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1 Introduction

The Novikov conjecture, that the higher signatures of a compact oriented
manifold are homotopy invariant, is well-known both for its depth and for the
breadth of the research it has spawned. There are two approaches to prov-
ing the conjecture for various classes of groups – one via geometric surgery
techniques [8, 16, 9, 17], and the other via index theory methods. The index
method appeared first in the work of Lusztig [33], which was greatly ex-
tended by Mǐsčenko [35, 36] and Kasparov [28, 29, 30, 32]. The two methods
are directly compared in Rosenberg’s article [42]. Connes introduced an in-
termediate approach which combines index methods with the more geometric
techniques of cyclic cohomology [4, 10, 11, 12, 13, 15].

The index theory approach for a compact oriented manifold with fun-
damental group Γ traditionally has two steps (cf. the survey by Kasparov
[31]). The first is the Kasparov-Mǐsčenko construction of the “parametrized
signature class” σ(M) ∈ K0(C

∗

r (Γ)), and the key point is that this class is
a homotopy invariant [25, 27, 34, 35]. Secondly, one shows that operator
assembly map β:K∗(BΓ) → K∗(C

∗

rΓ) from the K-homology of BΓ to the K-
theory of the reduced group C∗-algebra is rationally injective and the image
of the K-homology class determined by the signature operator coincides with
σ(M). Hence, the signature K-homology class is also homotopy invariant
and its pairing with group cohomology classes will be invariant – which is the
conclusion of the Novikov conjecture.

The Γ-invariance of the lifted operator D̃ on the universal cover M̃ of
M ∼= BΓ is used to define a class β[D] ∈ K∗(C

∗

rΓ), basically given by the
differences of the homotopy classes of the representation of Γ on the kernel
and cokernel of D̃. The “index data” of an operator is localized in its spec-
trum around 0, while the C∗r (Γ)-index contains information related to all the
unitary representations of Γ weakly contained in the regular representation,
so a priori has in it more structure than is necessary for the study of the
Novikov conjecture. The idea of index theory in coarse geometry (cf. Roe
[40]) is to localize the C∗-index in a neighborhood of infinity spacially, which
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by a non-commutative uncertainty principle corresponds to localizing the in-
dex at 0 spectrally. The applications of this fundamental idea are still being
developed.

The purpose of this note is to prove the injectivity of the map β for a
large class of groups using the methods of exotic index theory; that is, index
theory for families of coarse metric spaces. The exotic index approach has the
advantage that “coarsening the index class” results in technical simplifications
which allow the Mǐsčenko-Kasparov method to be applied more broadly. As
an example, exotic index methods yield new cases of the Foliation Novikov
Conjecture [26, 19].

The topological context for the “index data localized at infinity” of a Γ-
invariant elliptic operator is the geometric structure given by a family of
parametrized metric spaces with base a model for BΓ, and fibers the coarse
metric type of Γ. The basic idea is to consider such a family as a generalized
vector bundle and introduce its coarse Bott class which is the analogue in
coarse theory of the Thom class (cf. [1]). The data given by a coarse Bott
class corresponds to the “dual Dirac” KK-class of Mǐsčenko-Kasparov, but
formulated within the coarse geometry category. Our most general result
using this technique is that the operator assembly map is injective on K-
theory for a group Γ whose associated field of metric spaces admits a coarse
Bott class. This note contains a complete proof of this assertion for such Γ
when BΓ represented by a complete Riemannian manifold.

A Riemannian n-manifold M̃ is ultraspherical (Definition 6.1, [40]) if it
admits a proper map f : M̃ → Rn where f has non-zero degree and the
gradient ∇f has uniformly bounded pointwise norm on M̃ . Given a complete
Riemannian manifoldM with fundamental group Γ and universal covering M̃ ,
we say that M is Γ-ultraspherical if the balanced product M̃Γ = (M̃ × M̃)/Γ
admits a map F : M̃Γ → TM which preserves fibers, and the restriction of
F to each fiber Fx: {x} × M̃ → TxM is ultraspherical. The coarse index
approach yields the following:

THEOREM 1.1 Let Γ be a group so that the classifying space BΓ is rep-

resented by a spin manifold M which admits a complete Riemannian metric

so that M is Γ-ultraspherical. Then the operator assembly map β:K∗(BΓ) →
K∗(C

∗

rΓ) is injective.

The proof of Theorem 1.1 is especially transparent when M is compact with-
out boundary. For this reason, we give the proof in the closed case first, in
sections 2 through 6. Section 7 discusses the non-compact case.

Note that the hypotheses of Theorem 1.1 do not require that M be of the
homotopy type of a CW-complex of finite type. Also note, ifBΓ is represented
by a finite CW complex, then it is also represented by an open complete spin
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manifold M : embed BΓ in R` for appropriate ` � 0 and take M to be a
regular neighborhood. Modify the restriction of the Euclidean metric to M
so that it rapidly vanishes near the boundary of the closure of M , and one
obtains a complete Riemannian metric on TM as well. The key hypothesis
which must be verified, is that the universal covering M̃ of M is ultraspherical
for the particular choice of complete metric on TM .

There is a version of the theorem for non-spin manifolds, where the sig-
nature operator is used in place of the Dirac operator in the application of
Poincaré duality.

The coarse index approach can also be used to prove:

THEOREM 1.2 Let Γ be a finitely presented group whose classifying space

BΓ is homotopy equivalent to a finite CW complex. Suppose the universal

covering EΓ of BΓ admits a metrizable, contractable compactification XΓ
such that

• The deck translation action of Γ on EΓ extends continuously to XΓ.

• For any compact subset K ⊂ EΓ and sequence of group elements {γn} ⊂
Γ which tend to infinity in the word norm, the translates K ·γn have diameter

tending to zero.

Then the operator assembly map β:K∗(BΓ) → K∗(C
∗

rΓ) is injective.

Theorem 1.2 follows by proving that for Γ as in the theorem, there is a
complete open manifold V and a free action of Γ on V so that (V × V )/Γ →
V/Γ ∼= BΓ admits a coarse Bott class. This follows via a geometric method
similar to that used in [12] to establish the theorem for word hyperbolic
groups, which will be discussed in detail in a later paper. Example 8.3 gives
the proof of Theorem 1.2 for the very particular case where Γ ∼= π1(M) and
M is a complete open manifold with restrictions on its geometry. The most
general case will be treated in a subsequent paper.

The hypotheses of Theorem 1.2 correspond with those assumed in Carlsson-
Pedersen [9] and Ferry-Weinberger [17] to prove injectivity of the integral
assembly map via controlled surgery theory. The results of Bestvina-Mess [6]
show that the hypotheses of Theorem 1.2 are satisfied for groups which are
word hyperbolic.

Theorems 1.1, 1.2, 6.2 and 7.6 have similar conclusions to all approaches
to the Novikov conjecture using the KK-approach. Kasparov and Skandalis
[32] construct a Dirac and dual Dirac class for C∗-algebras associated to
Bruhat-Tits buildings, and use this to prove the conjecture for many classes
of arithmetic groups. A. Connes, M. Gromov, and H. Moscovici [12] developed
the theory of proper Lipschitz cohomology (a work that directly inspired this
note) and used it to give the first proof of the Novikov Conjecture for word
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hyperbolic groups. Our notion of a “coarse Bott class” for a group is clearly
related to their Lipschitz-Poincaré dual of a group (cf. Epilogue to [12].) The
non-finite type case of Theorem 1.1 yields a new class of examples where
the conjecture has been verified, for the case where BΓ is represented by a
complete manifold not of finite type.

Here is an outline of this paper. The coarse index class is introduced in
section 2. The parametrized corona ∂πΓ of the fundamental group is intro-
duced in section 3. In section 4 we develop a pairing between the K-theory
K1(∂πΓ) and the exotic indices. Section 5 considers the exotic index for oper-
ators on compact manifolds. The coarse Bott class hypotheses is introduced
in section 6, where we prove that the µ-map is injective for a group with this
condition. It is immediate that a group satisfying the hypotheses of Theo-
rem 1.1 admits a coarse Bott class, so its proof is completed. Section 7 details
the modifications needed in the open case. Finally, in section 8 we show that
the groups satisfying the hypotheses of Theorem 1.2 satisfy the hypotheses
of Theorem 1.1.

The results of this paper were presented to the meeting on Novikov Conjec-

tures, Index Theorems and Rigidity at Oberwolfach, September 1993. There
are close parallels between the operator methods of this paper and those used
in the most recent controlled K-theory approaches to the Novikov Conjecture
[9, 17]. This manuscript is a substantial revision of an earlier preprint (dated
April 16, 1993) with these parallels accentuated.

This author is indebted to Jonathan Block, Alain Connes, Steve Ferry,
James Heitsch, Nigel Higson, Jonathan Rosenberg, Mel Rothenberg and
Shmuel Weinberger for discussions on the Novikov conjecture and related
topics, and especially to John Roe for sharing his insights on exotic index
theory and its application to the Novikov conjecture.

2 The coarsening map

We begin by recalling some basic ideas of coarse geometry. A pseudometric

on a set X is a non-negative, symmetric pairing d(·, ·) : X × X → [0,∞)
satisfying the triangle inequality

d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X

A map f : X1 → X2 is said to be coarsely quasi-isometric with respect to
pseudometrics di(·, ·) on the Xi if there exists constants A,B > 0 so that for
all y, y′ ∈ X1

A−1 · (d1(y, y
′) − B) ≤ d2(f(y), f(y′)) ≤ A · (d1(y, y

′) +B) (2.1)
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This notion is more strict than Roe’s notion of uniform bornologous

(cf. Definition 2.1, [40]) where the estimator A = S(R) need not be a linear
function of R = d(y, y′).

A subset Z ⊂ X is called C-dense if for each x ∈ X, there exists n(x) ∈ Z
so that d(x, n(x)) ≤ C. A map f : X1 → X2 is said to be a coarse isometry

with respect to pseudometrics di(·, ·) if f is a coarse quasi-isometry and the
image f(X1) is C-dense in X2 for some C.

A net, or quasi-lattice, is a collection of points N = {xα | α ∈ A} ⊂ X so
that there are C, D > 0 with N a C-dense set, and distinct points of N are
at least distance D apart. The inclusion of a net N ⊂ X is a coarse isometry
for the restricted metric on N .

For sections 2 through 6, we will assume thatM is a compact spin manifold
without boundary, and we fix a Riemannian metric on M . Let M̃ → M
denote the universal covering of M , with the fundamental group Γ = π1(M)
acting via translations T : M̃ × Γ → M̃ on the right. The Riemannian metric
on TM lifts to a Γ-invariant complete Riemannian metric on TM̃ , and M̃
is endowed with the Γ-invariant path length metric. Introduce the balanced

product M̃Γ = (M̃×M̃)/Γ, with projections πi: M̃Γ →M for i = 1, 2 onto the
first and second factors, respectively. The Γ-invariant metric on M̃ induces
a Γ-invariant metric on the second factor of M̃ × M̃ , which descends to a
fiberwise metric on M̃Γ: for x ∈M and y, y′ ∈ M̃x then dx(y, y

′) denotes the
“fiberwise” distance from y to y′. Note that that M̃x = π−1

1 (x) is naturally
isometric to M̃ .

For x ∈ M̃ , let ∆(x) ∈ M̃Γ denote the equivalence class of x × x, with
π1(∆(x)) = π2(∆(x)) = x. This factors through a map, also denoted by
∆:M → M̃Γ, which includes M along the diagonal.

Let H(M̃,N) denote the Hilbert space of L2-sections of the trivial bundle
M̃ × CN , where the inner product is determined by the Riemannian volume
form on M̃ . We will often abuse notation and write H(M̃) = H(M̃,N)
where N � 0 is a sufficiently large integer determined as needed. Introduce
the continuous field of Hilbert spaces over M ,

HM = {Hx = H(M̃x) | x ∈M}

where each fiber Hx is isomorphic to H(M̃). Note the inner product of two
sections of HM is a continuous function on M by definition.

The Roe algebra C∗(X) of a complete metric space X equipped with a
Radon measure is the norm closure of the *-algebra B∗ρ(X) of bounded prop-
agation, locally compact, bounded operators on H(X) (cf. section 4.1 [40]).
The compact operators on H(X) satisfy K(H(X)) ⊂ C∗(X). The inclusion
is strict if and only if X is non-compact.
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We next extend the construction of the Roe algebra from the open manifold
M̃ to the fibers of the map π: M̃Γ → M . This technical step is one of the
main ideas of the coarse approach to the Novikov Conjecture. We begin with
a non-equivariant version of the extension. Let B∗ρ(M̃×M̃, π) be the *-algebra

generated by the continuous families of operators A = {Ax ∈ B∗ρ(M̃x) | x ∈

M̃} with uniformly bounded propagation. That is, we require that there
exists a constant C so that for each x ∈ M̃ , the operatorAx can be represented
by a kernel on the fiber M̃x supported in a C-neighborhood of the diagonal in
M̃x× M̃x, and the function x 7→ Ax is continuous in x for the operator norm
on B∗ρ(M̃x) ∼= B∗ρ(M̃) ⊂ B(H(M̃)). Using this last identification we have a
natural isomorphism

B∗ρ(M̃ × M̃, π) ∼= Cup(M̃,Bρ(M̃)) (2.2)

where the subscript “up” indicates the uniform control on propagation.

The right translation action of Γ induces a right action on operators Bρ(M̃).
Given A = {Ax} and γ ∈ Γ we obtain an action

γ∗A = (Tγ)∗ATγ−1(x).

Let B∗ρ(M̃×M̃, π)Γ denote the *-subalgebra of Γ-invariant elements of Cup(M̃ ,

Bρ(M̃)), and C∗(M̃Γ, π) ⊂ B(HM) its C∗-closure for the *-representation on

H(M̃). An element of C∗(M̃Γ, π) is a continuous field of operators {Ax | x ∈
M} where for each x ∈ M , Ax ∈ C∗(M̃x). The C∗-completion commutes
with the Γ-action, hence:

PROPOSITION 2.1 There is a natural isomorphism

C∗(M̃Γ, π) ∼= C(M̃, C∗(M̃))Γ.

Let C∗r (Γ) denote the reduced C∗-algebra of Γ, and B(H(M̃ ))Γ ⊂ B(H(M̃))
the C∗-subalgebra of Γ-invariant bounded operators.

PROPOSITION 2.2 There is an injective map of C∗-algebras, C:C∗r (Γ) →
C∗(M̃Γ, π). The induced map on K-theory, called the coarsening map for Γ,

χ:K∗(C
∗

r (Γ)) → K∗(C
∗(M̃Γ, π)), (2.3)

is independent of the choices made in defining C.

Proof: Let K ⊂ B(H(M̃ )) denote the C∗-subalgebra of compact operators.
Let Pξ ∈ K denote the projection onto a unit vector ξ ∈ H(M̃). Choose

ξ with compact support, so that Pξ ∈ Bρ(H(M̃)). Define the inclusion of
C∗-algebras, P ∗ξ :C∗r (Γ) → C∗r (Γ)⊗̂K mapping the unit element 1e 7→ 1e⊗Pξ.
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PROPOSITION 2.3 [13] There is an isomorphism of C∗-algebras

C∗r (Γ)⊗̂K ∼= C∗(M̃)Γ ⊂ B(H(M̃))Γ

where the image of the projection 1e ⊗ Pξ is contained in B∗ρ(M̃Γ, π)Γ.

The natural inclusion of C∗(M̃)Γ into C∗(M̃Γ, π) is induced from the in-
clusion of the constant functions in terms of the isomorphism (2.2). The
composition

C:C∗r (Γ) → C∗r (Γ)⊗̂K ∼= C∗(M̃)Γ ⊂ C∗(M̃Γ, π)

is the desired map. Note that the choice of ξ affects C but not χ. 2

Here is a simple but typical example of the above construction, for the
group Γ = Zn with model M = Tn the n-torus, and M̃ = Rn. Fourier
transform gives an isomorphism C∗r (Z

n) ∼= C0(T
n), so that the K-theory

K∗(C
∗

r (Z
n)) ∼= K∗(Tn). Higson and Roe [24, 23] have calculated theK-theory

K∗(C
∗(X)) for a wide range of complete metric spaces X, which in the case of

Rn yieldsK∗(C
∗(Rn)) ∼= K∗(Rn). There is a natural unparametrized coarsen-

ing map K∗(C
∗

r (Z
n)) → K∗(C

∗(Rn)), which assigns to a Zn-invariant elliptic
operator on Rn its index in the coarse group K∗(C

∗

ρ(Z
n)) ∼= K∗(C

∗(Rn)) ∼=
K∗(Rn). This coarsening process retains only the information contained in
the top degree in K-homology.

The Higson-Roe results and standard algebraic topology yield

K∗(C
∗(RnZn, π)) ∼= K∗(Tn × Rn) ∼= K∗+n(Tn)

where the last isomorphism is cup product with the Thom class for the bun-
dle M̃Γ = RnZn = (Rn × Rn)/Zn → Tn. In this case the parametrized
coarsening map

χ:K∗(C(Tn)) ∼= K∗(C
∗

r (Z
n)) → K∗(C

∗(RnZn, π)) ∼= K∗(Tn ×Rn)

is an isomorphism.

3 Parametrized coronas

In this section, the parametrized (Higson) corona ∂πM̃Γ is defined, which
encapsulates the topological data relevant to the coarse indices of Γ-invariant
operators on M̃ . Begin by introducing subalgebras of the bounded continuous
functions on M̃Γ:

• C(M̃Γ) denotes the algebra of bounded continuous functions on M̃Γ,
with the usual sup-norm

|h| = sup
y∈M̃Γ

|h(y)|.
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• Cu(M̃Γ) is the unital algebra of uniformly continuous bounded functions
on M̃Γ.

• C0(M̃Γ) is the uniform closure of the compactly supported functions
Cc(M̃Γ).

For x ∈M and r > 0, introduce the fiberwise variation function

Var(x,r) : Cu(M̃x) → C(M̃x, [0,∞))

Var(x,r)(h)(y) = sup {|h(y′) − h(y)| such that dx(y, y
′) ≤ r}

and also set

Varr:Cu(M̃Γ) → C(M̃Γ, [0,∞))

Varr(h)(y) = Var(π(y),r)(h)(y)

We say f ∈ Cu(M̃Γ) has uniformly vanishing variation at infinity if
for each r > 0 there exists a function D(f, r) : [0,∞) → [0,∞) so that
dx(y,∆(x)) ≥ D(f, r)(ε) =⇒ Var(x, r)(f)(y) ≤ ε. When M is compact, this
condition is equivalent to saying that Varr(f) ∈ C0(M̃Γ) for all r > 0. Let
Ch(M̃Γ, π) ⊂ Cu(M̃Γ) denote the subspace of functions which have uniformly
vanishing variation at infinity.

LEMMA 3.1 (cf. 5.3, [40]) Ch(M̃Γ, π) is a commutative C∗-algebra. 2

The spectrum of the C∗-algebra Ch(M̃Γ, π), denoted by M̃Γ, is a com-
pactification of M̃Γ, where the inclusion of the ideal C0(M̃Γ) ↪→ Ch(M̃Γ, π)

induces a topological inclusion M̃Γ ⊂ M̃Γ as an open dense subset. Define
the parametrized (Higson) corona of M̃Γ as the boundary

∂πM̃Γ = M̃Γ − M̃Γ,

which is homeomorphic to the spectrum of the quotient C∗-algebra

Ch(M̃Γ, π)/C0(M̃Γ).

The functions in C(M) act as multipliers on Ch(M̃Γ, π)/C0(M̃Γ), hence

the projection π = π1 extends to continuous maps π̂: M̃Γ →M and ∂π: ∂πM̃Γ
→M . One can show, using that Ch(M̃Γ, π) is a subalgebra of the uniformly
continuous functions on M̃Γ, that both maps π̂ and ∂π are fibrations. The
typical fiber of ∂π: ∂πM̃Γ → M is not metrizable, even in the simplest case
where M = S1 (cf. page 504, [38]).
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4 The boundary pairing

The K-theory of the parametrized corona ∂πM̃Γ naturally pairs with the
coarse indices of Γ-invariant operators on M̃ . This pairing is a parametrized
extension of N. Higson’s observation [20, 21] that the vanishing condition on
gradients for C1-functions on a open complete Riemannian manifold X is the
exact analytic condition required to form a pairing between the K-theory of
its corona ∂hX and theK-homology of X. Roe extended this idea to complete
metric spaces [40], and a parametric form of this construction was introduced
in [26]. We require the following result:

THEOREM 4.1 There is a natural pairing, for p, q = 0, 1,

Be:Kq(C
∗

r (Γ)) ⊗Kp(∂πM̃Γ) −→ Kp+q+1(M) (4.1)

For each [u] ∈ Kp(∂πM̃Γ) evaluation of the pairing on [u] yields the exotic
index map

Be[u]:Kq(C
∗

r (Γ)) −→ Kq+p+1(M) (4.2)

Proof: The idea of the proof is to construct a natural map

∂e:K
p(∂πM̃Γ) → KKp+1(C

∗(M̃Γ, π), C(M)) (4.3)

The map (4.1) is obtained as the Kasparov product between the images of
the maps (2.3) and (4.3):

χ⊗ ∂e : Kq(C
∗

r (Γ)) ⊗Kp(∂πM̃Γ)

−→ KKq(C, C
∗(M̃Γ, π)) ⊗KKp+1(C

∗(M̃Γ, π), C(M))

−→ KKp+q+1(C, C(M)) ∼= Kp+q+1(M)

The map (4.3) is exactly the coarse analogue of the dual Dirac construction.
We give the essential points of the construction below – further details can be
found in section 6, [26]. For example, one must use care because both the full
Roe algebra C∗(M̃Γ, π) and the Higson corona ∂πM̃Γ are not separable, so it
is actually necessary to work with separable subalgebras and direct limits to
define the pairing (4.3). This poses no problem, as every class in Kp(∂πM̃Γ)
factors thru a separable quotient of the corona ∂πM̃Γ, and the image of a
projection in C∗r (Γ) lies in a separable subalgebra of C∗(M̃Γ, π).

Suppose p = 1. Let [u] ∈ K1(∂πM̃Γ); then we will define ∂e[u]. Represent
[u] by a continuous map u : ∂πM̃Γ → U(N) for some N > 0. Let j : U(N) ⊂
GL(N,C) ⊂ CN2

be the embedding obtained by the standard coordinates
on matrices. Apply the Tietze Extension Theorem to the map from the
boundary of M̃Γ into a regular neighborhood retract of U(N), u: ∂πM̃Γ →
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U(N) ⊂ N(U(N)) ⊂ RN2

, to obtain a continuous extension M̃Γ → End(CN),
and then use the retraction from N(U(N)) back to U(N) to obtain a map

û: M̃Γ → End(CN) such that û(x) is a unitary matrix for x in an open

neighborhood of ∂πM̃Γ in M̃Γ.

The Kasparov (C∗(M̃Γ, π), C(M))-bimodule that represents ∂e[u] is con-
structed from û following the method of G. Yu [44], as adapted to the bivariant
context. (Yu’s method implements a K-theory duality in the index theory of
coarse spaces, in the sense of Higson’s original paper introducing these ideas
[20].) Introduce the KK-cycle:

(E0 ⊕ E1,Φ =

[
0 F ∗

F 0

]
, φ0 ⊕ φ1, ψ) (4.4)

whose components are defined as follows:

• Let the integer N be determined by the representative u : ∂πM̃Γ →
U(N). Recall that HΓ consists of fiberwise sections of the Hermitian vector

bundle E = M̃Γ × CN , so there is a natural module action φi of C(M) on
HΓ via the induced map π∗1 :C(M) → C(M̃Γ). Set Ei = HΓ for i = 0, 1.

• The matrix-valued function û induces a map of bundles F : E0 → E1 which
is an Hermitian isomorphism outside of a compact set in M̃Γ.

• Let ψ be the diagonal representation of C∗(M̃Γ, π) on E0⊕E1. Note that
ψ is a C(M)-representation, as the operators in C∗(M̃Γ, π) are fiberwise, and
the module action of C(M) is via fiberwise constant multipliers.

It is now routine to check

PROPOSITION 4.2 (cf. Lemma 3 [44]) (E0 ⊕ E1,Φ, φ0 ⊕ φ1, ψ) defines

a Kasparov (C∗(M̃Γ, π), C(M))-bimodule. Its KK-class

∂e[u] ∈ KK(C∗(M̃Γ, π), C(M))

depends only on the class [u] ∈ K1(∂πM̃Γ).

Proof: To establish that this yields a KK-bimodule, it only remains to check
that for all a ∈ C∗(M̃Γ, π), the graded commutator [Φ, ψ(a)] is a uniformly
fiberwise compact operator. This follows from the compact support of Φ and
the bounded propagation property of a; the calculation follows exactly as that
for a single complete open manifold by Higson and Roe (cf. Proposition 5.18,
[40]). The homotopy invariance of the KK-class follows by standard methods
(cf. Chapter VIII, [7]).

A similar construction applies in the even case, where we represent a K-
theory class [E] ∈ K0(∂πM̃Γ) by a map to a Grassmannian embedded in
Euclidean space, then follow the above outline to obtain

∂e[E] ∈ KK1(C
∗(M̃Γ, π), C(M)).
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5 Coarse geometry and the exotic index

The exotic indices for an elliptic differential operator D on M are obtained
from its Γ-index class by the pairing (4.1) with boundary classes.

Let D be a first order differential operator defined on the smooth sections
C∞(M,E0) of an Hermitian bundle E0 → M , determining a K-homology
class [D] ∈ K∗(M). The cap product ∩:K∗(M)⊗K∗(M) → K∗(M) is realized
by an operator pairing: given [E] ∈ K(M) the choice of an Hermitian metric
on a representative E = E+ −C` determines an extension of D to an elliptic
first order operator D⊗E acting on C∞c (M,E0 ⊗E). The K-homology class
[D ⊗ E] ∈ K∗(M) represents [D] ∩E. We recall a fundamental result:

THEOREM 5.1 ([5]; Corollary 4.11 [30]) Let M be a closed spin-mani-

fold and D = ∂ the Dirac operator on spinors, then [D]∩ :K∗(M) → K∗(M)
is the Poincaré duality isomorphism on K-theory.

We define the Baum-Connes map [3] µ[D]:K∗(M) → K∗(C
∗

r (Γ)) in
terms of the lifts of operators to coverings: For [E] ∈ K∗(M), the lift of
D⊗E to a Γ-invariant differential operator ˜D ⊗ E on the compactly supported
sections C∞c (M̃, ˜E0 ⊗E) has a Γ-index

µ[D] [E] = [ ˜D ⊗ E] ∈ K∗(C
∗

r (Γ))

When M = BΓ the Baum-Connes map can be written simply as µ[D]([E]) =
β ◦ [D] ∩ [E].

DEFINITION 5.2 For each class [u] ∈ Kp(∂πM̃Γ) and K-homology class

[D] ∈ Kq(M), define the exotic index map

Inde([u], [D]) = Be[u] ◦ µ[D] :K∗(M) −→ K∗+p+q+1(M) (5.1)

The exotic index map (5.1) can be evaluated in terms of ordinary indices
of a family [14]. Let D̃π denote the differential operator along the fibers of
π: M̃Γ → M , obtained from the suspension of the Γ-invariant operator D̃. It
determines a Connes-Skandalis index class Indπ(D̃π) ∈ KK∗(C0(M̃Γ), C(M))
where in the case of graded operators we have suppressed notation of the
grading. Use the boundary map δ in K-theory for (M̃Γ, ∂πM̃Γ) and the the
KK-external product

KK(C, C0(M̃Γ)) ⊗KK∗(C0(M̃Γ), C(M)) −→ KK(C, C(M)) ∼= K∗(M)

to pair δ[u] ∈ KK(C, C0(M̃Γ)) with Indπ(D̃π) to obtain a map

Indπ
(
δ[u] ⊗ D̃π

)
∈ K∗(M).
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The Kasparov pairing δ[u] ⊗ (D̃π) is operator homotopic to a family of
fiberwise operators over M which are invertible off a compact set – exactly
the class of operators considered by Gromov and Lawson [18, 39]. An elegant
homotopy argument of G. Yu for the indices of special vector bundles on an
open complete manifold (Theorem 2, [44]) adapts to the parametrized case
to relate these two indices in K∗(M):

PROPOSITION 5.3 (Exotic families index theorem)

Inde([u], [D])[E] = Indπ
(
δ[u] ⊗ ( ˜D ⊗ E)π

)
∈ K∗(M) (5.2)

REMARK 5.4 Formula (5.2) gives an expression for the exotic indices as
the indices of a family of operators — a decidedly non-exotic index. The no-
tation that Inde([u], [D])[E] is an “exotic” index is retained because it results
from pairing with coefficients δ[u] that are the transgression of a K-theory
class “at infinity”. The description of the index invariants as “exotic” thus
parallels exactly the usage in characteristic class theory, where classes arising
from boundary constructions are usually called exotic or secondary. It should
be noted that almost all other authors now refer to such constructions as
coarse invariants, due to the role of coarse geometry in their construction.

6 Coarse Bott classes

The notion of a coarse Bott class in K-theory for a family of pseudometric
spaces is introduced, and we prove the map µ:K∗(BΓ) → K∗(C

∗

rΓ) is injective
for a group Γ with a coarse Bott class coming from the corona. There is a close
analogy between the coarse techniques of this section and the constructions
of “proper Lipschitz cocycles” introduced by Connes-Gromov-Moscovici [12].

The definition of coarse Bott classes is motivated by the Bott class for
vector bundles:

DEFINITION 6.1 Let M = M̃/Γ be a connected, compact spin-manifold,

and ∂ the Dirac operator on spinors for M . We say that Θ ∈ K∗(M̃Γ) is a

coarse Bott class if there exists [uΘ] ∈ K∗(∂πM̃Γ) so that Θ = δ[uΘ], and for

some x ∈ M , hence for all x, the index of the operator ∂x ⊗ (Θ|M̃x) on the

fiber M̃x satisfies Ind(∂x ⊗ (Θ|M̃x)) = ±1.

Here is the main result of this note for the case where BΓ ∼= M is compact:

THEOREM 6.2 Let Γ be a group so that the classifying space BΓ is repre-

sented by a complete, orientable Riemannian spin manifold M = M̃/Γ such

that there is a coarse Bott class Θ ∈ K∗(M̃Γ). Then β:K∗(BΓ) → K∗(C
∗

rΓ)
is injective.
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Proof: Let uΘ ∈ K∗(∂πM̃Γ) with Θ = δuΘ be a coarse Bott class, and let ∂
be the Dirac operator on M . By Theorem 5.1 it will suffice to show that the
exotic index map

Inde([D], [uΘ]) = Be[uΘ] ◦ µ[D] :K∗(M) −→ K∗(M)

is injective. This in turn follows from a simple topological observation and
a calculation. The observation is contained in the following lemma, which
is a simple reformulation of Kasparov’s “homotopy lemma” (cf. the proof of
Theorem, section 6.5, page 193 [30]).

LEMMA 6.3 For each [E] ∈ K∗(M), Θ ⊗ π∗1[E] = Θ ⊗ π∗2[E] ∈ K∗(M̃Γ)

Proof: The projections πi: M̃Γ → M for i = 1, 2 are homotopic, so the
induced module actions π∗1 and π∗2 of K∗(M) on K(M̃Γ) coincide. 2

Theorem 6.2 now follows from a calculation using Proposition 5.3 (the
exotic families index theorem) applied to the the fibration π = π1: M̃Γ →M .

LEMMA 6.4 For each [E] ∈ K∗(M), the exotic index Inde([uΘ], [∂])[E] ∈
K∗(M) is non-zero.

Proof:

Inde([uΘ], [∂])[E] = Indπ
(
Θ ⊗ ( ˜∂ ⊗E)π

)

= Indπ
(
Θ ⊗ π∗2E ⊗ ∂̃π

)

= Indπ
(
Θ ⊗ π∗1E ⊗ ∂̃π

)

= Indπ
(
Θ ⊗ ∂̃π

)
⊗ [E]

6= 0

The last conclusion follows as Ind(∂ ⊗ (Θ|M̃x)) = ±1 for all x ∈ M implies

Indπ
(
Θ ⊗ ∂̃π

)
∈ K∗(M) is invertible in K∗(M).

Note that one can weakened the notion of a coarse Bott class, requiring
only that the indices of the operators ∂x ⊗ (Θ|M̃x) on the fibers M̃x satisfy

Ind(∂x ⊗ (Θ|M̃x)) 6= 0. Then in the above proof, Indπ
(
Θ ⊗ ∂̃π

)
∈ K∗(M)

will be invertible in K∗(M) ⊗Q which implies the rational injectivity of the
operator assembly map β in this case. We expect this more general case will
prove useful for the study of further classes of groups.

7 The relative case

We extend Theorem 6.2 to the case where BΓ ∼= M is a complete open
manifold. We do not assume that M has finite type, so the main result of
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this section, Theorem 7.6, implies the Novikov Conjecture for certain classes
groups Γ = π1(M) which need not be of finite type.

Fix a complete Riemannian metric on TM . As in the compact case, the
metric lifts to a Γ-invariant Riemannian metric on TM̃ , and the induced
path-length metric on M̃ is Γ-invariant and complete. Endow the fibers of
M̃Γ → M with the quotient metric obtained from that on M̃ – for each
x ∈M the fiber M̃x = π−1

1 (x) is isometric to M̃ . Recall that ∆:M → M̃Γ is
the quotient of the diagonal mapping ∆: M̃ → M̃ × M̃ .

B∗ρ(M̃Γ, π) is the C∗-algebra with typical element a family of operators

A = {Ax ∈ B∗ρ(M̃x) | x ∈ M} with uniformly bounded propagation, exactly
as in § 2 for the compact case, with a natural isomorphism

B∗ρ(M̃Γ, π) ∼= Cup(M̃,Bρ(M̃))Γ (7.1)

A uniformly continuous function ψ: M̃Γ → C has ∆-compact support if
there exists a constant Rψ > 0 so that the support of ψ is contained in the

fiberwise Rψ-tube N(∆, Rψ) around the diagonal ∆(M) ⊂ M̃Γ:

N(∆, Rψ) = {y ∈ M̃Γ | dx(y,∆(π1(y))) ≤ Rψ}

The construction of the parametrized corona for M̃Γ remains unchanged
in the case where M is non-compact: Γ acts naturally on the Higson corona
∂hM̃ , and we set

∂πM̃Γ ≡ (M̃ × ∂hM̃)/Γ

Let π: ∂πM̃Γ →M be induced by projection onto the first factor.

A key difference in the non-compact case is that we must introduce the
“locally finite” K-theory K∗lf (∂πM̃Γ) of ∂πM̃Γ. An exhaustion for M is a
nested increasing sequence {Mn} of closed submanifolds M0 ⊂ M1 ⊂ · · ·M
whose union is all of M . For each n ≥ 1 define M̃nΓ = π−1(Mn) and define
its corona to be ∂πM̃nΓ = ∂π−1(Mn).

We will take for an operating definition

K∗lf(∂πM̃Γ) = {u = lim
←

[un] ∈ lim
←
K∗(∂πM̃nΓ) | ∃R > 0 ∀n > 0

δ[un] has support in N(∆, n, R)}

where N(∆, n, R) = {y ∈ M̃nΓ | dπ(y)(y,∆π(y)) ≤ R}

The support condition on an element u = lim←[un] has a subtle aspect
that we comment on. The sequence of representatives {[un]} are supported
in a uniform tube N(∆, R) ⊂ M̃Γ around ∆(M). If we suppose that M
admits a compactification to a manifold with boundary, M , then M̃Γ can be
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trivialized on a collar neighborhood of M −M hence M̃Γ →M extends to a
fibration over M , with a section

τ :M → (M̃ × M̃)/Γ

With respect to the “intuitively natural” section τ , the tube N(∆, R) inter-
sects the fiber M̃x in a section which becomes infinitely far from τ(x) as x
tends to the boundaryM−M . In particular, given any compact setK ⊂ M̃Γ,
the distance between {y ∈ M̃x | dx(y,∆(x)) ≤ R} and K tends to infinity as
x tends to the boundary M −M . This latter condition makes sense whether
M admits a manifold compactification or not, and suggests that the proper
way to consider the fiberwise supports of the sections {[un]} is that they lie
in supports tending to infinity with respect to a geometric “cross-section”.

Another unique aspect of the open manifold case, is the need to introduce
the algebra of fiberwise operators A = {Ax | x ∈ M} on M̃Γ whose support
in a fiber M̃x tends to infinity with respect to the basepoint ∆(x) as x tends
to infinity in M . To be precise, introduce the subalgebra B∗cρ(M̃Γ, π) ⊂

B∗ρ(M̃Γ, π) generated by the continuous fields of operators A = {Ax | x ∈M}

such that for each ∆-compactly supported function ψ: M̃Γ → C, the field
ψ · A = {ψ · Ax | x ∈ M} has compact support in M . Let C∗cρ(M̃Γ, π) ⊂

C∗ρ(M̃Γ, π) denote the C∗-closure of B∗cρ(M̃Γ, π).

PROPOSITION 7.1 There is a natural injective map of unital C∗-algebras,
C:C∗r (Γ) → C∗cρ(M̃Γ, π), with the coarsening map for Γ given by the induced

map on K-theory,

χ:K∗(C
∗

r (Γ)) → K∗(C
∗

cρ(M̃Γ, π)).

Proof: Choose a compactly supported function ξ ∈ C0(M) ⊂ L2(M) with
L2-norm one, and compact support Kξ ⊂ M . The function ξ defines a pro-

jection Pξ ∈ K ∼= K(M) which lifts to a Γ-invariant operator P̃ξ on M̃ . Let

Pξ also denote the fiberwise operator in B∗ρ(M̃Γ, π). The product ψ · Pξ then
has compact support in the R-tube over the support Kξ of ξ.

As in the proof of Proposition 2.2, P̃ξ determines a map

P ∗ξ :C∗r (Γ) → C∗r (Γ)⊗̂K ⊂ C∗(M̃Γ, π)

whose image similarly consists of classes represented by operators with sup-
ports contained in the fibers over the support of ξ, hence lie in C∗cρ(M̃Γ, π).
2

The construction of the boundary pairing Be proceeds exactly as before,
where we note the important detail that by Proposition 7.1 its range is the
K-theory with compact supports of M :
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THEOREM 7.2 There is a natural pairing, for p, q = 0, 1,

Be:Kq(C
∗

r (Γ)) ⊗Kp
lf(∂πM̃Γ) −→ Kp+q+1(M) (7.2)

The definition of coarse Bott classes is modified as follows:

DEFINITION 7.3 Let M = M̃/Γ be a connected, complete spin-manifold,

and ∂ the Dirac operator on spinors for M . We say that Θ ∈ lim
←
K∗(M̃nΓ)

is a coarse Bott class if there exists [uΘ] ∈ K∗lf (∂πM̃Γ) so that Θ = δ[uΘ],
and for some x ∈M hence for all x, the fiber index Ind(∂ ⊗ (Θ|Vx)) = ±1.

With the previous set-up, we now have the following extension of Lemma
6.3 within the framework of the fiberwise foliation index theorem applied to
π: M̃Γ →M :

LEMMA 7.4 Let Θ ∈ lim
←
K∗(M̃nΓ) be a coarse Bott class. For each [E] ∈

K∗(M),

Indπ
(
Θ ⊗ ∂̃π ⊗ π∗2E

)
= Indπ

(
Θ ⊗ ∂̃π ⊗ π∗1E

)
(7.3)

Proof: By Theorem 7.2 the index class of the operator Θ ⊗ ∂̃π is supported
in a compact subset of M̃Γ, so we can apply the homotopy argument from
the proof of Lemma 6.3. 2

Poincaré duality for a manifold with boundary extends to exhaustion se-
quences:

THEOREM 7.5 (Corollary 4.11 [30]) Let M be a complete spin-mani-

fold and ∂ the Dirac operator on spinors. Then [∂] ∩ :K∗(M) → K∗(M) is

the Poincaré duality isomorphism on K-theory.

Finally, we have established the preliminaries needed to prove the main
result of this note, the version of Theorem 6.2 applicable for M an open
complete manifold:

THEOREM 7.6 Let Γ be a group so that the classifying space BΓ is repre-

sented by a complete, orientable Riemannian spin manifold M = M̃/Γ such

that there is a coarse Bott class Θ ∈ K∗(M̃Γ). Then β:K∗(BΓ) → K∗(C
∗

rΓ)
is injective.
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Proof: This follows exactly the outline of the proof of Theorem 6.2, where
we use the natural pairing

lim
←
K∗(Mn) ⊗K∗(M) −→ K∗(M),

Poincaré duality as in Theorem 7.5, and the fact that the class

Indπ
(
Θ ⊗ ∂̃π

)
∈ lim
←
K∗(Mn)

is invertible. 2

8 Applications

In this final section, we give three illustrations of the use of Theorem 6.2.

EXAMPLE 8.1 (cocompact lattices) Let Γ ⊂ G be a torsion-free uni-
form lattice in a connected semi-simple Lie groupG with finite-center. Choose
a maximal compact subgroup K ⊂ G, then the double quotient M = K\G/Γ
is compact manifold, as Γ is torsion-free and discrete. The inverse of the
geodesic exponential map is a degree-one proper Lipschitz map log:V → Rn.
The geodesic ray compactification of V , corresponding the the spherical com-
pactification of Rn via the map log, is a Γ-equivariant quotient of the corona
∂hV (this is the usual Mǐsčenko calculation), so there is a fiberwise degree-one
map M̃Γ → TM . Thus the usual Bott class in TM → M pulls back to a
Bott class for M̃Γ.

For M a spin manifold, we have satisfied all of the hypotheses of Theo-
rem 6.2 so the operator assembly map β:K∗(BΓ) → K∗(C

∗

rΓ) is injective.

The case where G is simply connected nilpotent Lie group follows similarly,
except that the construction of the Γ-equivariant spherical-quotient of the
corona ∂hV uses the special vector field technique of Rees [37].

This example reproduces the Mǐsčenko method [35, 36] in the “coarse lan-
guage”; the cases discussed below are seen to be just successive embellish-
ments of it.

EXAMPLE 8.2 (non-uniform lattices) Consider a discrete, non-uniform
torsion-free subgroup Γ ⊂ G of a connected semi-simple Lie group G with
finite-center. Choose a maximal compact subgroup K ⊂ G, then the quo-
tient M̃ = K\G is ultra-spherical for a K-G bi-invariant Riemannian metric
on TG. The double quotient M = K\G/Γ is a complete open manifold, to
which we apply the methods of section 7.
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This calculation reproduces the Kasparov’s method [28, 29, 30] for handling
non-uniform lattices. Kasparov’s construction of the “realizableK-functor for
C∗-algebras” has been replaced with the usual inverse limit construction on
the K-theory of the corona.

EXAMPLE 8.3 (word hyperbolic groups) We give a sketch of the proof
of Theorem 1.2 for the case where Γ satisfies the following hypotheses: there
is an open manifold M representing BΓ such that M̃Γ has a coarse Bott class.
Assume

• the classifying space BΓ has finite type.

• The universal covering M̃ of M admits a metrizable, contractable com-

pactification M̃ .

• The right deck translation action of Γ on V extends continuously to M̃ .

• For any compact subset K ⊂ EΓ and sequence of group elements
{γn} ⊂ Γ which tend to infinity in the word norm, the translates K · γn
have diameter tending to zero.

These assumptions imply that M̃ is an equivariant quotient of the Higson
compactification of M̃ , so it will suffice to construct a class Θ ∈ K∗(M̃Γ)

which is the boundary of a class θ ∈ K∗((M̃ × M̃)/Γ).

Use the exponential map to define a local diffeomorphism from an open
δ-neighborhood N(TM, δ) ⊂ TM of the zero section in TM to an open
neighborhood of ∗M ⊂ M̃Γ. Choose a Bott class in H∗(TM) supported near
the diagonal. It will pull back to a compactly supported class around the

diagonal of M̃Γ. This is induced from a relative class in H∗((M̃×M̃)/Γ, (M̃×

δM̃)/Γ). Replacing M with M × S1 we can assume that the restriction of
the Bott class to the diagonal is trivial in cohomology, hence the image of

the pull-back to H∗((M̃ × M̃)/Γ, (M̃ × δM̃)/Γ) maps to the trivial class in

H∗((M̃ × M̃)). (This uses that (M̃ × M̃)/Γ retracts to the diagonal, or that

the added boundary to M̃Γ is a Z-set.) Choose ω ∈ H∗−1((M̃×δM̃)/Γ) which
maps to the pull-back class. Now use the isomorphism between rational K-
theory and rational cohomology to pull these cohomology classes on the pair

((M̃ × M̃)/Γ, (M̃ × δM̃)/Γ) back to K-theory classes. This yields the θ and
Θ required to have a coarse Bott class.

The more general case, where BΓ is simply a finite CW complex, requires
embedding BΓ into Euclidean space, taking a regular neighborhood M of
BΓ, then repeating this argument for the open manifold M . However, one
must show that M̃ admits a Z-set compactification, given that M̃Γ admits
one. The proof of this uses an engulfing technique similar to that in [12].
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