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Abstract

We show that the strongest stable foliations associated to the generators of a Cartan action on a
compact infra-nilmanifold are invariant under topological conjugacy. This has the corollary that a Cartan
action on a compact infra-nilmanifold with constant exponents is smoothly conjugate to an affine action.
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1 Main Theorem

It is a basic property of an Anosov diffeomorphism φ:X → X on a compact manifold X that the stable
and unstable foliations, Fs and Fu respectively, are topologically defined in terms of attracting orbits
for the forward and backward maps, respectively ([1], or Theorem 6.2, [26]). One consequence is that if
φ0, φ1:X → X are Anosov diffeomorphisms and H:X → X is a homeomorphism conjugating φ1 to φ0,
then H maps the stable foliation Fs1 of φ1 to the stable foliation Fs0 of φ0, and similarly for the unstable
foliations.

When the stable foliation of an Anosov diffeomorphism φ has dimension greater than one, the choice
of a Riemannian metric or just a Finsler on TX sometimes allows to distinguish a “strongest stable”
1-dimensional subfoliation Fss of the stable foliation Fs. This is a metric property on the differentiable
dynamics of φ (see Definition 2.2 below), and is not a priori a topological invariant of the Anosov
diffeomorphism. In the simplest case, a local topological conjugacy between two linear contracting maps
need not preserve the rates of contractions, so in particular need not preserve the direction of fastest
contraction. In a global setting, a topological conjugacy between Anosov diffeomorphisms φ1 and φ0

of a compact manifold maps each invariant curve for φ1 to an invariant topological curve for φ0. The
existence of such curves has been studied by Hirsch [10] and Hancock [9], and Example 7.3 below (due
to de la Llavé) shows that non-trivial examples exist.

In this paper we show that with additional hypotheses on the Anosov diffeomorphism – that there is
a sufficiently large commuting family of Anosov diffeomorphisms, and X is an infra-nilmanifold - then
the strongest stable foliation is topologically invariant. Our proof of this is based on an addendum to the
above comments: if X is an infra-nilmanifold, then the rates of expansion of 1-dimensional expanding
submanifolds are topological invariants of the action.

A Cr-action ϕ:A×X → X of an abelian group A on a manifold X of dimension n is called Cartan
[12] if A is generated by ∆ = {γ1, . . . , γn} such that each ϕ(γi) is an Anosov diffeomorphism of X with
a 1-dimensional strongest stable foliation Fi and the collection T = {F1, . . . ,Fn} forms a trellis for X
(cf. section 2.) The generators ∆ need not freely generate A, which can have rank less than n.

A manifold X is an infra-nilmanifold if there is a finite cover X̃ which is diffeomorphic to a quotient
Λ \ N of a simply-connected, nilpotent Lie group N by a cocompact lattice Λ ⊂ N .

THEOREM 1.1 Let A be a free abelian group, and (ϕ0,∆) and (ϕ1,∆) be two Cartan C1-actions on
a compact infra-nilmanifold X. Suppose that there exists a homeomorphism H:X → X conjugating the
action of ϕ1 to ϕ0. Then for each 1 ≤ i ≤ n, H maps the strongest stable foliation of ϕ1(γi) to that of
ϕ0(γi).

A trellis T is maximal (cf. Definition 2.13 [12]) if each foliation Fi is the stable foliation of ϕ(γi).
Theorem 1.1 is immediate in this case. Similarly, when each foliation Fi is the intersection of the
stable foliations for a collection of Anosov diffeomorphisms {ϕ(γ)} with γ ∈ A, it is clear that the
trellis structure is preserved by a topological conjugacy. Corollary 3.4 below shows that for a Cartan
action on an infra-nilmanifold there is exactly one additional case: each foliation Fi of the trellis is
the intersection of center-stable and stable foliations of a collection of diffeomorphisms {ϕ(γ)} for some
γ ∈ A. The center-stable foliation of an arbitrary diffeomorphism is not a priori invariant under a
homeomorphism.

Theorem 1.1 has an application to the smooth classification of Cartan actions. Assume that the
1-dimensional tangential distributions {TF1, . . . , TFn} to the foliations of the trellis are orientable, then
a choice of unit vector field in each TFi determines a global framing of TX. (If the foliations are not
orientable, then we pass to a finite covering of X to obtain this, and formulate our conditions below for
the lift of the action to this cover.) Write the derivative of the group transformations Dϕ(γ) for γ ∈ Γ
as a GL(n,R)-valued continuous cocycle

Dϕ:A×X −→ GL(n,R)
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The Cartan hypotheses on ϕ implies that the image of Dϕ consists of diagonal matrices for all x ∈
X. The diagonal entries of Dϕ(γ, x) with respect to the trellis framing yield R∗-valued multiplicative
cocycles {λ1, . . . , λn}. For each periodic point x ∈ Per(ϕ(A)), let Ax ⊂ A be its isotropy subgroup with
corresponding linear isotropy representation

Dxϕ:Ax → GL(n,R)

A Cartan action is said to have constant exponents if the representations Dxϕ are constant. That
is, there exists a diagonal representation ρ:A → GL(n,R) so that for each x ∈ Per(ϕ(A)) and γ ∈ Ax,
Dxϕ(γ) = ρ(γ). Theorem 2.21 of [12] showed that a Cartan action on a torus with constant exponents
is Cr-conjugate to an affine action. The same method of proof, with the added information given by
Theorem 1.1 and Proposition 3.1, yields a similar result for actions on infra-nilmanifolds:

THEOREM 1.2 Let ϕ:A × X → X be a Cartan Cr-action with constant exponents on a compact
infra-nilmanifold X, for r = 1,∞ or ω. Then there is a Cr-conjugacy of ϕ to an affine action on X.
2

There are many natural examples of Cartan actions. Section 7 of [12] gives an extensive list linear
Cartan actions on Tn. The thesis of N. Qian [23] describes many examples of Cartan actions on
nilmanifolds. An affine translational component can be added to a linear action to obtain an affine
Cartan action without fixed-points [13]. Non-affine Cartan actions are obtained from a C1-perturbation
of a Cartan action, which is again Cartan by Proposition 2.17 of [12].

We conclude this paper by describing three interesting examples. The first, due to Qian, describes
a Cartan action on a nilmanifold. Given the additional work required to prove Theorem 1.1 in the
nilmanifold case, it is reassuring to have explicit examples. The second example, also suggested by
Qian, shows that the theorem does not reduce to the known topological stability of the stable foliations.
The last example is due to R. de la Llavé, and exhibits an analytic Anosov map which preserves an
analytic trellis and is conjugate to a linear Anosov map, but the conjugacy does not preserve the invariant
trellis.

The author is indebted to A. Katok for pointing out the examples of R. de la Llavé, to N. Qian for
his explanation of the examples of his Thesis, and to C. Croke for some helpful insight on the geometry
of nilmanifolds. The support of the Mathematical Sciences Research Institute in Berkeley during the
completion of this paper is gratefully acknowledged.

2 Cartan actions

We recall two notions related to the definition of Cartan actions, and a result about their topological
classification.

DEFINITION 2.1 ([12]) A C1-trellis T on X is a collection of 1-dimensional, pairwise-transverse
foliations {Fi|1 ≤ i ≤ n} of X such that

1. The tangential distributions have internal direct sum TF1 ⊕ · · · ⊕ TFn ∼= TX;

2. For each x ∈ X and 1 ≤ i ≤ n, the leaf Li(x) of Fi through x is a C1-immersed submanifold of X;

3. The C1-immersions Li(x) ↪→ X depend uniformly Hölder continuously on the basepoint x, for the
C1-topology on immersions.
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DEFINITION 2.2 An Anosov diffeomorphism f has a one-dimensional strongest stable distribution
if there exists a Df-invariant, 1-dimensional vector subbundle Ess of the stable distribution which
satisfies an exponential dichotomy: that is, there exists

• a Finsler on TX,

• a continuous splitting of the tangent bundle into Df-invariant subbundles,
TX ∼= Ecs ⊕ Ess,

• constants 0 < µ < λ < 1

such that for for all positive integers m,

‖ D(fm)(v) ‖ > λm· ‖ v ‖ ; 0 6= v ∈ Ecs (1)
‖ D(fm)(v) ‖ < µm· ‖ v ‖ ; 0 6= v ∈ Ess.

The strongest stable distribution Ess is necessarily integrable, and the leaves of the resulting foliation
Fss are C1-immersed 1-dimensional submanifolds (cf. Theorem IV.1, [26]).

DEFINITION 2.3 ([12]) Let A be an abelian group with a given set of generators ∆ = {γ1, . . . , γn}.
Then (ϕ,∆) is a Cartan C1-action on the n-manifold X if:

• ϕ:A×X → X a C1-action on X

• each ϕ(γi) is Anosov with a 1-dimensional strongest stable foliation Fssi
• the collection of 1-dimensional foliations {Fss1 , . . . ,Fssn } form a C1-trellis on X.

It is a straightforward consequence of the work of Franks [6, 5] and Newhouse [21] that an Anosov
action of an abelian group on a torus with a common fixed-point is topologically equivalent to an
algebraic action. This result is also true for Anosov actions on infra-nilmanifolds (Proposition 2.18, [12])
using the corresponding work of Manning [19]:

PROPOSITION 2.4 Let (ϕ,∆) be a Cartan C1-action on the closed n-dimensional infra-nilmanifold
X. Then ϕ has a periodic point x0, and there is a positive integer p so that the action of the pth-powers
∆p = {γp1 , . . . , γpm} is topologically conjugate to a standard (algebraic) Cartan action induced by the map
on homotopy, ϕ#: ∆p × π1(X;x0)→ π1(X;x0). 2

There are examples of abelian Anosov actions which do not have a fixed-point [13], so that the
reduction to the subgroup generated by ∆p may be necessary.

3 Topological invariance of the exponents

PROPOSITION 3.1 Let ϕ:A×X → X be a C1-Cartan action on a nilmanifold X with a fixed-point
x0 ∈ X, such that the trellis tangential distributions Ei = TFi are orientable, and the action of Dϕ(γ)
is orientation-preserving on Ei for all γ ∈ A and 1 ≤ i ≤ n. Suppose that H:X → X is a topological
conjugacy between ϕ and a standard affine action ϕ#. Then ϕ# is Cartan.

We first prove the Proposition in the case where X ∼= Tn. The non-toroidal case follows by an
inductive application of this first step.

Recall the definition of the asymptotic homology class Ai ∈ H1(Tn; R) associated to a typical leaf
of F1,i (due to Schwartzman [25] for the case of 1-dimensional foliations; cf. also Plante [22] and Ruelle-
Sullivan [24]). The leaves of F1,i are C1-immersed submanifolds, so the Riemannian metric on TTn

induces a Riemannian metric on each leaf, with corresponding distance function. Chose a sequence of
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connected intervals Jm contained in the leaves of F1,i and let dm denote the length of Jm. Integration
against Jm defines a 1-current [Jm] on the 1-forms Ω1(Tn). Rescale each current [Jm] by its length dm
to obtain a sequence of norm-one currents { 1

dm
[Jm] | m > 0}. If dm tends to infinity with m, there is a

unique weak-* limit of these currents which defines a closed 1-current [J∗] on Tn. Denote its homology
class by Ai.

The definition of Ai depends upon the choice of a Riemannian metric on TTn, but different choices
result in projectively equivalent classes. That is, if A′i is the asymptotic class for a second metric, then
there exists a non-zero constant Ci so that Ai = Ci ·A′i.

The proposition for the toral case follows by estimating the action ϕ∗(γ) on the homology classes
{A1, . . . , An} in terms of the uniform expansion and contraction estimates for Dϕ(γ). Let TTn ∼=
E1 ⊕ · · · ⊕ En be the splitting of TX into line subbundles corresponding to the tangent spaces to the
trellis foliations. The Cartan assumption on ϕ implies that for each 1 ≤ i ≤ n, there exists constants
0 < λi,k and 0 < µi,k for 1 ≤ k ≤ n, a permutation k 7→ πi(k) so that

λi,i < µi,i < λi,πi(2) < · · · < µi,πi(n−1) < λi,πi(n) < µi,πi(n) (2)

and

• the spectrum of Dϕ(γi) restricted to the subbundle Ek is pinched between λi,k and µi,k

• µi,πi(ki) < 1 < λi,πi(ki+1) for some ki
• πi(1) = i for all 1 ≤ i ≤ n; that is, Ei is the maximally contracting direction for ϕ(γi).

Fix a generator γi of A. Choose a sequence of connected intervals Jm, with each Jm contained
in some leaf of Fk and having lengths dm tending to infinity. The weak-* limit of the currents
{ 1
dm

[Jm] | m > 0} represents the homology class Ak, so the homology class of the weak-* limit of
the currents { 1

dm
[ϕ(γi)(Jm)] | m > 0} equals ϕ(γi)∗(Ak). The length of ϕ(γi)(Jm) is estimated by

λi,k · dm ≤ |ϕ(γi)(Jm)| ≤ µi,k · dm (3)

so that ϕ(γi)∗(Ak) = λ∗i,k ·Ak where λi,k ≤ λ∗i,k ≤ µi,k.
We deduce that each Ak is a non-zero eigenvector of ϕ(γi)∗, with Ai spanning its 1-dimensional

eigenspace of maximal contraction. Thus, the standard induced linear action of ϕ(A)∗ on

Tn ∼= H1(Tn; R)/H1(Tn; Z)

is Cartan. This implies that any affine action whose associated linear representation is the standard
action ϕ(A)∗ is Cartan.

Now consider the case where X is a compact nilmanifold. Theorem 2.2 of Franks ([6]; cf. also [20])
implies that the action ϕ admits a factorization onto a hyperbolic toral action ϕ∗

ϕ:A×X1 −→ X1

π ↓ π ↓
ϕ∗:A×Tk1 −→ Tk1

(where we set X = X1 to simplify the subsequent notation.)
A key point of Franks’ construction is that the map π to Tk1 = Rk1/Zk1 is constructed from a

ϕ#-equivariant map π1(X1, x0) → Zk1 , where Zk1 is a quotient of π1(X1, x0) by (a subgroup of finite
index of) the commutator subgroup (cf. Proposition 3.5, [6]; [20].) The dynamics of the Anosov action
are used to ϕ(A)-equivariantly extend the quotient map on fundamental groups to a map, from the
universal cover of X1 to the simply connected nilpotent Lie group N . The abelian Lie group Rk1 is
identified with the maximal abelian quotient of N , and the induced map is π.
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Let x1 ∈ Tk1 be the image of x0, which is a fixed-point for the action of ϕ∗(A). (In fact, we can
choose the map π so that x1 = 0 is the coset of the zero vector.) Then the fiber X2 = π−1(x1) is a
compact nilmanifold, and the induced action of ϕ(A) on X2 is hyperbolic with fixed-point x0. We can
repeat the application of Franks’ result to obtain a chain of fibrations

Xi+1 ⊂ Xi
π→ Tki (4)

which are invariant under the action of ϕ(A), x0 ∈ Xi and with the induced action on Tki hyperbolic.
The total spaces of the fibrations (4) form a chain of compact invariant submanifolds

{x0} ∈ Xm ⊂ Xm−1 ⊂ · · · ⊂ X1 = X (5)

LEMMA 3.2 For each 1 ≤ ` ≤ m the induced action ϕ`:A × Tk` → Tk` on the quotient space
Tk` ∼= X`/X`+1 is Cartan (for an appropriate free abelian subgroup A` ⊂ A.)

Proof. Parallel to the construction of the sequence of fibrations (4), there is a sequence of subbundles

Fm ⊂ Fm−1 ⊂ · · · ⊂ F1 = TX (6)

which are invariant under the action of Dϕ(A), with TXi = Fi|Xi.
Given γi ∈ A with maximally contracting subbundle Ei there is some least index ν(i) so that

Ei ⊂ Fν(i). Then there is a Dϕ(A)-invariant internal direct sum decomposition

Fν(i) = Ei + Gν(i)

where Gν(i) is a sum of invariant subbundles Ek for appropriate k 6= i. In particular, the action of
Dϕ(γi) on Fν(i) admits an exponential dichotomy about µi,i with maximally contracting subbundle Ei.
The invariant subbundle Fν(i)+1 ⊂ Fν(i) is contained in the complementary bundle Gν(i). Therefore,
the induced action of Dϕ(γi) on T (Xi/Xi+1) will also satisfy an exponential dichotomy about µi,i.

Let Bi ∈ H1(Xν(i); R) be the homology class of the asymptotic cycle associated to an integral curve
for the restriction of Ei to the fiber Xν(i). This class is non-zero, for the bundle Ei projects to a 1-
dimensional subbundle of the quotient space Tkν(i) , whose asymptotic cycle is non-zero in homology.
The first homology of the nilmanifold Xν(i) is the maximal abelian quotient of its fundamental group,
hence there is an isomorphism H1(Xν(i); R) ∼= H1(Tkν(i) ; R). Thus Bi is non-zero, for it is the lift of a
non-zero asymptotic class under this isomorphism. By the same method as used to obtain the estimate
(3), the asymptotic class Bi is an eigenvector for ϕ(γi)∗ on H1(Xν(i); R) with eigenvalue λ∗i in the band
λi,i ≤ λ∗i ≤ µi,i. It follows that the projection of Bi to Tkν(i) is an eigenvector for the induced action
ϕν(i)(A)∗ with eigenvalue λ∗i for the action of ϕν(i)(γi)∗.

Now let A` be the abelian group generated by the γi so that ν(i) = `. The above established that the
induced action ϕ`(A`)∗ is diagonalized on H1(Tk` ; R) with a unique maximally contracting eigenspace
associated to each γi ∈ A` as was to be shown. 2

Proposition 3.1 follows from Lemma 3.2 and the next observation:

LEMMA 3.3 The affine action ϕ#:A×X → X is Cartan if the induced action on

m⊕
i=1

H1(Xi/Xi+1; R) (7)

is Cartan.

Proof. The Lie algebra n of the nilpotent Lie group N covering X admits a filtration

{0} ⊂ nm ⊂ · · · ⊂ n2 ⊂ n1 = n
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where ni+1 is the commutator subalgebra of ni. The commutative quotient algebra ai = ni/ni+1 is iden-
tified with the tangent space of the Tki and hence to the homology group H1(Tki ; R) ∼= H1(Xi/Xi+1; R).
Thus, if the induced action of ϕ#(A) on (7) has a diagonalization by eigenspaces corresponding to 1-
dimensional spaces of maximal contraction for some element of A, then the same holds for the quotient
space

am ⊕ · · · ⊕ a1
∼= nm ⊕ nm−1/nm ⊕ · · · ⊕ n1/n2

which implies that the same holds for the original algebra n. 2

COROLLARY 3.4 Let ϕ:A × X → X be a C1-Cartan action on an infra-nilmanifold X. Then for
each 1 ≤ i ≤ n, there is a finite collection {γij} ⊂ A so that each diffeomorphism ϕ(γij) has a well-defined
center-stable foliation Fcsij , and each leaf L of Fi is the intersection of the leaves of the center-stable
foliations {Fcsij } which contain L.

Proof. It suffices to show the result for a finite covering of X, so we can reduce to the case where X
is a nilmanifold, and ϕ is conjugate to a standard affine action ϕ#:A × X → X which is Cartan by
Proposition 3.1. It then suffices to prove the claim for the affine action ϕ#. Fix 1 ≤ i ≤ n, and let j 6= i
be given. Then we must show that there exists γij ∈ A so that ϕ#(γij) has exponent ≤ 1 on Fi and
ϕ#(γij) is expanding on Fj . It is an easy exercise to check that there exists p > 0 and q < 0 so that
γij = γpi γ

q
j has this property. 2

4 Coarse expansion rates of a diffeomorphism

We discuss in this section some basic notions of “coarse geometry” (cf. Gromov [8, 7]), and then define
the “expansion rate of a homeomorphism on a topological curve”.

Let V and W be complete metric spaces with distance functions dV and dW respectively. A set
map h:V → W is a coarse isometry if there exists constants c1, c2, c3 > 0 so that for all x, y ∈ V with
dV (x, y) ≥ c1 we have

c2 · dV (x, y) ≤ dW (h(x), h(y)) ≤ c3 · dV (x, y)

This concept has proven to be extremely valuable for the study of the geometry of complete open
manifolds, especially those that arise in as coverings of a compact manifold, or as the leaf of a foliation of
a compact manifold. The equivalence relation on complete metric spaces generated by coarse isometry
is called coarse equivalence.

A subset N ⊂ V is called a net if there exists constants C1, C2 > 0 so that

• for any pair x 6= y ∈ N , dV (x, y) ≥ C1, and

• for any x ∈ V there exists yx ∈ V with dV (x, yx) < C2

Nets arise in two contexts in dynamics: as the intersection of a leaf of a foliation with a cross-section
(cf. section 2, [14]) and from coverings of compact manifolds. Suppose that V → X is a normal covering
of a compact Riemannian manifold X, with covering group Γ. Let dV be the length metric determined
by the lift of the Riemannian metric to V . Choose a compact fundamental domain K ⊂ V for the left
action of Γ. Choose a point v0 ∈ K in the interior of K and set N = Γ · v0. Then N is a net in V , with
C1 equal to twice the distance from v0 to the boundary of K, and C2 equal to one-half the diameter of
K.

A choice of a generating set {γ1, . . . , γn} for a finitely-generated group Γ determines a word metric
on Γ. The coarse equivalence class of the metric on Γ is independent of the choice of the generating set.
We recall two other basic results:

PROPOSITION 4.1 V → X is a normal covering of a compact Riemannian manifold X, with cov-
ering group Γ and base-point v0 ∈ V . Then the induced map Γ ∼= Γ ·v0 ⊂ V is a coarse isometry between
Γ with the word metric and V with the Riemannian length metric. 2
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COROLLARY 4.2 Let H:X → X be a continuous map which is homotopic to the identity map. For
a normal covering V → X, lift H to a covering map h:V → V . Then h is a coarse equivalence, for any
Riemannian length metric on V determined by a choice of Riemannian metric on X.

Proof. The map H induces the identity map on the covering group Γ, so induces an isometry on the
net in V determined by Γ, and hence a coarse isometry on the ambient space V . 2

The proof of Theorem 1.1 in the non-toral case requires an extension of Corollary 4.2 to the case of
leaves of foliations. We recall the relevant results from [11] where the ideas are developed in more detail.
A C0,2-foliation F of a paracompact manifold X is a continuous partition of X into tamely embedded
C2-submanifolds (the leaves) of constant dimension p and codimension q. We require that these leaves
be locally given as the level sets (plaques) of local coordinate charts. We fix the local defining data:

1. a locally finite covering {Uα | α ∈ A} of X.

2. local coordinate charts φα:Uα → (−1, 1)n, so that each map φα admits an extension to a homeo-
morphism φ̃α: Ũα → (−2, 2)n where Ũα contains the closure of the open set Uα.

3. for each z ∈ (−2, 2)q, the preimage φ̃−1
α ((−2, 2)p×{z}) ⊂ Ũα is the connected component containing

φ̃−1
α ({0} × {z}) of the intersection of the leaf of F through φ−1

α ({0} × {z}) with the set Ũα.

4. for z ∈ Ũα ∩ Ũβ and (x, y) = φ̃α(z), the composition φ̃β ◦ φ̃α:Uz × {y} → (−2, 2)p is C2 in a
neighborhood Uz ⊂ (−2, 2)p of x, uniformly in the transverse parameter y ∈ (−2, 2)q.

The extensibility condition (2) is made to guarantee that the topological structure on the leaves
remains tame out to the boundary of the chart φα. The collection {(Uα, φα) | α ∈ A} is called a regular
foliation atlas for F .

The regularity condition (4) on φ̃β ◦ φ̃α implies that the leaves have a uniform structure as C2-
manifolds, so there is a C2-Riemannian metric on the tangential distribution TF .

Let Lx denote the leaf of F through x ∈ X, and L̃x the universal cover of Lx. If we consider L̃x as
the endpoint homotopy classes of paths emanating from x, then the constant path at x determines a
canonical basepoint x̃ ∈ L̃x. For any pair of points y, y′ ∈ L̃x, define the leafwise distance dx(y, y′) as
the infimum of the lengths of C1-paths in L̃x from y to y′ with respect to the Riemannian metric on TLx
lifted to L̃x. There is also a plaque distance function Dx on L̃x defined in terms of a net induced on L̃x
by a complete transversal to F . The leaf distance function dx is coarse equivalent to Dx by Lemma 2.3,
[11]. The plaque distance function Dx is topologically defined, hence the coarse equivalence class of the
leaf distance function is independent of the smooth structure.

The following result is a special case of Lemma 2.4, [11]:

PROPOSITION 4.3 Let Fi be a C0,2-foliation of a compact manifold Xi for i = 1, 2 and f :X1 → X2

a continuous map which sends the leaves of F1 into the leaves of F2. Then there exist constants c1, c3 > 0
so that for all x ∈ X1 and y, y′ ∈ L̃x with dx (y, y′) ≥ c1, the induced map on universal coverings
f̃x: L̃x → L̃′f(x) satisfies the estimate

df(x)

(
f̃x(y), f̃x(y′)

)
≤ c3 · dx (y, y′) (8)

That is, the lifted maps f̃x admit a uniform estimate on their coarse norm.

Next introduce the expansion rates associated to a homeomorphism φ:X → X. By a curve we
mean a topological embedding σ: R → X; that is, for each a < b the restriction σ|[a, b] → X is a
homeomorphism onto its image. Fix a Riemannian metric on X and give the universal covering V of X
the corresponding Riemannian length metric. Choose a lifting σ̃: R → V , and a lifting φ̃:V → V of φ.
Define the upper expansion rate of φ at σ to be

`[φ](σ) = sup
a<b

{
lim sup
`→∞

1
`

{
log dV

(
φ̃`(σ̃(b)), φ̃`(σ̃(a))

)} }
(9)
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The concept of “expansion rate at σ” codifies properties of how the map φ expands the image of σ
in the ambient length metric on X. We introduce a variation of this notion, which is defined for foliated
maps and leafwise curves, based on the expansion rate relative to the leafwise length metric induced on
the leaves. Suppose that F is a C0,2-foliation of X. A choice of a Riemannian metric on TF induces a
length metric dx on the universal cover L̃x of the leaf through x ∈ X, and the coarse isometry class of
L̃x is independent of the choice of metric on TF . A homeomorphism φ:X → X is preserves F if φ maps
leaves of F to leaves of F . A curve σ: R → X is leafwise if there exists a leaf Lx of F which contains
the image of σ. Given a leafwise curve, choose a lifting σ̃: R → L̃x. Recall that φ̃y: L̃y → L̃φ(y) is the

unique lift of φ to the universal covers of the leaves such that φ̃(ỹ) = φ̃(y). The upper expansion rate
with respect to F of φ at a leafwise curve σ is defined as

`[F , φ](σ) = sup
a<b

{
lim sup
`→∞

1
`

{
log dx

(
φ̃`x(σ̃(b)), φ̃`x(σ̃(a))

)} }
(10)

We make some basic observations about the upper expansion rate. The proof of the first is elementary:

LEMMA 4.4 Let σ0 be curve, and φ:X → X a homeomorphism. Let σ1(t) = σ0(f(t)) where f : R→ R
is a homeomorphism which is a coarse isometry for the standard metric on R. Then

`[φ](σ1) = `[φ](σ0) (11)

The proof of the next estimate follows directly from Proposition 4.1:

LEMMA 4.5 Given homeomorphisms φ1:X1 → X1, φ2:X2 → X2, let H:X1 → X2 be a continuous
map so that φ2 ◦H = H ◦ φ1. Given a curve σ, then H ◦ σ is also a curve and

`[φ2](H ◦ σ) ≤ `[φ1](σ) (12)

Similarly, Proposition 4.3 yields the following estimate:

LEMMA 4.6 Given homeomorphisms φ1:X1 → X1, φ2:X2 → X2, let H:X1 → X2 be a continuous
map so that φ2 ◦ H = H ◦ φ1. Suppose that Fi is a foliation of Xi which is invariant under the
homeomorphism φi, and H maps the leaves of F1 into the leaves of F2. Given a leafwise curve σ for
F1, then H ◦ σ is a leafwise curve for F2 and

`[F2|φ2](H ◦ σ) ≤ `[F1|φ1](σ) (13)

The upper expansion rate for a C1-curve σ always has an estimate above in terms of the norm of
Dφ on the tangent vectors d

dtσ(t):

LEMMA 4.7 Let σ: R→ X be a C1-curve, and let C > 0 be a constant so that

||Dφ(
d

dt
)|| ≤ C · || d

dt
||

for all t ∈ R. Then `[φ](σ) ≤ C. 2

The same estimate holds in the foliated case.
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5 Cartan actions on tori

We first observe that it suffices to prove Theorem 1.1 for the case X is a nilmanifold, the action of ϕ1

fixes a point x0 ∈ X, the trellis foliations Fi are oriented and the action of each γi ∈ ∆ is orientation-
preserving. This follows from a sequence of reductions: Let x1 ∈ X be a periodic point for the action of
an Anosov diffeomorphism ϕ1(γi), which is then periodic for the action of ϕ(A). There is a power p > 0
so that each ϕ1(γpk) fixes x1 for all 1 ≤ k ≤ n. Choose a covering X̃ → X so that X̃ is a nilmanifold,
and the lift of each trellis foliation F1,i is orientable. Choose a point x̃1 which covers x1, and a point
x̃0 which covers H(x1), then lift H to the unique homeomorphism H̃: X̃ → X̃ with H̃(x̃1) = x̃0. The
action of ϕ1(γk) lifts to a unique diffeomorphism which fixes x̃1, and similarly for ϕ0(γk) fixing x̃0. If
we assume that p is an even integer, then ϕ1(γk) is orientation preserving on the lift of each foliation
F1,i. So we obtain an action of a the subgroup Ap ⊂ A of finite-index on the nilmanifold X̃ for which
the hypotheses of the theorem hold. If the lifted trellis foliations on X̃ are preserved by H̃, then the
trellis foliations on X will be preserved by H.

Proposition 3.1 reduces the proof of Theorem 1.1 to the case where the Cartan action ϕ0 is affine:
Let H ′:X → X be the Franks-Manning conjugacy of ϕ0 to the affine action ϕ#, so that the fixed-point
x0 is mapped to the coset 0 ∈ X of the identity element in the nilpotent group N . Then both H ′ ◦H
and (H ′)−1 satisfy the conditions of Theorem 1.1, and if we prove the conclusion for (H ′)−1 and for the
composition H ′ ◦H, then it clearly holds for H.

We assume for the rest of this section that ϕ1:A×Tn → Tn is a Cartan C1-action, where A is an
abelian group generated by the set ∆ = {γ1, . . . , γn}, such that ϕ1 is conjugate by a homeomorphism
H: Tn → Tn to a linear Cartan action (ϕ0,∆) on Tn. We will show that, given 1 ≤ i ≤ n, H conjugates
the foliation F1,i to the linear foliation F0,i. (Actually, the reader can check that the proof given below
requires only that ϕ1(γi) is Anosov with strongest stable foliation F1,i and ϕ0 is a linear Cartan action.)
The more general case for nilmanifolds is considered in the next section.

Let L be a leaf of F1,i such that H(L) is not contained in a leaf of F0,i. We will arrive at a
contradiction from this assumption. Give Tn an affine flat Riemannian metric so that the trellis foliations
{F0,1, . . . ,F0,n} are pairwise orthogonal. Choose a base-point x ∈ L, and introduce a parametrization
σ: R → Tn of L with σ(0) = x and d

dtσ(t) the positively-oriented unit vector field tangent to L. Let
σ̃: R→ Rn be a lift to the universal covering.

Recall that the spectrum of Dϕ1(γk) on Ei is pinched between λk,i and µk,i, and that the rate of
maximal contraction for Dϕ1(γk) on Ek is bounded above by µk,k < λk,i. We deduce by Lemma 4.7:

LEMMA 5.1 `[ϕ1(γ−1
k )](σ) ≤ λ−1

k,i . 2

Lemma 4.5 implies that the same upper estimate is true for the image curve H ◦ σ.

COROLLARY 5.2 `[ϕ0(γ−1
k )](H ◦ σ) ≤ (λk,i)−1. 2

Let {~v1, . . . , ~vn} be positively-oriented unit-vector fields tangent to these foliations. Then introduce
coordinates (r1, . . . , rn) on Rn determined by the lift of the vector fields, with (0, . . . , 0) corresponding
to a the origin in Rn. The leaves of the foliation F0,k lift to the lines {(r1, . . . , rk = t, . . . , rn) | t ∈ R},
so that a curve c: R→ Tn is contained in a leaf of F0,i if and only if for a lift c̃, the coordinate functions
rk(c̃(t)) are constant in t for all k 6= i.

Our assumption is that there exists k 6= i so that the coordinate rk(H̃(σ̃(t))) is not constant. Hence,
there exists points a < b so that rk(H̃(σ̃(a))) 6= rk(H̃(σ̃(b))). Set

~z = H̃(σ̃(a)) = (r1, . . . , rn) ∈ Rn

~z′ = H̃(σ̃(b)) = (r′1, . . . , r
′
n) ∈ Rn
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where rk 6= r′k. The action of ϕ0 on Tn has a canonical lifting to an action on Rn which we will denote
simply by ~v 7→ γ · ~v for γ ∈ A. Then we calculate

dRn(γ−`k · ~z, γ
−`
k · ~z

′) = |(λ∗k,1)−`(r1 − r′1) + · · ·+ (λ∗k,k)−`(rk − r′k) + · · ·+ (λ∗k,n)−`(rn − r′n)|
≥ (λ∗k,k)−`|rk − r′k| − |(λ∗k,1)−`(r1 − r′1) + · · ·+ (λ∗k,n)−`(rn − r′n)| (14)

where the kth term is omitted in this last expression. The term (λ∗k,k)−` is dominant as ` → ∞, so we
deduce that

`[ϕ0(γ−1
k )](H ◦ σ) ≥ (λ∗k,k)−1.

This contradicts the conclusion of Corollary 5.2, so that rk 6= r′k is impossible and the image of H(L)
must lie in a leaf of the strongest stable foliation F0,i. This completes the proof of Theorem 1.1 in the
case where X is finitely covered by Tn.

The above proof that the image of a leaf of the strongest stable foliation lies in a corresponding
strongest stable leaf used three geometric properties: the coarse invariance of the expansion rate of
an appropriate Cartan element acting on a unit speed parametrization of the leaf; the existence of
diffeomorphisms {ϕ0(γ−1

k )} which expand the axes of an orthonormal coordinate system at maximal
rates; and the estimation of the expansion rate of an image curve H ◦ σ via the expansion rate of the
Anosov diffeomorphism ϕ0(γ−1

k ) on the leaves of the strongest unstable foliation F0,k. Implicit in this
last estimation is that the distance in the ambient metric on Rn between two points on a strong stable
leaf is proportional to the path-length of the leaf segment between them. (This is the property that a
linear embedding of R ⊂ Rn is straight in the sense of Gromov; that is, the embedding induces a coarse
isometry between R with the standard metric and R with the induced metric.)

The leaves of the strong stable foliations of an affine Cartan action on an infra-nilmanifold are
defined by left-invariant vector fields, but these curves need not be straight in the ambient length metric
(associated to a left-invariant Riemannian metric on TN .) This forces the introduction of the use of
“straightness relative to a foliation”. Applying the above three steps to the expansion rate relative to
invariant foliations yields the extension of the above results to the case of Cartan actions on nilmanifolds.

For the torus, the “expansion rate at curves” can be formulated in terms of the expansion of the
Cartan action on the Ruelle-Sullivan cohomology classes of the leaves of the trellis, which leads to an
alternative proof of the invariance of the trellis for toral actions. The extension of the cohomology method
to nilmanifolds involves constructing versions of the Ruelle-Sullivan classes in foliated cohomology. The
present proof via methods of “coarse geometry” is more conceptual and direct.

6 Cartan actions on nilmanifolds

Let X = Λ \ N be a compact nilmanifold with an affine Cartan action ϕ#:A × X → X which fixes
the coset 0 of the identity element in N . In this section we prove that if H:X → X is a topological
conjugacy between a C1-Cartan action ϕ1:A×X → X and the affine action ϕ# then H maps the trellis
foliations of ϕ1 into those of ϕ#, completing the proof of Theorem 1.1. We will first recall some basic
topological properties of nilmanifolds ([18]; Chapter 1 [2]; [20]) then show how this structure enables us
to extend the method of the previous section.

Introduce the upper central sequence of connected normal subgroups

{0} ⊂ Nm ⊂ · · · ⊂ N1 = N

where Nξ = [N ,Nξ−1]. This has the property that the quotient Nξ/Nξ+1 is central in N/Nξ+1 for all
1 ≤ ξ ≤ m. There is a corresponding sequence of normal subgroups of Λ

{0} ⊂ Λm ⊂ · · · ⊂ Λ1 = Λ

10



where Λξ ⊂ Nξ, the quotient Λ/Λξ is torsion-free, and acts properly discontinuously on the nilmanifold
N/Nξ, with compact quotient manifold denoted by

Qξ = (Λ/Λξ+1) \ (N/Nξ+1)

Each quotient Nξ/Nξ+1 is isomorphic to Rcξ as a Lie group, and the quotient

(Λξ/Λξ+1) \ (Nξ/Nξ+1) ∼= Tcξ

is a Lie group isomorphic to a torus. Its natural action on Qξ defines a fibration of compact nilmanifolds

Tcξ → Qξ → Qξ−1

Note that Q1
∼= Tc1 and Qm = X.

The above structures are natural with respect to an automorphism of X induced from a Lie group
automorphism of N which preserves the lattice Λ. In particular, the group action ϕ#:A × X → X
induces quotient actions

ϕξ#:A×Qξ → Qξ

for all 1 ≤ ξ ≤ m which commute with the factor map Πξ:X → Qξ.
We need one more observation about the geometry of the spaces Qξ. Let D ⊂ N be a 1-parameter

subgroup. Then the image of D in N/Nξ+1 and Nξ/Nξ+1 together generate an abelian subgroup of
NξD ⊂ N/Nξ+1. Give Qξ the Riemannian metric obtained from the left-invariant Riemannian metric
on N/Nξ+1. Then the leaves of the foliation of Qξ defined by the right action of NξD on Qξ - equipped
with the restricted Riemannian metric from Qξ - are isometric to the standard Euclidean plane. In
particular, the 1-parameter subgroup D ⊂ NξD (and any translate of it by an element of NξD) is a
straight curve in the length metric on NξD.

Our hypotheses imply that the continuous map Hξ = H ◦Πξ:X → Qξ satisfies

ϕξ#(γ) ◦Hξ = Hξ ◦ ϕ1(γ) for all γ ∈ A.

Now suppose that L is a leaf of F1,i. Give X the Riemannian metric obtained from the left-invariant
Riemannian metric on N . Choose a base-point x ∈ L, and introduce a parametrization σ: R→ X of L
with σ(0) = x and d

dtσ(t) the positively-oriented unit vector field tangent to L. Let σ̃: R→ N be a lift
to the universal covering.

For each 1 ≤ k ≤ n the spectrum of Dϕ1(γk) on Ei is pinched between λk,i and µk,i, and the rate of
maximal contraction for Dϕ1(γk) on Ek is bounded above by µk,k. Lemma 4.7 implies:

LEMMA 6.1 `[F1,i|ϕ1(γ−1
k )](σ) ≤ λ−1

k,i . 2

The key to the proof in the nilpotent case is to introduce, for each 1 ≤ ξ ≤ m the foliation NξF0,i

of Qξ with tangential distribution spanned by the tangential distribution to F0,i and the left-invariant
tangent vectors to Nξ. Note that the foliation F0,i lifted to N is spanned by a left-invariant vector field
on N . Apply Lemma 6.1 and Lemma 4.6 to obtain:

LEMMA 6.2 Suppose that Hξ maps the leaves of F1,i to the leaves of NξF0,i for some 1 ≤ ξ ≤ m.
Then

`[NξF0,i|ϕ0(γ−1
k )](H ◦ σ) ≤ (λk,i)−1 2

The proof of Theorem 1.1 is by induction. Note that the methods of section 5 apply directly to the
map H1:X → Q1 = Tc1 to yield a dichotomy:

• either the image of each leaf of F1,i is a point in Q1, or
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• F0,i descends to a non-trivial foliation of Q1 and the image of each leaf of F1,i is contained in a
leaf of F1

0,i.

Next, assume that there is a dichotomy for the map Hξ:X → Qξ:

• either the image of each leaf of F1,i is a point in Qξ, or

• F0,i descends to a non-trivial foliation Fξ0,i of Qξ and the image of each leaf of F1,i is contained in
a leaf of Fξ0,i.

Then we show that the same dichotomy holds for Hξ+1.
The inductive assumption implies that the images of the leaves of F1,i under the map Hξ+1 are

contained in the leaves of the foliation Nξ+1F0,i. Suppose that there is a leaf L of F1,i whose image
under Hξ+1 is not a point, and is not contained in a leaf of Fξ+1

0,i . We obtain a contradiction from this
assumption. The hypotheses of Lemma 6.2 are satisfied by Hξ+1, so for each k 6= i there is an estimate

`[Nξ+1F0,i|ϕ0(γ−1
k )](H ◦ σ) ≤ (λk,i)−1 (15)

Let L denote the leaf of Nξ+1F0,i which contains the image of the curve Hξ+1 ◦ σ. The tangent
space to L is spanned by commuting left-invariant vector fields on N/Nξ+2 - the tangents to Fξ+1

0,i and
the tangents to Nξ+1/Nξ+2. Moreover, these vector fields are mapped to multiples of themselves by
the induced map ϕξ+1

# (A) on Qξ+1. Introduce orthogonal coordinates on L so that the coordinate axis
correspond to the leaves of the foliations Fξ+1

0,k through Hξ+1(σ(0)). The assumption on L implies that
there is some k 6= i so that the kth-coordinate in L of Hξ+1 ◦ σ is not constant. We can then repeat the
calculation of equation (14) to obtain that

`[Nξ+1F0,i|ϕ0(γ−1
k )](H ◦ σ) ≥ (µk,k)−1 > (λk,i)−1

which is a contradiction. This establishes the inductive step.

The proof of Theorem 1.1 is completed by noting first that for ξ = m, Qξ = X so that Fm0,i = F0,i.
The dichotomy asserts in this case that the image of each leaf of F1,i is contained in a leaf of F0,i.
The general infra-nilmanifold case is reduced to the special case where ϕ0 is algebraic exactly as in the
introduction to section 5.

7 Some examples

The first example of an Anosov diffeomorphism on a non-toroidal nilmanifold was given by Smale in
his celebrated paper [27], and the construction was extended by Auslander and Scheuneman [3]. Dani
[4] gave a general construction of Anosov diffeomorphisms on nil-manifolds, based on arithmetic actions
on free k-step nilpotent groups. The construction of Cartan actions is more delicate, for this requires
that there exist a sufficiently large collection of commuting Anosov elements. Section 7 of [12] gives
an extensive list of examples of Cartan actions on tori, while the thesis of N. Qian [23] gives a similar
extensive list of examples of Cartan actions on nilmanifolds. The first example is from his list:

EXAMPLE 7.1 (Theorem 6.1.7 [23]) Let Γ ⊂ SL(n,Z) be a subgroup of finite-index. Then for
n = 3, or for n ≥ 5, the induced action of Γ on a compact quotient X of the free two-step nilpotent Lie
group N(n, 2) is Cartan. That is, there is a free abelian subgroup A ⊂ Γ so that the restriction of the
standard action on X to A is Cartan.
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The second example is elementary, but illustrates an observation of Qian:

EXAMPLE 7.2 Let A1, . . . , Ad ∈ SL(2,Z) be a collection of hyperbolic matrices. Then the joint action
of Z2d on T2d ∼= T2 × · · · ×T2 defined by

(n1, n2, . . . , n2d−1, n2d) · (~v1, . . . , ~vd) = (A(n1−n2)
1 · ~v1, . . . , A

(n2d−1−n2d)
d · ~vd)

is Cartan.

The point of this example is that there are many elements in Z2d whose action on T2d are not Anosov,
as they have neutral directions. Yet the action as a whole is Cartan, which can be seen by considering the
eigen-spectrum of elements {A`11 , . . . , A

`d
d | `1 6= 0, . . . , `d 6= 0}.

Qian’s observation is that this phenomenon can also happen for Cartan subactions of irreducible lat-
tices. The simplest example is for an arithmetic lattice Γ ⊂ O(2, 2)Z in the non-compact form O(2, 2) ⊂
SL(4,R) whose maximal Cartan subgroup A ⊂ Γ has real-rank two. The action of the Cartan subgroup
A on T4 has the same dynamical properties as the product action above for d = 2.

The third example is due to Raphael de la Llavé:

EXAMPLE 7.3 (Section 6 [16]) Let A ∈ SL(2,Z) and B ∈ SL(n,Z) be hyperbolic matrices. Let A
have eigenvalues µ, µ−1. Assume that B is a regular semi-simple element; that is, all of its eigenvalues
are positive and distinct, and have modulus not equal to 1. Choose an expanding eigenvector 0 6= ~eu ∈ Rn

for B corresponding to an eigenvalue λ pinched by the estimate µ > λ > 1. Form the 1-parameter family
of actions of Z on Tn+2 ∼= T2 ×Tn, with generator

φt((x, y), ~v) = (A(x, y), B~v + t · cos(x)~eu) (16)

• Then φ0 preserves a linear trellis on Tn+2

• the Anosov diffeomorphism φt preserves a real analytic trellis on Tn+2

• for all t sufficiently small, φt is Anosov and topologically conjugate to φ0,
• the trellis foliations of φt are not conjugated to the trellis foliations of φ0.

The above examples are now part of folklore, due to their simplicity and many remarkable phenomenon
they exhibit: It is clear that the perturbation given by (16) preserves the linear exponents of the action
at periodic points, as the perturbation consists of “sliding the along an unstable foliation of B” with
dependence on the coordinates in the first factor. So these actions give 1-parameter families of Anosov
diffeomorphisms with constant exponents.

There is a unique topological conjugacy ht: Tn+2 → Tn+2 between φt and φ0 which is isotopic to
the identity. De la Llavé shows that ht is of the form

ht((x, y), ~v) = ((x, y), ~v + ψt(x) · ~eu)

for appropriate choice of ψt, and then explicitly calculates the regularity of ψt, showing that it is Cr for
r < logµ/ log λ. In particular, ht is never real analytic for t 6= 0.

If the trellis foliations for φt are preserved by a topological conjugacy ht, then Theorem 5.1 of [12]
implies that the conjugacy is analytic, based on the regularity theorems of [17, 15, 16]. Thus, ht does
not map the trellis associated to φt for t 6= 0 to the linear trellis for φ0.

The strongest stable and unstable foliations of the Anosov diffeomorphism in Example 7.3 are tangent
to the factor T2 in the decomposition Tn+2 ∼= T2 × Tn, and this first factor is explicitly seen to be
preserved by the conjugacy ht. Thus, the strongest stable foliations are also preserved by ht. The
following problem remains open:

PROBLEM 7.4 Show that a topological conjugacy H between Anosov C1-diffeomorphisms ϕ0 and ϕ1

on an infra-nilmanifold X with 1-dimensional strongest stable foliations, preserves these foliations. Does
the same hold for the flag of the foliations defined by the Lyapunov band decomposition of ϕ0 and ϕ1?
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