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Transverse Euler Classes of Foliations on
Non-atomic Foliation Cycles

Steven HURDER & Yoshihiko MITSUMATSU

1 Introduction

The main purpose of this article is to give a geometric proof of the
following theorem.
Theorem 1.1 ([4], Theorem 1.10) The average transverse euler class
of an almost compact diffuse foliation cycle vanishes.

In [4] this was deduced from the following vanishing theorem.

Theorem 1.2 ([3], Proposition 2, Corollary 3) If a foliation has
two foliation cycles and at least one of them is non-atomic, then their ho-
mological intersection vanishes. Especially, the self-intersections of non-
atomic foliation cycles vanish.

The geometric proof of Theorem 1.1 we give is of independent interest, for
it combines a technique of “blowing-up” along foliation cycles with the
Hirsch and Thurston vanishing theorem for the Euler class. This was the
original method used to discover Theorem 1.1, and has possible further
applications. For example, we apply the original idea of Theorem 1.1 to
give an alternative proof of Theorem 1.2.

Let F be a codimension q C2-foliation on a closed smooth n-manifold
M (n = p + q) whose tangent bundle τF and the normal bundle νF are
both oriented of dimensions p and q respectively. It is well known (see
[8] or [10]) that for orientable foliations, a transverse invariant measure
determines a foliation cycle, Cµ, and vice versa. A measure is said to be
non-atomic if it assigns measure zero to every point. The existence of a
non-atomic invariant measure for a dynamical system implies a certain
regularity of the orbits in its support.
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A similar principle holds for foliations: a transverse measure is non-
atomic if it assigns measure zero to every compact leaf. The existence of
an invariant, non-atomic transverse measure µ reflects on the geometry of
leaves in its support and their asymptotic distribution in the transversal
space. It also has consequences for the cohomological invariants associated
to the foliation, restricted to the support of the measure. In this article,
as stated above, we investigate the the cap products E(νF , µ) of the nor-
mal bundle with foliation cycles, which are called average transverse euler
classes. For simplicity, we only deal with non-negative measures. Every
(co-)homology has the coefficients in the real numbers R if not specified.

Remarks 1) The Pontrjagin classes of the normal bundle νF are trivial
on the foliation cycles, because of the Chern-Weil theory and the exis-
tence of a Bott connection (see [1]).
2) The only known examples of nontrivial cap product E(νF , µ) are given
by compact leaves, i.e., transverse atomic measures (see [4] or [5]). There-
fore it is conjectured that:

Conjecture If a transverse invariant measure µ is non-atomic, the av-
erage euler class E(νF , µ) vanishes.

Theorem 1.1 gives a partial answer to this conjecture. A foliation cycle
Cµ is said to be almost compact if it satisfies the following conditions on
its support.

• There exists a p-dimensional closed submanifold K whose tubular
neighborhood N is identified with its normal Dq-bundle, and the
support supp (µ) is contained in the interior of N .

• Each fiber disk Dq of N → K is transverse to F .

Such a measure µ is said to be diffuse if the intersection of the support
of µ with a typical fiber of N has cardinality #{Dq ∩ supp (µ)} > 1.
The holonomy invariance of µ allows us to normalize µ so that µ(Dq)=1
for all fibers. Then the corresponding foliation cycle Cµ represents the
fundamental class [K] of K in the homology. Therefore, Theorem 1.1 is
equivalent to the next result which can be considered as a disk bundle
version of Hirsch and Thurston’s vanishing theorem of the euler class (see
3.1, 3.3, and [2]).

Theorem 1.3 Let F be a codimension q foliation on a Dq-bundle ξ which
is transverse to each fibre of ξ and µ be a transverse invariant measure
for F whose support is contained in the interior of the total space. If
#{Dq ∩ supp (µ)} > 1, then e(ξ) = 0.
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2 Sullivan’s Theorem

In this section we review the following theorem of Sullivan, whose idea
is similar to that of the reduction of the proof of Theorem 1.1 to the
non-atomic case.

Theorem 2.1 (Sullivan, [9]) Let ζ be an Rq-vector bundle whose struc-
tural group reduces to SL(q,Z). Then its euler class e(ζ) vanishes.

To prove this theorem, use the reduction of the holonomy group to form
an associated T q-bundle ρ. Each fibre is identified with Rq/Zq up to the
action of SL(q,Z). Then, this bundle has a multisection S of multiplicity
2q which corresponds to half-integer lattice points. It is obvious that S
splits into the original 0-section S0 and the remainder S1. The important
points are that

1) In rational homology, [S1] = (2q − 1)[S0].

2) The homological self-intersection [S0]2 vanishes, because S0 and S1

are actually disjoint, so that we have [S0]2 = (2q−1)−1[S0]·[S1] = 0.

In this case, 1) follows from that the covering map D : ρ→ ρ of degree
2q given by the fiberwise multiplication by 2 induces an isomorphism on
Q-homology and that ρ∗(S) = 2qS0.

Arguments similar to 1) and 2) apply to prove the following results
(see also [7]).

Proposition 2.2 If an oriented 2k-sphere bundle η has a multisection S
of degree >1, then 〈e(τη), [S]〉 = 0, where τη denotes the tangent bundle
along the fibres.

Proposition 2.3 If an oriented 2k-disk bundle ξ has a multisection C of
degree >1, we have e(ξ) = 0 over Q.

The Reduction Process: In general, a transverse invariant measure µ
for a foliation F splits into the non-atomic part µc and the atomic part µa

(i.e., µ=µc+µa), either of which is again an invariant transverse measure
for F . In the case of Theorem 1.3, both Cµa and Cµc define the same
homology class as Cµ up to a scalar multiple, if they are nontrivial. In
the case of µa = 0, we prove the vanishing E(νF , µc) = 0 (which implies
e(ξ)=0) in Section 4. In the case that µc=0 and µa 6=0, the finiteness of
µa implies that supp (µa) contains a multisection. Then, Proposition 2.3
implies e(ξ) = 0.
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3 The Hirsch-Thurston Theorem, and Blowing-
Up of Foliated Manifolds

In this section, we review two fundamental ideas: the Hirsch-Thurston
Theorem in 3.1, and the blowing-up of foliated manifolds in 3.2. The
proofs of Theorem 1.1 and Theorem 1.2 do not strictly require the Hirsch-
Thurston theorem, but we recall it as it gives a basic idea for the key
strategy (cf. [4]).

3.1 The Hirsch-Thurston Theorem

Let η be a foliated bundle p : E→B which has a compactly supported,
invariant transverse measure µ and corresponding foliation cycle Cµ.

Theorem 3.1 ([2]) The homomorphism p∗ : H∗(E; R) → H∗(B; R)
surjects. Consequently, in the case that η is a foliated sphere bundle,
η has a trivial euler class.

If η has a section s, the theorem is easy, because ‘s◦p = idX ’ implies s∗
and s∗ are (co-)homological transfer maps. In general, foliation cycles
give rise to transfer maps. Here, we assume that the fibre F of η has
µ-measure 1. Then the cohomological transfer map σ is constructed on
the de Rham complexes as

σ(ω)b =
∫
Fb3y

(p∗ y ◦ l∗y)(ω) dµ(y) for ω∈Ω(E) and b∈B

where ly denotes the restriction to the leaf through a point y ∈Fb. The
homological transfer ρ is defined to be the dual to σ.

For the case of a sphere bundle, the Euler class can be defined as the
transgression of the fiber fundamental class. Hence the Euler class lifted
to H∗(E; R) is canonically trivial, and p∗ : H∗(B; R)→ H∗(E; R) injects
implies the Euler class is zero in H∗(B; R).

Remarks 1) As is seen from the above, the existence of some geometric
objects which give rise to a transfer is the essential point, such as a multi-
section of finite degree, a transverse foliation with an invariant measure,
or measured lamination. Such situations may happen even if the bundle
does not admit a flat structure.
2) If we use the singular homology theory with coefficients in compact
support Radon measures (see [6]), we obtain a homological transfer in
more direct way.
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3.2 Blowing-up

The concept of the blowing-up of a codimension q Cr-foliated manifold
(M,F) along a closed saturated Cr-submanifold X was introduced in [4].
We use the blowing-up procedure that replaces the submanifold X with
its normal sphere bundle, rather than with its normal projective space
bundle, to obtain:

Proposition 3.2 ([4], Section 6) There exist a codimension q Cr−1-
foliated manifold (M̃, F̃), a closed saturated Cr−1-submanifold SX ⊂ M̃ ,
and a Cr−1-blowing-down map β : M̃ →M satisfying:

1) β is a leafwise Cr−1-diffeomorphism.
2) β(SX) =X and β|SX : SX→X is the normal sphere bundle projec-

tion.
3) β|M̃\SX : M̃ \SX →M is a foliation preserving Cr-diffeomorphism.

If X is a null set of a transverse invariant measure µ of F , µ gives rise to
a transverse invariant measure µ̃ of F̃ , with respect to which SX is also
a null set.

Proposition 3.3 The blowing-down map β pushes the corresponding
foliation cycle Cµ̃ down to Cµ, i.e., β#Cµ̃ = Cµ.

3.3 Vanishing of euler class

As an application of the above two propositions, we obtain the following
vanishing criterion for the average Euler class:

Proposition 3.4 Let F be a (not necessarily complete) codimension q
foliation on the total space E of an oriented Ds-bundle p :E→B, for s≤q,
which admits a transverse invariant measure µ whose support supp (µ) is
contained in the interior of E. If there exists a cross section X which
is a saturated submanifold and a null set with respect to µ, then the cap
product e(ξ) ∩ p∗([Cµ]) = 0, or equivalently p∗(e(ζ)) ∩ [Cµ] vanishes.

The proof is now easy. Use the blowing-up procedure along X to obtain
β : (Ẽ, F̃ , Cµ̃)→ (E,F , Cµ). Then, p◦β : Ẽ → B is an associated annulus
bundle, which has the same homotopy type as the sphere a bundle of E.
Hence, the Euler class of the base is the transgression of the fiber class
of Ẽ, and the Euler class lifts to a canonically trivial class in H∗(Ẽ; R).
Therefore,

0 = (p ◦ β)∗((p ◦ β)∗e(p) ∩ [Cµ̃])
= p∗(p∗(e(p)) ∩ [Cµ]) = e(p) ∩ p∗([Cµ])

is obtained. Note that the blowing-up procedure compactifies the com-
plement of the cross-section X, so that we can form the current Cµ from
the measure µ.
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4 Proof of Theorem 1.1

We now give a geometric proof of Theorem 1.1 using the methods re-
viewed in previous sections. We follow the notation and the assumption
of Theorem 1.1. As stated before, we may assume that the transverse
invariant measure µ is non-atomic. We make the following choices:

• a Riemannian metric on M

• a closed tubular disk bundle neighborhood N of K

• a smaller closed tubular neighborhood U of K such that
supp (µ)⊂U ⊂ N

satisfying conditions to be described next (see the figure below). Let
EN be the unit disk subbundle of the restriction νF|N of νF to N and
EU ⊂ νF|U be the unit disk subbundle of the restriction to U . We assume
that the exponential map ε :EN→M is a submersion, ε|L :EN |L→M is a
diffeomorphism for each leaf L of F|N , and the induced foliation Fε=ε−1F
on EN is transverse to the bundle fibration π :EN→N . Furthermore we
may assume that the inverse image ε−1(m) of each point m∈U intersects
with π−1(U) within the interior of ε−1(m).
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Then, we have two foliations Fε=ε−1F and Fπ=π−1F on EN , which
also have the induced transverse invariant measures µε and µπ. Observe
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that both foliations are not complete, i.e., the boundary ∂H1 is neither
tangent to Fε nor to Fπ. The following two lemmas are easy consequences
of our construction.

Lemma 4.1 There exists a codimension 2q foliation H=Fε∩Fπ on EN
which admits a transverse invariant measure λ=µε×µπ. The foliation H
may fail to be complete, but H|supp (λ) is complete in the leaf direction as
supp (λ) ⊂ EN and supp (λ) ⊂ EU .

Actually, we can consider that supp (λ) is contained in the fibre product
ε−1U⊕π−1U over K. Therefore, for each m ∈ K, we have the product
coordinate as Dq

m×Dq
m around π−1Dq

m∩supp (λ), where Dq
m is the fibre

over m of the normal bundle projection : U → K.

Lemma 4.2 1) With respect to the above product coordinate, the 0-section
S0 is the diagonal subset ∆.
2) The 0-section S0 is a codimension q closed submanifold of (EU ,H).
3) The corresponding foliation cycle Cλ to λ is pushed down to Cµ as a
current, i.e., π#(Cλ)=Cµ.

This lemma and a general lemma on measures below imply the next propo-
sition, which is the key observation.

Proposition 4.3 The 0-section S0 has measure zero with respect to the
transverse measure λ.

Lemma 4.4 If a Borel measurable space Y has two probability measures
µ1 and µ2 and at least one of them has no atoms, then the diagonal subset
∆⊂Y×Y has measure zero with respect to the product measure λ=µ1×µ2.
Especially, ∆ is a null set with respect to λ=µ×µ if µ is non-atomic.

Now, using the observation in 3.3, the proof of Theorem 1.1 is com-
pleted as follows. Lemma 4.2 -3) implies that

E(νF , µ) = e(νF) ∩ [Cµ] = π∗ (π∗e (νF) ∩ [Cλ]) .

On the other hand, Proposition 3.4 and Proposition 4.3 give us

π∗e (νF) ∩ [Cλ] = 0

to complete the proof.

Remark In [4], the proof of Theorem 1.1, in the notation of this section,
was obtained from Theorem 1.2 as follows:

E(νF , µ) = e(νF) ∩ [Cµ] = e(νF) ∩ [K] = [K] · [K] = [Cµ] · [Cµ] = 0 .
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5 Vanishing of Intersections

As promised in the introduction, we give in this section an alternative
proof of Theorem 1.2 using the ideas of the previous sections. Let µ1 and
µ2 be transverse invariant measures of (M,F) and assume that one of
them has no atoms. To make the description concise, we recall some of
the constructions in [7].

First, fix a Riemannian metric on M and let E be the disk bundle of
radius 1 of νF . After rescaling, we may assume that the restriction of the
exponential map ε to each leaf L

ε|L : E|L −→M

is an immersion. There exists a closed q-form Φ supported on the interior
of E, so called the Thom form of E.

Lemma 5.1 ([3, 6, 7]) The closed q-form on M

Φµ =
∫
M/F3L

(ε|L)∗Φ|E|Ldµ(L) (1)

represents the Poincaré dual cohomology class to the foliation cycle [Cµ]
in Hq(M) and thus we obtain

[Cµ1 ] · [Cµ2 ] = Φµ1 ∩ [Cµ2 ] ∈ Hp−q(M) .

Remarks 1) In [3, 6, 7], the vanishing of the cohomology class [Φµ]2,
which is the Poincaré dual to the self-intersection [Cµ] · [Cµ], is discussed.
2) The integral formula (1) is justified by using a partition-of-unity to
reduce the question to a local calculation (see [10, 3]).
3) Let M/F denote the “local transverse spaces” to F and µ the quotient
measure there. The foliation cycle Cµ associated to a transverse invariant
measure µ is described in this notation as

Cµ =
∫
M/F3L

(∫
L

)
dµ(L)

where “
∫
L” denotes the current defined by the integration on L. We use

this kind of expression below.

Now we make a construction which is similar to that of the previous
section. Take two foliations Fε = ε−1F and Fπ = π−1F on E. Here
again, they are transverse to each other and define the third foliation
H = Fε ∩ Fπ. Two transverse invariant measures µ1 and µ2 are also
pulled back to (E,H) by ε and π as µε = µ1ε and µπ = µ2π, and they
define the transverse invariant measure λ = µε×µπ of H.
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In this case, not only is H incomplete, but so is λ. Thus Cµ fails to be a
closed current. However, the 0-section X is a closed saturated submani-
fold and a null set with respect to λ.

Lemma 5.2 The foliation cycle current Cλ is relatively closed in (E, ∂E)
and thus defines a homology class in Hp(E, ∂E).

The following observation is crucial.

Proposition 5.3 As a current,

Φµ2 ∩ Cµ1 = ε#(Φ ∩ Cλ)

holds. The right hand side defines an absolute homology class by the cap
product pairing

∩ : Hq(E, ∂E)⊗Hp(E, ∂E)→ Hp−q(E) .

Proof of Proposition 5.3 Locally, leaves of H are parametrized by the
leaves of Fε and those of Fπ, and they agree with F as a local family of
leaves. Then, let Lαβ denote the leaf ε−1(Lα) ∩ π−1(Lβ) of H, where Lα
and Lβ are nearby leaves of F . Then the following computation shows
Proposition 5.3. For any (p− q)-form ω on M ,

〈ω, (Φµ2 ∩ Cµ1)〉 = 〈ω ∧ Φµ2 , Cµ1〉

=

〈∫
M/F3Lβ

ω ∧ (ε|Lβ )∗Φ|E|Lβ dµ2(Lβ),
∫
M/F3Lα

(∫
Lα

)
dµ1(Lα)

〉

=
∫
M/F3Lβ

∫
M/F3Lα

{∫
Lα
ω ∧ (ε|Lβ )∗Φ|E|Lβ

}
dµ1(Lα)dµ2(Lβ)
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=
∫

(M/F)23(Lα,Lβ)

{∫
(ε|Lβ )−1(Lα)

(ε|Lβ )∗ω ∧ Φ

}
dµ1×dµ2(Lα, Lβ)

=
∫
H3Lαβ

{∫
Lαβ

ε∗ω ∧ Φ

}
dλ(Lαβ)

= 〈ε∗ω,Φ ∩ Cλ〉 = 〈ω, ε#(Φ ∩ Cλ)〉 .

Then, the proof of Theorem 1.2 goes along a similar way. Apply
the blowing-up procedure to (E,H, Cλ) along the 0-section X to obtain
(Ẽ, H̃, Cλ̃) and the new boundary SX. The old boundary is again denoted
by ∂E. The blowing-down map β induces a homology homomorphism
β∗ : H∗(Ẽ, ∂E) → H∗(E, ∂E) and pushes the relative cycle Cλ̃ down to
Cλ. As ∂E is a deformation retract of Ẽ, it is clear that

H∗(Ẽ, ∂E) = H∗(Ẽ, ∂E) = 0 ,

and of course [Cλ] = [Cλ̃] = 0.
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