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The question of when an open manifold is the leaf of a foliation of a compact manifold has
been studied for the last 20 years. For open surfaces, this was first addressed by Sondow
[28], and solved by Cantwell and Conlon [5] who proved that every complete two manifold
can be realized as leaf of a foliation of a compact 3-manifold. In contrast, Ghys [10] and
independently Inaba et al. [20] constructed open manifolds of dimension 3 which cannot be
homotopy equivalent to a leaf of any codimension one topological foliation of a compact
manifold, on account of “non-recurrence” properties of their fundamental groups. It is very
difficult to obtain non-realization results for this generality, and no such results are known
for codimension greater than one.

The realization problem can also be formulated to include metric information: given an
open manifold X and a complete Riemannian metric gy of bounded geometry on 7X, the
question is whether there is a leaf L of foliation # on a compact Riemannian manifold
(V, gv) so that (X, gy) is quasi-isometric to (L, g,) for the induced Riemannian metric
gr = gy| T ? In 1978, Phillips and Sullivan [24] introduced the average Euler character-
istic of a complete open manifold (X, gx) with subexponential volume growth, and the
non-vanishing of this invariant is a quasi-isometry invariant. A leaf of a C° codimension-q
foliation with non-zero average Euler characteristic determines a non-zero class in
H(V; R). Hence, if H1(V; R) is trivial then there is no such leaf for &#. Januszkiewicz [21]
generalized the Phillips-Sullivan result to include the average Pontrjagin numbers as
obstructions to realizing the quasi-isometry class of (X, gx) as a leaf.

In this paper we study three approaches to the realization problem. The first yields new
classes of simply connected manifolds which cannot be realized (up to homeomorphism) as
leaves of a codimension-one foliation, using a combination of techniques of bounded
geometric surgery with straightforward extensions of known foliation techniques. The
second approach yields new classes of simply connected manifolds of subexponential
growth type which cannot be realized as leaves (up to quasi-isometry) of a codimension-one
foliation.

Our third class of results is the most novel, and is based on a new invariant for
a complete open manifold (X, gy) — its entropy h(X, gx). It seems to be a new observation in
foliation theory is that h(X, gx) must vanish when (X, gx) is quasi-isometric to a leaf of
either a codimension one foliation, or of a transversally C'-foliation. We give constructions
of complete manifolds of bounded geometry (X, gx) with exponential growth and positive
entropy, providing a new class examples that cannot be quasi-isometric to leaves. This
notion of entropy for complete metric spaces also has further generalizations and applica-
tions [17].

335



336 Oliver Attie and Steven Hurder

QOur first result is an extension of Ghys’ results [10], giving a new class of manifolds
which are not homeomorphic to leaves of foliations.

THEOREM 1. There exists an uncountable set of homeomorphism types of simply connected
Riemannian manifolds of bounded geometry, each homotopy equivalent to the infinite connec-
ted sum # *  S* x $2, yet none is homeomorphic to a leaf of a codimension-one, C°-foliation of
a compact manifold.

The idea behind the proof of Theorem 1 is to replace the role of the leafwise fundamental
groups in Ghys’s paper with the leafwise Pontrjagin classes. Theorem 1 follows directly
from Theorem 7, Section 5.

The Cantwell-Conlon results mentioned above, combined with the obstructions pro-
duced by Phillips-Sullivan, yields Riemann surfaces of bounded geometry which are
difftomorphic to leaves, but whose quasi-isometry class cannot be realized as a leaf of
codimension-g foliation of a manifold with H?(V; R) = 0. The next result gives examples of
complete manifolds of bounded geometry whose quasi-isometry classes cannot be realized
as a leaf in codimension one, without restrictions on the ambient cohomology, yet the
manifolds are diffeomorphic to leaves:

THEOREM 2. There exists an uncountable set of quasi-isometry types of Riemanian mani-
folds of bounded geometry with linear volume growth, none of which is quasi-isometric to a leaf
of a codimension-one, C°-foliation of a compact manifold. Yet all of these manifolds are
diffeomorphic to S® x S? x R, which is trivially a leaf of a smooth codimension one foliation.

Theorem 2 follows directly from Theorem 6, Section 4. One novelty of its conclusion is
that all of the example manifolds M (a) constructed are all diffeomorphic to leaves, yet the
obstructions to being a leaf result from local Pontrjagin classes. Moreover, the manifolds
M (a) are bg homotopy equivalent to open manifolds which are embeddable as leaves of
foliations. S. Weinberger has pointed out to us that these examples thus show that for
embeddings of non-compact manifolds as leaves, the Casson—Haefliger—Sullivan-Wall
theorem is false: that is, the existence of an embedding is not determined by the homotopy
type or even the bg homotopy type of the manifold.

The non-realization results for the quasi-isometry classes of manifolds mentioned above
are all based on an averaging procedure, which requires an asymptotic cycle of subexponen-
tial growth in the manifold — or more generally, it must contain an asymptotic cycle of some
degree [21]. These methods generally fail for complete manifolds of exponential volume
growth. This leaves open a basic problem.

QUESTION. What restrictions are imposed on a complete open manifold of bounded ge-
ometry with exponential growth type, which is quasi-isometric to a leaf of a foliation of
a compact manifold?

This problem can be reformulated as demanding a refined understanding of what
recurrence properties are forced on an open complete manifold which is a leaf of a foliation.
The entropy h(X, gy) defined in Section 6 is a very crude measure of the lack of uniform
recurrence in the coarse metric structure of (X, gx). For a leaf of a foliation, there are a priori
estimates on this entropy — we prove that it must be zero for codimension-one foliations,
and also zero for non-linear growth leaves in C'-foliations. Then in Section 7 we give
a construction to show:
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THEOREM 3. There exists an uncountable set of quasi-isometry types of Riemannian
manifolds of bounded geometry and exponential volume growth, with positive entropy. Hence,
none of these is quasi-isometric to a leaf of a codimension-one C°-foliation, nor to a leaf of
a C'-foliation of any codimension.

1. STRUCTURE THEORY OF TOPOLOGICAL FOLIATIONS

A COfoliation F of a paracompact smooth manifold V'™ is a continuous partition of
V into tamely embedded CZ-submanifolds (the leaves) of constant dimension p and
codimension g. We require that these leaves be locally given as the level sets (plaques) of
local foliation coordinate charts which satisfy four conditions..

(1.1) There is given a uniformly locally finite covering {U,|xe 2/} of V; that is, there
exists m(2/) > 0 so that for any ae.of the set { e o/ | U, n U # 0} has cardinality at most
m(sf).

(1.2) There are local coordinate charts ¢,: U, = (— 1, 1), so that each map ¢, admits
an extension to a homeomorphism é,:U, > (— 2,2)" where U, contains the closure of the
open set U,.

(1.3) For each ze(— 2,2)%, the preimage ¢, ((— 2, 2)° x {z}) < U, is the connected
component containing ¢, '({0} x {z}) of the intersection of the leaf of # through
é2 ({0} x {z}) with the set U,.

The extensibility condition in (1.2) is made to guarantee that the topological structure
on the leaves remains tame out to the boundary of the chart ¢,. The collection
{(Uy, @) e o} is called a regular foliation atlas for F.

The inverse images

ga(z) = d)a_l((_ 1’ I)Px {Z}) < Ua

are topological discs contained in the leaves of #, called the plaques associated with this
atlas. We will assume that the covering is chosen so that all plaques have diameter at most 1.
One thinks of the plaques as “tiling stones” which cover the leaves in a regular fashion. The
plaques are indexed by the complete transversal I =\ )4 4 7. associated with the given
covering, where 7, = (— 1, 1)%. The charts ¢, define tame embeddings

te=¢s }({0}x +): T, > U, = V.

We will implicitly identify the set 7 with its image in ¥ under the maps t,, though the union
of these maps may not be not injective, but is at most finite-to-one.

Finally, the fourth condition ensures that the leaves are C2-manifoids.

(1.4) For each ze( —2,2)% and B so that ¢,((— 1, 1)’ x {z}) n Ug # 0 the transition
function qﬁ,ﬁ_z is C? uniformly in the parameter z, where

Bape = Bpoba (= 2,27 x {2} N T (U N Up) = (= 2,207

The foliation # is said to be C” if the foliation charts {¢,|x€ 2/} can be chosen to be
Cr-diffeomorphisms.

The Product Neighborhood Theorem is a key property of foliated manifolds, which is
a direct generalization of the foliated neighborhood theorem for a compact leaf with finite
holonomy (cf. [13]). For K = Vand ¢ > 0, let A"(K, ¢) be the open neighborhood consisting
of points which lie within ¢ of K.
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PROPOSITION. Let L be a leaf in a foliated space (V, F) with holonomy covering L. Given
a compact subset K = L and & > 0, there exists a foliated immersion T1: K x(— 1, 1) - Vso
that the restriction I1: K x {0} — L = V coincides with the restriction to K of the covering
map n:L — L, and TI(K x (— 1, 1)) € A (n(K), ).

Remark. The details of the proof of the proposition can be found in [16].

An exhaustion sequence for a leaf L is an increasing sequence of connected compact sets
K1 CKZC .;.Knc e C L

whose union is all of L. The w-limit set of a leaf L is the intersection w(L) = N2, L — K,
where the closures are formed with respect to the topology on V.

PROPOSITION. (L) is a compact, saturated (i.e. if a leaf L' n w(L) # 0 then L' < w(L)) set,
independent of the choice of exhaustion sequence. Moreover, if L — K, is connected for all
n then w(L) is also connected.

A leaf L is proper if the inclusion L <, V induces from V the metric topology on L. It is
an easy exercise that a leaf is proper exactly when L n (L) = 0.

An end ¢ of a non-compact manifold L is determined by a choice of an open neighbor-
hood system of ¢, which is a collection {U, },. 4 such that

e each U, is an unbounded open subset of L,
o cach finite intersection U, n --- n U, is connected and non-empty,
e the infinite intersection NP U, = 0.

Given an open neighborhood system {U,},.4 of & the e-limit set lim,(L) = Naea U
Clearly, for each end ¢, we have lim, (L)< w(L). But (L) may include more points than just
the union of the &-limit sets of L. An end ¢ of L is proper if L is not contained in lim,(L), and
¢ is totally proper if lim,(L) is a union of proper leaves.

A leaf L' is said to be the asymptote of a leaf L if w(L) = L'. Note this implies that
o(L')=0. L' is compact.

A compact, non-empty, & -saturated set X is minimal for & if each leaf of X is dense in
X. Equivalently, X is minimal with respect to the properties that it be closed, non-empty
and #-saturated. Zorn’s Lemma implies that for each end ¢ of L, there is a minimal set
contained in lim,(L).

A key to our study of the entropy of leaves, are the notions of expansion rate and
geometric entropy of a foliation. Let D: ¥V x ¥V — [0, 1] be the path-length metric associated
with a Riemannian metric on TV of diameter 1, and D;:L x L — [0, o0 ] on each leaf L.

A leafwise path y is a C*-map y:[0, 1] » ¥V whose image is contained in a single leaf of
% . The length of y will denoted by |y|. Suppose that a leafwise path y has initial point
7(0) = t,(zo) and final point y(1) = t4(z,) on transversals to %, then 7 determines a local
holonomy map, h,, which is a local homeomorphism from a neighborhood of z, in 7, to
a neighborhood of z, in 7. Note that the holonomy of a concatenation of two paths is the
composition of their local holonomy maps (possibly restricted to a smaller domain).

For this work, when we speak of the holonomy of h, of a path y, it is implicitly assumed
that there are points zo€ 7, and z, €7, for some « f§ so that the endpoints of y are
¥(0) = ta(z0) and (1) = t5(zy)
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Let 4(U,) > 0 be the Lebesgue number of the covering {U, |« € o/}. For each R > 0 we
define a metric on J by setting, for x, ye 7,,

dg(x, y) = inf { max D(h,(x), h,(y)), l(Ua)}
[yl <R

and for x and y on distinct transversals we set D(x, y) = 1. The metrics dg strongly depend

upon the choice of the foliation covering,

For0 < ¢ < 1and R > 0, we say that a finite subset {x,, ....x;} = 7 is (&, R)-spanning if
for any xe 7 there exists x; such that dg(x, x;) < &. Let H(#, ¢, R) denote the minimum
cardinality of an (g, R)-spanning subset of 7. The e-expansion growth of & is the growth
class of the function R — H(Z, ¢, R). This function is one of the basic measures of the
“transverse dynamics” of a foliation (cf. [11, Section 37). We will need the following

ProposiTion (Egashira [9]). The growth rate of H(Z, ¢, R) at most [a®"] for a, b > 1, and
is at most [aR] if the foliation is transversally C*.

Let Z < V be an # -saturated set. The restricted spanning function H(Z | #, ¢, R) equals
the minimum cardinality of an (g, R}-spanning subset of J nZ. Clearly, H(Z|#,
& RY < H(Z, &, R).

Note the two properties: ¢’ < ¢ implies H(#, ¢, R) > H(F,e, R)forallR > 0and R" > R
implies H(#, ¢, R')y > H(#, ¢, R) for all ¢ > 0. Introduce the quantity

h,(#, &) = lim sup logH(#, 5 R)
R R

The geometric entropy [11] of # is the limit h(F) = lim,_o h(Z, €). The limit is finite for
a transversally C'-foliation, but may be infinite for topological foliations.

Finally, we recall part of the structure theory for codimension-one C°-foliations
(cf. [15].) We assume that & is transversally orientable, and fix a topological foliation A~
of dimension 1 transverse to & . Let U be an open set in V' saturated by . The completion U
of U is a manifold with boundary equipped with
e a codimension 1 C°foliation % tangent to the boundary,
e a continuous map i:U — ¥ which restricts to a homeomorphism from the interior of
U onto U, so that
e the restriction of # to the interior of U agrees with i*#.

THEOREM (Dippolito [7]). Under the preceding conditions, there is a compact submanifold
with boundary and corners K of U so that 8K = 8% U 3" with
(i) 9 < aU.
(i) 0" is saturated by the foliation i* A",
(i) The complement of the interior of K in U is the finite union of non-compact submanifolds
B; with boundary and corners homeomorphic to S;x[0,1] by a homeomorphism
¢::5;x[0,1] — B; so that ¢, ({*} x[0,1]) is a leaf of i*N".

The foliation restricted to B; is defined by suspension of a representation of the
fundamental group of §; into the group of homeomorphisms of the interval [0, 1].

TriviaLizaTioN LEMMA (Hector [14]; cf. Ghys [10, Lemma 3.2]. Let J be an arc
contained in a leaf of A". Suppose that each pair of distinct points of J belong to distinct leaves
of #. Then the saturation of J by & is homeomorphic to L x J by a homeomorphism taking
Lx{*} to a leaf of %, and {*} x J to a leaf of N".



340 Oliver Attie and Steven Hurder

2. UNIFORMLY FINITE HOMOLOGY

Let M and M’ denote complete Riemannian manifolds of bounded geometry with length
metrics d and d’, respectively. Recall that

Definition. A homeomorphism f: M — M’ is a quasi-isometry if there exist constants
A(f) > 1 and D(f) > 0 for which

A7 (e, y) = DUS) < de(f (%), f(1) < A dulx, y) + D(Sf)

for all x,ye M. We say that fis a quasi-isometry with dilation at most A(f). For a quasi-
isometry with dilation A(f) = 1, the constant D( f) is the deviation from an isometry, and we
say f has translational distortion at most D(f).

The space of real-valued p-forms which are bounded with respect to the norm
lla]l = sup|a(x)| + |da(x)| form a Banach space denoted by Qf(M). This gives rise to
a complex d;:Qg(M) — Q;,“(M). The bounded de Rham groups are defined by

H{(M; R) = [Kerd,]}/[Imd,_].

(In taking the quotient by the image of d one does not take the closure.) Standard de Rham
theory techniques show that a C2-quasi-isometry f:M — M’ induces an isomorphism

*H}M; R) > HYM; R).

Januszkiewicz [21] has defined characteristic classes in Hj(M; R):

THEOREM. Any C? bounded metric on M defines a Chern-Weil homomorphism from the
ring of polynomials on the dual Lie algebra of the group O(n) invariant under the Ad-action
into Hg (M). The bounded Pontrjagin classes

{P1(M), ..., ps(M)} € Hg*(M; R)

are invariants of the C2-quasi-isometry class of M.

To analyze the bounded Pontrjagin classes geometrically we introduce a Poincaré dual
homology theory to Hj(M; R).

Definition. Let X be a simplificial complex of bounded geometry. Define the uniformly
bounded chains C?*(X; Z) to be the group of formal sums of simplices in X, ¢ = ¥ a,0 so that
there exists K > 0 depending on c¢ so that |a,| < K and the number of simplices ¢ lying in
a ball of given size is uniformly bounded. The boundary is defined to be the linear extension
of the usual singular boundary. The homology group HPf(X;Z) is defined to be the
homology of the complex C*(X; Z).

We recall the following result from [2].

THEOREM. Let M be an n-dimensional, oriented complete manifold of bounded geometry.
Then there is a Poincare duality isomorphism

HY(M,Z)® R ~ H; '(M; R).

This allows us to re-express Januszkiewicz’ characteristic classes in terms of degeneracy
sets.

Definition. Let E - M be a rank k vector bundle of bounded geometry and
g =(04,...,04) be k global C*® sections of E. Then the degeneracy set D;(o) is the set of
points xe M where the g, ...,0; are linearly independent, i.e.,

Di(0) = {x: 6,(x) A - Agi(x) = 0}.
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The collection of sections ¢ is generic if for each i, g, , intersects the subspace of E spanned
by 64, ...,0; transversally and if integration over D, ;(c) — D;(0) in the sense of averaging
over a regular exhaustion, is a closed current. Then D;(c) is a uniformly bounded cycle, and
[D;(E)]Je H'™ (M, Z) is called the ith degeneracy class for E.

THEOREM. Let E — M be a real vector bundle with bounded geometry. Then the degener-
acy class [D,_4(E)] eH;‘?(M; Z) is Poincaré dual to the {(th Pontrjagin class
pe(M)e Hy'(M; R).

3. MANIFOLDS OF BOUNDED GEOMETRY

We consider related notions of bounded geometry (bg) for simplicial complexes in this
section; then formulate the PL surgery groups and recall their calculations in certain cases.
Details of the bg theory of simplicial complexes are given in [1].

Definition. A simplicial complex X has bounded geometry if there is a uniform bound on
the number of simplices in the link of each vertex of X. A simplicial map f:X — Y of
simplicial complexes of bounded geometry is said to have bounded geometry if the inverse
image of each simplex A of Y under the map f contains a uniformly bounded number of
simplices in X.

Definition. A subdivision of a simplicial complex of bounded geometry is said to be
uniform if

(i) Each simplex is subdivided a uniformly bounded number of times on its n-skeleton,
where the n-skeleton is the union of n-dimensional subsimplices of the simplex.

(ii) The distortion Max(length(e), length(e)~!) of each edge e of the subdivided complex
is uniformly bounded in the metric given by barycentric coordinates of the original
complex. (This is the PL version of the dilation.)

Definition. A metric space P is a bg polyhedron if:

(i) Tt is topologically a subset P = R".

(ii) Each point a€ P has a cone neighborhood N = a=* L of P in the given Euclidean
space, where L is compact and there is a uniform upper bound for the number of simplices
needed to triangulate L, independent of ae P.

Definition. A map f: P — Q between bg polyhedra is bg PL if it is piecewise linear and
has bounded distortion.

Definition. A PL manifold of bounded geometry is a bg polyhedron so that each point
x€M has a neighborhood in M which is PL homeomorphic to an open set in R", with
a uniform bound on the distortion of the PL homeomorphism over M.

Definition. A homotopy of bounded geometry between two maps f, and f, of bounded
geometry is a map of bounded geometry F:X xI — Y so that F|X x0=f, and
F|X x 1 =f;.(We write this fo ~,,f1.) A homotopy equivalence of bounded geometry is
a map f of bounded geometry so that there is a map g of bounded geometry with fc g and
g °f bg homotopic to the identity.

Definition. A CW-complex of bounded geometry is defined to be a CW-complex with
a uniformly bounded number of cells attached to each cell and a finite number of
homeomorphism types of attaching maps. A bg n-cell is a discrete collection of n-cells £ x I,
equipped with an attaching map :Z x [" - X. Two attaching maps ¢, ¥, ZxI" - X
are of the same homeomorphism type if there is a cellular homeomorphism h: X — X so
that hy h™! = y,.

Definition. Let X be a CW complex of bounded geometry. An expansion of bounded
geometry is a bg CW complex Y so that
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(1) (Y, X)is a bg CW pair.

(i) Y=X U (EXI)U,(ExI"1) for bg (r + i)-cells TxI"* i =0, 1 and attaching
maps f, g.

(i) There is a characteristic map ¥,,,:Z xI"*! — Y for the bg (r + 1)-cell so that
Y1 | ZXI":ZxI" - Y is characteristic.

If Y'is an expansion of X, then Y is said to collapse to X. A bg homotopy equivalence is
said to be simple if it can be obtained by a series of expansions and collapses.

Definition. The bg simple structure set of a manifold of bounded geometry X, denoted
&% 5(X) is the set of bg simple homotopy equivalences ¢ : N — X modulo the equivalence
relation ¢ ~ ¢': N’ > X, if there is a PL quasi-isometry h: N — N’ so that ¢’ h = ¢.

Definition. Let M be a compact manifold with boundary. The PL structure set & (M, 6)
of piecewise linear structures on M relative to the boundary of M, is defined to be the
equivalence classes of maps h: X — M of PL manifolds X with boundary, which are
homotopy equivalences and PL homeomorphisms when restricted to the boundary. Two
maps h: X — M and h': X’ — M are said to be equivalent if there is a homeomorphism
¢': X — X' sothat h=h'o¢.

The set & (M, 0) is a group via “characteristic variety” addition [30].

Here is a key observation from differential topology.

THEOREM 4. The PL structure set & (S x §* x 1, &) contains a summand isomorphic to
7 and detected by p; e H*(S3 x §? x 1, 8; Z)) = H*(S* x $* x §*; Z).

Proof. Standard Browder—Novikov surgery theory [3, 22, 23, 30, 32, 33] yields an exact
sequence

0 - #(S*xS*x1,0) » [£(8>x5%); G/PL] — Z - 0.
Observe that
[Z(5*xS?); G/PL]®@ R = H*(Z(S*x S*, R)® H¥(E(S*x S*, R) = RD R

and note that after tensoring with R, the kernel of the above map to R =~ Z ® R is detected
by p;. This yields the result.

For each aeZ let (M(a), ) denote the smooth 6-manifold (with boundary) homotopy
equivalent to (S* x §2 x I, 8) with relative Pontrjagin class p,(M (a)) = a. Given a bi-infinite
sequence 8 =(...,a-,,d_y,do,d;,4,,...) of integers, define a complete open manifold of
bounded geometry

M@= May)

to be the infinite-union manifold whose nth factor is M(a,), and the manifolds are “glued”
along their boundaries.

A bi-infinite sequence a =(...,a_,,a-1,dq,4y,4,,...) is uniformly bounded if there is
a bound A#* on the terms a, of the sequence: |a,] < A# for all n.

ProrosiTiON. If a is uniformly bounded, then the manifold M(a) is diffeomorphic to
$*xS2xR.

This follows from a standard application of the infinite process trick (see [297). The
following is a special case of the main result of [1].
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THEOREM 5. The set of strict quasi-isometry classes of the set of manifolds {M(a)|a is
uniformly bounded} is in one to one correspondence with the set of sequences in Z of linear
growth, modulo the set of bounded sequences. Furthermore, the correspondence is given by the
first Pontrjagin class in Hy (S* x $? x R; Z).

Proof. The correspondence is given as follows. Given a sequence of integers, take the
sequence given by adding up the first n terms. This has linear growth. If we apply the result
of [2] which states that the degeneracy set of complexified tangent bundle is Poincaré dual
to the Pontrjagin class, we see that gluing together representatives in the structure set with
Pontrjagin classes {...,a_,,d_1,0a9,4dy,4a,, ... } corresponds to taking the cycle in HY(R, Z)
given by assigning this sequence of numbers the corresponding sequence of manifolds in
F(S3 x §? x I, 0). Thus, the manifolds are distinguished by their first Pontrjagin classes in
H ; (S*x$?x R; R) >~ Hy"(R; Z) ® R. The converse follows from the main result of [1].

A sequence a¥ = {a;,a;,a;,...} is eventually periodic in Hy' ([0, cc); Z) if it is uff-
homologous to a periodic sequence.

Let {U,},.4 define an end ¢ of M. We say that ¢ is periodic if there exist xe A and
a homeomorphism into Il: U, - U, so that all f§, deA there exists k = k(f, ) > 0 with
IT“(Uy A U,) < Us. We say that ¢ is bg-periodic if the homeomorphism IT can be chosen to
be a quasi-isometry with dilation 1.

The Classification Theorem above has the following application.

CoroLLARY 1. Suppose that M(a) has a bg-periodic positive end. Then the subseqence
a* = {ay,a,,a;,...} is eventually periodic in Hy" ([0, x0); Z).

Proof. Let U, = | )~ , M(a,) define the positive end, for « > 0. By considering a suitable
power of the end shift map, we can suppose there exists a quasi-isometric homeomorphism
into I1: Uy — U, of dilation 1.

LEMMA. For each xe M there exists an open neighborhood xeV,eM, so that V,
NIV, =0 for all £ > 0.

Proof. Let k = k(x) > 0 be the greatest integer so that xe IT*U, but x ¢ IT1**'U,. There
is a unique ye U, with IT%(y) = x. Choose an open neighborhood ye W, = U, — I1U,;
hence W,nII'W,=0 for all v>0. Set V,=I*W, If V,Anll'V,#0, then
"W, nTI**“W, # 0 and as I is 1-1, W, " TTW, # 0 a contradiction.

It follows that the quotient space % = U, /II has the structure of a compact manifold
without boundary. The first Pontrjagin class p,(%)e H*(%; R) lifts to a periodic class
P eH,‘,‘ (U,; R), which determines a periodic dual class

(b1sb2,- by by by, ) EHS (Uy; 2).

It remains to observe that the given PL structure on U, is bg-equivalent to the periodic
structure induced by the local covering map U, — %; hence (a,,a,, ...} is uff-homologous
to (bl,bz,...,bp,bl,bz,...).

4. EXAMPLES OF NON-LEAVES IN CODIMENSION ONE

Given a bi-infinite bounded sequence b = (...,b_,,b_,,bo,b,,b,,...) where b;e {1, 2},
form the bounded sequence

a=(..,b_5000,0,b_,,0,0,b_,,0,b0,0,5,,0,0,5,,0,0,0,0, b5, ...).

TOP 35:2-F
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Thatis, ay = bg,a+, = 0,a., = b, and in general the sequence a is obtained from =+ nth
entries “b,” of b then followed by 2" zeros, followed by the + (n + 1)th entries “by+1)”
and so forth.

The complete manifold M (a), constructed as in Section 3, has linear volume growth and
is diffeomorphic to S* x $2 x R. In particular, M(a) is diffeomorphic to a leaf of a codimen-
sion-one foliation of §* x $2 x §! x S!. Yet none of the manifolds M (a) is quasi-isometric to
a leaf by the next result.

THEOREM 6. Let a be a uniformly bounded sequence with non-negative entries such that
neither endstrings (a,,a,, ...) nor (a_,,a_,, ...) are eventually periodic. Then M(a) is not
quasi-isometric to any leaf of a C°-foliation of codimension one of a compact manifold.

Proof. Let M(a) be as in the theorem. We assume M (a) is quasi-isometric to a leaf L of
a C%foliation & of codimension one of a compact manifold ¥, which we will then show is
impossible.

Note that by Corollary 1 of the last section, L cannot be bg-end-periodic.

Suppose first that L is a non-proper leaf, then there exists a closed transversal
T:S' =,V to & whose intersection L n 7(S') is an infinite set. The restricted holonomy
pseudogroup on S! carries a diffuse invariant probability measure u, defined by an
averaging sequence derived from L. It follows that the holonomy pseudogroup on S' is
actually a group, and semi-conjugate to a group of rotations of S* with dense orbits. (In fact,
L has precisely linear growth implies that the group of rotations is generated by a single
transformation with irrational rotation number.)

LEMMA. There exists a transformation of bounded geometry, S:L — L, so that for any
compact set K < L there exists some m > 0 with S"K)n K = 0.

Proof. Let 4" be a one-dimensional foliation transverse to & for which 7(S')is a closed
orbit (cf. [15, Theorem 1.1.2]). We can assume that & is transversally oriented, as L lifts
homeomorphically to a leaf of the covering foliation on any covering of V. Also, assume the
foliations charts in the covering of V are sufficiently small so that each plaque intersects
T(S') at most once. Choose a basepoint *eL and a positively oriented arc
i,:[0,1] - # < V of A4 starting at » and ending on L. This has transverse measure
0 < a= u(#) <oo. Now define S as follows: For each x € L, there is a positively oriented arc
ir:[0,1] = #. = V contained in a leaf of 4" such that i.(0) = x, i.(1)e L and u(.#;) = a. Set
S(x) = i(1). It is clear that S is a quasi-isometric homeomorphism.

Choose a leafwise path y from * to S(*). Then the induced local holonomy transforma-
tion along y extends to a global holonomy transformation h,:S' — S' which commutes
with S: for z = T(8)e L n T(S') then S(z) = T(h,()). Now, given a compact set K = L, let
K denote the union of the plaques in L which intersect K non-trivially. The plaque-
saturation K is again compact, so there is a finite intersection KnT (S = {zy,....,2,} Let
#; denote the union of the plaques through z;. Set 6;eS! with T(0;) = z;. Then for
m sufficiently large, S™({6,, ....0,}) N {0,, ... 0,} = 0. Now if T"(K)n K # § then there
exists some i, j so that T™(%;) n 2; # . Each plaque intersects 7(S') in a unique point (if at
all) hence 7™(z;) = z; which is a contradiction. This establishes the second claim of the
lemma.

Remark now that the transformation S: L — L induces a bg periodic structure on each
end of L, which is impossible by the previous remarks. So this rules out the possibility that
M (a) is quasi-isometric to a non-proper leaf L.
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If L is a proper leaf, we next follow the outline of the proof in Ghys [10] to arrive at

a contradiction. (The use of simply connected open manifolds simplifies several of the steps
in [10].)

LemMMa (Ghys [10, Lemma 4.4]). L possesses a saturated open neighborhood which is
uniformly quasi-isometric to L x (— 1, + 1) by a homeomorphism ¢ taking L x {t} to a leaf of
F forall —1 <t <1, and for t =0 is the isometric inclusion of L.

Proof. Note that the flow along the transverse foliation .4" induces quasi-isometric
homeomorphisms of the leaves.

Following [10], let Q — M be the union of leaves of # quasi-isometric to L. Then Q is
open and the restriction of % to Q is defined by a locally trivial fibration with base
a manifold of dimension 1. Let Q, be a connected component of Q.

We claim that the Dippolito completion of Q; cannot be compact. For suppose Q, is
a compact manifold with boundary, and # restricted to the interior of Q, has no holonomy,
all its leaves are proper and quasi-isometric to L. If F is a compact leaf of 8Q,, then the
holonomy of F is without fixed points and has proper orbits. Thus, the holonomy is infinite
cyclic. We deduce that the neighborhood of the end of L is quasi-isometric with dilation 1 to
a neighborhood of the end of the infinite cyclic holonomy cover of F. Hence, L has a bg
periodic end, which is impossible.

Lemma 4.6 of [10] also applies to the leaf L above, hence the space of leaves of the
restriction of Z to Q, can not be R.

It remains to rule out the case where Q, is non-compact and the quotient space by the
leaves is a circle. Then, there is a fibration Q, — S' with fiberwise monodromy map
§:L — L. This map can be defined exactly as before, as there is a transverse circle
T:S' — Q, whose induced holonomy pseudo-group is trivial. Thus, there is an invariant
diffuse probability measure on T(S') which is used to define the quasi-isometric homeomor-
phism S. Lemma 5.1 of [10] shows that there is a compact subset K < L for which S induces
on each component of L\K a bg homeomorphism, so that each end of L is bg periodic
which is a contradiction. Hence, M(a) cannot be quasi-isometric to a proper leaf L either,
which completes the proof of Theorem 6.

5. NON-LEAVES WHICH ARE HOMOTOPY EQUIVALENT TO LEAVES

In this section we give a general procedure for constructing simply connected, six-
dimensional complete open manifolds, none of which is homeomorphic to a leaf of any
codimension-one, C°-foliation of a compact manifold. Yet each of these manifolds is
homotopy equivalent to a manifold which is a leaf of a smooth foliation of codimension one.

Say that a bi-infinite sequence a = {a,} is odd if a, is an odd integer for all n.

For each integer s, let N(s) denote the closed manifold homotopy equivalent to §* x S?
whose first Pontrjagin class evaluates to s in H*(S*x §% Z) =~ Z. Given a bi-infinite
sequence, a, form the infinite connected sum

N@ = #7_. NQ2".a,)).

Note that N(a) has a metric of bounded geometry, where the diameter of the summand
N(2"I.a,) tends to infinity. Note also that each manifold N(a) is homotopy equivalent to
the standard connected sum # > _, S* x S*.

THEOREM 7. Let a be an odd sequence. Then N(a) is not homeomorphic to a leaf of any
COfoliation of codimension one of a compact manifold.
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Proof. N(a)cannot be homeomorphic to a non-proper leaf L of # on V. Otherwise, for
each point x € L, there is a sequence of points x, € L such that the leafwise distance from x to
x, tends to infinity with n, yet x, — x in the topology on V. Now fix K = N(a,) = L. As the
fundamental group of L is trivial, by the Product Neighborhood Theorem there is a (leaf-
wise smooth) embedding j: K x [— 1, + 1] =V so that j(K x t) is contained in a leaf of the
foliation & for all — 1 <t < 1, and j(K x 0) is the inclusion into L. Each point of K must
be a limit of points in L which tend to infinity, hence L must intersect
JEKx[—1,1]) — (K x0).

If the positive end N(at) = # PN(a,2/"!) intersects j(K x [— 1,1]), then we obtain a
diffeomorphism into N(ag)s N(a*). The first Pontrjagin class p,(N(ao)) =
ape H*(S* x 8%, Z) > Z is odd. By naturality of the first Pontrjagin class, the existence of an
embedding N(ao) ——N(a*) implies that p, (N (ao)) is the pull-back of p,(N(a*)). But this
latter class must be divisible by 2 by construction, which is a contradiction.

The proof that N(a) cannot be homeomorphic to a proper leaf L uses the same
techniques of proof as in the last section. If the Dippolito completion of Q, is compact, then
L has a (positive) periodic end, asymptotic to a compact leaf F. This is impossible, as for
r > 0 the class

p1(#°N(@2")) e H*(# 7 N(a,2"), Z)

is the lift of p, (F)e H*(F: Z). The first Pontrjagin class on summand N (a,2'"') is divisible by
2" which contradicts that it is a lift of a fixed class on F.

Lemma 4.6 of [10] assumes only that the leaf L has no holonomy along its ends, hence
the space of leaves of the restriction of # to Q, cannot be R.

Finally, when Q, is non-compact and fibers over a circle, Lemma 5.1 of [10] proves that
there is a monodromy map S: L — L with the property that for an appropriate choice of
kernel K, < L, given any compact set K < L disjoint from K, then there exists n > 0 so
that $*(K) n (Ko U K) = 9. In particular, for » > 0 we can take K, = #7_.N(a,2'") and
K = N(a,2"). Then

§":N(@,2") = #5%1N@2")u # 27 'N(a.2'™)

and we again get a contradiction by considering the divisibility of p,(N(a,2")).

This establishes that N(a) cannot be realized as a proper leaf either, which completes the
proof of Theorem 7.

Finally, let us show that # 2 _,S* x S2 is a leaf of a foliation. Observe this manifold is
diffeomorphic to the universal covering W of the manifold W obtained from $* x $2 by
attaching a 1-handle. Choose an irrational number 0 < & < 1 and let R,:S* — S! be the
rotation map by angle an. Then the diagonal action of Z on W xSt acting via the deck
translations on the first factor and via R, on the second, yields a quotient manifold
V,= Z\(Wx $1), which has a codimension-one smooth foliation #, whose leaves are the
cosets of {W x {8} |6eS"'}. Thus, each leaf of Z, is bg diffeomorphic to # 2 _ ,S* x §2.

n=—wx

6. ENTROPY OF OPEN MANIFOLDS

The last two sections have used the recurrence properties of the ends of a leaf in
codimension one to obtain non-embedding results. In higher codimensions, recurrence is
much more difficult to categorize and quantize. Recall that every non-singular flow on
a (g + 1)-manifold yields a codimension g-foliation, so the recurrence properties for a gene-
ral codimension q foliation are at least as complicated as that of flows, and this is just for the
class of leaves with linear growth.
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In this section, we introduce a new invariant for an open complete manifold (X, g), its
entropy. When (X, g) is quasi-isometric to a leaf of a foliation of a compact manifold, then
there is a relation between the entropy of (X, g) and the geometry of the foliation. We use
this to obtain non-embedding results. For example, there is a fundamental difference
between the dynamics of a C° and a C!-foliation, which we use to produce non-embedding
results for leaves of exponential volume growth in C!-foliations.

Definition. For ¢, R > 0, and (¢, R) quasi-tiling of a complete Riemannian manifold (X, g)
is a collection {K,,...,K,;} of a compact metric spaces with diameters at most R, and
a countable set of homeomorphisms into { f;: K, — M|ie.#} so that:

o Each f; is a quasi-isometry onto its image with A(f;) <(1 + ¢) and D(f}) < e
e For any set K of diameter at most R/2, there exist ie # so that K < fi(K,).
The integer d is called the cardinality of the quasi-tiling. Note that the images f;(K,,) have
diameter at most ¢(R + 1).
Definition. For ¢ > 0, the e-growth complexity function of (X, g) is

H(X, g, ¢, R) = min{d|there exists an (¢, R) quasi-tiling of (X, g) of cardinality d}

If no (&, R) quasi-tiling exists, then set H(X, g, ¢, R) = .
Remark. A few observations help to clarify what the function H(X, g, ¢, R) measures:

e When (X, g) is a covering of a compact Riemannian manifold B, the isometric action
of the deck translation group I' and X provides a “geometric periodicity” for X based on the
translates of a fundamental domain. This implies that H(X, g, ¢, R) = 1 for all ¢ > 0 and
R > 3 (diam(B) + ¢).

e For a manifold with a periodic end, for R sufficiently large and fixed ¢ > 0 the end can
be covered by just one tile, so contributes marginally to the complexity.

e For the general complete, non-compact manifold of bounded geometry, the complex-
ity function is a measure of the capacity of the image of M in an appropriate space of metric
spaces (cf. [17].)

The following is obvious from the definition.

PROPOSITION. Given a quasi-isometry f: M — M’, for ¢ > 0 there exists £ > 0 so that for
allR > ¢

H(X,g,¢,R—eg <H(X,g9,6, )< H(X',g,¢,R + ¢).

This implies that a suitable equivalence class of the growth complexity function is
a quasi-isometry invariant of M. We will extract two numerical invariants of the complexity
— the geometric and topological entropies.

For a complete open manifold (X, g), let B(x, R) = X denote the ball of radius
R centered at x, and define ¥"(X, g, R) = sup{vol(B(x, R))| xe X }.

Definition. The entropy of (X, g) is

In{in{H(X, g,& R)}}
In{¥"(X, g, R)}

h(X, g) = lim lim sup

£2w R-w

and the geometric entropy of (X, g) to defined to be

In{H(X, g, ¢ R)}

hy(X, g) = lim lim sup R

e~+x R-oxo
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When (L, g, ) is a leaf of a foliation of a compact manifold M endowed with the metric g,
restricted from g on TM, then we call h(L, g;) the leaf entropy of (L,g.) and hy(L, g.) the
geometric leaf entropy.

We have an immediate consequence of the above proposition.

CoroLLARY. Let (X, g) be a complete Riemannian manifold of bounded geometry. Then the
properties

o h(X,g)=0,
o 0 <h(X,g) <o,
® h(X,g)=o00,

depend only on the quasi-isometry class of (X, g). A corresponding conclusion also is true for
the geometric entropy h,(X, g).

We next develop relations between the growth complexity function for a leaf and the
geometric entropy of the foliation. The most precise statement relates H(X, g, ¢, R) with the
expansion growth function H(#, ¢, R) of a topological foliation discussed in Section 1,
which measures the rate of transverse mixing of the holonomy pseudogroup.

Here is the key technical observation. Let % be a C° codimension-gq foliation of
a compact manifold V. Fix the path-length metric on V associated to a Riemannian metric
on TV. Choose local foliation coordinate charts ¢,: U, — ( — 1, )" as in Section 1, for
which we can then define the function H(#, ¢, R). Recall that H(L|#, ¢, R) denotes the
maximal cardinality of an (¢, R)-spanning subset of the intersection of the leaf 7 n L, so
that H(L|#,¢, R) < H(#,¢, R).

ProposITION. Let L < V be a simply connected leaf of a C°foliation. For each R > 0
there exists an open covering {¥"3|fe B} of V so that
(1) the cardinality |#| < H(L|%,%, R);
(2) each ¥4 is a foliated product,
(3) for each leaf L' < L the restriction of the covering {¥'3} to L' has Lebesgue number at
least R — 3.
In particular, there is a uniform estimate | 8| < H(Z, 4, R) independent of L.

Proof. Choose a (4, R)-spanning subset {xi,...,xgg )} <7 nL of cardinality
d(R) = H(L| #,1, R). Let «; be the index for which x;€ 7, . Let K; = L denote the union of
the plaques in L which can be reached from x; by a leafwise path of length at most R — 1.
Then each point in the intersection K; n 9 can be joined to x; by a leafwise path of length at
most R.

Let Bg(x;,3) < 7, be the ball centered at x; of radius 2 in the metric dp restricted to the
transversal. Define #7; to be the union of all plaques of # which can be joined to t, (Bg(x;, 3)
by a leafwise path of length at most R — 1.

We show that the collection {#7|1 < § < d(R)} is a covering of L. Let xe L, then x e U,
for some « and so lies on a plaque 2,(z,) for some z,€.7,. The metric dg is quasi-isometric
to the Riemannian metric on V, so there exists z¥e L n 7, so that dg(z,, z¥) < . The
1-spanning property then implies there exists x;€7, with dg(z¥, x;) <3, hence
xeP(2) = V.

The proof of the product neighborhood theorem (cf. [16]) yields exactly that we can
choose homeomorphisms onto, IT;: K; x (— 1, 1) — ¥7; which satisfy

e the leafwise restriction II;: K; x {0} — L < V/ is the inclusion; and

e the transverse restriction IT;:{x;} x(— 1, 1) - t, (Bg(x;, 3)) is a homeomorphism
onto.
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Finally,let Zc L' c L be a connected compact subset of diameter at most R — 3 in
aleaf L'. Let Z be the union of the plaques with non-empty intersection with Z; then Z has
diameter at most R — 1. Choose a point zeZnT anda point x;€ 7, so that dg(z, x;) < 3.
Then clearly Z = ;. This completes the proof of the proposition.

THeoREM 8. Let (L, g) be a simply-connected leaf of a C°-foliation # of a compact
manifold V. Then H(L,g,1,R — 3) < H(L| #,%, R) for all R > 3.

Proof. Let {¥74]1 < B <d(R)} be a covering associated with a (3, R)-spanning set as
above, with local homeomorphisms onto II;:K;x{( — 1,1)* > ¥7. For each ze Ln 7,
define a homeomorphism f; , = IT;(+, z): K; — L. As all plaques have diameter at most 1,
each f; , is a quasi-isometry onto its image with distortion D(f; .) < 1. So by (3) of the
technical proposition above, the collection {K,,...,Kug ) with maps {f; .} forms
a (1, R — 3)-quasi-tiling of L of cardinality at most H(L|#, 3, R).

COROLLARY. Let (X, g) be quasi-isometric (with dilation /. = 1) to a leaf of a C°-foliation
% . Then the geometric entropy of (X, g) is dominated by the geometric entropy of F

he(X, g) < hy(F).

In particular, if either # has codimension-one or is a C Yfoliation, then (X, g) quasi-isometric
to a leaf of & implies that h,(X, g) < .

This corollary gives an effective restriction on when a complete open manifold (X, g) is
quasi-isometric to a leaf of a foliation #. First, we leave it as a non-obvious challenge to the
reader to construct an example of an open manifold (X, g) with h,(X, g) # O yet hy(L|F)
must vanish for any leaf L quasi-isometric to (X, g). (This will be discussed in detail in
a subsequent paper [17]). The second example is more complicated — we construct in the
next section an open complete manifold (X, g) with h(X,g) =oc. hence the geometric
entropy h,(X, g) = h(X, g) must also be infinity so (X, g) cannot be a leaf of either a codi-
mension one foliation, nor of a C!-foliation of arbitrary codimension.

7. NON-LEAVES OF EXPONENTIAL GROWTH IN HIGHER CODIMENSIONS

In this section, we exhibit complete open manifolds (X, g) of bounded geometry and
exponential volume growth whose Pontrjagin classes in H}(X) are sufficiently “random” so
that H(X, g, & R) has e-growth type [a®"] for some constants a, b > 1 and for all ¢ > 0.

The general construction of the manifolds (X, g) will connect-sum an infinite number of
copies of $* x §? onto the hyperbolic n-space H®, chosen so that we force every quasi-tiling
to have maximum growth rate. The role of hyperbolic space can be replaced by the
universal cover B of any compact 6-manifold B whose fundamental group I' has exponen-
tial growth, but we leave the details of the generalization to this reader.

Let B(x, R) denote the ball of radius R centered at x € H®. Our construction is based on
the following property of manifolds of uniformly exponential growth.

ProPosITION. There exists a constant ¢ > 1 so that each xeH® and R > r > 0, the ball
B(x, R) contains at least | ¢® " | pairwise disjoint balls of radius r.

Given xeH® and r > 0, choose d = | ¢" |points {x,,...,x;} © B(x, r) such that the balls
{B(x;, 1)|1 <i<d} and contained in B(x,r) and are pairwise disjoint.

Next, fix model manifolds N, for 0 < # < 2, each homotopy equivalent to S* x %, with
p:i(N,) = € H*(S* x §2; Z) = Z. Fix a Riemannian metric on N, with injectivity radius at
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least %, and choose a disk of radius 4 in N, which will be the center for a connected sum
operation.

For each integer 1 < k < d construct a manifold W *(x, r, k) with boundary the sphere
S(x, r) of radius r: for i < k, connect sum N, to the ball B(x;, ); and for k < i < d, connect
sum N, to the ball B(x;, 3). Note that W*(x, r, d) has a standard collar neighborhood of
radius 4 about its boundary.

Modify this construction to define W~ (x, r, d), where we now attach N, to the ball
B(x4,%)in Wt(x,r, d).

We repeat this procedure a second time, where for ye R® and R > s we choose points
{¥1,--,¥p} = B(y, R) where D =| c¢®~* | so that the balls B(y;, s) are contained in B(y, R)
and are pairwise disjoint. Assume that s > randset R=r +ssothat D >d={ ¢! | and
choose a sequence k = {ky,...,k;} with each k;e { + }. For each 1 < i < d, surger in a copy
of W¥(y;,r,i) in place of the ball B(y;, r). Label the resulting manifold N(y, r, s, k). Again,
note that the boundary of N(y, r, s, k) is a sphere of radius R about y and admits a product
neighborhood (see Fig. 1).

The purpose of this complicated construction of the modified disks N(y, r, s, k) of radius
R in H® is to create a set of standard “models” which have distinct quasi-isometry types.
There are 2¢ choices of the sequences k = {k;,...,k;}, hence an equivalent number of
manifolds N(y, r, s, k). Let N (.1, s, k) be the result of attaching N(y, r, s, k) to H® in place
of the ball B(y, r + s).

ProposiTioN. Let h:N(y,r, s, k) — N (z, r, 5,1} be a quasi-isometric homeomorphism with
Ahy<eand Dh)<e If s> 2e(2r + 1), thenk =1

Proof. Let us show that k; = Z;. Let x, € W%(y,, r, i) be the first point in the construction
of this set. Then the image of the set W*(y;, r, i) under the map h must be contained in the
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ball B(h(xl) e(2r + 1)). The point h(x,) must lie in one of the sets W% (z,,r,a) used to
construct N (z, 1, s, 1). By the choice of s, the intersection B(h(x,), e2r + 1)) n W?(z, r, b) is
empty unless a = b. It follows that W*(y,, r, i) must be mapped quasi-isometrically onto
Wie(z,, r, a).

We can now count the total number of summands of $*xS? in W%(z,,r, a) with
positive even Pontrjagin class to obtain that i = a. Finally, if k; = “ — ” then there must also
be a summand of $* in W¥(z;, r, i) with positive odd Pontrjagin class, hence £; =“ —”.
Otherwise, £; = “ + ”. This proves the proposition.

Choose a geodesic curve g: (—o0, o) — H®. We observe that g is a “straight” curve in the
sense of Gromov; that is, the distance dys(g(r), g(s)) = |r — s|. For each integer i > 0, set
w; = g(i!).

We are now in a position to define inductively the manifold M which is not a leaf. Set
M (0) = H®. Fix n > 0 and assume that M (n — 1) has been defined. There are 2¢ choices of
the manifolds N(y,n, un, k), where d =| ¢" | and u is a positive integer. For each
1 < u < n?, attach these 2¢ choices onto a subset of the points {w;|i > n} which have not
been modified in a previous step. This produces M (n). (That is, we are essentially implemen-
ting a diagonalization procedure in order to list all of the choices of these manifolds, spaced
out along the increasingly distant points {w;}.) Let M be the direct limit manifold obtained
by this inductive procedure.

PrOPOSITION. There exists b > 0 so that for all ¢ >0, H(X, g, &, R) = 2*" for R > 0.

Proof. Fix ¢ > 1 and an integer R = n > 10¢”. Let {K, ..., K,} be an (¢, R) quasi-tiling
of M with countable set of homeomorphisms into { f;: K, - M} so that:

e Each f; is a quasi-isometry onto its image with A(f;), D(f;)) <¢

e {fi(K,)} is an open covering of L with Lebesgue number at least R.

Set & = 4(n + 1)¢2. Distinct submanifolds N(y, n, &, k) and N(z,n, & 1) of M, each of
diameter ¢ + n, are separated by a distance at least (n — 1)! — 2(& + n) > e(n + 1). The
diameter of each set f;(Kx;) is at most ¢(n + 1), so the image of the quasi-isometry f; which
contains a set N(y, n, &, k) will intersect no other set of this type.

Assume there are two such maps defined on a common K, , with N(y, n, &, k) < f; (K,,)
and N(z,n, & 1) c f;(K,,) Thean of; ! restricts to a quasi-isometry from N(y, n, & k) to
Nz, n, & 1) with A(fjofi') <2 and D(fjof;”') <e&® Apply the above proposition to
conclude that k =1 In partxcular v>2% where d = ¢""! | Take 1 <b<c¢ and the
proposition follows.

The claim of Example 3 of the introduction now follows by the quasi-isemetry invari-
ance property of the growth complexity function.

8. SOME OPEN QUESTIONS

We conclude with a few questions about the embedding problem.

ProBLEM 1. Find a complete open manifold which cannot be embedded as a leaf of
a C°-foliation in any codimension.

Remark. The theorems which imply the existence of periodic ends for leaves are unique
to codimension one, so do not yield obstructions in higher codimensions. One approach
might be to use to the quasi-tiling function for a complete open manifold to introduce finer
numerical invariants which are obstructions to realization as a leaf in a C°-foliation. For



352 Oliver Attie and Steven Hurder

example, there might be such obstructions associated with the minimal sets in the ends of
a leaf, which would play the role in higher codimensions of periodic end structure in
codimension one.

PrOBLEM 2. Find examples of complete open manifolds in dimensions 3, 4 and S which are
homotopy equivalent to leaves, but cannot be realized as leaves of a codimension-one,
C°-foliation.

Remark. Our constructions use Pontrjagin classes and simply connected surgery, so are
limited to manifolds of dimension at least 6. It should be a straightforward technical task to
extend our results to leaves of dimension 5. Similarly, dimension 4 may also follow from the
same approach used here, but using 4-manifold surgery techniques. The case of 3-manifolds
seems to require a completely different approach, possibly using local torsion invariants in
place of the Pontrjagin classes.

In another direction, Zeghib [34] observed that our construction in Section 7 can be
modified to yield manifolds of dimension 2 which are diffeomorphic to the plane, but have
positive entropy.

PrOBLEM 3. Is there a general obstruction theory to embedding a complete open manifold
of bounded geometry as a leaf of a foliation? Is this part of some broader surgery classification
scheme for leaves?
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