their holonomy covers which is realized by
a sequence of homeomorphisms, each the flow associated to a vector field on P . As noted
by Winkelnkemper (section3, Corollary [62]), this implies that the foliation groupoid is a
fibration over the base M ,

L −→ GF
s−→M (13)

where L is called the “typical” leaf of F – as almost every leaf of F is diffeomorphic to L. The
explicit construction of the homeomorphisms between the fibers of (13) as the composition
of flows on the compact manifold P implies that the fibration transition functions are coarse
isometries on fibers, so the typical leaf also has a well-defined coarse isometry type. By the
identification (13) and an application of the Proposition 4.10 we obtain:

PROPOSITION 4.14 Let F be a Riemannian foliation of a compact manifold M , with
typical leaf L. Then the foliation corona of F fibers

∂hL −→ ∂hF −→M 2

The other coronas ∂τF for τ > 0 constructed above also fiber in this way over the base M .

We conclude this discussion of examples with a class of foliations for which there is
a canonically associated separable corona (X, q) for F where X is again a manifold of
dimension 2p+ q − 1

PROPOSITION 4.15 Let F be a C2-foliation of a compact manifold M such that the
holonomy cover of each leaf is simply connected. Assume there is a Riemannian metric
on the tangential distribution to F so that each leaf has non-positive sectional curvatures.
Then there exists a corona ∂F which fibers π: ∂F → M , where the fiber π−1(x) ∼= Sp−1 is
identified with the “sphere at infinity” on the holonomy cover L̃x.

Proof. Let TF → M be the tangential distribution to the leaves of F . The metric
assumption implies that the leaf exponential map expF :TF → M ×M is a covering map
onto each leaf. (The leaf exponential is defined by considering M with a new topology
in which each leaf is an open connected component, hence the exponential spray stays
inside each leaf. cf. [34, 61].) Thus, we obtain a diffeomorphism expF :TF ∼= GF . Let
TFg = TF ∪ ∂F be the compactification of TF obtained by adding on the sphere at
infinity in each fiber. Then exp−1

F extends to a continuous map of the compactifications (by
the same reasoning as for Proposition 3.5)

exp−1
F :GF −→ TFg

which restricts to a fiber-preserving surjective map ∂hF → ∂F . 2
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The compactification in Proposition 4.15 is called the geodesic compactification, as the ideal
points added at infinity correspond exactly to the equivalence classes of positive geodesic
rays which converge at infinity.

The following example is a generalization and combination of the two previous examples.
A foliation F is said to be locally symmetric [65, 66] if there exists a connected semi-simple
Lie group G and a continuous action ϕ:G × M → M such that the isotropy subgroup
Kx ⊂ G at x ∈ M is maximal compact and the subgroups are continuously parametrized
by x ∈M . The Furstenberg boundary ∂fG of the Lie group G is the quotient G-space G/H
where H is a minimal parabolic (Borel) subgroup. If G has split real rank k, then ∂fG is
also described as the the equivalence classes of k-flats in G/K, where K is a some maximal
compact subgroup [2]. For real rank one, this recovers the sphere boundary compactification
of G/K above. Define the the Furstenberg boundary ∂fF of a locally symmetric foliation F
to be the space of equivalence classes of k-flats in the leaves. Alternately, this boundary is
described as a field over M of quotient spaces G/Px where x 7→ Px is a continuous family
of minimal parabolic subgroups of G (cf. Zimmer [66].)

PROPOSITION 4.16 Let F be a locally symmetric foliation of a compact manifold M .
Then the Furstenberg boundary ∂fF is a corona for F . 2

5 Exotic index of leafwise geometric operators

In this section we begin the study of the exotic index of a leafwise geometric operator. The
exotic index is defined as a homomorphic image of the Connes index class in K(C∗r (F)),
and represents a “coarsening” of the Connes index. For example, if all the leaves of F
are compact, the exotic index is always zero – coarsening destroys all of the index data.
On the other hand, if all leaves are contractible then conjecturally no information is lost
under coarsening. There are two advantages to the exotic foliation index which justify its
introduction: one, it has additional naturality, which is used to pair it with classes from the
K-theory of the corona in the next section. Secondly, the exotic foliation index vanishes if
there exists a uniform gap about 0 in the spectrum of the leafwise operators, reflecting its
“coarse” nature. This “gap” property is an important source of relations between geometry
and index for leafwise operators, via the Lichnerowicz formalism [24, 25, 56, 57, 39].

The construction of the exotic foliation index requires that GF be Hausdorff, which
implies the map s:GF →M is a local fibration and ensures that the field of fiberwise index
classes constructed from the leafwise geometric operator is “locally continuous” over the
base M . When GF is non-Hausdorff, the exotic foliation index can be defined over closed
subsets Z ⊂ Mh = M \ s(GnhF ) contained in the union of the Hausdorff leaves Mh. The
modifications necessary for this case will be discussed at the end of this section.

We assume that F has a leafwise Haar system dvF and a quasi-invariant transverse
measure (cf. Renault [50], Connes [8, 9]) which combine to yield a measure dvM on M . The
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fibers of s : GF →M are canonically locally homeomorphic to the leaves of F so the leafwise
Haar system dvF defines a fiberwise Haar system for GF . Let dvG = dvF × s∗dvM denote
the product measure on the groupoid GF . When F a C2-foliation of a compact manifold
M without boundary, this construction can also be done using smooth volume forms: Fix
a Riemannian metric on TM , which induces a Riemannian metric on TGF . (The metric
defines an orthogonal complement Q ⊂ TM to TF and thus isometrically decomposes
TGF ∼= Ts ⊕ TM where Ts is the bundle of tangents to the fibers of s. There is a local
isomorphism between Ts and TF which we use to copy the metric from the latter to the
former.) Let dvM denote the smooth Riemannian volume form on M and dvG the smooth
Riemannian volume form on GF .

Let {Hx = L2(L̃x, dvLx) | x ∈ M} denote the Borel field of fiberwise Hilbert spaces
over M . A section σ of this field can be identified with a Borel map σ:GF → C whose
restriction to a fiber s−1(x) = L̃x is L2 with respect to the fiber measure. Note that
σ(x) ∈ L2(L̃x, dvLx) is well-defined for all x ∈ M , but we do not require that σ have finite
L2-norm on GF . Contrast this with the construction of the foliation von Neumann algebra
for F , which is represented on L2(GF ).

Continuity for sections can be defined on the set of Hausdorff points GhF : given [γ] ∈ GhF
and a compact set K ⊂ L̃x with [γ] contained in its interior, let W ⊂ GF be a local fibered
product (cf. section 2) over an open set U ⊂M . An element ψ ∈ L2(W ) is continuous if it
decomposes into a family {ψx | x ∈ U} so that the assignment x 7→ ψx is continuous from
U to L2(Wx), and its image in {Hx | x ∈ M} is called a basic continuous section ψ. In
general, σ is continuous on GhF if the restriction σ|GhF can be written as a locally-finite sum
of basic continuous sections.

A bounded operator A on HF is fiberwise if there is a direct integral decomposition

A ∼=
∫
M
⊕ Ax dvM (x)

where each Ax is a bounded linear operator on Hx. Let B(HF ) denote the algebra of oper-
ators on HF which are fiberwise, have uniformly bounded propagation and are continuous
on GF . That is, we require:

1. For each x ∈M the operator Ax has bounded propagation (cf. Roe, Chapter 4 [56]),
by a constant ρ(A) > 0 independent of x.

2. The assignment x 7→ Ax is continuous on Mh for the weak operator topology on the
fibers. That is, for x ∈ M and a basic continuous function ψ defined on an open
set W which projects to an open neighborhood x ∈ U ⊂ Mh, then x 7→ Axψx is a
basic continuous function in a smaller neighborhood V ⊂ U of x. (Note that this
makes sense because of uniform bounded propagation, hence each Ayψy for y ∈ U has
support in a compact subset of L̃y.)

We define special subalgebras KF ⊂ RF ⊂ B(HF ):
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The uniform Roe algebra RF for F consists of the operators A ∈ B(HF ) which are
uniformly leafwise locally-traceable:

3. For each x ∈ M the operator Ax is locally-traceable (cf. [8]; Chapter 4, [56]), and
there exists a uniform upper bound T (A) > 0 for the trace-norms of the compressions
Ax|Pα(z) to the plaques of a regular foliation atlas.

KF consists of the operators A ∈ B(HF ) which are uniformly leafwise compact:

4. For each x ∈ M the bounded linear operator Ax on L2(L̃x) is compact. (Continuity
of the family of operators {Ax | x ∈M} ⊂ B(HF ) implies it is uniformly compact.)

The Roe algebra R∗F for F is the C∗-closure of RF in the operator norm, and the
corresponding closures of the operator algebras KF and B(HF ) are denoted respectively
by K∗F and B∗(HF ). Analogous to the complete open manifold case [56], we introduce the
terminology

DEFINITION 5.1 The operator K-groups K∗(R∗F ) are called the coarse K-theory groups
of F .

Let C∗r (F) denote the reduced C∗-algebra associated to the foliation F with its given
leafwise Haar system dvF (cf. [8, 9, 50].) The next lemma establishes the “coarsening” map
for foliation K-theory.

LEMMA 5.2 There is a natural inclusion C∗r (F) ⊂ R∗F of C∗-algebras, which induces

C:K∗(C∗r (F))→ K∗(R∗F ) (14)

Proof. The choice of the leafwise Haar system for F endows the space of continuous
functions with compact support Cc(GF ) with a convolution product. Fix a leaf Lx ⊂ M
with holonomy cover L̃x. Each function f :GF → C defines a convolution operator on L2(L̃x)
and the correspondence between functions and kernel operators defines a *-representation
ρx:Cc(GF )→ B(L2(L̃x)). The direct integral over M of all these representations yields a *-
representation ρ:Cc(GF )→ RF . The reduced C∗-norm || · ||∗ on Cc(GF ) is defined to be the
supremum over x ∈ M of the semi-norms induced from the representations {ρx | x ∈ M},
so it is tautological that ρ induces a map of the C∗-closures. 2

DEFINITION 5.3 Let DF be a leafwise-elliptic, pseudo-differential operator for F with
self-adjoint symbol.

• If ε is a self-adjoint grading for DF , and Ind(DF , ε) ∈ K0(C∗(F)) is the Connes foli-
ation index class [9, 17], then the even exotic index is the image under the coarsening
map (14)

Inde(DF , ε) = C (Ind(DF , ε)) ∈ K0(R∗F )
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• For the ungraded case, with Ind(DF ) ∈ K1(C∗(F)) the Toeplitz foliation index class
[17, 19], then the odd exotic index is the image under the coarsening map (14)

Inde(DF ) = C (Ind(DF )) ∈ K1(R∗F )

The exotic foliation index has an intuitive formulation for even-dimensional leaves when
0 is uniformly isolated in the spectrum of each fiberwise operator Dx. Let DF be a leafwise-
elliptic, pseudo-differential operator DF of degree 1, with coefficients in an Hermitian bundle
E → M , so that for each x ∈ M the leafwise operator Dx on the compactly supported
smooth sections C∞c (EL̃x

→ L̃x) is an essentially self-adjoint densely-defined unbounded
operator. Form the projection operator Πx:L2(EL̃x

) → L2(EL̃x
) onto the kernel of Dx.

The spectral assumption implies that the family of projections Π±x are continuous as a
function of x (cf. [51].) The grading ε anti-commutes with Dx so leaves its kernel invariant.
Introduce the associated projections Π±x onto the ± eigenspaces of ε|ker(Dx). The abstract
exotic index Inde(DF , ε) ∈ K0(R∗F ) is the formal difference of the projections, [Π+

x ]− [Π−x ],
as an element of a Grothendieck group of “locally-finite” Hermitian subbundles of the field
of Hilbert spaces bundles x 7→ Hx over M . In this way, the exotic index is a natural
generalization of the Gromov-Lawson index of a family of “locally Fredholm” operators on
an open manifold [24, 25].

The technical difficulty with the above intuitive approach is that there is no reason why
0 should be isolated in the spectrum of an elliptic operator on an open manifold. For odd
dimensional leaves, the exotic index vanishes if there is a gap in the spectrum so the above
approach is useless. This forces one to define the foliation index using “almost-projection”
operators, interpreted as an index class via the K-theory formalism (cf. [9, 17, 29, 30, 31,
42]).

Fix a smooth function χ: R → [−1, 1] so that χ(−x) = −x and χ(x) = 1 for x ≥ 1
(called a “chopping function” by Roe [56].)

When the leaves have even dimension, and DF anti-commutes with the grading operator
ε, the exotic K0-index is defined as follows (cf. section 4, [56]). Choose a constant δ > 0, and
use the functional calculus to define the fiberwise bounded operator F : L2(GF , dvG)⊗E→
L2(GF , dvG)⊗E, which on the fiber over x ∈M is given by

Fx = χ(Dx/δ)

Estimates using the wave operator and finite propagation speed technique imply that F ∈
B(HF ), and F 2− Id ∈ R∗F . The “2×2” trick yields an exact involution G ∈ B(HF )⊗C2 so
that G− F ∈ B(HF ). We then define Inde(DF , ε) to be the equivalence class of the formal
difference [

G

(
1 + ε

2

)
G

]
−
[

1− ε
2

]
∈ K0(R∗F ) = ker

{
K0(R̃∗F )→ K0(C) = Z

}
(15)
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which is independent of the choice δ > 0.

When the leaves have odd dimension, the exotic K1-index is defined as follows. Choose a
continuous function λ:M → R, and a constant δ > 0. Define the fiberwise unitary operator
U : L2(GF , dvG)⊗E→ L2(GF , dvG)⊗E, which on the fiber over x ∈M is given by

Ux = exp
{
π
√
−1 χ((Dx − λ(x))/δ)

}
Estimates using the wave operator and finite propagation speed technique imply that the
U + Id ∈ R∗F and Inde(DF ) is defined to be the equivalence class

[U ] ∈ K1(R∗F ) = ker
{
K1(R̃∗F )→ K1(C) = 0

}
(16)

which is independent of the choice of functions χ and λ, and of δ > 0. Note that Uxψx =
−ψx whenever ψx ∈ L2(GF , dvG) ⊗ E lies in the range of either of the spectral projections
χ[λ(x)+δ,∞)(Dx) or χ(−∞,λ(x)−δ](Dx), hence the operator Ux depends on Dx only for functions
in the range of the spectral projection χ[λ(x)−δ,λ(x)+δ](Dx).

Recall that the spectrum σ(Dx) ⊂ R can a priori be any closed subset of R. A point
λ ∈ σ(Dx) which is isolated must correspond to an eigensection in L2(EL̃x

)∩C∞(EL̃x
). In

general, though, a cluster point λ ∈ σ(Dx) need not coincide with an eigensection, but rather
to a sequence of “approximate eigensections” which eventually vanish on compact sets in
L̃x. This suggests there should be a relation between the topology of σ(Dx), especially its
derived set, and the coarse geometry of the holonomy covers L̃x. Roe observed (Proposition
5.21 [56]) that the existence of a gap in the spectrum implies the vanishing of the exotic
index for open complete manifolds. Roe’s proofs carry over verbatim to the case of foliations:

DEFINITION 5.4 We say that the spectrum of DF has a uniform gap about λ ∈ R if
there exists δ > 0 such that, for each x ∈M , the intersection σ(Dx)∩ (λ− δ, λ+ δ) is empty
for all x ∈M .

PROPOSITION 5.5 Let DF be a leafwise geometric operator for F with coefficients in
an Hermitian bundle E→M .

1. Suppose that DF has uniform gap about 0. Then for any self-adjoint grading ε for
DF , the even degree exotic index Inde(DF , ε) ∈ K0(R∗F ) vanishes.

2. If there exists λ ∈ R such that DF has a uniform gap about λ, then the odd degree
exotic index Inde(DF ) ∈ K1(R∗F ) vanishes.

Proof: Assume that DF anti-commutes with a grading ε. Let F be the fiberwise operator
constructed from DF as above, with δ > 0 chosen so that (−δ, δ)∩ σ(Dx) is empty for each
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x ∈M . Then we can choose G = F for the involution used to define the index class, hence
Gε+ εG = 0 and the left-hand-side of (15) vanishes.

For the ungraded case, the operator χ((Dx − λ(x))/δ) has spectrum contained in the
set {+1,−1} for each x ∈M , hence U = −Id and its class [U ] = 0. 2

We mention an open problem connected related to extending Proposition 5.5.1:

PROBLEM 5.6 Determine the image of the natural map K∗(K∗F )→ K∗(R∗F ).

The inclusion of the compact operators into the Roe algebra on a non-compact complete
manifold space induces the trivial map in K-theory (cf. comments at the end of section 4,
[56].) It is possible that a similar conclusion holds for the fiberwise inclusion of the compact
operators into the uniform operators on the holonomy covers L̃x over M , when every fiber
L̃x is non-compact. A priori, it is necessary to deal with the possibility of spectral flow
with respect to the parameter x ∈ M , which could result in non-zero classes in the image
of K∗(K∗F )→ K∗(R∗F ). The point is to show these exotic spectral flow invariants are zero.

Proposition 5.5 has the customary application to the existence of metrics of positive
scalar curvature (cf. Rosenberg [57]; Zimmer [64]; section 6C of Roe [56]):

COROLLARY 5.7 Let F be a C∞-foliation with even dimensional leaves of a compact
manifold M , and assume the tangential distribution TF admits a spin structure. If there
exists a Riemannian metric on TF so that each leaf of F has positive scalar curvature, then
the exotic index class Inde(D/, ε) ∈ K0(RF ) of the leafwise Dirac operator vanishes. For a
foliation with odd dimensional leaves, the corresponding statement holds for the odd exotic
index class. 2

One of the principal applications of exotic index theory is to prove the homotopy in-
variance of characteristic classes associated to a foliated manifold (cf. [4].) Underlying
these applications, discussed in the next sections, is Theorem 5.2 of Hilsum and Skandalis
[32], which extends to foliations the results of Miscenko [45] on the homotopy invariance of
the C∗-signature of a compact manifold: for a C2-foliation of a compact manifold M the
index of the leafwise signature operator, Ind(dF ∗ − ∗ dF ) ∈ K(m)(C∗(F)) is a homotopy
invariant of the foliation, where (m) denotes the parity of the leaf dimension. Actually, they
show much more, that the higher signatures associated to almost flat bundles are homotopy
invariants, which combined with Lemma 5.2 yields:

THEOREM 5.8 Let F be a C2-foliation of a compact manifold M with leaves of dimen-
sion m, and E → M an almost flat bundle for F . Then the exotic index of the signature
operator with E-coefficients,

Inde ((dF ∗ − ∗ dF )⊗E) ∈ K(m)(R∗F )

is a homotopy invariant. 2
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The above constructions have versions for the case when GF is non-Hausdorff, which are
useful for studying the index of foliations with respect to their saturated Borel structure
(cf. [27]). Let Z ⊂ Mh = M \ s(GnhF ) be a closed subset of the Hausdorff leaves of F .
For each x ∈ Z the holonomy cover L̃x has the local product neighborhood property for
each compact subset K ⊂ L̃x; that is, there exists a locally open subset U ∩ Z ⊂ Z and
a relatively open neighborhood K ⊂ W ⊂ GnhF which is a fibered over U ∩ Z. The Borel
field {Hx = L2(L̃x, dvLx) | x ∈M} restricts to a Borel field of Hilbert spaces {Hx | x ∈ Z}.
Then exactly as before, we introduce basic continuous sections in {Hx | x ∈ Z}, and
continuous sections over Z. The restricted Roe algebra R∗F|Z can be defined as operators
on the field {Hx | x ∈ Z}. The C∗-algebra C∗r (F) represents on the restricted field, so
defines a restricted “Z-coarsening” map for foliation K-theory:

CZ :K∗(C∗r (F))→ K∗(R∗F|Z) (17)

DEFINITION 5.9 Let DF be a leafwise-elliptic, pseudo-differential operator for F with
self-adjoint symbol. Let Z ⊂Mh = M \ s(GnhF ) be a closed subset of the Hausdorff leaves of
F .

• For the graded case, the Z-even exotic index is Inde(DF |Z, ε) = CZ (Ind(DF , ε)) ∈
K0(R∗F|Z)

• For the ungraded case, the Z-odd exotic index is Inde(DF |Z) = CZ (Ind(DF )) ∈
K1(R∗F|Z)

6 Exotic foliation index theorems

The corona of a metric space X is the boundary for a compactification X, hence for each
cohomology theory there is a transgression map from boundary classes to classes compactly
supported in the interior of X. Higson and Roe showed that the transgressed K-theory
classes from the corona play the rôle of generalized “dual-Dirac” classes on X, and pair
naturally with the K-theoretic exotic index of a geometric operator [31, 53, 56]. For the
foliation corona, this boundary is “fibered” over the parameter space M, which leads to
the construction of generalized dual Dirac classes in Kasparov bivariant-KK-theory. In this
section, we will establish the properties of these generalized dual Dirac classes, then prove
an index theorem for calculating their pairing with the exotic index.

THEOREM 6.1 Let F be a C2-foliation of a compact manifold M . Then there is a
natural map

ρ:K∗(∂hF) −→ KK∗+1(C∗r (F), C(M)) (18)

whose image consists of generalized dual-Dirac classes.
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The construction of the map ρ in (18) will be based on a modification, due to Guoliang
Yu [63], of Higson’s construction in [31] of a pairing between the K-theory of the corona
and that of the Roe algebra for open complete manifolds. Before proving the theorem, we
point out the main application, which follows from composing the boundary map (18) with
the coarsening map (14), and using the natural pairing of KK-groups:

COROLLARY 6.2 Let k, ` = 0, 1 be fixed. Then for each [u] ∈ K`(∂hF) there is an
exotic index map

ρ[u]:Kk (C∗(F)) −→ Kk+`+1(M) (19)

The exotic index ρ[u](Ind(DF , ε)) ∈ K∗(M) is an “integral” invariant of DF . This con-
trasts with the real-valued measured index of a leafwise operator for a foliation admitting a
holonomy-invariant transverse measure, which is typically a renormalized index with values
in R.

Proof of (6.1). Consider first the case ` = 1. Given a class [u] ∈ K1(∂hF), it is represented
by a continuous map u : ∂hF → U(N) for some N > 0. The key idea is to mimic the
construction of the boundary map in the exact sequence

· · · −→ K1(GF , ∂hF) −→ K1(∂hF) δ−→ K0(G(F)) −→ · · · (20)

The unitary u is extended to GF then its K-theory boundary is a special Hermitian bundle
on GF in the sense of Yu (section 4, [63]). A special Hermitian bundle determines a class
in KK0(R∗F , C(M)) which then restricts to a class ρ[u] ∈ KK0(C∗r (F), C(M)).

The first step is to extend u to û:GF → End(CN). Let j : U(N) ⊂ GL(N,R) ⊂ RN2
be

the embedding obtained by the standard coordinates on matrices. By the Tietze extension
theorem, j◦u extends to a continuous map ũ : GF → RN2

. Let ν → U(N) denote the normal
bundle to j with Riemannian metric pulled-back from RN2

. For ε > 0 sufficiently small, the
exponential map exp: ν → RN2

defined over j is an embedding when restricted to the ε-disc
neighborhood of zero Dε(j) ⊂ ν. The image Nε(j) = exp(Dε(j)) is an open neighborhood
retract of j(U(N)) ⊂ RN2

equipped with a smooth fibration map π : Nε(j) → j(U(N)).
Choose a smooth function s : [0, ε)→ [0, 1] so that s(t) = 1 for 0 ≤ t ≤ ε/3 and s(t) = 0 for
t ≥ 2ε/3. Compose s(r) with the (normal) radial distance function on Nε(j), and extend as
the zero function, to obtain a compactly supported smooth function ŝ : RN2 → [0, 1] with

ŝ(x) = 1 for x ∈ exp(Dε/3(j))
ŝ(x) = 0 for x 6∈ exp(D2ε/3(j)).

Extend the inclusion U(N) ⊂ End(CN) to a compactly supported map î : RN2 →
End(N,C). Pull the inclusion back via the fibration π and multiply with the function ŝ to
obtain an extension î on the open subset Nε(j) ⊂ RN2

which is the zero endomorphism on
the boundary. Extend î as the zero endomorphism on the complement of Nε(j).
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Let û = î ◦ ũ : GF → End(CN) be the continuous function which is the composition of
the Tietze extension function ũ with the Whitney extension function î. Note that û(x) is
a unitary matrix for x in the open neighborhood ũ−1(exp(Dε/3(j))) ⊂ GF of the foliation
corona ∂hF .

Let A,B denote C∗-algebras. Recall that a cycle (E ,Φ, φ) for the Kasparov group
KK(A,B) consists of a separable Hilbert space E equipped with a C∗-module action of B, a
representation φ of A on the B-module E and an adjoinable operator Φ: E → E such that for
every a ∈ A the expressions (φ(a)Φ− Φφ(a)), φ(a)(Φ− Φ∗) and φ(a)(Φ2 − 1) are compact
Hilbert B-module operators. The equivalence relation between cycles is generated by opera-
tor homotopy and addition of degenerate bimodules (cf. [42]; section 1 [31]; Definition 3.29
[30].)

Recall the construction of a Kasparov (C, C0(F))-bimodule from û. Form Hermitian
vector bundles Ei = GF×CN for i = 0, 1, and let Ei be the Hilbert-space closure of the space
of compactly supported continuous sections of Ei. Let C act on each space Ei via the natural
extension of the identity map. There is a natural module action φi of C0(GF ) = C0(F) on Ei.
The matrix-valued function û induces a map of bundles F : E0 → E1 which is an Hermitian
isomorphism outside of a compact set in GF . The K-theory boundary δ[u] ∈ KK(C, C0(F))

of the sequence (20) is the class of the cycle (E0 ⊕ E1,

[
0 F ∗

F 0

]
, φ0 ⊕ φ1). However, in

passing to this K-theory group, we lose the information about the explicit representative
for δ[u] obtained from the corona, in particular that it is represented by a map which has

vanishing gradient near infinity. We show next that the data (E0⊕E1,

[
0 F ∗

F 0

]
, φ0⊕φ1)

also determines a (R∗F , C(M))-bimodule, whose KK-class captures this extra information.

The Hilbert space HF⊗C2N is a C(M)-module via the map s:GF → M . Let φ be
the representation of R∗F on HF⊗C2N acting as operators extended as the identity on the
factor C2N . Note that φ is a C(M)-representation by the assumption that the operators
in R∗F are fiberwise, hence commute with the action of C(M) as multipliers on the Hilbert

field {Hx | x ∈M}. Let Φ = 1⊗
[

0 F ∗

F 0

]
be the extension of û to an operator on

HF ⊗C2N ∼= HF ⊗Ch(F) (E0 ⊕ E1)

LEMMA 6.3 (cf. Lemma 3 [63]) (HF⊗C2N ,Φ, φ) is a Kasparov (R∗F , C(M))-bimodule.

Proof. We check the three conditions on a Kasparov bi-module for (RF , C(M)), and
then note that the argument is stable under closure in the operator norm, so that the
conditions also hold for (R∗F , C(M)). Note that B ∈ B∗(HF ) is a compact Hilbert C(M)-
module operator precisely when B ∈ K∗F . Let A ∈ RF . Φ∗ = Φ by construction, so
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0 = φ(A)(Φ− Φ∗) ∈ K∗F . Also, the expression

(Φ2 − 1) =

[
F ∗F − 1 0

0 FF ∗ − 1

]

is compactly supported in GF by the choice of û, so that the composition φ(A)(Φ2−1) ∈ K∗F .

Finally, the key point is to show that the commutator (φ(A)Φ − Φφ(A)) ∈ KF . The
operator φ(A) restricts to each leaf fiber L̃x of s:GF → M to give a locally compact
operator, whose kernel is supported in a uniform tube in L̃x × L̃x of radius ρ(A) about
the diagonal. The entries of the matrix operator Φ have vanishing gradient, so given ε >
0 there is a compact set K(ε, A) ⊂ GF so that the variation of Φ is at most ε on any
disc of radius ρ(A) contained in a fiber L̃x and outside of K(ε, A). This implies that the
commutator (φ(A)Φ − Φφ(A)) ∈ KF vanishes at infinity, hence is a fiberwise compact
operator. The details of this argument are exactly those of Proposition 5.18 of Roe [56],
applied to each fiber of s:GF → M , so are omitted. We need to note that the fiberwise
operators (φ(A)Φ − Φφ(A))x ∈ K(L2(L̃x)) are continuous in x, because of the uniform
estimate on their supports and the local fibration properties of the map s:GF →M . 2

Define ρ[u] = [(HF⊗C2N ,Φ, φ)] ∈ KK(R∗F , C(M)). It is straightforward to check that
ρ[u] is independent of the choice of N , the representative u: ∂hF → U(N) for [u], and of the
extension û. This completes the construction of the map (18) for the case of [u] ∈ K1(∂Fh ).

The case for [p] ∈ K0(∂hF) proceeds similarly to the odd case, so we just indicate the
modifications. Given a representative p: ∂hF → G(N,n) of [p], we choose an embedding of
G(N,n) into R` for ` sufficiently large. Each point in G(N,n) corresponds to a self-adjoint
projection operator in CN+n with complex rank n, so that the map p determines a field of
self-adjoint projections in the trivial bundle ∂hF ×CN+n. By the same extension methods
above, we can lift these projections back to a self-adjoint vector bundle endomorphisms p̂
on the trivial bundle GF ×CN+n which are projections outside of a compact set in GF . The
exponential exp(2π

√
−1 p̂) defines a unitary automorphism of GF ×CN+n which is trivial

outside of a compact set in GF . We then set U = 1⊗ exp(2π
√
−1 p̂) acting on HF ⊗CN+n,

and obtain an odd Kasparov (D∗(Ch(F), C0(F)), C(M))-bimodule (HF⊗CN+n, U, φ). De-
fine ρ[p] to be the KK-class of this bimodule. 2

The use of the Tietze extension theorem above is comparable with the method of Roe
in section 5.3, [56] used to define the pairing between coarse cohomology and the K-theory
of uniform algebras.

The construction of abstract boundary maps in K-homology by Higson (cf. Lemma 1.3
[31]) requires the choice of a completely positive section of a restriction map of C∗-algebras.
In the above proof, the choice of a map u : ∂hF → U(N) defines a foliation corona Au for
which the positive extension ŝ ◦ ũ has the rôle of a completely positive section.

The constants 0 < ε/3 < 2ε/3 < ε used to define the cut-off function s(r) are completely
arbitrary. In fact, one could introduce parameters 0 < λ < µ < ε and let sλµ(r) be
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the corresponding cut-off function. Then we obtain Kasparov (D∗(Ch(F), C0(F)), C(M))-
bimodules whose classes in KK(R∗F , C(M)) are independent of λ and µ. Letting λ, µ→ 0
these bimodules have “compact support” contained in any arbitrary open neighborhood of
the corona ∂hF .

The ordinary K-theory transgression class obtained from u

δ[u] = [(E0 ⊕ E1,

[
0 F ∗

F 0

]
, φ0 ⊕ φ1)] ∈ KK(C, C0(F)) ∼= K0(C0(F))

is similarly represented by a cycle with compact support, which can be chosen arbitrarily
close to infinity. Classes of this type are called mobile, following a suggestion of John Roe,
as they are not localized to any one region of the manifold.

There is an alternate interpretation of the pairing (19) for the indices of leafwise Dirac
operators, in terms of an index theorem for families. Let DF be a leafwise Dirac operator
on an even dimensional foliation, and [u] ∈ K1(∂hF) an odd K-theory class from the
corona, with transgression δ[u] ∈ K0(C0(F)). The relative index theorem for open manifolds
(cf. [55]) defines a fiberwise pairing between the leafwise operator DF and the compactly
supported K-theory class δ[u]: For each x ∈M , the restriction Dx on the leaf Lx through x
is a geometric operator, and the data δ[u] restricts to the fiber Lx ⊂ GF to yield a compactly
supported finite-dimensional bundle Ex → Lx. The relative index pairing of Dx with Ex

yields a finite-dimensional vector space for each x ∈ M . The local continuity of the index
bundles for leafwise operators implies that this family of vector spaces over M determines
a K-theory class

Ind(DGF ⊗ s
!E) ∈ KK(C, C(M)) ∼= K0(M) (21)

The rôle of the boundary K-theory in the construction of Ind(DGF ⊗ s!E) is to choose a
mobile, compactly supported K-theory class on the leaves which is then paired with the
leafwise operators to yield a total K-theory class on the ambient manifold.

The intuitive discussion above can be made rigorous using the foliation index theorem
of Connes and Skandalis, which leads to a topological expression for the exotic foliation
index (19). Note that the groupoid GF is foliated by the fibers L̃x = s−1(x) of s:GF →M ,
and a leafwise operator DF induces a fiberwise operator denoted DGF . The C∗-algebra
of this foliation is Morita equivalent to the algebra of functions on the quotient space,
C(M). In this situation, the Connes-Skandalis construction [17] yields a KK-index class
Ind(DGF ) ∈ KK∗(C0(F), C(M)): choose a smooth chopping function f : R→ [−1, 1] which
is odd, and f(ξ) = 1 for ξ > 1. Then for each x ∈M ,

f(Dx):C∞c (EL̃x
)→ C∞c (EL̃x

)

is a bounded symmetric operator which extends to L2(EL̃x
), and so yields a family of

operators denoted by f(DGF ) on HF ⊗ s!E. If DF anti-commutes with a grading operator
ε then the same will hold for f(DGF ). Take the action φ of C0(F) on HF ⊗ s!E to be the
standard one. Then Ind(DGF ) is the KK-class of the cycle (HF ⊗ s!E, f(DGF ), φ).
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The KK-product

KK(C, C0(F))⊗KK∗(C0(F), C(M)) −→ KK(C, C(M))

pairs a K-theory boundary class δ[u] ∈ KK(C, C0(F)) with Ind(DGF ) to yield a class in
K0(M). This is the KK-formulation of the index class in (21).

Proposition 5.29 of Roe [56] implies that, for the open manifold case, the KK(C,C)-
valued pairing between the exotic index of a geometric operator and the compactly sup-
ported K-theory class transgressed from the corona, equals the relative index pairing con-
structed as in (21). This was reproved G. Yu (Theorem 2, [63]) in the framework of special
vector bundles, by showing that explicit cycles representing the KK-pairings are homotopic
as (C,C)-cycles. Yu’s method directly adapts to the foliation groupoid case to yield:

THEOREM 6.4 Let DF be a leafwise geometric operator for the foliation F . For each
[u] ∈ K∗(∂hF) the exotic index pairing is calculated by

ρ[u](Inde(DF , ε)) = Ind (δ[u]⊗DGF , ε) (22)

The Chern character Ch:K∗(M) → H∗(M ; R) applied to the right-hand-side of (22)
can be calculated by an index formula for families (cf. [25, 28]), so that explicit topological
formula for the exotic index follow from Theorem 6.4.

7 The Foliation Novikov Conjecture

The index class of a leafwise elliptic differential operator is a K-theory class in K∗(C∗(F)),
which intuitively can be considered as a cohomology class on the leaf space M/F . A K-
theory fundamental class for F is defined to be homomorphism Z∗ = 〈·, Z〉:K∗(C∗(F))→ Z
which depends only on the leafwise homotopy class of F . Connes proved that an invariant
transverse elliptic operator to F yields a fundamental class [11]. He later showed that
a cyclic cocycle on the smooth convolution algebra C∞c (GF ) which satisfies appropriate
growth estimates yields a fundamental class [10]. By the work of Hilsum and Skandalis (cf .
Theorem 5.8 above), the index class of the leafwise signature operator with coefficients in a
leafwise almost flat bundle E→M is a leafwise homotopy invariant, so every fundamental
class Z∗ yields a numerical invariant 〈Ind ((dF ∗ − ∗ dF )⊗E) , Z〉 of the leafwise homotopy
class of F . In this section, we observe that each boundary K-theory class in K`+1(∂hF)
provides a family of fundamental classes for F , thus greatly extending the list of leafwise
homotopy numerical invariants. The Novikov conjecture for special contractible foliations
is deduced by applying a particular case of this construction.
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THEOREM 7.1 For each [u] ∈ K`(∂hF) and [DM ] ∈ KK(C0(M),C), there is a K-theory
fundamental class

Z([u], [DM ])∗:K∗(C∗(F))→ Z

Proof: For [e] ∈ K∗(C∗(F)) define

〈[e], Z([u], [DM ])〉 = 〈ρ[u]([e]), [DM ]〉 = ρ[u]([e])⊗ [DM ] ∈ KK(C,C) ∼= Z (23)

Z([u], [DM ])∗ is well-defined for any foliation that is leafwise homotopic to F by Corol-
lary 3.9, so (23) yields a K-theory fundamental class. 2

Let DF be a leafwise-elliptic, pseudo-differential operator for F . The Connes-Skandalis
construction [17] yields a KK-index class Ind(DF ) ∈ KK∗(C0(M), C∗(F)), which via the
external KK-product yields a map:

µ(DF ):K∗(M) ∼= KK(C, C0(M)) −→ KK(C, C∗(F)) ∼= K∗(C∗(F)) (24)

The map (24) is a special case of the Baum-Connes “µ-map” whose domain is the K-theory
of all leafwise symbols for F [3, 4].

We say that F is a contractible foliation if the identity map of GF is homotopic to the
fiberwise projection onto the diagonal, ∗s:GF → M ↪→ ∗M ⊂ GF . If the homotopy can be
chosen to preserve the fibers of s, then we say that F has uniformly contractible leaves.

THEOREM 7.2 Let F be a contractible foliation of leaf dimension p with Hausdorff
holonomy groupoid GF . For each boundary K-theory class [u] ∈ K`+1(∂hF) the compo-
sition

ρ[u] ◦ µ(DF ):Kk(M) −→ Kk+`+p(M) (25)

is multiplication by the exotic index class I(DF , [u]) = ρ[u](Inde(DF , ε)) ∈ K`+p(M) for p
even and I(DF , [u]) = ρ[u](Inde(DF )) ∈ K`+p(M) for p odd.

We denote the composition (25) by I(DF , [u]).
Proof: We give the proof for k, ` and p even. The other seven cases follow in exactly the
same way. Let [e] ∈ K0(M) represented by an Hermitian vector bundle E → M . The
external product

µ(DF )[e] = E⊗ Ind(DF , ε) ∈ K0(C∗(F))

is equal to the index of the leafwise operator obtained extending the domain of DF by
tensoring with the sections of the bundle E. Now use Theorem 6.4 to obtain

ρ[u] ◦ µ(DF )[e] = ρ[u] (Ind(E⊗DF , ε))
= Ind (δ[u]⊗ (EGF ⊗DGF )) (26)

The next lemma identifies the fiberwise coefficients EGF appearing in the parentheses on
the right side of (26). Recall that r:GF →M is the “range map” evaluating a leafwise-path
at its endpoint.
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LEMMA 7.3 Ind (δ[u]⊗ (EGF ⊗DGF )) = Ind
(
δ[u]⊗ (r!E⊗DGF )

)
Proof: Recall that r:GF →M restricted to the fiber of L̃x = s−1(x) ⊂ GF is the canonical
covering map onto Lx. From the definition of the fiberwise operator EGF ⊗DGF on GF it is
represented fiberwise by the lift of the leafwise operator E⊗DF for F . Calculate from the
definitions {

EGF ⊗DGF |L̃x
}

= r∗ {E⊗DF} |L̃x
= r∗ {E|Lx ⊗D|Lx}
= r!E|L̃x ⊗DGF |L̃x (27)

where the identification on line (27) means that we choose the fiberwise Hermitian connec-
tion on r!E to be the lift under r∗ of the leafwise Hermitian connection on E → M . The
claim of the lemma follows immediately from this calculation. 2

Combine Lemma 7.3 and associativity of the external KK-product to obtain

ρ[u] ◦ µ(DF )[e] = Ind
(
δ[u]⊗ (r!E⊗DGF )

)
= Ind

(
(δ[u]⊗ r!E)⊗DGF )

)
(28)

Formula (28) for the exotic index pairing holds for any boundary class of a Hausdorff
groupoid. In the case of a contractible foliation, a vector bundle over GF is determined by
its restriction to the section ∗M , so there is the additional information

LEMMA 7.4 If F is a contractible Hausdorff foliation, r!E ∼= s!E. 2

The index class on the right-hand-side of (28) depends only on the compactly supported
isomorphism class of δ[u]⊗ r!E, so that for a contractible foliation we have

ρ[u] ◦ µ(DF )[e] = Ind
(
(δ[u]⊗ s!E)⊗DGF )

)
= Ind

(
s!E⊗ (δ[u]⊗DGF )

)
= µ(DGF )

(
δ[u]⊗ s!E

)
(29)

Finally, we observe that s:GF → M endows K∗(GF ) with a K∗(M)-module action which
commutes with the fiberwise index map

µ(DGF ):KK(C, C0(GF )) −→ KK(C, C(M)) ∼= K∗(M).

Apply these remarks to (29) to obtain

ρ[u] ◦ µ(DF )[e] = [e]⊗ Ind (δ[u]⊗DGF , ε) = I(DF , [u])⊗ [e] (30)

which proves Theorem 7.2. 2
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COROLLARY 7.5 Let F be a contractible foliation of leaf dimension p with Hausdorff
holonomy groupoid GF and DF be a leafwise-elliptic, pseudo-differential operator. Suppose
there exists a boundary K-theory class [u] ∈ K∗(∂hF) so that I(DF , [u]) is invertible in
K∗(M)⊗Q. Then the leafwise index map

µ(DF ):K∗(M)⊗Q −→ K∗(C∗(F))⊗Q

is injective. 2

A class I ∈ K0(M) ⊗R for a connected manifold M is invertible if and only if its virtual
dimension is non-zero. That is, the restriction of I to a point x ∈ M yields a non-trivial
class in K0(x) ∼= Z. In the above context, this implies that if I(DF , [u]) has even degree
and its restriction to a fiber over each connected component of M is non-trivial, then µ(DF )
is injective.

In the Atiyah formalism of [1], given an hermitian vector bundle pE: E → M and
an elliptic operator DE along the fibers of pE, there is a map α(DE):K(E) → K(M)
given by integration along the fibers in K-theory. A key property of this map is that it
commutes with the natural p∗E-module action of K(M) on K(E). Tensor product with the
Bott class β[E] ∈ K(E) of the bundle E defines a map β:K(M) → K(E). The K(M)-
module properties of α and β imply that α(DE) ◦ β:K(M) → K(M) is multiplication by
I(β[E]⊗DE) ∈ K(M), which is calculated from the index theorem for families.

The constructions of the exotic index bear a strong similarity with the Atiyah approach.
In the foliation context, the groupoid “fibration” s:GF → M replaces the vector bundle
E→ M , and the fiberwise operator DGF replaces DE. The transgression δ[u] ∈ K∗(GF ) of
a boundary class [u] ∈ K∗(∂hF) replaces the Bott class β[E]. There are generalized α and
β maps as well:

α(DGF ):K(GF )→ K(M) (31)
β[u]:K(M)→ K(GF ) (32)

where β[u]([e]) = δ[u]⊗ [s!e] and α(DGF )[e] = Ind ([e]⊗DGF ). The composition α(DGF ) ◦
β[u] = I(DF , [u]), so that injectivity of ρ[u] ◦µ(DF ) is equivalent to injectivity of α(DGF ) ◦
β[u].

The corona of Euclidean space RN has the same K-theory as SN−1, so for a vector
bundle E→M , there is a unique boundary K-theory class which transgresses to a fiberwise
fundamental class for the fibration (just as there is a unique Bott class.) For the more
general situation of s:GF → M , each class δ[u] ∈ K∗(GF ) can be used as a “Bott class”
and the topological problem is to calculate the range of the index pairings I(DF , [u]) for
the various classes [u] ∈ K∗(∂hF).

The composition of groupoids M ∼= ∗M ⊂ ΠF ⊂ GF induces a sequence of classifying
maps

M ' B(∗M) −→ BΠF −→ BGF
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Haefliger (Corollaire 3.2.4, [26]) proved that for a foliation with uniformly contractible
leaves, the composition M → BGF is a homotopy equivalence. As a corollary, we note that
the image of the induced map H∗(GF )→ H∗(M) equals the image of H∗(BΠF )→ H∗(M).

The Novikov conjecture for compact manifolds was the source of inspiration for most
of the index theory used in this paper. This has formulation for foliations which properly
extends the conjecture for compact manifolds:

CONJECTURE 7.6 (Foliation Novikov Conjecture, [4]) Let (M,F) and (M ′,F ′)
be oriented C∞ foliations with M,M ′ compact. Let f :M →M ′ be an orientation-preserving
leafwise homotopy equivalence. Then for any class ω ∈ H∗(BΠF ; Q)

(Bπ′)∗ω ∪ L(TM ′) = f∗ ((Bπ)∗ω ∪ L(TM)) (33)

where L(TM) denotes the Hirzebruch L-polynomial in the Pontrjagin classes of TM .

The Foliation Novikov conjecture is said to hold for F if the conclusion (33) is true for all
leafwise homotopy equivalences f :M → M ′ as above. For a foliation F with uniformly
contractible leaves, Haefliger’s theorem implies it suffices to check (33) holds for all ω ∈
H∗(BGF ; Q) ∼= H∗(M ; Q).

Baum and Connes proved this conjecture for foliations whose leaves admit a metric with
non-positive sectional curvatures, using the “dual Dirac” method [4]. We next show how
the exotic index applies to extend their result. First, we need the foliation formulation of
an idea introduced by Roe (section 6.2, [56].) Let TF → M be the tangent bundle to the
leaves of F and SF the sphere bundle for TF considered as a corona for TF . There is a
unique class Θ ∈ Hp−1(SF) whose boundary δΘ = Th[TF ] ∈ Hp

c (TF) is the Thom class.

DEFINITION 7.7 A foliation F on a connected manifold M is said to be ultra-spherical
if there exists a map of coronas σ: ∂hF → SF which commutes with the projections onto
M , and so that σ∗Θ ∈ H∗(∂hF) is non-zero.

THEOREM 7.8 Let F be an oriented ultra-spherical foliation with uniformly contractible
leaves and Hausdorff holonomy groupoid. Then the Foliation Novikov Conjecture is true for
F .

Proof: By the standard reduction of the problem (cf. [4]), it suffices to show that the
map µ(DF ) is injective for the leafwise Dirac operator. By Corollary 7.5, this will follow
from proving there exists a boundary K-theory class [u] ∈ K∗(∂hF) so that I(DF , [u]) ∈
K∗(M)⊗Q is invertible.

Let η ∈ K(SF) with K-theory boundary β[TF ] ∈ K(TF), and set [u] = σ∗η.

LEMMA 7.9 I(DF , [u]) is is invertible in K∗(M)⊗Q.
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Proof: There is a continuous extension of σ to a map of pairs (cf. proof of Lemma 6.3,
[56])

σ: (GF , ∂hF) −→ (TF , SF)

which commutes with the projection onto M . By naturality of the boundary map, ∂[u] =
σ∗β[TF ], so that

I(DF , [u]) = Ind (σ∗β[TF ]⊗DGF ) (34)

The index class I(DF , [u]) has even dimension, so it suffices to show that Ind (σ∗β[TF ]⊗DGF )
is non-zero when restricted to any fiber over M . But this follows from the original calcula-
tion of Roe, Theorem 6.9 [56]. 2

REMARK 7.10 The sequence of hypotheses above have progressed from the least restric-
tive,
“F is contractible” to the more restrictive, “F is ultra-spherical” with each assumption
yielding further progress towards establishing the foliation Novikov Conjecture for that
class of foliations. This is precisely parallel to the development of the proof of the Novikov
Conjecture for compact manifolds, where the all current methods of proof seem to require
a version of the “ultra-spherical hypotheses” and speculate that the techniques extend to
the uniformly contractible case. It is natural to conjecture that the above techniques will
show that the map µ(DF ) is injective for contractible foliations. That is, the problem is
to show that all contractible foliations admit a boundary K-theory class [u] ∈ K∗(∂hF) so
that I(DF , [u]) is a multiplicative unit in K∗(M) for the leafwise signature operator DF .

The hypotheses of Theorem 7.8 are readily established for many classes of foliations:

EXAMPLE 7.11 Proposition 4.13 implies that a contractible foliation F defined by a
locally free action of a simply connected Lie group is ultraspherical.

EXAMPLE 7.12 A uniformly contractible foliation F whose leaves have a metric so that
their holonomy covers have no conjugate points is ultraspherical.

EXAMPLE 7.13 Let F be a Riemannian foliation F whose universal leaf L is ultra-
spherical. Then by the proof of Proposition 4.14, F satisfies the hypotheses of Theorem 7.8.
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[12] A. Connes. Géométrie Non-commutative. InterEditions, Paris, 1990.

[13] A. Connes, M. Gromov, and H. Moscovici. Group cohomology with Lipshitz control and higher
signatures. Geometric and Functional Analysis, 3:1–78, 1993.
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[26] A. Haefliger. Groupöides d’holonomie et classifiants. In Structures Transverses des Feuilletages.
TOULOUSE 1982, pages 70–97, 1984. Astérisque No. 116.
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