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ABSTRACT

We give a survey with many details of some of the recent work relating the coarse geometry
of the leaves of foliations with their dynamics, index theory and spectral theory.
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1 Introduction

Coarse geometry is an approach for exploring the “structure at infinity” of open
manifolds. Compact manifolds look like points in coarse geometry, and continuity is
replaced by global Lipshitz estimates on maps. It is remarkable that any geometry
can survive in such an environment, but it is now clear that this is precisely the
framework for developing a deeper understanding of the geometry of leaves of
foliations, of foliation dynamics, and the K-theory invariants of foliated spaces.

There has been a tremendous amount of research activity in geometry, group
theory, dynamics and foliation theory which can be categorized as part of coarse
geometry. This survey cannot do justice to so many areas, hence will primarily fo-
cus on the rôle of coarse geometry in foliation theory. Fortunately, there are many
good surveys and sources available for the interested reader wishing to pursue a
balanced coarse diet: Gromov has written a survey exposition of coarse properties
of groups, which has appeared as a book [47]; Roe’s monograph on coarse coho-
mology [88] is an excellent introduction to the ideas of coarse index theory; there
are numerous survey texts now on the coarse geometry of hyperbolic groups – for
example the text by Ghys and de la Harpe [45]; and Block and Weinberger are
preparing a survey of coarse geometry and homology theories [11] (cf. also [5, 10]).
In addition, there are very close ties between the ideas of coarse geometry and the
methods of controlled surgery theory – the references to [20] give the background
on this topic.

The contents of these note expand on three lectures given by the author at the
International Symposium on the Geometric Theory of Foliations:

I – Beyond Volume Growth
which discussed the ideas of coarse geometry, introduced the entropy of metric
spaces and applied these ideas to recurrence properties of the leaves of foliations
(§§2,3 and 4).

II – Dimensions of Ends
which discussed coarse cohomology, coronas and coarse entropy (§§5,6 and 7).

III – Coarse Families Produce Fine Invariants
which discussed the construction of foliation fundamental classes, and their ap-
plication to spectral geometry and the proof of the Foliation Novikov Conjecture
(§§8,9 and 10).

From the author’s perspective, these notes omit two important topics:

IV – Coarse geometry of secondary characteristic classes

V – Rigidity of group actions and foliations
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The omission is due primarily to questions of maintaining our focus in these
notes, as well as for reasons of length, but definitely not due to lack of interest or
importance! The interested reader can consult the papers [18, 54, 62, 73, 61, 43]
for the former topic, and the papers [101, 104, 105, 106, 64, 68, 72, 77] for the
latter topic.

The goal of the notes in any case is to expose some of the ideas of coarse
geometry, and suggest some of the syntheses now emerging as coarse methods are
applied in a wide variety of areas, including problems in the geometric theory of
foliations.

Lecture I - Beyond Volume Growth

2 Coarse geometry of leaves

In this section we introduce the basic constructions and definitions in the coarse
geometry of foliations.

2.1 Metric properties of the holonomy groupoid

A coarse metric on a set X is a symmetric pairing 〈·, ·〉 : X×X → [0,∞) satisfying
the triangle inequality

〈x, z〉 ≤ 〈x, y〉 + 〈y, z〉 for all x, y, z ∈ X

A map f : X1 → X2 is said to be quasi-isometric with respect to coarse metrics
〈·, ·〉i if there exists constants d1, d2, d3 > 0 so that for all y, y′ ∈ X1

d1 · (〈y, y′〉1 − d3) ≤ 〈f(y), f(y′)〉2 ≤ d2 · (〈y, y′〉1 + d3) (1)

A subset N ⊂ X is ε-dense for ε > 0 if for each x ∈ X there exists n(x) ∈ N
so that 〈x, n(x)〉 ≤ ε. An ε-net is a collection of points N = {xα | α ∈ A} ⊂ X so
that N is ε-dense, and there exists c > 1 so that distinct points of N are at least
distance ε/c apart. The net N inherits a coarse metric from X.

DEFINITION 2.1 A map f : X1 → X2 is said to be a coarse isometry with
respect to coarse metrics 〈·, ·〉i if f is quasi-isometric and the image f(X1) is ε-
dense in X2 for some ε > 0.
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Coarse geometry is the study of geometric properties of a complete metric space
which are invariant under coarse isometries. The fundamental property of coarse
geometry is that the inclusion of a net, N ⊂ X, is a coarse isometry. The usual
example to illustrate this phenomenon is that for a connected Lie group G, a
cocompact lattice Γ ⊂ G with the word metric is coarsely isometric to G with the
left invariant Riemannian path-length metric: the integers Z are coarsely isometric
to the real line R. Thus, coarse geometry detects only global metric properties of
a space, and ignores local properties. For further discussions of coarse geometry
for metric spaces, see Gromov [46, 47] or Roe [88].

2.2 Topological foliations

A topological foliation F of a paracompact manifold Mm is a continuous partition
of M into tamely embedded submanifolds (the leaves) of constant dimension p
and codimension q. We require that these leaves be locally given as the level sets
(plaques) of local coordinate charts. We specify this local defining data by fixing:

1. a uniformly locally-finite covering {Uα | α ∈ A} of M ; that is, there exists a
number m(A) > 0 so that for any α ∈ A the set {β ∈ A | Uα ∩ Uβ 	= ∅} has
cardinality at most m(A)

2. local coordinate charts φα : Uα → (−1, 1)m, so that each map φα admits an
extension to a homeomorphism φ̃α : Ũα → (−2, 2)m where Ũα contains the
closure of the open set Uα

3. for each z ∈ (−2, 2)q, the preimage φ̃−1
α ((−2, 2)p×{z}) ⊂ Ũα is the connected

component containing φ̃−1
α ({0} × {z}) of the intersection of the leaf of F

through φ−1
α ({0} × {z}) with the set Ũα.

The extensibility condition in (2) is made to guarantee that the topological struc-
ture on the leaves remains tame out to the boundary of the chart φα. The collection
{(Uα, φα) | α ∈ A} is called a regular foliation atlas for F .

The inverse images

Pα(z) = φ−1
α ((−1, 1)p × {z}) ⊂ Uα

are topological discs contained in the leaves of F , called the plaques associated to
this atlas. One thinks of the plaques as “tiling stones” which cover the leaves in a
regular fashion.

We will always insist that our foliation atlas also be good:
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4. An intersection of plaques Pα1(z1) ∩ · · · ∩ Pαd
(zd) is either empty, or a con-

nected set.

This condition can be guaranteed by requiring that each open set Uα be convex.

The plaques are indexed by the complete transversal

T =
⋃

α∈A
Tα

associated to the given covering, where Tα = (−1, 1)q. The charts φα define tame
embeddings

tα = φ−1
α ({0} × ·) : Tα → Uα ⊂ M

We will implicitly identify the set T with its image in M under the maps tα, though
it may be that the union of these maps is only finite-to-one.

The foliation F is said to be Cr if the foliation charts {φα | α ∈ A} can be
chosen to be Cr-diffeomorphisms.

2.3 The holonomy groupoid

A pair of indices α and β is admissible if Uα ∩ Uβ 	= ∅. For each admissible pair
α, β define

Tαβ = {z ∈ Tα = (−1, 1)m such that Pa(z) ∩ Uβ 	= ∅}.

Then there is a well-defined transition function γαβ: Tαβ → Tβα, which for x ∈ Tαβ

is given by
γαβ(x) = φβ

(
Sβ(φ−1

α (Dm × {x}) ∩ Uβ) ∩ Tβ

)
∈ Tβα

The continuity of the charts φα implies that each γαβ is continuous; in fact, one
can see that γαβ is a local homeomorphism from Tαβ onto Tβα.

A leafwise path γ is a continuous map γ : [0, 1] → M whose image is contained
in a single leaf of F . Suppose that a leafwise path γ has initial point γ(0) = tα(z0)
and final point γ(1) = tβ(z1), then γ determines a local holonomy map hγ by
composing the local holonomy maps γαβ along the plaques which γ intersects. hγ

is a local homeomorphism from a neighborhood of z0 to a neighborhood of z1. More
generally, if the initial point γ(0) lies in the plaque Pα(z0) and γ(1) lies in the plaque
Pβ(z1), then γ again defines a local homeomorphism hγ. Note that the holonomy
of a concatenation of two paths is the composition of their holonomy maps. We
say that two leafwise paths γ1 and γ2 with γ1(0) = γ2(0) and γ1(1) = γ2(1) have
the same holonomy if hγ1 and hγ2 agree on a common open set about z0.
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Define an equivalence relation on pointed leafwise paths by specifying that
γ1 ∼h γ2 if γ1 and γ2 have the same holonomy. The holonomy groupoid GF is the
set of ∼h equivalence classes of pointed leafwise paths for F , equipped with the
topology whose basic sets are generated by “neighborhoods of leafwise paths” (cf.
section 2, [98]). The manifold M embeds into GF by associating to x ∈ M the
constant path ∗x at x.

The fundamental groupoid ΠF of F is the set of endpoint-fixed homotopy equiv-
alence classes of leafwise paths for F , equipped with the topology whose basic
sets are generated by “neighborhoods of leafwise paths”. Two paths which are
endpoint-fixed homotopy equivalent have the same holonomy, so there is a natural
map of groupoids ΠF → GF .

There are natural continuous maps s, r : GF → M defined by s(γ) = γ(0) and
r(γ) = γ(1). For a point x ∈ M , the pre-image s−1(x) = L̃x is the holonomy
cover of the leaf Lx of F through x; that is, the image of a closed curve γ ⊂ L̃x

always has trivial holonomy as a curve in M . We use the source map s to view the
groupoid GF as a parametrized family of open manifolds (the holonomy covers of
leaves of F) over the base M .

Define the transversal groupoid TF ⊂ GF to be the preimage of T × T under
the map

s × r:GF → M × M.

That is, TF consists of all the equivalence classes of paths in GF which start and end
at points in the complete transversal T . For each x ∈ T the fiber (s|TF)−1(x) ⊂ L̃x

is a net in the holonomy cover L̃x, so that TF can be considered as a (locally)
continuous selection of nets for the fibers of s:GF → M .

The topological manifold structure on GF may not be Hausdorff: suppose there
exists a leafwise closed path γ with basepoint x which has non-trivial holonomy of
infinite order, but so that there is a family {γs |1 ≤ s ≥ 0} of closed paths, γ0 = γ,
and which are the transverse “push-off” of γ so that each γs has trivial holonomy
for s > 0. Then every iterate of the path γ is arbitrarily close to the push-offs
γs for s small. That is, the path {γs | s > 0} intersects every neighborhood of
the iterates of γ. This property of paths that there are nearby paths for which
the holonomy degenerates is typical of the non-Hausdorff aspect of GF . This was
formalized by Winkelnkemper in the following result:

PROPOSITION 2.2 (Proposition 2.1, [98]) GF is Hausdorff if and only if,
for all x ∈ M and y ∈ Lx the holonomy along two arbitrary leafwise paths γ1 and
γ2 from x to y are already the same if they coincide on an open subset U of their
common domain, whose closure U contains x.
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For example, if the holonomy of every leaf has finite order, or is analytic, or is
an isometry for some transversal metric, then GF will be Hausdorff. In contrast,
one knows that the holonomy of the compact leaf in the Reeb foliation of S3 fails
this criterion, so its foliation groupoid is not Hausdorff at the compact leaf.

Let Gnh
F ⊂ GF be the union of the paths for which there exists another path

which has the holonomy property of Proposition 2.2. Then Gh
F = GF \ Gnh

F is a
Hausdorff space.

Let Fi be a topological foliation of Mi for i = 1, 2. Let f : M1 → M2 be a
continuous map which sends leaves of F1 into leaves of F2. Then the assignment
γ �→ f(γ) induces a map Gf : GF1 → GF2 . It is clear from the definition that
s(Gf(γ)) = f(s(γ)) and similarly for the range map r. Thus, Gf maps the fibers
of s over M1 into the fibers of s over M2. We let Gfx : L̃x → L̃′

f(x) denote the
restriction of Gf from the fiber of s over x ∈ X1 to the fiber of s over f(x) ∈ X2.

Let Fi be a topological foliation of Mi for i = 1, 2, f0, f1 : M1 → M2 be
continuous maps which sends leaves of F1 into leaves of F2. We say that f0 is
leafwise homotopic to f1 if there exists a continuous map F : M1 × [0, 1] → M2

such that

• F (x, 0) = f0(x) and F (x, 1) = f1(x) for all x ∈ M1

• F maps the leaves of F1 × [0, 1] into the leaves of F2, where F1 × [0, 1] is the
foliation of M1 × [0, 1] with typical leaf L × [0, 1] for L a leaf of F1.

The trace of a leafwise homotopy F is the collection of curves t �→ F (x, t) for
x ∈ M1. The special property of a leafwise homotopy is simply that the trace
consists of leafwise curves.

A continuous map f : M1 → M2 which sends leaves of F1 into leaves of F2 is a
leafwise homotopy equivalence if there exists a continuous map g : M2 → M1 which
sends leaves of F2 into leaves of F1 so that the compositions g ◦ f and f ◦ g are
both leafwise homotopic to the respective identity maps on M1 and M2.

2.4 Coarse metrics on holonomy groupoids

We next formulate the coarse metric properties of the foliation groupoid (cf. Plante
[84]; or section 1, Hurder & Katok [73].) A coarse metric on GF will be a family of
coarse metrics

〈·, ·〉x : L̃x × L̃x → [0,∞)

parametrized by x ∈ M . It is natural to also require the “coarse continuity” of the
family, which is satisfied by the examples presented below.
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Given groupoids s:Gi → Xi equipped with coarse metrics 〈·, ·〉ix for i = 1, 2, a
groupoid map F :G1 → G2 is a quasi-isometry if there exists constants d1, d2, d3 > 0
so that for all x ∈ X1 and y, y′ ∈ s−1(x)

d1 ·
(
〈y, y′〉1x − d3

)
≤ 〈Fx(y), Fx(y

′)〉2f(x) ≤ d2 ·
(
〈y, y′〉1x + d3

)
(2)

where f : X1 → X2 is the map on objects induced by F . We say that F is a coarse
isometry if there exists ε > 0 so that Fx(s

−1(x)) ⊂ s−1(f(x)) is ε-dense for all
x ∈ X1.

Fix a regular foliation atlas {(Uα, φα) | α ∈ A} for F . For x ∈ M and a leafwise
path γ: [0, 1] → L̃x, define the plaque length function NT (γ) to be the least number
of plaques required to cover the image of γ. Define the plaque distance function
Dx(·, ·) on the holonomy cover L̃x using the plaque length function: for y, y′ ∈ L̃x,

Dx(y, y′) = inf {NT (γ) | γ is a leafwise path from y to y′}

In other words, Dx(y, y′) is the minimum number of plaques in L̃x such their union
forms a connected open set in L̃x containing both y and y′. Note that Dx(·, ·) is
not a distance function, for Dx(y, y′) = 1 if and only if y and y′ lie on the same
plaque Pα(z). It is immediate from the definitions that the pairings Dx satisfy the
triangle inequality, hence:

LEMMA 2.3 The family Dx is a coarse metric for the foliation groupoid GF . �

The family of plaque-distance coarse metrics is independent (up to coarse isom-
etry) of the choice of foliation covering of M :

LEMMA 2.4 (Lemma 2.4, [67]) Suppose that F is a topological foliation of a
compact compact M , and there are given two coverings of M by regular foliation
atlases {(U i

α, φi
α) | α ∈ {1, . . . , k(i)}} for i = 1, 2, with plaque distance functions

Di
x. Then there exists constants c1, c2 > 0 so that for all x ∈ M and y, y′ ∈ L̃x

c1 · D1
x(y, y′) ≤ D2

x(y, y′) ≤ c2 · D1
x(y, y′) (3)

That is, the identity map is a coarse isometry of GF endowed with the coarse metrics
D1

x and D2
x.

When the foliation F is at least C1, then we can give the leaves a Riemannian
metric, and define a leafwise Riemannian distance function dx on L̃x by taking
the infimum over the lengths of paths in the holonomy cover between y and y′.
The family dx is a coarse metric on GF which is coarsely equivalent to the plaque-
distance metric:
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LEMMA 2.5 (Lemma 2.5 [67]) Suppose that F is a C1-foliation, M is com-
pact, and {(Uα, φα) | α ∈ {1, . . . , k}} is a regular foliation atlas with a finite number
of open charts. Then there exists constants c1, c2 > 0 so that for all x ∈ M and
y, y′ ∈ L̃x

c1 · (Dx(y, y′) − 1) ≤ dx(y, y′) ≤ c2 · Dx(y, y′) (4)

Hence, the identity map is a coarse isometry of GF endowed with the metrics Dx

and dx, respectively.

It is expected that a coarse metric on a foliated space should be essentially in-
dependent of the choices made, which is the content of the above two lemmas. The
more fundamental property of the plaque-distance coarse metric is that continuous
maps between foliated manifolds induce controlled maps in this metric:

LEMMA 2.6 Let M1 be a compact manifold, and f : M1 → M2 be a continuous
function which sends leaves of F1 into leaves of F2. Then there exists a constant
d2 > 0 so that for all x ∈ M1 and y, y′ ∈ L̃x, the induced map Gfx : L̃x → L̃′

f(x) on
holonomy covers satisfies the estimate

Df(x) (Gfx(y),Gfx(y
′)) ≤ d2 · Dx (y, y′) (5)

A fiberwise map Gfx : L̃x → L̃′
f(x) satisfying the condition (5) is said to be

eventually Lipshitz.

Even if both M1 and M2 are assumed to be compact, the induced map Gfx :
L̃x → L̃′

f(x) need not be a quasi-isometry, or even proper. The first inequality in

(1) fails in the following simple example. Let M1 = T2 be the 2-torus with F1

the linear foliation by lines with irrational slope. Let M2 = T2 also, with F2 the
foliation having exactly one leaf. The identity map satisfies the estimate (5). On
the other hand, the leaves of F1 contain paths of arbitrarily long length, which
map to segments in T2 which are ∼h equivalent to a “shortcut” in T2 of length at
most 2

√
2π, where we assume that each circle factor in T2 has length 2π. Thus,

for this example there is no estimate for the minimum plaque-length of a leafwise
path for F1 in terms of the minimum plaque-length of its image in F2.

The leafwise homotopy equivalences between foliations are the “natural isomor-
phisms” of the homotopy category of topological foliations, analogous to isomor-
phisms for groups. The following basic result asserts that coarse geometry is also
preserved by these maps.
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PROPOSITION 2.7 Let Fi be a topological foliation of a compact manifold Mi

for i = 1, 2 and f : M1 → M2 a leafwise homotopy equivalence. Then there exists
constants d1, d2 > 0 so that for all x ∈ M1 and y, y′ ∈ L̃x with Dx (y, y′) ≥ d3, the
induced map Gfx : L̃x → L̃′

f(x) satisfies the estimate

d1 · Dx (y, y′) ≤ Df(x) (Gfx(y),Gfx(y
′)) ≤ d2 · Dx (y, y′) (6)

Thus, Gf :GF1 → GF2 is a coarse isometry with respect to the coarse metrics D1
x

and D2
x.

Proof. Choose a leaf-preserving continuous map g : M2 → M1 and a leafwise
homotopy F : M1 × [0, 1] → M1 between g ◦ f and the identity. Let K denote the
maximum plaque-lengths of the leafwise traces t �→ F (x, t) for x ∈ M1. Let d′

2

denote the constant for g and d2 the constant for f given by Lemma 2.6. Given a
leafwise path γ between z = Gf(y) and z′ = Gf(y′), the images Gg(z) and Gg(z′)
are connected to y and y′ by leafwise paths with plaque-lengths at most K each.
(This is true for their images in M1 so by the covering path lifting property also
holds for the points in L̃x.) Applying Lemma 2.6 to g we then obtain

Dx (y, y′) ≤ Dx(Ggf(x)(z),Ggf(x)(z
′)) + 2K ≤ d′

2 · Df(x) (z, z′) + 2K

hence
1/d′

2 · (Dx (y, y′) − 2K) ≤ Df(x) (z, z′)

Take d3 = 4K and d1 = 1/(2d′
2) and the estimate (6) follows. �

COROLLARY 2.8 Let Fi be a topological foliation of a compact manifold Mi for
i = 1, 2 and f : M1 → M2 a leafwise homotopy equivalence. Then Gf is a proper
map. �

Proof. Let K ⊂ GF2 be a compact set. Then there is a finite collections of leafwise
paths {γ1, . . . , γd} for F2 and a covering of K by basic foliation charts formed from
the γi. It follows that there is a constant CK so that K is contained in the diagonal
set

∆(GF2 , CK) = {y ∈ GF2 | Ds(y)(y, ∗s(y)) ≤ CK}

where ∗s(y) is the canonical basepoint in the fiber L̃s(y). The inequality (6) implies
that the preimage Gf−1(K) is contained in the diagonal set ∆(GF1 , CK/d1). Hence
Gf−1(K) is a closed set contained in a finite union of basic foliation charts on GF1

so is compact. �

Finally, let us observe the fundamental property of coarse geometry in the
context of the plaque-distance coarse metric. The transversal groupoid TF has an
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intrinsic transversal length function DT , defined analogously to the word length
function for groups. (The choice of the transversal T corresponds to the choice
of a generating set for a group.) We say that two points y ∈ Tα and y′ ∈ Tβ

are adjacent if their plaques Pα(y) ∩ Pβ(y′) 	= ∅. The choice of a path γy,y′ ⊂
Pα(y)∪Pβ(y′) connecting adjacent points y, y′ determines a canonical equivalence
class [γy,y′ ] ∈ TF . For [γy] 	= [γy′ ] ∈ TF define

DT ([γy], [γy′ ]) = min

n > 0 |
there exists a chain of points y = y0, . . . , yn = y′

with (yi, yi+1) adjacent for each 0 ≤ i < n and
[γy′ ] = [γy] ∗ [γy1,y2 ] ∗ · · · ∗ [γyn−1,yn ]

and set DT ([γy], [γy′ ]) = ∞ if no such chain exists, and set DT ([γy], [γy]) = 0.

PROPOSITION 2.9 The inclusion T : TF ⊂ GF induces a coarse isometry for
the transversal length function DT on TF and the plaque distance function on GF .

3 Foliation dynamics

In this section we introduce a few of the basic ideas of topological and measurable
dynamics of foliated manifolds. Smale’s fundamental paper on smooth dynami-
cal systems [90] concluded with a brief section (Part IV) on the dynamics of Lie
group actions, which consisted of more questions than results. Plante’s work in
the early 1970’s investigated growth of leaves and the minimal sets for foliations,
and generally developed the paradigm of a foliation on a compact manifold as a
generalized dynamical system [84]. Cantwell and Conlon [16, 17, 19] and Hec-
tor [52] explored codimension-one foliations as dynamical systems, studying the
growth type of leaves and their asymptotic properties, culminating in the proof
of the Poincaré-Bendixson theorem for C2-foliations. Ghys’s work has explored
many facets of the differential dynamics of foliations [21, 43, 41], and the geomet-
ric entropy for foliations of Ghys, Langevin, Walczak [34] is a central aspect of
their dynamics [63, 78]. Tsuboi has found relations between the behavior of mini-
mal sets for group actions and the homotopy theory of foliation classifying spaces
[93, 95, 94]. The author has studied the relation between foliation dynamics and
characteristic classes [62, 73]. There is a rapidly developing body of work on the
structural stability and rigidity of group actions [40, 42, 44, 64, 77, 48, 1, 38].
The study of the dynamics of group actions and of foliations is fascinating for its
complexity, and the added tools that arise from the multi-dimensional nature of
the orbits. This paper uses just a few ideas from the dynamics of foliations, which
we recall as needed below. A more extensive introduction can be found in the au-
thor’s monograph [70]. Foliation dynamics is also closely related to the measurable
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dynamics and ergodic theory of group actions, which has been developed using co-
cycle theory by Zimmer [101, 102, 100, 106, 104, 105], and also in the context of
the classification of von Neumann algebras [37, 81].

3.1 Basic topological dynamics

The most basic questions in topological dynamics address the qualitative properties
of orbits of the system, and the nature of the saturated sets. A, F -saturated set
X ⊂ M consists of a union of leaves of F . That is, if L is a leaf with L ∩ X 	= ∅
then L ⊂ X. The F-saturation FZ of a set Z ⊂ M consists of the union of all
leaves which intersect Z. If Z ⊂ Uα we also define the local saturation

FαZ =
⋃

Pα(x)∩Z �=∅
Pα(x)

An exhaustion sequence for a leaf L is an increasing sequence of connected
compact sets

K1 ⊂ K2 ⊂ · · ·Kn ⊂ · · · ⊂ L

whose union is all of L. Define the ω-limit set of L to be the intersection

ω(L) =
∞⋂

n=1

L − Kn

where the closures are formed with respect to the topology on M . We recall some
elementary facts:

PROPOSITION 3.1 • ω(L) is compact and F-saturated.

• ω(L) is connected if L − Kn is connected for all n.

• ω(L) is independent of the choice of exhaustion sequence.

This result implies a standard property of generalized dynamical systems. Re-
call that a compact, non-empty, F -saturated set X is minimal for F if each leaf of
X is dense in X. Equivalently, X is minimal with respect to the properties that it
be closed, non-empty and F -saturated.

COROLLARY 3.2 Every closed F-saturated non-empty subset X ⊂ M contains
a closed minimal set Z ⊂ X.

Proof: The collection of closed F -saturated subsets of X is closed under intersec-
tions, hence by Zorn’s Lemma contains a minimal element Z. For each leaf L ⊂ Z,
ω(L) ⊂ Z is a closed F -saturated subset, hence must equal Z. �
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The minimal set Z ⊂ X need not be unique. For example, if F is a foliation with
all leaves compact, then a minimal set for F consists of a single leaf, so that every
closed F -saturated set with more than one leaf contains more than one minimal
set. (There are also much more sophisticated examples of non-uniqueness.)

We can associate to each leaf L the collection {Z ⊂ ω(L) | Z is minimal }.
These are the invariant sets for F onto which the leaf L “spirals” as we go to infinity.
In very special contexts [83, 17, 35], there are generalizations of the Poincaré-
Bendixson Theory which give a relation between the global geometry of F and the
structure of the minimal sets for F , but very little seems to be known beyond these
facts.

A leaf L is proper if the inclusion L ↪→ M induces from M the metric topology
on L. Every compact leaf is proper, while a non-compact leaf is proper exactly
when L ∩ ω(L) = ∅.

An end ε of a non-compact manifold L is determined by a choice of an open
neighborhood system of ε, which is a collection {Uα}α∈A such that

• each Uα is an unbounded open subset of L,

• each finite intersection Uα1 ∩ . . . ∩ Uαq is nonempty,

• the infinite intersection ∩∞
1 Uαi

= ∅.
Given an open neighborhood system {Uα}α∈A of ε, the ε-limit set of L is

ε − lim(L) =
⋂

α∈A

Uα

Clearly, for each end ε, we have ε − lim(L) ⊂ ω(L). But ω(L) may include more
points than just the union of the ε-limit sets of L. An end ε of L is proper if L is
not contained in ε− lim(L), and ε is totally proper if ε− lim(L) is a union of proper
leaves.

A leaf L′ is said to be the asymptote of a leaf L if ω(L) = L′. Note this implies
that ω(L′) = ∅ and hence L′ must be compact.

Zorn’s Lemma implies that for each end ε of L, there is a minimal set contained
in ε − lim(L).

3.2 Expansion rate and entropy

The expansion rate and geometric entropy of a foliation provide some of the most
effective dynamical invariants of foliations in higher codimensions.

The coarse length |γ | of leafwise path γ : [0, 1] → L ⊂ M is the plaque-distance
between the endpoints for a lift of γ to the holonomy cover of the leaf. A leafwise
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path γ with initial point γ(0) = tα(z0) ∈ Tα and final point γ(1) = tβ(z1) ∈ Tβ

on transversals to F is said to be subordinate to the transversal T . A subordinate
path induces local holonomy maps hγ: Uα → Uβ for open sets tα(z0) ∈ Uα ⊂ Tα

and tβ(z1) ∈ Uβ ⊂ Tβ

Let D: M × M → [0, 1] be a metric with diameter 1. Define metrics Dα: Tα ×
Tα → [0, 1] by restriction. For each integer R > 0 we define a metric on T by
setting, for x, y ∈ Tα

dR(x, y) = max{Dβ(hγ(x), hγ(y)) such that | γ |≤ R & γ subordinate to T }

Extend this to a metric dR on all of T by setting dR(x, y) = 1 for x and y on distinct
transversals. The metrics dR strongly depend upon the choice of the foliation
covering.

For 0 < ε < 1 and R > 0, we say that a finite subset {x1, . . . , x�} ⊂ T is (ε, r)-
spanning if for any x ∈ T there exists xi such that dR(x, xi) < ε. Let H(F , ε, R)
denote the minimum cardinality of an (ε, R)-spanning subset of T . The ε-expansion
growth of F is the growth class of the function R �→ H(F , ε, R). This function is
one of the basic measures of the “transverse dynamics” of a foliation (cf. § 3 [34],
and for a detailed discussion see [36]).

Let Z ⊂ M be an F -saturated set. The restricted spanning function
H(Z|F , ε, R) equals the minimum cardinality of an (ε, R)-spanning subset of T ∩Z.
Clearly, H(Z|F , ε, R) ≤ H(F , ε, R).

Note the two properties:

ε′ < ε implies H(F , ε′, R) ≥ H(F , ε, R) for all R > 0

R′ > R implies H(F , ε, R′) ≥ H(F , ε, R) for all ε > 0

The geometric entropy of Ghys, Langevin and Walczak [34] is the limit

h(F) = lim
ε>0

h(F , ε) where h(F , ε) = lim sup
R→∞

log H(F , ε, R)

R
(7)

The limit (7) is finite for a transversally, C1-foliation [34], but may be infinite
for topological foliations.
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3.3 Structure theory for topological foliations

A key structure property of foliated manifolds is the Product Neighborhood The-
orem, which is a direct generalization of the foliated neighborhood theorem for a
compact leaf with finite holonomy (cf. Haefliger [51]). For K ⊂ M and ε > 0, let
N (K, ε) be the open neighborhood consisting of points which lie within ε of K.

THEOREM 3.3 ([65]) Let L be a leaf with holonomy covering L̃. Given a com-
pact subset K ⊂ L̃ and ε > 0, there exists a foliated immersion Π: K × (−1, 1)q →
M so that the restriction Π: K × {0} → L ⊂ M coincides with the restriction to
K of the covering map π: L̃ → L, and Π(K × (−1, 1)q) ⊂ N (π(K), ε).

This result is a mild generalization of the usual proof of of the Reeb Stability
Theorem. The importance of this property is that it relates, at a basic level, the
dynamics of the leaves (nb. the compact set K can be chosen arbitrarily large in
L̃) with the transversal structure of F (the image of the tubular neighborhood
K × (−1, 1)q is an open “shadow neighborhood” of L).

For codimension-one foliations there is much more global structure theory, even
in the general case of C0-foliations. (Hector and Hirsch [53] is an excellent general
reference for their structure theory.) We assume that F is transversely orientable,
and fix a topological foliation N of dimension 1 transverse to F . Let U be an open
set in M saturated by F . The completion Û of U is a manifold with boundary
equipped with

• a codimension 1 C0-foliation F̂ tangent to the boundary,

• a continuous map i: Û → M which restricts to a homeomorphism from the
interior of Û onto U , so that

• the restriction of F̂ to the interior of Û agrees with i∗F .

THEOREM 3.4 (Dippolito [31]) Under the preceding conditions, there is a
compact submanifold with boundary and corners K of Û so that ∂K = ∂tg ∪ ∂tr

with

i. ∂tg ⊂ ∂Û

ii. ∂tr is saturated by the foliation i∗N .

iii. The complement of the interior of K in Û is the finite union of non-
compact submanifolds Bi with boundary and corners homeomorphic to Si × [0, 1]
by a homeomorphism φi : Si × [0, 1] → Bi so that φi({∗} × [0, 1]) is a leaf of i∗N .

The foliation restricted to Bi is defined by suspension of a representation of the
fundamental group of Si into the group of homeomorphisms of the interval [0, 1].
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3.4 Invariant measures

A transversal T ⊂ M to F is a Borel subset which intersects each leaf in at most
a countable set. A cross-section is thus a special case of a transversal, and one can
show (via a Borel selection process) that every transversal is a countable union of
local cross-sections.

A transverse measure µ for F is a locally-finite measure on transversals, whose
measure class is invariant under the transverse holonomy transformations. The
transverse measure class defined by µ is equivalently specified by giving finite
Borel measures µα on each set Xα, so that each local holonomy map γαβ pulls the
measure class of µβ|Xβα back to that of µα|Xαβ. A local cross-section Z ⊂ Uα is
said to have µ-measure zero if and only if µα(φα(FαZ ∩ Tα)) = 0.

We say that µ is an invariant transverse measure for F if the local holonomy
preserves the measure; that is, γ∗

αβµβ = µα for all admissible α, β. The measure of
a local cross-section Z ⊂ Uα is defined as

µ(Z) = µα(φα(FαZ ∩ Tα))

This is extended as a countably additive measure to all transversals Z ⊂ M : use
a selection lemma to decompose

Z =
k⋃

α=1

∞⋃
i=1

Zα,i

where each Zα,i ⊂ Uα is a local cross-section, then define

µ(Z) =
k∑

α=1

∞∑
i=1

µα(Zα,i)

The holonomy invariance of the measures µα implies that µ(Z) is independent of
the choice of the decomposition.

DEFINITION 3.5 A measured foliation is a triple (M,F , µ) where (M,F) is a
foliated manifold and µ is an invariant transverse measure for F .

The support of a transverse measure µ consists of the smallest closed saturated
subset s(µ) ⊂ M so that µ(Z) = 0 for any transversal Z ⊂ M \ X. Note that
the pair (s(µ),F|s(µ)) formed by the support a transverse measure µ and the
restriction of F forms a foliated space (cf. [82, 73]) and the triple (s(µ),F|s(µ), µ)
is a foliated measure space.
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4 Open manifolds of positive entropy

Our first application of the ideas of coarse geometry is to give examples of open
complete Riemannian manifolds of bounded geometry which are not quasi-isometric
to leaves of any C1 foliation of a compact manifold. It is well-understood that a
leaf of a foliation of a compact manifold has “recurrence”, so that an open com-
plete manifolds without “recurrence” cannot be a leaf. The problem is to quantify
this idea of recurrence in the coarse geometry of an open manifold, to obtain an
obstacle to its being a leaf. This was done in a joint work with Oliver Attie [6],
which studied the relation between bg surgery theory on open manifolds and the
properties of leaves. Here is the precise result:

THEOREM 4.1 (Attie-Hurder [6]) There exists an uncountable set of quasi-
isometry types Riemannian manifolds of bounded geometry and exponential volume
growth, none of which is quasi-isometric to a leaf of a C0-foliation whose expansion
growth is less than [2br

] for all b > 1. In particular, these manifolds cannot be
quasi-isometric to leaves of C1-foliations of any codimension.

Gromov has observed every complete open manifold of bounded geometry is
a leaf of a compact “foliated space” X, though X need not be a manifold. The
idea of the theorem is to continue this viewpoint, and define growth complexity
function of open manifolds and the entropy of the open manifold which is derived
from it. These yield invariants of the quasi-isometry class. An open manifold of
exponential growth which is quasi-isometric to a leaf must have “zero entropy”,
due to a well-known estimate of the expansion growth function of a C1-foliation
[36]. We then show how to construct open manifolds of bounded geometry with
positive entropy. This is a special case of a construction of a class of open manifolds
indexed by the points of a Markov process (see [71]) – and for almost every process,
the corresponding open manifold has positive entropy.

4.1 Leaf entropy

The following definitions expand on a remark of Gromov:

DEFINITION 4.2 Fix ε, R > 0. An (ε, R) quasi-tiling of a complete Riemannian
manifold M is a collection {K1, . . . , Kd} of a compact metric spaces with diameters
at most R and a countable set of homeomorphisms into {fi: Kαi

→ M | i ∈ I}
with:

• Each fi is a quasi-isometry onto its image with λ(fi) ≤ ε and D(fi) ≤ ε.

• For any set K of diameter at most R, there exist i ∈ I so that K ⊂ fi(Kαi
).
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REMARK 4.3 • The integer d is called the cardinality of the quasi-tiling.

• The images fi(Kαi
) have diameter at most ε(R + 1).

DEFINITION 4.4 For ε ≥ 0, the ε-growth complexity function of M is

H(M, ε, R) = min{d | there exists an (ε, R) quasi-tiling of M of cardinality d}

If no (ε, R) quasi-tiling exists, then set H(M, ε, R) = ∞.

The following remarks are obvious from the definition:

PROPOSITION 4.5 Given a quasi-isometry f : M → M ′, for ε � 0
there exists ε′ > 0 so that for all R > ε

H(M ′, ε′, R − ε) ≤ H(M, ε, R) ≤ H(M ′, ε′, R + ε)

PROPOSITION 4.6 For ε′ > ε, H(M, ε′, R) ≤ H(M, ε, R)

For a complete open manifold M , define

V(M,R) = sup{vol(B(x,R)) | x ∈ M}

where B(x,R) ⊂ M denotes the ball of radius R centered at x. We can then set

DEFINITION 4.7 The entropy of an open complete manifold is

h(M) = lim
ε→∞

lim sup
R→∞

ln(H(M, ε, R))

V(M,R)

When L is a leaf of a foliation of a compact manifold, endowed with a metric
restricted from one on M , then we call h(M) the leaf entropy of L.

The growth complexity function for a leaf is related to the entropy of the
foliation. Here is the key technical observation. Let F be a C0 codimension-q
foliation of a compact manifold V . Fix the path-length metric on V associated to
a Riemannian metric on TV . Choose local foliation coordinate charts φα : Uα →
(−1, 1)m as in section 2.2, for which we can then define the function H(F , ε, R)
which is the maximal cardinality of an (ε, R)-spanning subset of the transversal
space T .
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PROPOSITION 4.8 ([6]) Let L ⊂ V be a simply connected leaf of a C0-foliation.
For each R > 0 there exists an open covering {Vβ | β ∈ B} of V so that

(1) the cardinality of B is at most H(L|F , 1/2, R);

(2) each Vβ is a foliated product;

(3) for each leaf L′ ⊂ L the restriction of the covering {Vβ} to L′ has Lebesgue
number at least R − 3.

In particular, the cardinality of B is at most H(F , 1/2, R), independently of L.

Proof: Choose a (1/2, R)-spanning subset {x1, . . . , xd(R)} ⊂ T ∩ L of cardinality
d(R) = H(L|F , 1/2, R). Let αi be the index for which xi ∈ Tαi

. Let Ki ⊂ L denote
the union of the plaques in L which can be reached from xi by a leafwise path of
length at most R− 1. Then each point in the intersection Ki ∩T can be joined to
xi by a leafwise path of length at most R.

Let BR(xi, 3/4) ⊂ Tαi
be the ball centered at xi of radius 3/4 in the metric dR

restricted to the transversal. Define Vi to be the union of all plaques of F which
can be joined to tαi

(BR(xi, 3/4)) by a leafwise path of length at most R − 1.

We show that the collection {Vβ | 1 ≤ β ≤ d(R)} is a covering of L. Let
x ∈ L, then x ∈ Uα for some α and so lies on a plaque Pα(zx) for some zx ∈ Tα.
The metric dR is quasi-isometric to the Riemannian metric on V , so there exists
z∗x ∈ L ∩ Tα so that dR(zx, z

∗
x) < 1/4. The 1/2-spanning property then implies

there exists xi ∈ Tα with dR(z∗x, xi) < 1/2, hence x ∈ Pα(z) ⊂ Vi.

The proof of Theorem 3.3 shows that we can choose the homeomorphisms
Πi: Ki × (−1, 1)q → Vi to satisfy:

• the leafwise restriction Πi: Ki × {0} → L ⊂ V is the inclusion; and

• the transverse restriction Πi: {xi} × (−1, 1)q → tαi
(BR(xi, 1/2)) is a homeo-

morphism onto.

Finally, let Z ⊂ L′ ⊂ L be a connected compact subset of diameter at most
R − 3 in a leaf L′. Let Ẑ be the union of the plaques with non-empty intersection
with Z; then Ẑ has diameter at most R−1. Choose a point z ∈ Ẑ ∩T and a point
xi ∈ Tα so that dR(z, xi) < 1/2. Then clearly Ẑ ⊂ Vi. �

The leaf L is itself an F -saturated set, so we can define the growth function of
L.

THEOREM 4.9 Let L be a simply-connected leaf of a C0-foliation F of a com-
pact manifold V . Then

H(L, 1, R − 3) ≤ H(L|F , 1/2, R) for all R > 3
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Proof: Let {Vβ | 1 ≤ β ≤ d(R)} be a covering associated to a (1/2, R)-
spanning set as above, with local homeomorphisms onto Πi: Ki × (−1, 1)q → Vi.
For each z ∈ L ∩ Tαi

define a homeomorphism fi,z = Πi(·, z): Ki → L. As
all plaques have diameter at most 1, each fi,z is a quasi-isometry onto its im-
age with distortion D(fi,z) ≤ 1. So by Proposition 4.8.3 above, the collection
{K1, . . . , Kd(R)} with maps {fi,z} forms a (1, R− 3)-quasi-tiling of L of cardinality
at most H(L|F , 1/2, R). �

A geometric estimate based on the mean value theorem estimates yields the
following estimate:

LEMMA 4.10 ([34]) Let F be a codimension-q, transversally Lipshitz foliation
of a compact manifold M . Then for each leaf L ⊂ M and all ε > 0, there is a
constant C(L, ε) > 0 so that

H(L|F , ε, R) < C(L, ε) · exp{qR}

We combine Proposition 4.5, Theorem 4.9 and Lemma 4.10 to obtain:

COROLLARY 4.11 Let L be a complete open manifold such that V(L,R) has
exponential growth, which is quasi-isometric to a leaf of a codimension-q, transver-
sally C1-foliation F of a compact manifold M . Then the entropy h(L) = 0.

4.2 A construction of non-leaves

In this section, we recall the construction from [6] of open manifolds M with
exponential growth type such that there are constants a, b > 1 and H(M, ε, R)
has ε-growth type [abR

] for all ε > 0. Hence, h(M) > 0 so that by Corollary 4.11,
M is not quasi-isometric to a leaf of any Cα-foliation of a compact manifold.
Our construction will connect-sum an infinite number of copies of S4 × S2 onto
the hyperbolic n-space M0 = H6, chosen so that we force every quasi-tiling to
have maximum growth rate. The role of hyperbolic space can be replaced by the
universal cover B̃ of any compact 6-manifold B whose fundamental group Γ has
exponential growth.

The construction we give below is reasonably complicated and based on a com-
binatorial idea, as it must be. But it has a simple guiding framework: we propose
to wire the base manifold M with a pattern of light sockets, and then into each
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socket we have a choice of what color light bulb to install. The task is to wire
the manifold M so that each pattern can be distinguished by a quasi-isometric
homeomorphism. Moreover, each pattern will be repeated enough times to allow
all possible bulb patterns to be realized (within a range of choices of colors). The
number of patterns grows exponentially with R, due to the basic volume estimate
on the number of balls of a given radius r > 0 in a ball of radius R � r in hyper-
bolic space. Hence the number of substitution patterns grows super-exponentially.
Of course, we confuse matters in the construction below by replacing the bulbs
and their colors with surgered copies of S4 ×S2 having differing Pontrjagin classes
(the colors) and noting that one can see these colors under a homeomorphism. The
basic idea is more general, and reflects a “Markovian” property at infinity.

Let B(x,R) denote the ball of radius R centered at x ∈ H6. Our construction
is based on the following property of manifolds of uniformly exponential growth:

PROPOSITION 4.12 There exist a constant c > 1 so that each x ∈ H6 and
R > r > 0, the ball B(x,R) contains at least �cR−r� pairwise disjoint balls of
radius r.

Given x ∈ H6 and r > 0, choose d = �cr� points {x1, . . . , xd} ⊂ B(x, r) such
that the balls {B(xi, 1) | 1 ≤ i ≤ d} are contained in B(x, r) and are pairwise
disjoint.

Next, fix model manifolds N� for 0 ≤ � ≤ 2, each homotopy equivalent to
S4 × S2, with p1(N�) = � ∈ H4(S4 × S2;Z) ∼= Z. Fix a Riemannian metric on N�

with injectivity radius at least 1/2, and choose a disk of radius 1/2 in N� which
will be the center for a connected sum operation.

For each integer 1 ≤ k < d construct a manifold W+(x, r, k) with boundary the
sphere S(x, r) of radius r: for i ≤ k, connect sum N2 to the ball B(xi, 1/2); and
for for k < i < d, connect sum N0 to the ball B(xi, 1/2). Note that W+(x, r, d)
has a standard collar neighborhood of radius 1/2 about its boundary.

Modify this construction to define W−(x, r, d), where we now attach N1 to the
ball B(xd, 1/2) in W+(x, r, d).

We repeat this procedure a second time, where for y ∈ H6 and R > s we
choose points {y1, . . . , yD} ⊂ B(y,R) where D = �cR−s�, so that the balls B(yi, s)
are contained in B(y,R) and are pairwise disjoint. Assume that s ≥ r and set

R = r + s so that D ≥ d = �cr−1�, and choose a sequence �k = {k1, . . . , kd} with
each ki ∈ {±}. For each 1 ≤ i ≤ d, surger in a copy of W ki(yi, r, i) in place of

the ball B(yi, r). Label the resulting manifold N(y, r, s,�k). Again, note that the

boundary of N(y, r, s,�k) is a sphere of radius R about y and admits a product
neighborhood. Here is a diagram of the basic building block:
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The purpose of this complicated construction of the modified disks N(y, r, s,�k)
of radius R in H6 is to create a set of standard “models” which have distinct
quasi-isometry types. There are 2d choices of the sequences �k = {k1, . . . , kd}, hence

an equivalent number of manifolds N(y, r, s,�k). Let N̂(y, r, s,�k) be the result of

attaching N(y, r, s,�k) to H6 in place of the ball B(y, r + s).

PROPOSITION 4.13 Let h: N(y, r, s,�k) → N̂(z, r, s, ��) be a quasi-isometric

homeomorphism with λ(h) ≤ ε and D(h) ≤ ε. If s > 2ε(2r + 1), then �k = ��.

Proof: Let us show that ki = �i. Let x1 ∈ W ki(yi, r, i) be the first point in the
construction of this set. Then the image of the set W ki(yi, r, i) under the map h
must be contained in the ball B(h(x1), ε(2r + 1)). The point h(x1) must lie in

one of the sets W �a(za, r, a) used to construct N̂(z, r, s, ��). By the choice of s, the
intersection B(h(x1), ε(2r+1))∩W �b(zb, r, b) is empty unless a = b. It follows that
W ki(yi, r, i) must be mapped quasi-isometrically onto W �a(za, r, a).

We can now count the total number of summands of S4×S2 in W �a(za, r, a) with
positive even Pontrjagin class to obtain that i = a. Finally, if ki = “−” then there
must also be a summand of S4 × S2 in W �i(zi, r, i) with positive odd Pontrjagin
class, hence �i = “ − ”. Otherwise, �i = “ + ”. This proves the proposition.

Choose a geodesic curve g: (−∞,∞) → H6. We observe that g is a “straight”
curve in the sense of Gromov; that is, the distance dH6(g(r), g(s)) = |r − s|.
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For each integer i > 0, set wi = g(i!).

We are now in a position to inductively define the manifold M which is not a
leaf. Set M(0) = H6. Fix n > 0 and assume that M(n − 1) has been defined.

There are 2d choices of the manifolds N(y, n, µn,�k), where d = �cn� and µ is a
positive integer. For each 1 ≤ µ ≤ n2, attach these 2d choices onto a subset of the
points {wi | i > n} which have not been modified in a previous step. This produces
M(n). (That is, we are essentially implementing a diagonalization procedure in
order to list all of the choices of these manifolds, spaced out along the increasingly
distant points {wi}.) Let M be the direct limit manifold obtained by this inductive
procedure.

The following estimate now completes the proof of Theorem 4.1:

PROPOSITION 4.14 There exists b > 0 so that for all ε > 0, H(M, ε, R) ≥ 2bR

for R � 0.

Proof: Fix ε > 1 and an integer R = n > 10ε2. Let {K1, . . . , Kν} be an (ε, R)
quasi-tiling of M with countable set of homeomorphisms into {fi: Kαi

→ M} so
that:

• Each fi is a quasi-isometry onto its image with λ(fi), D(fi) ≤ ε.

• {fi(Kαi
)} is an open covering of L with Lebesgue number at least R.

Set ξ = 4(n + 1)ε2. Distinct submanifolds N(y, n, ξ,�k) and N(z, n, ξ, ��) of M,
each of diameter ξ + n, are separated by a distance at least (n − 1)! − 2(ξ + n) >
ε(n + 1). The diameter of each set fi(Kαi) is at most ε(n + 1), so the image of

the quasi-isometry fi which contains a set N(y, n, ξ,�k) will intersect no other set
of this type.

Assume there are two such maps defined on a common Kαi
, with N(y, n, ξ,�k) ⊂

fi(Kαi
) and N(z, n, ξ, ��) ⊂ fj(Kαi

). Then fj◦f−1
i restricts to a quasi-isometry from

N(y, n, ξ,�k) to N(z, n, ξ, ��) with λ(fj ◦ f−1
i ) ≤ 2ε and D(fj ◦ f−1

i ) ≤ ε2. Apply the

above proposition to conclude that �k = ��. In particular, ν ≥ 2d where d = �cn−1�.
Take 1 < b < c and the proposition follows.

Lecture II - Dimensions of Ends

5 Coarse cohomology

It is natural to consider the coarse geometry of a complete metric space L as mea-
suring only the “relative size” and “position” of objects in L, which is essentially
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the idea behind the examples of the last section. It is surprising, both at first
glance and upon continued reflection, that coarse geometry also captures global
cohomology invariants of L – using the coarse cohomology theory of John Roe
[86, 88]. We give a brief definition and introduction to this theory, in terms suit-
able for the other ideas to be presented. The interested reader is strongly advised
to read [88] for a proper treatment!

5.1 Coarse cohomology for manifolds and nets

Let L be a complete Riemannian manifold of bounded geometry. A multi-diagonal
∆d for L is a set {(x, . . . , x) ∈ Ld | x ∈ L} for some d > 1. A uniform tube about
∆d is a set

Uε = {(x1, . . . , xd) | dL(xi, xj) < ε}
for some ε > 0.

DEFINITION 5.1 (Roe [88]) The coarse cohomology HX∗(L;R) is the coho-
mology of the subcomplex of the Alexander-Spanier cochains on L whose supports
intersect each uniform tube around a multi-diagonal in a compact set.

This definition was inspired from the work of Connes and Moscovici on index theory
[28, 29]. In fact, many of the results of coarse cohomology theory are closely related
to properties of index theory of open complete manifolds. In spite of the simplicity
of the above definition of coarse cohomology, the calculation of HX∗(L;R) is far
from obvious in most cases: Theorem 3.14 [88] gives the basic structure theorem
relating it to usual cohomology theories, while the works [87, 57, 59]) develop
various Mayer-Vietoris techniques for calculating it.

Roe established several basic properties of coarse cohomology , which begin to
explain the interest in the theory. The first is invariance under coarse isometries:

THEOREM 5.2 (Corollary 3.35 [88]) Let L and L′ be complete Riemannian
manifolds, and suppose there exists coarse isometry f : L → L′. Then f induces an
isomorphism f ∗: HX∗(L′;R) → HX∗(L;R).

In order to convey the ideas of how coarse geometry is applied, we adopt an
ersatz coarse cohomology theory which is much more transparent in its properties,
and yet captures the basic flavor of the subject. Let H∗

c (L;R) denote the Čech
cohomology with compact supports on L, which has a natural map into the usual
cohomology theory H∗(L;R) without restrictions on support.
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DEFINITION 5.3 The ersatz coarse cohomology of L is defined to be the kernel

HX∗
er(L;R) = ker{H∗

c (L;R) −→ H∗(L;R)}

A second main result in coarse cohomology theory is the existence of the char-
acter map:

PROPOSITION 5.4 (section 2.10,[88]) There is a natural character map

c: HX∗(L;R) → HX∗
er(L;R)

Roe proves that for manifolds which have a very strong control over their struc-
ture in a neighborhood of infinity, either in terms of a uniform contraction mapping
(Proposition 3.39 [88]) or the manifold is quasi-isometric to a metric cone over a
compact metric space (Proposition 3.49 [88]), then HX∗

er(L;R) = HX∗(L;R). In
almost all applications of coarse cohomology theory to connected open manifolds,
the approximation HX∗

er(L;R) reveals the key intuitive insights.

The definition of coarse cohomology actually makes sense for discrete metric
spaces as well as manifolds. Recall that a subset N ⊂ L is a net if there exists
constants 0 < c1 < c2 so that for any two points x, y ∈ N we have dL(x, y) >
c1 yet for any point z ∈ L there exists a point x ∈ N with dL(z, x) < c2. It
is elementary to construct a net for a complete open manifold, using a simple
induction procedure. We have the remarkable corollary of Theorem 5.2:

COROLLARY 5.5 The inclusion N ⊂ L induces an isomorphism

HX∗(N ;R) ∼= HX∗(L;R)

There is no restriction on the constants c1 and c2 in the definition of a net.
One usually tends to think of them as small quantities, but here we consider them
as possibly very large numbers. For large values, the coarse cohomology of a
net, HX∗(N ;R), is obviously seen to be a combinatorial invariant of the coarse
geometry of L.
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5.2 Two basic examples

Here are two basic examples of the calculation of coarse cohomology for open
manifolds, both due to J. Roe [88]. The examples begin to give an intuitive feel
for the theory.

PROPOSITION 5.6 (Proposition 2.25 [88]) Let L be a complete open con-
nected metric space, and ε(L) the topological space of ends for L. There is an exact
sequence

0 −→ R −→ Ȟ0(ε(L);R) −→ HX1(L;R) −→ 0

Hence, the degree one coarse cohomology HX1(L;R) can be calculated from the
most basic topological property of the “space at infinity” for L, its end-space.

PROPOSITION 5.7 Let L be a complete open manifold which is diffeomorphic
to the interior of a compact manifold M with boundary ∂M . There is a natural
surjection H∗(∂M ;R) → HX∗+1(L;R) with kernel the image of the restriction
map H∗(M ;R) → H∗(∂M ;R).

Proof: A slight modification of the proof of Lemma 3.29 [88] shows that the
character map c: HX∗(L;R) → HX∗

er(L;R) is an isomorphism in this case, so it
suffices to identify H∗(∂M ;R) with the ersatz cohomology of L. But this follows
from the commutative diagram:

H∗(M ;R) −→ H∗(∂M ;R) −→ H∗+1(M,∂M ;R) −→
↓ ↓∼=

0 −→ HX∗
er(L;R) −→ H∗+1

c (M ;R) −→

Proposition 5.7 holds more generally for connected metric spaces which admit
a “metric product neighborhood” at infinity. The prime examples of these are the
metric cones described in section 6.4 below.

5.3 Coarse cohomology for foliations

The definition of coarse cohomology extends very naturally to the case of foliations
[55]. The basic idea is to consider a subcomplex of the Alexander-Spanier cochains
on the holonomy groupoid GF , with a support condition for their restriction to uni-
form tubes around the fiberwise diagonals. The actual condition is more delicate,
but the general idea is just that.
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The ersatz coarse theory is easier to define, under the assumption that GF is
Hausdorff:

HX∗
er(F ;R) = ker{H∗

c (GF ;R) −→ H∗(GF ;R)}
and there is again a natural character map c: HX∗(F ;R) → HX∗

er(F ;R).

The key property of coarse cohomology for foliations is that HX∗(F ;R) is an
invariant of the coarse isometry type of F . In particular, by Proposition 2.7 we
have the basic result:

PROPOSITION 5.8 ([55]) Let f : M1 → M2 be a leafwise homotopy equiva-
lence between topological foliations F1 and F2 of a compact manifolds M1 and M2,
respectively. Then f induces an isomorphism

f ∗: HX∗(F2;R) ∼= HX∗(F2;R)

It is a very open problem to calculate the groups HX∗(F ;R) for some model
classes of foliations (cf. section 6.5 below). A natural first (and accessible) case is
to determine the ersatz groups for codimension-one foliations of 3-manifolds.

6 Coronas everywhere

Proposition 5.7 suggests investigating the relation between the coarse cohomology
HX∗(L;R) – or for an open connected manifold L, the ersatz groups HX∗

er(L;R)
– and the transgressed cohomology of some sort of boundary for L. In general, it
is a fundamental problem

to define a “good” compact boundary ∂L for a complete metric space L (cf. § 2,
[47]). A “good boundary theory” should have the property that a coarse isometry
of metric spaces induces a homeomorphism of their boundaries – in particular,
∂L should depend only on the coarse isometry class of L. The usual cohomology
groups H∗(∂L;R) of the boundary would then be invariants of the coarse isometry
type of L. One can then ask if there is a natural map δ∗: H∗(∂L;R) → HX∗(L;R),
and under what conditions is it an isomorphism.

Higson and Roe observed in 1988 that the analytic construction of Higson of
a boundary for complete open manifolds in (section 3, [56]) provided exactly the
sought-after “good boundary”. Roe adapted the definition to complete metric
spaces (Chapter 5, [88]) and constructed a character map in this generality. . The
Higson corona ∂hL of L is defined as the spectrum of a certain commutative C∗-
algebra associated to the metric. The corona is a coarse isometry invariant of L,
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almost by its definition. Its most fundamental property, however, is the existence
of a canonical pairing with the operator K-theory of the Roe algebra of L – which
is the K-theory equivalent of the existence of a character map. Each boundary
K-theory class in K∗(∂hL) thus yields an index invariant of the open manifold L.
All of these ideas have their counterpart for foliations. In this section, we give an
overview of the construction of coronas and some of their basic properties.

6.1 Coronas for manifolds

First, consider the case where L is a C1-manifold with a complete Riemannian
metric [56]. Let Ch(L) denote the C∗-algebra closure (in the sup norm on functions)
of the functions on L whose gradients tend to zero at infinity. The algebra of
continuous functions which vanish at infinity, C0(L), is a closed C∗-subalgebra of
Ch(L). The Higson corona of L, denoted by ∂hL, is defined to be the spectrum of
the quotient C∗-algebra Ch(L)/C0(L).

There is an inclusion of closed C∗-algebras, C0(L) ⊂ Ch(L) ⊂ C(L), so that ∂hL
is an intermediate boundary between the maximal Stone-Čech compactification
Ľ = spec(C(L)) and the one-point compactification L ∪ ∞ = spec(C0(L)). One
can show that if the coarse metric on L is not bounded, then ∂hL is non-separable.

One motivation for introducing the algebra Ch(L) is that the vanishing gradient
condition is exactly what is required to obtain a well-defined index pairing between
the K-theory groups K∗(Ch(L)) and first order geometric operators on L with
“bounded geometry”. Roe abstracted Higson’s construction to complete metric
spaces, replacing the decay condition on the gradient with a decay condition on
the variation function (cf. Definition 6.1 below).

6.2 Coronas for foliations

The construction of the corona for a foliation uses the Higson-Roe construction
fiberwise on the foliation groupoid. We define a C∗-subalgebra of the uniformly
continuous functions on GF via a uniform leafwise decay condition on their varia-
tions along the holonomy covers of the leaves. There is a subtlety in the groupoid
case, in that the space of continuous functions on GF is closed under pointwise
multiplication of functions only if GF is Hausdorff. For this reason, we only discuss
the Hausdorff case here.

Equip GF with the plaque-distance coarse metric. Let C(GF) denote the topo-
logical vector space of continuous functions on the groupoid GF , with the uniform
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norm topology obtained from the sup-norm on functions:

sup |h| = sup
y∈GF

|h(y)|

Denote by Cu(F) = Cu(GF) ⊂ C(GF) the closed subspace consisting of uniformly
continuous functions, and C0(GF) ⊂ Cu(F) the closure of the subspace spanned by
finite sums of continuous functions supported in basic open sets in GF .

DEFINITION 6.1 For x ∈ M and r > 0, define the fiberwise variation function

Vs(x, r) : C(L̃x) → [0,∞)

Vs(x, r)(h)(y) = sup {|h(y′) − h(y)| such that Dx(y, y′) ≤ r}

We say that f ∈ C(GF) has uniformly vanishing variation at infinity if there ex-
ists a function D : (0,∞) → [0,∞) so that if Dx(y, ∗x) > D(ε) then
Vs(x, r)(i∗xf)(y) < ε. Let Ch(F) ⊂ Cu(F) denote the subspace of uniformly con-
tinuous functions which have uniformly vanishing variation at infinity.

LEMMA 6.2 Ch(F) is a commutative C∗-algebra. C0(F) is a closed
C∗-subalgebra of Ch(F). �

DEFINITION 6.3 Let F be a topological foliation of a paracompact manifold M
equipped with a regular foliation atlas. The corona, ∂hF , of F is the spectrum of
the quotient C∗-algebra Ch(F)/C0(F).

We also define the closure GF = spec(Ch(F)). The uniform continuity of the
functions in Ch(F) ensures that GF “fibers” over the total space of the foliation
(though the fibers corresponding to non-compact leaves L̃ need not be homeomor-
phic):

PROPOSITION 6.4 ([67]) .

1. The source projection extends to a continuous map s:GF −→ M .

2. For each x ∈ M there is an inclusion ιx: L̃x = spec(Ch(L̃x)) ↪→ GF .

3. For each x ∈ M there is an inclusion ∂ιx: ∂hL̃x ↪→ ∂hF , where ∂hL̃x is the
Higson corona of L̃x.
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6.3 Functorial properties of the corona

The foliation corona has very nice functorial properties [67]:

PROPOSITION 6.5 Let M1 be a compact manifold, and f : M1 → M2 be a
continuous function which sends leaves of F1 into leaves of F2 and induces a proper
map of groupoids Gf :GF1 → GF2 . Then there is an induced map

f : GF1 → GF2 .

PROPOSITION 6.6 Let F be a topological foliation of a compact manifold M
and f : M → M be a leaf-preserving continuous map which is leafwise-homotopic
to the identity map. Then ∂hf : ∂hF → ∂hF is homotopic to the identity map.

COROLLARY 6.7 For i = 1, 2, let Fi be a topological foliation of a compact
manifold Mi. Then a leafwise homotopy equivalence f : M1 → M2 induces a
homotopy equivalence ∂hf : ∂hF1

∼= ∂hF2.

When the map f is a homeomorphism, we can strengthen the conclusion of
Proposition 6.6:

PROPOSITION 6.8 For i = 1, 2, let Fi be a topological foliation of a compact
manifold Mi. Then a leaf-preserving homeomorphism f : M1 → M2 induces a
homeomorphism

∂hf : ∂hF1

∼=−→ ∂hF2

Finally, there is a character map:

THEOREM 6.9 There is a natural map δ: H∗(∂hF ;R) → HX∗(F ;R) so that
the composition

H∗(∂hF ;R) → HX∗(F ;R) → H∗
c (GF ;R)

is the boundary map of the pair (GF , ∂hF).

The corona for a foliation seems to capture new topological aspects of the
foliated manifold M . One notes that ∂hF is a generalized fibration over M , so
the coboundary terms in the Leray spectral sequence for the map f : ∂hF → M
measure some quantitative aspects of F . It is an open problem to investigate the
significance of these invariants of a foliation.
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6.4 The endset and Gromov-Roe coronas

The foliation corona ∂hF of a topological foliation with non-compact leaves of a
compact manifold is non-separable, and is a truly enormous space. The problem
is that the criteria for a function to be in Ch(GF) imposes no restrictions on the
rate of decay of its variation, so the corona captures more of the Stone-Cech com-
pactification of the metric space GF than is perhaps intended. For this reason, one
introduces alternate definitions of coronas which are separable quotient spaces of
the corona.

A separable corona (L, q) for F is a separable compact space L equipped with
a continuous surjection q: ∂hF → L. A separable corona (L, q) determines a sepa-
rable subalgebra

AL = {f ∈ Ch(F) such that f |∂hF = g ◦ q for some g ∈ C(L)}

Conversely, given a separable C∗-subalgebra A ⊂ Ch(F) containing C0(F) there is
a natural map

q: ∂hF → spec(AL) ≡ LA

which defines a separable corona for F . A natural way to obtain a separable corona
for F is to construct such a subalgebra A which is generated by functions in Ch(F)
satisfying a “rate-of-decay” condition on their variations.

The endset, or Freudenthal, compactification of GF is obtained by requiring
that the variations of the functions vanish outside some compact set. Let Cε(F) ⊂
Ch(F) be the closed topological subalgebra generated by the functions which are
constant outside a compact set. That is, h ∈ Ch(F) is in Cε(F) if and only if there
is a compact subset Kh ⊂ GF so that the restriction of h to Cε(F)\Kh is constant.
Note that C0(F) ⊂ Cε(F).

DEFINITION 6.10 The endset of a foliation F is the compact topological space
ε(F) defined as the spectrum of the unital topological algebra Cε(F)/C0(F).

PROPOSITION 6.11 ε(F) is a corona for F .

Proof. A point in the spectrum of Ch(F)/C0(F) can be identified with an evalu-
ation

ε̂ : Ch(F)/C0(F) → C,

which naturally restricts to an evaluation ε̂ : Cε(F)/C0(F) → C. Thus, there is a
natural map ∂hF → ε(F). Cε(F)/C0(F) has a unit so ε(F) is compact. There is a
countable base for the space of the functions which are constant outside a compact
set, hence ε(F) is separable. Finally, let us show that ε(F) is the Freudenthal
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compactification for GF . A function which is constant outside of a compact set in
GF extends continuously to the Freudenthal compactification, hence Cε(F)/C0(F)
is contained in the continuous functions on the Freudenthal compactification. The
functions in Cε(F)/C0(F) separate the ends on GF , so by the Stone-Weierstrass
Theorem it must equal the standard end compactification. (We are indebted to
John Roe for pointing out this last trick.) �

Let us next introduce a family of foliation coronas, parametrized by a real
number τ > 0. For f ∈ C(GF), we say that the variation of f has uniform τ -decay
if for each r > 0 there exists C(f, k, r) > 0 and a uniform estimate

Vτ (x, r)(i∗xf)(y) < C(f, k, r) [Dx(y, ∗x) + 1]−τ for each x ∈ M and all y ∈ L̃x

(8)
The τ -decay condition is especially useful when τ > 1 for it then implies an esti-
mate on the change in the value of f along paths in the fibers (cf. the proof of
Proposition 6.15).

Let Cτ (F) ⊂ Ch(F) be the closed topological subalgebra generated by the
functions whose variations have uniform τ -decay.

DEFINITION 6.12 Let F be a topological foliation of a compact manifold M .
For τ > 0 the τ -boundary ∂τF of F is the spectrum of the quotient C∗-algebra
Cτ (F)/C0(F).

The variation of f has uniformly rapid decay if it has uniform τ -decay for all
τ > 0. Let C∞(F) ⊂ Ch(F) be the closed topological subalgebra generated by
the functions whose variations have uniformly rapid decay. Roe proved that for a
complete metric space L which is hyperbolic in the sense of Gromov, the spectrum
of the algebra of functions with rapid decay is homeomorphic to the geodesic
compactification of L (Proposition 2.3, [87]). This boundary is well-defined for
any metric space, so we propose:

DEFINITION 6.13 Let F be a topological foliation of a compact manifold M .
The Gromov-Roe boundary ∂∞F of F is the spectrum of the quotient C∗-algebra
C∞(F)/C0(F).

There is an important class of examples of foliations for which the above bound-
aries can be effectively described – those with cone-like holonomy groupoids. As-
sume there is given:

• a compact CW-complex Z and a fibration Π: Z → M ,
• a fiberwise metric �x: Zx × Zx → [0, 1] which varies continuously with x,
• a continuous “weight” function Φ: M × [0,∞) → [0,∞) with Φ(M ×{0}) = 0

and each restriction Φx: [0,∞) → [0,∞) is monotone-increasing and unbounded.
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The parametrized cone determined by the map Π is the fibration CΠ: C(Z, Π) →
M , where for each x ∈ M the fiber CZx ≡ CΠ−1(x) over x is the cone with vertex
x and base Zx = Π−1(x). The additional data � and Φ determines a fiberwise
metric CΦ� on C(Z, Π), where the fiber CZx has the cone metric determined by
Φx and �x (cf. section (3.46) of [88]). The data {CΠ: C(Z, Π) → M,C�} is called
the parametrized metric cone on {Π: Z → M,�, Φ}.

DEFINITION 6.14 A foliation F is cone-like with base Π: Z → M if there
exists

• a parametrized metric cone {CΠ: C(Z, Π) → M,C�}
• a fiber-preserving map CF : C(Z, Π) → GF which covers the identity on M ,
• constants d1, d2, d3, ε so that for each x ∈ M the restriction CFx: CZx → L̃x

is a coarse isometry with respect to these constants (cf. Definition 2.1).

PROPOSITION 6.15 Let F be a cone-like foliation with base Π: Z → M . Then
there are fiber-preserving continuous surjections

∂hF ∂CF−→ Z
∂τ CF−→ ∂τF

for 1 < τ ≤ ∞ such that the composition is the canonical map ∂hF → ∂τF . In
particular, ∂τF is a separable corona for 1 < τ ≤ ∞.

REMARK 6.16 The ∂τ -boundary for a cone-like space need not be homeomor-
phic to the cone, as it may collapse “flats at infinity”. For example, when all
leaves of F are metrically Euclidean of dimension greater than 1, then it is a nice
exercise to show that each fiber of ∂τF → M is a point for τ > 1. So in general,
the surjection ∂τCF : Z −→ ∂τF need not be a homeomorphism. However, when
the leaves of F admit metrics of uniformly negative curvature, the arguments of
Roe (cf. the proof of Proposition 2.3, [87]) show that ∂∞F is a fibration over M
with fibers Sp−1. The Gromov-Roe boundary ∂∞F is a very interesting object for
further study.

6.5 Coronas for special classes of foliations

We give some examples examples of foliations whose coronas fiber over the base
M . We first establish a general result, then consider geometric special cases to
illustrate it.

DEFINITION 6.17 A foliation F is said to be coarsely geodesic if

• GF is a Hausdorff space, with s:GF → M a fibration.
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• For each x ∈ M there exists an open neighborhood x ∈ U ⊂ M and a
trivialization TU : s−1U → L̃x × U , so that for each y ∈ U the restriction
TU,y: s

−1(y) → L̃x × {y} is a coarse isometry, with uniform constants inde-
pendent of y ∈ U .

A coarsely geodesic foliation F has a “typical leaf” L̃ which is a complete metric
space, and for all x ∈ M the holonomy cover L̃x is diffeomorphic and coarsely
isometric to L̃. This property is analogous to one enjoyed by totally geodesic
foliations [75], hence the terminology. This uniform metric property has a strong
consequence for the structure of the corona:

PROPOSITION 6.18 Let F be a coarsely geodesic foliation. Then the corona
of F fibers

∂hL̃ −→ ∂hF ∂s−→ M

Recall the construction of the class of suspension foliations (cf. Chapter 5,
[15]). Let X denote a compact topological manifold, and Γ isomorphic to the
fundamental group π1(B, b0) of a compact manifold B. Let Γ act on the universal
covering B̃ → B by deck translations on the left. Given a continuous action
ϕ : Γ×X → X, form the product of the deck action with ϕ to obtain an action of
Γ on B̃ × X. Introduce the quotient compact topological manifold,

Mϕ = Γ \ (B̃ × X).

The product foliation on B̃×X, with typical leaf L = B̃×{x} for x ∈ X, descends
to a topological foliation on Mϕ denoted by Fϕ . The projection onto the first
factor map, B̃ × X → B̃, descends to a map π : Mϕ → B, and π restricted to the
leaves Fϕ is a covering map. A Riemannian metric on TB lifts via π to a leafwise
metric on TFϕ, so that the foliation always carries a leafwise Riemannian distance
function (even though Fϕ need only be a topological foliation).

Let Kϕ ⊂ Γ denote the subgroup of elements which act trivially on X under ϕ,
let Γϕ = Γ/Kϕ denote the quotient group and B̃ϕ the covering of B correspond-
ing to Γϕ. Then Γϕ is isomorphic to a subgroup of Homeo(X ), called the global
holonomy group HFϕ ⊂ Homeo(X).

The action ϕ is effective if for all open subsets U ⊂ X and all γ ∈ Γ, if ϕ(γ)
restricts to the identity on U , then ϕ(γ) acts as the identity on X. Winkelnkemper
showed that the holonomy groupoid of the suspension of an effective action is
Hausdorff, and there is a homeomorphism

GFϕ
∼= Γ \

(
B̃ × X × B̃ϕ

)
(9)
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PROPOSITION 6.19 Let Fϕ be the suspension foliation associated to an effec-
tive continuous action ϕ. Then the foliation endset ε(Fϕ) fibers over Mϕ with fiber
homeomorphic to the endset ε(Γϕ) of the global holonomy group.

A much stronger is possible: The deck translations act via isometries on B̃ϕ so

induce a continuous action on the compactification B̃ϕ = B̃ϕ ∪ ∂hB̃ϕ. There is a
Γ-equivariant homeomorphism of boundaries ∂hB̃ϕ

∼= ∂hΓ, so by the identification
(9) and an application of the Proposition 6.18 we obtain:

PROPOSITION 6.20 Let ϕ : Γ × X → X be an effective on a compact topo-
logical manifold X. Then the foliation corona is homeomorphic to the suspension
fibration obtained from the induced action of Γ on the Higson corona of the global
holonomy group Γϕ

∂hF ∼= Γ \
(
B̃ × X × ∂hΓϕ

)

Foliations defined by locally free Lie group actions provide another class of
examples where the corona has additional structure. Let G be a connected Lie
group. A topological action ϕ : G × M → M is locally-free if for all x ∈ M the
isotropy subgroup Gx ⊂ G is a finite subgroup. The action is effective if g must be
the identity element whenever there is an open set U ⊂ M so that ϕ(g) restricts
to the identity on U .

LEMMA 6.21 Let ϕ : G × M → M be a locally-free effective C1-action. Then
the orbits of the action ϕ define a C1-foliation Fϕ of M , and there is a natural
homeomorphism

GFϕ
∼= G × M (10)

Choose an orthonormal framing of the Lie algebra of G, which determines a
right-invariant Riemannian metric on TG. At each x ∈ M the left action of G
on M induces a framing of the orbit of G through x. The action of G is locally
free, so the resulting continuous vector fields on M are linearly independent at
each point, hence yields a global framing of the leaves of Fϕ. Declare this to be an
orthonormal framing to obtain a Riemannian metric on the leaves. Note that the
identification (10) maps G×{x} to the holonomy cover of the orbit of G through x,
which by the essentially free hypotheses is exactly the orbit Gx. The Riemannian
manifolds G and Gx are isometric. By the identification (10) and an application
of the Proposition 6.18 we obtain:
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PROPOSITION 6.22 Let Fϕ be a C1-foliation of M determined by a locally-
free effective C1-action ϕ : G × M → M . Then the foliation corona of Fϕ is
homeomorphic to a product,

∂hGFϕ
∼= ∂hG × M

Riemannian foliations on compact manifolds provide a third geometric class of
foliations whose coronas have a fibration structure. This index invariants associated
to their coronas should be quite useful, beyond the context of this paper, as the
leafwise geometric operators for Riemannian foliations are a generalization of the
study of almost-periodic operators. The study of their analysis and index theory
is a natural extension of more classical topics, and the corona construction gives
an additional topological tool for their investigation.

Recall that a C1-foliation F is Riemannian [80] if there exists a Riemannian
metric on the normal bundle to F which is invariant under the linear holonomy
transport. This has many consequences for the topology of M and the structure of
the foliation [80] – for a compact manifold M , there is an open dense set of leaves
in a Riemannian foliation which have no holonomy, and the holonomy covers of all
of the leaves of F are homeomorphic. The homeomorphisms are induced by first
forming the principal O(q)-bundle P → M of orthogonal frames to the foliation F ,
where q is the codimension. The foliation lifts to a foliation F̂ without holonomy,
and the leaves of F̂ cover those of F . The compact manifold P carries a collection
of linearly independent vector fields which span the normal bundle to F̂ , whose
flows induce leaf preserving homeomorphisms of P and which are transitive on the
leaf space of F̂ . Thus, given any two leaves of F , there is a homeomorphism of
their holonomy covers which is realized by a sequence of homeomorphisms, each
the flow associated to a vector field on P . As noted by Winkelnkemper (section3,
Corollary [98]), this implies that the foliation groupoid is a fibration over the base
M ,

L −→ GF
s−→ M (11)

where L is called the “typical” leaf of F – as almost every leaf of F is diffeomorphic
to L. The explicit construction of the homeomorphisms between the fibers of (11)
as the composition of flows on the compact manifold P implies that the fibration
transition functions are coarse isometries on fibers, so the typical leaf also has a
well-defined coarse isometry type. By the identification (11) and an application of
the Proposition 6.18 we obtain:

PROPOSITION 6.23 Let F be a Riemannian foliation of a compact manifold
M , with typical leaf L. Then the foliation corona of F fibers

∂hL −→ ∂hF −→ M
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The other coronas ∂τF for τ > 0 constructed above also fiber in this way over the
base M .

We conclude this discussion of examples with a class of foliations for which
there is a canonically associated separable corona (L, q) for F where L is again a
manifold of dimension 2p + q − 1

PROPOSITION 6.24 Let F be a C2-foliation of a compact manifold M such
that the holonomy cover of each leaf is simply connected. Assume there is a Rie-
mannian metric on the tangential distribution to F so that each leaf has non-
positive sectional curvatures. Then there exists a separable corona π: ∂F → M ,
where the fiber π−1(x) ∼= Sp−1 is identified with the “sphere at infinity” on the
holonomy cover L̃x.

Proof. Let TF → M be the tangential distribution to the leaves of F . The
metric assumption implies that the leaf exponential map expF : TF → M × M is
a covering map onto each leaf. (The leaf exponential is defined by considering M
with a new topology in which each leaf is an open connected component, hence
the exponential spray stays inside each leaf. cf. [63, 97].) Thus, we obtain a
diffeomorphism expF : TF ∼= GF . Let TFg

= TF ∪ ∂F be the compactification of
TF obtained by adding on the sphere at infinity in each fiber. Then exp−1

F extends
to a continuous map of the compactifications

exp−1
F :GF −→ TFg

which restricts to a fiber-preserving surjective map ∂hF → ∂F . �

The compactification in Proposition 6.24 is called the geodesic compactification.

7 Manifolds not coarsely isometric to leaves

Coarse cohomology theory and the corona construction associate topological in-
variants to the “space at infinity” of a complete metric space L. In particular, we
can use this to define the (cohomological) dimension of an end of L. In this section,
we apply the “dimension of ends” to improve the main result of section 5. Recall
that the construction in section 5 of open manifolds with positive entropy used the
Pontrjagin classes of the attached “handles” N� to distinguish the manifolds with
boundary N(y, r, s,�k) up to quasi-isometric homeomorphism. A coarse isometry
does not preserve any local cohomology data – each handle N� is equivalent to a
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point – so an invariant of coarse isometry is needed to distinguish the tiles in the
tiling we are to create. The dimensions of ends is exactly right for this task!

The following result shows that there are metric nets which are not coarse
isometric to the net of a leaf of a transversally C1-foliation (or for that matter,
to a net given by an orbit of any topological groupoid compactly generated by
C1-maps.)

THEOREM 7.1 There exists an uncountable set of quasi-isometry types Rie-
mannian manifolds of bounded geometry and exponential volume growth, none of
which is coarse isometric to a leaf of a C0-foliation whose expansion growth is less
than [2br

] for all b > 1. In particular, a net in one of these manifolds cannot be
coarse isometric to a net in any leaf of a of Cα-foliations of any codimension, for
any modulus of continuity α > 0.

We only sketch the proof – the details are in [71]. The first point to make is is
to explain the idea in terms of the light bulb patterns of section 4. Recall, that in
the earlier construction, we varied the patterns from one set of sockets to another,
by changing the colors of the light bulbs. Unfortunately, in coarse geometry there
are no colors, as each light bulb is equivalent to a point. The idea is then to
replace varying the “color” of the bulb with varying its shape! That is, we will
replace the elliptic light bulbs with hyperbolic (or conical) models. The boundaries
of these hyperbolic models are coarse invariants. It is not possible to discern the
finer differential properties of the boundary construction, but the cohomological
dimension is a coarse invariant.

Continuing the analogy with changing lights in a pattern of sockets, the math-
ematical description of the construction of M is now apparent. In place of the
choices of manifolds model manifolds N� for 0 ≤ � ≤ 2 which are homotopy equiv-
alent to S4 × S2 used in section 4.2, let us introduce manifolds N� for 0 ≤ � ≤ 2
where N� is R�+2 ×S4−�. The corona ∂hN� has the same cohomology as the sphere
in the boundary S�+1. We can attach the N� to the “pattern manifold” M0 by
removing a disk of radius 1/2 in each N�, then proceeding exactly as in section 4.2.

The key point is that for the resulting inductively constructed manifold M , a
coarse isometry to a leaf L will induce a homeomorphism of their coronas, ∂hM ∼=
∂hL. Each “hyperbolic bulb” N� contributes an asymptotic homology class S�+1 ⊂
∂hM which is detected by a cohomology class on the corona. One then has to note
that the Product Neighborhood Theorem 3.3 can be used to deduce recurrence
for the cohomology of ∂hL, using the boundary map Theorem 6.9 in cohomology
H∗(∂hL;R) → HX∗+1

er (L;R). By this means, one can then work down the ends of
L to identify the socket patterns for M with those for L, and deduce once again
that h(L) > 0, contrary to Corollary 4.11.
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Lecture III - Coarse Families Produce Fine Invariants

8 The foliation Novikov conjecture

We next discuss the application of the corona construction to the Foliation Novikov
Conjecture. On the surface, this is a completely unrelated topic, as the question
revolves around the topological invariance of characteristic classes. However, the
deepest approaches to the Novikov Conjecture are based on the homotopy invari-
ance of certain structures at infinity, so the introduction of the methods of coarse
geometry are completely natural. The basic idea first showed up in the early work
by Gromov and Lawson on positive scalar curvature [50, 49, 89]. Roe developed
this application for the coarse Novikov Conjecture for open manifolds [88, 87]. Our
treatment of the index theory for foliations formulates this theory for families of
open manifolds, which can be used to give a coarse geometry proof of the Novikov
Conjecture for compact manifolds [66] parallel to the methods of geometric topol-
ogy [39, 20]and KK-theory [76].

8.1 Coarse fundamental classes

The compactly-supported fundamental class for Rn is a generator of the exotic co-
homology HXn(Rn;R). More generally, for an open complete manifold L, classes
in HX∗(L;R) represent “fundamental classes” that naturally pair with the locally-
finite homology of L.

The index class of a leafwise elliptic differential operator is a K-theory class
in K∗(C

∗(F)), whose Chern character can be considered as a cohomology class
on the leaf space M/F . A K-theory fundamental class for F is defined to be
homomorphism Z∗ = 〈·, Z〉: K∗(C

∗(F)) → Z which depends only on the leafwise
homotopy class of F . Connes proved that an invariant transverse elliptic operator
to F yields a fundamental class [25]. He later showed that a cyclic cocycle on the
smooth convolution algebra C∞

c (GF) which satisfies appropriate growth estimates
yields a fundamental class [24]. The new observation from coarse geometry is that
each K-theory class in K�+1(∂hF) generates a family of fundamental classes for F .

The index class of the leafwise signature operator with coefficients in a leafwise
almost flat bundle E → M is a leafwise homotopy invariant (cf. Hilsum and
Skandalis [60]), so a K-theory fundamental class Z∗ yields a numerical invariant
〈Ind ((dF ∗ − ∗ dF) ⊗ E) , Z〉 of the leafwise homotopy class of F . Consequently,
for each K-theory class in K�+1(∂hF), the fundamental class construction yields
homotopy invariants for leafwise elliptic operators.
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Let C∗
r (F) denote the reduced C∗-algebra associated to the foliation F with its

given leafwise Haar system dvF (cf. [22, 23, 85].)

The first result is the existence of a boundary map from K∗(∂hF) to the
parametrized K-theory of GF over M , whose image consists of generalized “dual-
Dirac” classes for F in Kasparov bivariant-KK-theory:

THEOREM 8.1 ([67]) Let F be a C2-foliation of a compact manifold M . Then
there is a natural map

ρ: K∗(∂hF) −→ KK∗+1(C
∗
r (F), C(M)) (12)

whose image consists of generalized foliation dual-Dirac classes.

Compose the map ρ of equation (12) with the KK-external product

KK(C, C∗
r (F)) ⊗ KK∗+1(C

∗
r (F), C(M)) → KK(C, C(M)) ∼= K∗(M)

to obtain:

COROLLARY 8.2 Let k, � = 0, 1 be fixed. Then for each [u] ∈ K�(∂hF) there
is an exotic index map

ρ[u]: Kk (C∗(F)) −→ Kk+�+1(M) (13)

The exotic index in K∗(M) can be coupled to an elliptic operator on M to
obtain numerical invariants; these are the fundamental classes mentioned above:

THEOREM 8.3 For each [u] ∈ K�(∂hF) and [DM ] ∈ KK(C0(M),C), there is
a K-theory fundamental class

Z([u], [DM ])∗: K∗(C
∗(F)) → Z

The net result is that given a K-homology class on the ambient space, M , and
an exotic class “along the leaves”, their “cap product” is a transverse fundamental
class for F which can be paired with the indices of leafwise elliptic operators to
get the exotic indices.

The exotic index ρ[u](Ind(DF , ε)) ∈ K∗(M) is an “integral” invariant of DF .
This contrasts with the real-valued measured index of a leafwise operator for a
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foliation admitting a holonomy-invariant transverse measure, which is typically a
renormalized index with values in R.

Let DF be a leafwise-elliptic, pseudo-differential operator for F . The Connes-
Skandalis construction [30] yields a KK-index class Ind(DF) ∈ KK∗(C0(M), C∗(F)),
which via the external KK-product yields a map:

µ(DF): K∗(M) ∼= KK(C, C0(M)) −→ KK(C, C∗(F)) ∼= K∗(C
∗(F)) (14)

The map (14) is a special case of the Baum-Connes “µ-map” whose domain is the
K-theory of all leafwise symbols for F [7, 8].

We say that F is a contractable foliation if the identity map of GF is homotopic
to the fiberwise projection onto the diagonal, ∗s:GF → M ↪→ ∗M ⊂ GF . If
the homotopy can be chosen to preserve the fibers of s, then we say that F has
uniformly contractable leaves. We observed in [67] that for contractable foliations,
there is a foliated form of Atiyah’s trick in [2] which reduces the calculation of the
exotic index pairing to that of determining one K-theory class:

THEOREM 8.4 Let F be a contractable foliation of leaf dimension p with Haus-
dorff holonomy groupoid GF . For each boundary K-theory class [u] ∈ K�+1(∂hF)
the composition

ρ[u] ◦ µ(DF): Kk(M) −→ Kk+�+p(M) (15)

is multiplication by the exotic index class I(DF , [u]) = ρ[u](Inde(DF , ε)) ∈ K�+p(M)
for p even and I(DF , [u]) = ρ[u](Inde(DF)) ∈ K�+p(M) for p odd.

Theorem 8.4 yields our best tool for proving the injectivity of the map µ(DF).
Here is the main result:

COROLLARY 8.5 Let F be a contractable foliation of leaf dimension p with
Hausdorff holonomy groupoid GF and DF be a leafwise-elliptic, pseudo-differential
operator. Suppose that for each [e] ∈ K∗(M), there exists a boundary K-theory
class [ue] ∈ K∗(∂hF) so that I(DF , [ue]) ⊗ [e] ∈ K∗(M) ⊗ Q is non-zero. Then
the leafwise index map

µ(DF): K∗(M) ⊗ Q −→ K∗(C
∗(F)) ⊗ Q

is injective. In particular, if there exists [u] ∈ K∗(∂hF) so that I(DF , [ue]) ∈
K∗(M) ⊗ Q is invertible, then µ(DF) is injective. �

A class I ∈ K0(M) ⊗ R for a connected manifold M is invertible if and only
if its virtual dimension is non-zero. That is, the restriction of I to a point x ∈ M
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yields a non-trivial class in K0(x) ∼= Z. In the above context, this implies that
if I(DF , [u]) has even degree and its restriction to a fiber over each connected
component of M is non-trivial, then µ(DF) is injective.

In the Atiyah formalism of [2], given an hermitian vector bundle pE:E → M and
an elliptic operator DE along the fibers of pE, there is a map α(DE): K(E) → K(M)
given by integration along the fibers in K-theory. A key property of this map is that
it commutes with the natural p∗E-module action of K(M) on K(E). Tensor product
with the Bott class β[E] ∈ K(E) of the bundle E defines a map β: K(M) → K(E).
The K(M)-module properties of α and β imply that α(DE) ◦ β: K(M) → K(M)
is multiplication by I(β[E] ⊗ DE) ∈ K(M), which is calculated from the index
theorem for families.

The constructions of the exotic index bear a strong similarity with the Atiyah
approach. In the foliation context, the groupoid “fibration” s:GF → M replaces
the vector bundle E → M , and the fiberwise operator DGF replaces DE. The
transgression δ[u] ∈ K∗(GF) of a boundary class [u] ∈ K∗(∂hF) replaces the Bott
class β[E]. There are generalized α and β maps as well:

α(DGF ): K(GF) → K(M) (16)

β[u]: K(M) → K(GF) (17)

where β[u]([e]) = δ[u] ⊗ [s!e] and α(DGF )[e] = Ind ([e] ⊗DGF ). The composition
α(DGF ) ◦ β[u] = I(DF , [u]), so that injectivity of ρ[u] ◦ µ(DF) is equivalent to
injectivity of α(DGF ) ◦ β[u].

The corona of Euclidean space RN has the same K-theory as SN−1, so for a vec-
tor bundle E → M , there is a unique boundary K-theory class which transgresses
to a fiberwise fundamental class for the fibration (just as there is a unique Bott
class.) For the more general situation of s:GF → M , each class δ[u] ∈ K∗(GF) can
be used as a “Bott class” and the topological problem is to calculate the range of
the index pairings I(DF , [u]) for the various classes [u] ∈ K∗(∂hF).

8.2 The foliation Novikov conjecture

The composition of groupoids M ∼= ∗M ⊂ ΠF ⊂ GF induces a sequence of classi-
fying maps

M � B(∗M) −→ BΠF −→ BGF

Haefliger (Corollaire 3.2.4, [51]) proved that for a foliation with uniformly con-
tractable leaves, the composition M → BGF is a homotopy equivalence. As a
corollary, we note that the image of the induced map H∗(GF) → H∗(M) equals
the image of H∗(BΠF) → H∗(M).
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CONJECTURE 8.6 (Foliation Novikov Conjecture, [8]) Let (M,F) and
(M ′,F ′) be oriented C∞ foliations with M,M ′ compact. Let f : M → M ′ be an
orientation-preserving leafwise homotopy equivalence. Then for any class ω ∈
H∗(BΠF ;Q)

(Bπ′)∗ω ∪ L(TM ′) = f ∗ ((Bπ)∗ω ∪ L(TM)) (18)

where L(TM) denotes the Hirzebruch L-polynomial in the Pontrjagin classes of
TM .

The Foliation Novikov conjecture is said to hold for F if the conclusion (18) is true
for all leafwise homotopy equivalences f : M → M ′ as above. For a foliation F with
uniformly contractable leaves, Haefliger’s theorem implies it suffices to check (18)
holds for all ω ∈ H∗(BGF ;Q) ∼= H∗(M ;Q).

Baum and Connes proved this conjecture for foliations whose leaves admit a
metric with non-positive sectional curvatures, using the “dual Dirac” method [8].
We next show how the exotic index applies to extend their result. First, we need
the foliation formulation of an idea introduced by Roe (section 6.2, [88].) Let
TF → M be the tangent bundle to the leaves of F and SF the sphere bundle for
TF considered as a corona for TF . There is a unique class Θ ∈ Hp−1(SF) whose
boundary δΘ = Th[TF ] ∈ Hp

c (TF) is the Thom class.

DEFINITION 8.7 A foliation F on a connected manifold M is said to be ultra-
spherical if there exists a map of coronas σ: ∂hF → SF which commutes with the
projections onto M , and so that σ∗Θ ∈ H∗(∂hF) is non-zero.

THEOREM 8.8 Let F be an oriented ultra-spherical foliation with uniformly
contractable leaves and Hausdorff holonomy groupoid. Then the Foliation Novikov
Conjecture is true for F .

Proof: By the standard reduction of the problem (cf. [8]), it suffices to show that
the map µ(DF) is injective for the leafwise Dirac operator. By Corollary 8.5, this
will follow from proving there exists a boundary K-theory class [u] ∈ K∗(∂hF) so
that I(DF , [u]) ∈ K∗(M) ⊗ Q is invertible.

Let η ∈ K(SF) with K-theory boundary β[TF ] ∈ K(TF), and set [u] = σ∗η.

LEMMA 8.9 I(DF , [u]) is is invertible in K∗(M) ⊗ Q.

Proof: There is a continuous extension of σ to a map of pairs (cf. proof of
Lemma 6.3, [88])

σ: (GF , ∂hF) −→ (TF , SF)
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which commutes with the projection onto M . By naturality of the boundary map,
∂[u] = σ∗β[TF ], so that

I(DF , [u]) = Ind (σ∗β[TF ] ⊗DGF ) (19)

The index class I(DF , [u]) has even dimension, so it suffices to show that
Ind (σ∗β[TF ] ⊗DGF ) is non-zero when restricted to any fiber over M . But this
follows from the original calculation of Roe, Theorem 6.9 [88]. �

REMARK 8.10 The sequence of hypotheses above have progressed from the
least restrictive, “F is contractable” to the more restrictive, “F is ultra-spherical”
with each assumption yielding further progress towards establishing the foliation
Novikov Conjecture for that class of foliations. This is precisely parallel to the
development of the proof of the Novikov Conjecture for compact manifolds, where
the all current methods of proof seem to require a version of the “ultra-spherical
hypotheses” and speculate that the techniques extend to the uniformly contractable
case. It is natural to conjecture that the above techniques will show that the map
µ(DF) is injective for contractable foliations. That is, the problem is to show that
all contractable foliations admit a boundary K-theory class [u] ∈ K∗(∂hF) so that
I(DF , [u]) is a multiplicative unit in K∗(M) for the leafwise signature operator
DF .

EXAMPLE 8.11 A uniformly contractable foliation F whose leaves have a met-
ric so that their holonomy covers have no conjugate points is ultraspherical.

EXAMPLE 8.12 Let F be a Riemannian foliation F whose universal leaf L is
ultra-spherical. Then by the proof of Proposition 6.23, F satisfies the hypotheses
of Theorem 8.8.

9 Non-commutative isoperimetric functions

The Fourier transform f̂ of a compactly supported continuous function f ∈ Cc(R)
has infinite support. Given a sequence of functions {fn} ⊂ Cc(R) whose supports
tend to a point, then their transforms {f̂n} are a family with vanishing gradients.
These are elementary analytic remarks, but we can use the analogy with the ideas
of the last section to ask about what aspect of coarse geometry corresponds to
the Fourier transforms of the geometric data contained in the ersatz cohomology
Her(L;R)? The answer is almost flat K-theory, K∗

af (L), and while their is no direct

connection between the K-theory groups K∗(∂hL) and K∗+1
af (L), they are clearly

strongly intuitively related by the above analogy.
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The notion of almost flat vector bundles was introduced by Connes, Gromov and
Moscovici for the study of the Novikov conjecture for compact manifolds [26, 27],
motivated by the work of Gromov and Lawson [50]. These special bundles generate
a subgroup K0

af (M) ⊂ K0(M) of the Grothendieck group of the manifold M .
Almost flat vector bundles are inherently a coarse geometric notion, and in this
section we discuss a quantitative measure associated to these bundles, their “non-
commutative” isoperimetric functions.

One of the fundamental properties of almost flat bundles is that the the index of
the Dirac operator paired with an element of K0

af (M) is a topological invariant [60].
There is also a K1-version of this property, where a self-adjoint elliptic operator on
a manifold yields a projection (the projection onto its positive spectrum) which is
then paired with a unitary multiplier, to obtain a generalized Toeplitz operator [9,
33]. The indices of these generalized Toeplitz operators can be explicitly estimated
for almost flat unitary maps on M . More generally, for foliations there is a notion of
F -almost flat odd K-theory for a foliated manifold (M,F) which has applications
to the study of the spectral density function of leafwise elliptic operators.

9.1 Almost flat bundles for foliations

Let (M,F) be a compact foliated measure manifold (or more generally, we must
allow for M to be a foliated measure space in the sense of [82], or section 2 [73]) with
leaves of dimension m. Assume there is given a leafwise Riemannian metric 〈·, ·〉L
of bounded geometry, which varies in a bounded measurable way with the (local)
transverse parametrization of the leaf. Let ∇L denote the associated Riemannian
connection on the leaf L, and let ∇F denote the collection of all the leafwise
connections.

A Hermitian vector bundle E → M is a foliated Hermitian flat bundle if for
each foliation chart Uα, there is a trivialization Φα : E|Uα

∼= CN × Dm × Tα, such
that

• On the overlap of Uα ∩ Uβ, the transition function

Φ−1
β ◦ Φα : CN × φα(Uα ∩ Uβ) −→ CN × Φβ(Uα ∩ Uβ)

is a constant Hermitian isomorphism when restricted to the “horizontal sets”
Dm × {x}

• Φ−1
β ◦ Φα(�v, x) depends measurably on the parameter x for all �v ∈ CN ;

Let ∇EL denote the leafwise Hermitian connection for EL
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U(E) denotes the U(N)-principal bundle of unitary fiberwise automorphisms
of E. Let C1

F(U(E)) denote the measurable sections whose restrictions to leaves
are C1. In the case where M = M with the one leaf foliation, with L = M , we
write C1(U(E)) = C1

F(U(E)).

Define a C1-pseudo-norm for g ∈ C1
F(U(E)): Let {h̃1, . . . , h̃N} be a local ∇EL-

synchronous orthonormal framing about x ∈ L. For example, fix a trivialization
Φα : E|Uα

∼= CN×Dm×Tα with x ∈ Uα. Choose an Hermitian framing {�v1, . . . , �vN}
for CN for the induced metric on CN , then set

h̃�(v) = Φ−1
α (�v�, ϕα(v))

The restriction of {h̃1, . . . , h̃N} to the plaque of L containing x is a local syn-
chronous framing.

For g ∈ C1
F(U(E)), let gL denote the restriction to a leaf L. We use a syn-

chronous framing on L about x ∈ L to express gL in matrix form:

gL · h̃j =
∑

1≤i≤N

(gL)ij · h̃i

for local C1-functions gL
ij defined on an open neighborhood in L of x. Then define

‖g‖(1) = sup
L⊂M

sup
x∈L

√ ∑
1≤i,j≤N

‖ ∇L(gL)ij|x ‖2 (20)

A map g ∈ C1
F(U(E)) is admissible if ‖g‖(1) < ∞.

DEFINITION 9.1 (cf. Definition 5.1 [60]) An almost flat odd cocycle for
(M,F) consists of the data gaf = {(gi, Ni) | i ≥ 1} such that for each i ≥ 1:

• Ei → M is a foliated Hermitian flat bundle of dimension Ni

• gi ∈ C1
F(U(Ei)) is an admissible map with ||gi||(1) ≤ 1/i

• The stabilized vector bundles Ei ⊕ C∞ are all isomorphic to a common Her-
mitian vector bundle E∞ → M

• there is a continuous family of admissible maps gt ∈ C1
F(U(E∞)) for i ≤ t ≤

i + 1 interpolating between the stabilized sections gi and gi+1.

We say that two almost flat odd cycles {gaf} and {haf} are equivalent if there
exists admissible maps Hi(t) ∈ C1

F(U(E∞)) interpolating between gi and hi for all
i ≥ 0.

PROPOSITION 9.2 The set of equivalence classes of almost flat odd cocycles
for (M,F) forms a group, K1

af (M,F), called the almost flat odd K-theory of F .
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Suppose that M is a compact Riemannian manifold with fundamental group
Λ = π1(M, y0), and M̃Γ → M is the covering associated to a surjection ρ : Λ → Γ,
with the covering group Γ acting on the left on M̃Γ. There is a version of the
suspension construction for an action of Γ on a measure space X: Let X denote
a standard, second countable Borel measure space, with µ̃ a Borel probability
measure on X. Consider a Borel action ϕ : Γ × X → X which preserves µ̃. The
product of the deck action on M̃Γ with the ϕ-action on X defines an action of Γ
on M̃Γ × X. Form the quotient measure space,

Mϕ = Γ \ (M̃Γ × X).

The product foliation on M̃Γ × X, with typical leaf L̃ = M̃Γ × {x} for x ∈ X,
descends to a measurable foliation denoted by Fϕ on Mϕ. The measure µ̃ descends
to a holonomy-invariant transverse measure µ for Fϕ.

Exactly as before, let Kϕ ⊂ Λ denote the subgroup of elements which act
trivially on X under ϕ, and let Γϕ = Λ/Kϕ denote the quotient group. The global
holonomy group of Fϕ is the isomorphic image

Γϕ

ϕ∼= HFϕ ⊂ Aut(X ).

The projection onto the first factor map, M̃Γ × X → M̃Γ, descends to a map
π : Mϕ → M , and π restricted to the leaves Fϕ is a covering map. The Riemannian
metric on TM lifts via π∗ to a leafwise metric on TFϕ. The foliated spaces (Mϕ,Fϕ)
are prototypical.

There is a natural construction of Borel measure space (XΓ, µ̃Γ) associated to
a group Γ, equipped with a measure preserving ergodic action ϕ of Γ. Endow the
two-point space Z2 = {0, 1} with the “1

2
− 1

2
” probability measure, and set

XΓ =
∏
γ∈Γ

(Z2)γ

equipped with the product topology from the factors and product measure µ̃Γ =∏
γ∈Γ µγ. A typical element of XΓ is a string x = {aγ} = {aγ | aγ ∈ Z2 for γ ∈ Γ}.

Let ϕ : Γ × XΓ → XΓ be the “shift” action of Γ on XΓ, defined by ϕ(δ, {aγ}) =
{aδγ}. The shift action is continuous, transitive, measure-preserving, ergodic and
free for µ̃Γ-a.e. x ∈ XΓ.

For each quotient group Λ → Γ, introduce the foliated measure space MΓ =
Γ \ (M̃Γ × XΓ) with foliation FΓ, transverse invariant measure µΓ and µΓ-typical
leaf isometric to M̃Γ.
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DEFINITION 9.3 A Γ-almost flat odd cocycle for M consists of the data gaf =
{(gi,Ei, Ni) | 0 ≤ i} which satisfy:

• E0 → M is the product bundle with fibers of dimension N0

• Ei → M is an Hermitian flat bundle of dimension Ni associated to a holonomy
homomorphism Λ

ρ→ Γ
α→ U(Ni)

• gi ∈ C1(U(Ei)) is an admissible map with ||gi||(1) ≤ 1/i
• There is an Hermitian vector bundle E∞ so that Ei ⊕ C∞ ∼= E∞ for all i
• For each i ≥ 0, there is an admissible map gt ∈ C1

FΓ
(U(π!E∞)) for i ≤ t ≤ i+1

interpolating between the stabilized sections π∗gi and π∗gi+1, where π : MΓ → M .

Let [gaf ] ∈ K1(M) denote the class of the map g0 : M → U(N0).

DEFINITION 9.4 For a quotient group ρ : Λ → Γ, the Γ-almost flat odd K-
theory of M is the subgroup K1

Γaf (M) ⊂ K1(M) of elements [gaf ], where gaf is a
Γ-almost flat odd cocycle for M.

DEFINITION 9.5 The almost flat odd K-theory of M is the group K1
af (M) =

K1
Λaf (M) associated to the fundamental group Λ of M .

Almost flat odd K-theory is functorial:

PROPOSITION 9.6 Let Λ
ρ→ Γ

q→ Γ′ be a composition of submersions. Then
there is a natural map

q! : K1
Γ′af (M) → K1

Γaf (M).

In particular, for all ρ : Λ → Γ, there is a map ρ! : K1
Γaf (M) → K1

af (M).

PROPOSITION 9.7 ([69]) There is a natural map

π! : K∗
Γaf (M) → K∗

af (MΓ,FΓ). (21)

which is injective on rational K-theory.

One of the most fundamental questions about almost flat K-theory is to estab-
lish a precise relation with the corona space. Here is the precise problem:

PROBLEM 9.8 Let Γ ∼= π1(B, b0) where B is a compact simplicial space with
contractable universal covering. Construct a natural, non-trivial boundary map

∂af : K
0(∂hΓ) −→ K1

af (BΓ)
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9.2 Non-commutative isoperimetric functions

In this section, we introduce a numerical measure of how efficiently an almost flat
bundle can be realized on a leaf or covering. To obtain a small gradient ε, one
must use bundles of increasingly large dimensions. In the standard examples (see
§§9.3 & 9.4 below), the dimension required is related to the degree of a covering on
which the bundle data can be sufficiently smoothed. Hence the bundle dimension
corresponds to a “volume measure” in K-theory, and it is natural to study the
function relating the smoothness ε with the “volume” required to achieve this
smoothness. This is the reasoning behind our definition of “non-commutative
isoperimetric functions”.

We first consider the case of unitaries over a compact space BΓ. Fix u ∈
K1(M). Realize the classifying space of the discrete group Γ with a simplicial
space BΓ endowed with a compatible Riemannian metric on the simplices. For
each ε > 0, let DΓ,u(ε) denote the minimum dimension of a Hermitian flat bundle
Eε → BΓ so that u is represented by a fiberwise unitary gε ∈ C1(U(Eε)) with
||uε||(1) ≤ ε. If no such bundle exists, set DΓ,u(ε) = ∞.

DEFINITION 9.9 (Non-commutative Γ-isoperimetric function) For ε >
0, set

IΓ,u(ε) =
1

DΓ,u(ε)
(22)

Introduce an equivalence relation on positive functions, where f ∼ g if there
exists a constant a > 0 such that

g(
ε

a
) ≤ f(ε) ≤ g(aε) for all ε > 0.

The following result states that IΓ,u(ε) is a coarse invariant.

PROPOSITION 9.10 ([69]) Let Γ ∼= π1(B, b0) where B is a compact simplicial
space with contractable universal covering. Then for each u ∈ K1(BΓ), the class
of IΓ,u(ε) is a topological invariant.

There is a similar definition of the non-commutative isoperimetric function
for foliated manifolds. Let (M,F) be a compact foliated measure space. Fix
u ∈ K1

af (M,F), represented by a fiberwise Hermitian automorphism g ∈ C1
F(E).

For each ε > 0, let DF ,u(ε) denote the minimum dimension of a foliated Hermitian
flat bundle Eε → M so that u is represented by a fiberwise unitary gε ∈ C1

F(U(Eε))
with ||gε||(1) < ε. If no such bundle exists, set DF ,u(ε) = ∞.
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DEFINITION 9.11 The non-commutative foliated isoperimetric function is de-
fined by

IF ,u(ε) =
1

DF ,u(ε)
(23)

The same ideas as used in the proof of Proposition 9.10 also establish:

PROPOSITION 9.12 Let (M,F) be a C1-foliation of a compact manifold M .
Then for each u ∈ K1

af (M,F), the class of IF ,u(ε) is a leafwise homotopy invariant.

9.3 Profinite bundles

The idea of almost flat bundles is best illustrated by considering the special case
of bundles over residually finite manifolds, which leads to the concept of profinite
K1-cocycles for Kaf (M).

For each N > 0, U(N) ⊂ M(N,C) ∼= CN2
denotes the group of N ×N -unitary

matrices considered as a subspace of the vector space of all matrices. Let U(∞)
denote the stabilized super-group with the weak limit topology. The C1-semi-norm
of a C1-function g : M̃ → U(N) is defined as the supremum of the norms of the
covariant derivatives of its matrix entries,

||g||(1) = sup
x∈M̃

sup
1≤k,�≤N

||∇gk�||x (24)

DEFINITION 9.13 (Profinite K1-Γ-cocycles) Let ρ : Λ → Γ be a submer-
sion. A profinite Γ-cocycle for M consists of the data gpf = {(gi, Γi, Ni) | 0 ≤ i}
which satisfy:

• Γi is a finite quotient group of Γ, with Γ0 = Γ
• πi : M̃i → M is the covering of M associated to the surjection Λ → Γ → Γi

• gi : M̃i → U(Ni) is a C1 mapping with ||gi||(1) < 1/i

• For each i ≥ 0, |Γi| · [gi] = [g0 ◦ πi] ∈ K1(M̃i).

Let [gpf ] ∈ K1(M) denote the homotopy class of the stabilized map g0 → U(N0) ⊂
U(∞).

Let K1
Γpf (M) ⊂ K1(M) denote the subset of classes represented by profinite

K1-Γ-cocycles. When Γ = Λ = π1(M,x0), then we simply write K1
pf (M).

PROPOSITION 9.14 ([69]) K1
Γpf(M) is a subgroup of K1

Γaf (M).
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9.4 Calculations of isoperimetric functions

The universal covering of the m-torus Tm is Rm, and identify the deck action of
the fundamental group Λ ∼= Zm on Rm with the translation action of the subgroup
Zm ⊂ Rm. A Riemannian metric on Tm lifts to a Zm-periodic Riemannian metric
on Rm, and an Hermitian vector bundle E0

Tm → Tm lifts to a Zm-periodic bundle
E0 → Rm.

Given a C1-map g: M → U(p), set

‖[g0]‖(1) = inf
{
‖ g ‖(1) | g: M → U(p) and g ∼ g0

}

PROPOSITION 9.15 Let 0 	= u ∈ K1(Tm) be represented by g0 : Tm → U((m+
1)/2).

DZm,u(‖[g0]‖(1)/�) ≤
(m + 1) · �m

2
(25)

and hence IZm,u(ε) ∼ εm for ε small.

Proof: We follow the re-scaling method of of Gromov and Lawson [50]: For each
integer i > 0 let πi : M̃i → Tm denote the covering corresponding to the subgroup
Λi = i · Zm ⊂ Zm with index [Λ : Λi] = im. Let Φi : M̃i

∼= Tm be the canonical
diffeomorphism which decreases distances by the factor 1/i and define a unitary
gi = g0 ◦ Φi : M̃i → U . Thus, each map gi is topologically the same as the map g0

but is considered as a map on the covering M̃i which is a metric re-scaling of the
base torus. The sequence gpf = {(gi, Λi, Ni) | 0 ≤ i} for Ni = (m + 1)/2 clearly
satisfies the conditions of Definition 9.13. �

REMARK 9.16 The motivation for calling IΓ,u(ε) an “isoperimetric function”
appears in the above derivation of the estimate (25). Recall the usual isoperimetric
constant for a complete Riemannian manifold X (cf. Theorem 1, [99]):

h(X) = inf
U⊂X

inf
f∈C1

c (U)

∫
U ‖∇f ‖ dvol∫

U | f | dvol
(26)

For a typical test function f which satisfies |f | ≤ 1, the isoperimetric constant is
dominated by the ratio of the supremum of ‖∇f ‖ on U to the mass of U . Observe
that for a class u ∈ K1

Γpf (M), the function IΓ,u(ε) is dominated by the ratio of

the supremum of ‖∇g ‖, for g : M̃i → U(∞) in the class of u, to the number |Γi|
which is proportional to the mass of M̃i. Thus, the function IΓ,u(ε) measures how
“efficiently” the K-theory class u can be realized on the open manifold M̃Γ in terms
of volume.
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The above example M = Tm is a special case of a general class of manifolds
for which one can derive an estimate for IΛ,u(ε). Recall the definition of an a
compactly enlargeable manifold due to Gromov and Lawson ([50]). A Riemannian
manifold is enlargeable of dimension m if for every ε > 0, there exists a covering
(possibly infinite) M̃ε → M and a degree one map fε : M̃ε → Sm which is constant
at infinity and has ‖∇fε ‖ < ε. The manifold M is compactly enlargeable if for
each ε > 0, there exists a finite covering M̃ε with these properties. There are many
examples of compactly enlargeable manifolds:

THEOREM 9.17 (Theorems 5.3, 5.4, [79]) The following are compactly en-
largeable:

1. A compact Riemannian manifold which admits a globally expanding self-map.

2. A compact arithmetic manifold with constant non-positive sectional curva-
tures.

3. The product of compactly enlargeable manifolds.

4. The connected sum of any compact manifold with a compactly enlargeable
manifold.

5. Any manifold which admits a map of non-zero degree onto an enlargeable
manifold.

Recall that a map f from a metric space (X, dX) to a metric space (Y, dY ) is
called globally expanding if for any two points x1, x2 ∈ X with x1 	= x2, one has
dY (f(x1), f(x2)) > dX(x1, x2). John Franks proved that the fundamental group
Λ = π1(M,x0) of a compact Riemannian manifold M which admits a globally
expanding self-map has polynomial growth, hence by the celebrated theorem of
Gromov, Λ must contain a nilpotent subgroup of finite index. Thus, by Shub’s cri-
teria the map f is topologically conjugate to an expanding infra-nil-endomorphism
of M . See the Introduction and section 1 of the paper of Gromov, [46], for a
discussion and references concerning globally expanding self-maps.

The covering degree function of a compactly enlargeable Riemannian manifold
M is defined for all ε > 0:

CDM(ε) = inf{[Λ : Λi] | Λi = π1(M̃i) and there exists a degree one map

fε : M̃i → Sm with ‖∇fε ‖ < ε}.

The proof of Proposition 9.14 yields the estimate:
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LEMMA 9.18 Let M be a compactly enlargeable, odd dimensional Riemannian
manifold with fundamental group Λ, and u = [ι◦f ] ∈ K1(M) the K-theory class of
ι: Sm → U((m + 1)/2) composed with a degree-one map f : M → Sm. Then there
exists a constant C(M) > 0 so that

DΛ,u(ε) ≤ C(M) · CDM(ε)

In particular, this implies that the reciprocal function IΛ,u(ε) > 0 when ε > 0. �

10 Coarse invariance of the leafwise spectrum

Our final topic considers relations between the spectrum of operators and coarse
geometry. The results we describe just open the door to a whole other area where
the ideas of coarse geometry are being applied (cf. [12, 13, 65, 69, 88]. Recall the
spectrum of a symmetric elliptic differential operator on a complete open Rieman-
nian manifold is a closed subset of the real line, but there are few other a priori
restrictions on its nature. One knows from the Weyl test formula that the topolog-
ical nature of the spectrum is determined by the behavior of the operator on test
functions whose supports tend to infinity. This suggests searching for properties
of the spectrum of an elliptic operator D on a complete Riemannian manifold L of
bounded geometry, which depend only on the coarse geometry of L. The idea is
to prove that the measure theory and geometry at infinity for L control aspects of
the local spectrum of D. For example, the Poisson kernel formula for constructing
harmonic functions on the Poincaré disk is an example of this phenomenon, an one
speculates that similar properties might be found for more general open manifolds.
We will give two cases where a coarse geometric property of L implies properties of
the local spectrum of an elliptic differential operator on L. Both results are proved
using index theory techniques.

10.1 Coronas and leafwise spectrum

Roe observed (Proposition 5.21 [88]) that the existence of a gap in the spectrum
of a geometric operator D on a complete open manifold L implies the exotic index
of D vanishes. This “gap” property is an important source of relations between
coarse geometry and index theory, via the Lichnerowicz formalism [49, 50, 88, 89].

Fix a foliated manifold M with foliation F having leaves of dimension p, and
a leafwise-smooth Riemannian metric 〈·, ·〉F on TF such that each leaf L is a
complete manifold with bounded geometry. We assume the leafwise metrics, with
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the C2-topology, vary continuously with the transverse parameter. Recall that ∇L

is the associated Riemannian connection on the leaf L with ∇F denoting the family
of leafwise connections.

Let S → M be the Clifford bundle of spinors associated to the Clifford algebra
bundle C(TF), and for each leaf L ⊂ M , let SL → L denote the restricted bundle.
Then D/ L : C∞

c (SL) → C∞
c (SL) denotes the corresponding leafwise Dirac operator.

Given a smooth Hermitian vector bundle E0 → M , we can introduce the leafwise
geometric operators

DL = D/ L ⊗∇E0
L (27)

defined on the (leafwise) compactly supported sections C∞
c (EL) of the bundle E =

S ⊗ E0 restricted to the leaves of F .

DEFINITION 10.1 A foliation geometric operator D for (M,F) is a collection
of leafwise geometric operators {DL | L ⊂ M} defined as in (27) for some leafwise
Riemannian metric for F and some Hermitian vector bundle E0 as above.

DEFINITION 10.2 We say that the spectrum of DF has a uniform gap about
λ ∈ R if there exists δ > 0 such that, for each x ∈ M , the intersection σ(Dx) ∩
(λ − δ, λ + δ) is empty for all x ∈ M .

Roe’s observations about exotic indices and spectral gaps carry over to the case
of foliations:

THEOREM 10.3 ([67]) Let DF be a leafwise geometric operator for F with co-
efficients in an Hermitian bundle E → M .

1. Suppose that DF has uniform gap about 0. Then for any self-adjoint grading ε
for DF and class [u] ∈ K�(∂hF) the exotic index ρ[u](Ind(DF , ε)) ∈ K�+1(M)
is trivial.

2. Suppose there exists λ ∈ R such that DF has a uniform gap about λ. Then for
any and class [u] ∈ K�(∂hF), the self-adjoint exotic index ρ[u](Ind(DF)) ∈
K�(M) is trivial.

The point is that the exotic index ρ[u](Ind(DF , ε)) ∈ K�+1(M) is calculated
in terms of a pairing between the Chern character of the symbol of the leafwise
operator DF and the transgression of the Chern character of the boundary K-
theory class. The existence of the hypothesized boundary K-theory class is strictly
a coarse geometric property of F .

Theorem 10.3 has also applications to the existence of metrics of positive scalar
curvature (cf. Rosenberg [89]; Zimmer [103]; section 6C of Roe [88]):
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COROLLARY 10.4 Let F be a C∞-foliation with even dimensional leaves of a
compact manifold M , and assume the tangential distribution TF admits a spin
structure. If there exists a Riemannian metric on TF so that each leaf of F has
positive scalar curvature, then the exotic index ρ[u](Ind(DF , ε)) = 0 of the leafwise
Dirac operator for any class [u] ∈ K�(∂hF). For a foliation with odd dimensional
leaves, the corresponding statement holds for the odd exotic index classes.

10.2 Spectral density and isoperimetric functions

The “Vafa-Witten method” (section III, [96] & section 3, [4]) can be combined with
the foliation index theorem for leafwise Toeplitz operators ([22, 32, 33]) to obtain
topological obstructions to the existence of a gap in the spectrum of a geometric
operator σ(D) on an open manifold. What is more, the method yields estimates on
the spectral density function for the operator D in terms of the non-commutative
isoperimetric function IΓ,u(ε) and the index pairing between the K-theory class [u]
and that of the symbol of the operator. We state the typical result for the case
where L = M̃ is a covering of a compact manifold M :

THEOREM 10.5 Let M be a compact orientable odd-dimensional Riemannian
manifold with fundamental group Λ = π1(M, y0). For a quotient group ρ : Λ → Γ,
let π : M̃Γ → M be the associated normal covering. Fix an element of odd K-theory
u ∈ K1(BΓ).

Given a first-order, symmetric, geometric operator DM acting on the sections
of a Hermitian vector bundle EM → M , let DΓ : C1

c (EΓ) → C1
c (EΓ) denote the

lifted operator acting on the compactly supported sections of the lifted Hermitian
bundle EΓ = π!(EM) → M̃Γ.

Finally, let D̃ be a Γ-invariant, relatively compact perturbation of DΓ.

Then there exists a constant κ(D̃) > 0, which depends on the Riemannian
geometry of M and the perturbation D̃, so that for all λ ∈ R and all ε > 0,

TrΓ

(
{χ[λ,λ+ε)(D̃)}

)
≥ 1

4
· | 〈ch∗(Bρ∗u), ch∗[DM ]〉 | · IΓ,u(ε/4κ(D̃)) (28)

where TrΓ is the Γ-trace of Atiyah [3], χ[λ,λ+ε](D̃) is the spectral projection associ-
ated to the characteristic function χ[λ,λ+ε], and the pairing in (28) is the (integral)
odd Toeplitz index of the compression of the unitary multiplier for Bρ∗u with the
positive projection of DM .

In particular, if 〈ch∗(Bρ∗u, ch∗[DM ]〉 	= 0 for some u ∈ K1(M), and IΓ,u(ε) > 0
when ε > 0, then the spectrum σ(D̃) = R.
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The number TrΓ

(
{χ[λ,λ+ε)(D̃)}

)
is the “average spectral density” for the oper-

ator D̃ in the interval [λ, λ + ε). If the spectrum of D̃ is isolated in this interval,

then TrΓ

(
{χ[λ,λ+ε)(D̃)}

)
is the integral over a fundamental domain in M̃Γ of the

Γ-periodic function
∑

n ‖ fn ‖2, where {fn} is an orthogonal basis for the eigensec-
tions of D̃ in [λ, λ + ε). The result is a type of dimension: for a compact manifold,
this integral will be the dimension of the sum of the eigenspaces in this interval.
More generally, it is an average density of the eigenspaces in the interval [λ, λ+ ε),
which makes sense whether the spectrum is isolated or not.

A fundamental point of Theorem 10.5 is that the function class of the right-
hand-side of (28) is a coarse geometric invariant of the symbol of the operator DM

and the K-theory class u, so that when the index pairing is non-trivial we obtain
a topologically determined lower bound on the Γ-spectral density function for the
Γ-periodic lift DΓ. For example, when Γ ∼= Zn for n odd and u is the top odd
dimensional K-theory generator, then IΓ,u(ε) ∼ εn for ε small.

This result can be considered as parallel to the results of R. Brooks [13, 14]
and Sunada [91, 92] on the spectrum of the Laplacian on open manifolds, which
are based on the relation between the Cheeger isoperimetric constant for M̃Γ and
the spectrum of the Laplacian.

The author is grateful to the organizing committee of the International Symposium on the
Geometric Theory of Foliations, especially Professors Matsumoto, Mitsumatsu, Mizutani and
Tsuboi for their efforts and the invitation participate in this conference.
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