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Abstract
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are de Rham, Čech and Alexander-Spanier versions of this theory, which are all isomorphic. We
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1 Introduction

Coarse cohomology for metric spaces, introduced by Roe [R1, R2, R3] provides a new approach to
the topological study of non-compact Riemannian manifolds. Coarse cohomology theory evolved
from the considerations of the index theory of geometric (Dirac-type) operators on open complete
manifolds, and has yielded surprising new “index” invariants beyond the usual index. In this paper,
we extend coarse cohomology theory to parametrized families of metric spaces.

The leaves of a foliation F of a compact manifold M have a complete metric whose coarse isometry
class is an invariant of the transverse pseudo-group [P, HK], and the family of metric spaces given
by the holonomy covering of the leaves viewed as a family over M provides a natural application of
this work. The coarse cohomology of a foliation F of a compact manifold M depends only on the
coarse geometry of the leaves and the topological properties of the graph GF of the foliation viewed
as a generalized coarse fibration. The coarse cohomology theory for foliations has applications to
defining new differential invariants of foliations; for example, the secondary de Rham cohomology
classes of a foliation [HK] admit a natural pairing with its coarse cohomology, yielding new families
of invariants. Coarse cohomology of foliations also appears as a natural setting for the cohomological
invariants of leafwise-elliptic differential operators associated to the spectrum in a neighborhood of
0, both of index and spectral flow invariants for families of geometric operators. These applications
of the theory will be developed in subsequent papers.

There are several aspects of the coarse cohomology theory for parametrized families of metric
spaces that are novel. First is the discovery that while Roe’s theory associates coarse cohomology
invariants to the subspace of continuous functions on the manifold with a condition on their discrete
gradients, coarse cohomology for families is more naturally defined using the full de Rham complex
of forms along the fibers (or leaves) with a gradient decay condition. A second discovery is the
bivariant nature of the theory, involving cohomology of the parameter space, and uniformly bounded
homology along the fibers. This is illustrated in numerous examples calculated in this paper.

We begin with a general definition of the coarse cohomology of a continuous family of metric spaces,
and develop some of its basic properties. We show that coarse cohomology is a fiberwise coarse
invariant, i.e. it depends only on the coarse type of the elements of the family. This fact implies
that the coarse cohomology of a foliation is invariant under leafwise surgery, and that it is the same
as the coarse cohomology of the associated transverse groupoid.

As our main interest and the applications we have in mind are in the field of foliations, we then
restrict our attention to them. For foliations, we can define three more coarse theories, the de Rham,
the Čech and the Alexander-Spanier theories. They are all isomorphic to our original theory. When
the graph of the foliation is a fiber bundle, there is a spectral sequence which converges to the coarse
cohomology. Its E2 term is the cohomology of the ambient manifold with coefficients in the Roe
coarse cohomology of the holonomy cover of a leaf. (This is a special case of a more general
result which calculates coarse cohomology using sheaves [He3]). We use this spectral sequence to
compute the coarse cohomology of several important classes of foliations. We then show that coarse
cohomology for foliations is a leafwise homotopy invariant. Finally, we construct a canonical map
from the coarse cohomology to the usual cohomology of the graph and we give conditions under
which this map is an isomorphism.
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We note that our construction of coarse cohomology for a foliation makes essential use of the
Hausdorff property of the holonomy groupoid. This appears immediately in the semi-continuity
assumption in section 2, and subsequently in the properties of the coarsening map for basic open
sets. It is possible that coarse cohomology for foliations can be defined for foliations whose graphs
are non-Hausdorff, as the authors do not know of non-technical obstacles to such an extension of
this work. But this will likely require yet another approach to the theory, using for example, a dual
definition of coarse homology in terms of foliation currents.

It is a pleasure to thank A. K. Bousfield for helpful conversations.

2 Parametrized families of metric spaces

A parametrized family of metric spaces or metric family is a common generalization to the setting of
coarse geometry of both the “balanced product” from topology and the metric holonomy groupoid
of a foliation.

A parametrized family of metric spaces, or more briefly a metric family, is a 4-tuple F = {G, d, π, M}
consisting of a paracompact Hausdorff space G, a metric space M , a continuous map π:G → M , and
a family of fiberwise metrics {dx | x ∈ M} satisfying certain continuity and properness conditions.
For each x ∈ M , the subspace Gx = π−1(x) is endowed with a metric dx so that the metric topology
on Gx coincides with the induced topology from G, and Gx is a proper metric space. By proper we
mean that the closure of any bounded subset of Gx is compact. In particular, this implies that each
Gx is a complete metric space.

The map π:G → M need not be a fibration, and without an additional continuity hypothesis on
the family of metrics {dx | x ∈ M}, there can exists a variety of pathologies in the relation between
the topology of G and the fiberwise metrics {dx | x ∈ M}. The condition we impose is a “semi-
fibration” property on π, motivated by examples arising from foliations: Given a point x ∈ M and
a bounded set Kx ⊂ Gx then there exists an open neighborhood Ux ⊂ M of x and a continuous
map ϕ: Kx × Ux → G satisfying:

• ϕ is a homeomorphism onto its image.

• ϕ(Kx × {x}) = Kx and π(ϕ(Kx × {y})) = y for all y ∈ Ux (i.e., ϕ is a fiberwise map.)

• For each y ∈ Ux let ϕy: Kx → Kx × {y} → G be the restriction of ϕ, and ϕ∗
yd the pull-back

metric induced on Kx. Then the the family of metrics {ϕ∗
yd | y ∈ Ux} on Kx is continuous;

that is, the induced map ϕ∗d: Kx × Kx × Ux → [0,∞) is continuous.

If π:G → M is actually a smooth fibration with compact fibers, and the metrics {dx} are obtained
from the restrictions of a Riemannian metric on G, then we can choose Kx = Gx which will satisfy
these conditions. If π:G → M is a smooth fibration but with non-compact fibers, then the choice
of any complete Riemannian metric on G will again result in fiberwise metrics satisfying these
conditions. Given a bounded set Kx ⊂ Gx the open set Ux ⊂ M and fiberwise map ϕ: Kx×Ux → G
exist by the fibration assumption, and the continuity property above is automatically satisfied.
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More delicate examples arise from considering the metric holonomy groupoids of foliations. Recall,
the holonomy groupoid of a foliation F of a manifold M is a topological space GF equipped with
source and range maps to s, r:GF → M . [Hae1, Hae2]), The fibers s−1(x) and r−1(x) over a point
x ∈ M are diffeomorphic to the holonomy covering L̃x of the leaf Lx through the point. Thus,
the holonomy groupoid is not in general a fibration over M , as the holonomy covers L̃x and L̃y of
distinct leaves Lx �= Ly need not be homeomorphic. Nonetheless, there is a local product structure
for foliations: given a compact set K ⊂ Lx in a leaf Lx which is leafwise homotopic to a point, there
is an open neighborhood VK of K so that the restriction of F to VK is a product foliation with each
leaf of VK diffeomorphic to K. This implies the semi-fibration property for the map s:GF → M ,
where the metrics on the fibers of GF are induced by the choice of a complete Riemannian metric
on M .

The metric equivalence relation obtained from the holonomy groupoid of a foliation (described in
[HK]) yields the most general form of a parametrized family of metric spaces arising in a geometric
context. The semi-fibration property of the holonomy groupoid is fundamental to many studies of
the relationship between the geometry and analysis of foliations (cf. [He2, Hu1, Hu2, HK]).

In the study of dynamical systems and representation theory, there is a basic concept of a Borel
equivalence relation, which yields a Borel measure space R and a Borel map π:R → M where M
is the topological space of units for R (cf. [FM]). Depending on the context, the fibers π−1(x)
may be manifolds, and thus have well-defined cohomology groups associated to each fiber. This
was first described by Mackey in [M] (see also the discussion of leafwise cohomology in Moore-
Schochet [MS].) However, many pathologies can arise from this construction, as the dependence of
the fiberwise metrics on M is only assumed to be Borel. This suffices for the original motivation
for these constructions, which were introduced to abstract a class of constructions of von Neumann
algebras. The best that can then be asserted is that the correspondence x �→ H∗(π−1(x)) is a
Borel function of x ∈ M , but there is no a priori relation between the cohomology groups of
the fibers, even at the cochain level. The semi-fibration property we impose in our definition of
a parametrized family of metric spaces implies the existence of a spectral sequence relating the
(coarse) cohomologies of the fibers and that of the base M and total space G.

3 Coarse Cohomology for Families

In this section we define the coarse cohomology of a parametrized family of metric spaces, and show
that the coarse cohomology is a fiberwise coarse invariant, i.e. it depends only on the coarse type
of the elements of the family.

Roe’s elegant approach to defining coarse cohomology for metric spaces is to introduce anti-Čech
systems of coverings, where successive coverings are “coarser” rather than “finer”, and then consider
the limiting cohomology associated to such a system. We also adopt this approach, and begin by
introducing the coarsening map on fibers.

Let F = {G, d, π, M} be a given parametrized family of metric spaces. Given any subset A ⊂ G,
denote by Pen(A, r) the set of points y ∈ G so that x = π(y) ∈ π(A) and the distance in Gx from y
to A∩Gx is less than r. This has the effect of replacing a given set A ⊂ G with a fiberwise expansion
to include all points a distance less than r along fibers from A.
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Lemma 1 If U ⊂ G is open, then for all r > 0, Pen(U, r) is open.

Proof: Fix r > 0. It suffices to show that each x ∈ U has an open neighborhood V ⊂ U
such that Pen(V, r) is open. Let Wx ⊂ Gx be a bounded open neighborhood of x contained
in U . As Gx is complete, the closure Kx = Pen(Wx, r + 1) is compact. By the semi-fibration
property, there exists an open neighborhood Ux ⊂ M of π(x) and a homeomorphism onto its image,
ϕ: Kx × Ux → G, such that ϕ(Kx × {x}) = Kx and π(ϕ(Kx × {y})) = y for all y ∈ Ux. Moreover,
the family of metrics {ϕ∗

xd | x ∈ Ux} on Kx is continuous. It follows that for Ux sufficiently small,
Pen(ϕ(Wx × Ux), r) ⊂ ϕ(Kx × Ux). The image V = ϕ(Wx × Ux) ⊂ G is an open neighborhood of
x, and Pen(V, r) will be open as the induced family of metrics on Kx × Ux is continuous. �

Let Ũ be a locally finite open cover of G. For U ∈ Ũ , set U(n) = Pen(U, n). Now consider the
system of open covers of G given by Ũ(n) = {U(n) | U ∈ Ũ}.

Lemma 2 For each n > 0 the open cover Ũ(n) of G is locally finite.

Proof: Let K ⊂ G be a compact subset, and K(n) = Pen(K, n) be the closure of its penumbra.
Then K(n) is also compact, as π(K) ⊂ M is compact and by the proper hypothesis on the fiberwise
metrics {dx} each fiber K(n)x = K(n)∩ π−1(x) is compact. Let {Uα(n) | α ∈ A} be the collection
of open sets in Ũ(n) with non-empty intersection with K. Then the collection {Uα | α ∈ A} in Ũ
also all have non-empty intersection with the compact set K(n), hence A must be a finite set. �

For each open cover Ũ(n) let Č∗
c(Ũ(n), R) denote its Čech cochain complex with compact support.

A cochain ω ∈ Čq
c(Ũ(n), R) assigns to an ordered (q + 1)-tuple (U0, . . . , Uq) ∈ Ũ(n)q+1 a section

ω(U0, . . . , Uq) ∈ Γ(U0 ∩ · · · ∩ Uq). Compact support means that ω is non-zero for at most finitely
many (q + 1)-tuples in Ũ(n)q+1. The cochains in Č∗

c(Ũ(n), R) naturally define linear maps on the
locally-finite chains of Ũ(n)q+1. If the condition of compact support is omitted, then the resulting
cochain complex Č∗(Ũ(n), R) yields the usual Čech cohomology group of the cover Ũ(n). (For more
discussion on this point, see Chapter 3, [R3].)

We use the system of open covers Ũ(n) to define the inverse system of Čech cochain complexes with
compact support Č∗

c(Ũ(n), R) whose inverse limit ČX∗
c(Ũ , R) we call the coarse cochain complex

of the cover Ũ . We denote its cohomology by HX∗(Ũ).

If Ṽ is a cover of G which refines Ũ and λ: Ṽ → Ũ is a refining map, then λ induces refining maps
λ: Ṽ(n) → Ũ(n) and so a cochain map λ∗: ČX∗

c(Ũ , R) → ČX∗
c(Ṽ, R). The usual proof shows that

the induced map λ∗:HX∗(Ũ) → HX∗(Ṽ) is independent of the choice of refining map λ.

Definition 3 The Coarse Cohomology of the metric family F is the direct limit,

HX∗(F) = lim−→
Ũ

HX∗(Ũ)

over all locally finite open covers Ũ of G.

As cohomology commutes with direct limits, HX∗(F) ∼= H∗(lim−→
Ũ

ČXk
c(Ũ , R)).
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Recall that a map f : X → Y of topological spaces is proper if for every compact set K ⊂ Y the
preimage f−1(K) has compact closure in X. We say that f is a Borel map if for every Borel subset
Z ⊂ Y the preimage f−1(Z) is Borel.

Definition 4 Let F1 = (G1, d1, π1, M1) and F2 = (G2, d2, π2, M2) be two metric families. A leafwise
map Φ:F1 → F2 consists of a continuous map φ: M1 → M2 and a proper Borel map φ̃:G1 → G2 so
that φ · π1 = π2 · φ̃. In addition,

1. for all R > 0 there is SR > 0 so that if x1, y1 ∈ G1 with π1(x1) = π1(y1) = x and d1,x(x1, y1) <

R, then d2,φ(x)(φ̃(x1), φ̃(y1)) < SR

2. there is N > 0 so that for any y ∈ G1 and any neighborhood V of φ̃(y), there is a neighborhood
U of y so that φ̃(U) ⊂ Pen(V, N).

Proposition 5 If Φ:F1 → F2 is a leafwise map, then it induces a well defined map

Φ∗:HX∗(F2) → HX∗(F1).

Proof: Let Ũ2 be a cover of G2 as above. For y ∈ G1 with φ̃(y) ∈ V ∈ Ũ2, let U(V, y) be a
neighborhood of y with φ̃(U(V, y)) ⊂ V (N). Let Ũ1 be an open locally finite refinement of {U(V, y)}.
There is a map λ: Ũ1 → Ũ2 so that for all U ∈ Ũ1, φ̃(U) ⊂ λ(U)(N). Now suppose that y ∈ U(n).
Then there is a y1 ∈ U so that d1,x(y, y1) < n so d2,φ(x)(φ̃(y), φ̃(y1)) < Sn, and as φ̃(y1) ∈ λ(U)(N),
φ̃(y) ∈ λ(U)(N +Sn). Now since φ̃ is a proper map, we have a well defined induced map for each n

Φ∗: Č∗
c(Ũ2(N + Sn), R) → Č∗

c(Ũ1(n), R).

We may assume that n �→ Sn is a non-decreasing map and taking the inverse limit over n we obtain
the map

Φ∗: Č∗
c(Ũ2, R) → Č∗

C(Ũ1, R).

As above we have that the map Φ∗:HX∗(Ũ2) → HX∗(Ũ1) is independent of the choice of the map
λ. Standard techniques on direct limits now finish the proof of the proposition. �

Definition 6 We say that two leafwise maps Φ1, Φ2:F1 → F2 are close if φ1 = φ2 and there is
S > 0 so that for all y ∈ G1, d2,φ1(x)(φ̃1(y), φ̃2(y)) < S.

Definition 7 We say that two metric families F1 and F2 are leafwise coarsely equivalent if there
are leafwise maps Φ1 : F1 → F2 and Φ2:F2 → F1 so that both Φ1 · Φ2 and Φ2 · Φ1 are close to the
identity.

Theorem 8 Close leafwise maps of metric families induce the same map in coarse cohomology.
Leafwise coarsely equivalent metric families have isomorphic coarse cohomology.

Proof: The second statement follows immediately from the first.
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Lemma 9 (See [R3], section 3.5) Let F = (G, d, π, M) be a metric family. Let (K, dK) be a compact
metric space. Set F × K = (G × K, max{d, dK}, π · ρ, M), where ρ:G × K → G is the projection.
Then the natural projection Π:F × K → F induces an isomorphism on coarse cohomology. Thus,
the inclusion F → F × K corresponding to any point in K induces the inverse isomorphism.

Proof: Let Ũ be a locally finite open cover of G. Then Ũ × K = {U × K | U ∈ Ũ}} is a locally
finite open cover of G × K. In addition, the incidence data for the two covers Ũ and Ũ × K are
the same. It follows that for all n, Hk

c (Ũ(n), R) = Hk
c ((Ũ × K)(n), R). Thus lim←−

n

Hk
c (Ũ(n), R) =

lim←−
n

Hk
c ((Ũ × K)(n), R) and lim←−

n

1 Hk
c (Ũ(n), R) = lim←−

n

1 Hk
c ((Ũ × K)(n), R). The Five Lemma and

Proposition 5 give that HXk(Ũ) = HXk(Ũ × K). Taking direct limits we have that

HX∗(F) = lim−→
Ũ

HX∗(Ũ × K).

Let Ṽ be any locally finite open cover of G × K. As G × K has the product topology, ρ is an open
map and hence Ũ = {ρ(V ) | V ∈ Ṽ} is a locally finite open cover of G. For any N > diameter(K),
Ṽ(N) = (Ũ ×K)(N). Thus lim←−

n

Hk
c (Ṽ(n), R) = lim←−

n

Hk
c ((Ũ ×K)(n), R), and we have the Lemma. �

The proof of Theorem 8 now follows by an application of Lemma 9. Let Φ1, Φ2:F1 → F2 be
close. There is a leafwise map Ψ:F1 × {1, 2} → F2 with Ψ · i1 = Φ1, and Ψ · i2 = Φ2 where
i1, i2:F1 → F1 × {1, 2} are the obvious inclusions. By Lemma 9, i1 and i2 induce the same map in
coarse cohomology. �

Finally, note that we have immediately from the definition of HX∗(Ũ)

Proposition 10 Let Ũ be a locally finite open cover of G. Then there is a short exact sequence

0 �→ lim←−
n

1 Hk−1
c (Ũ(n), R) → HXk(Ũ) → lim←−

n

Hk
c (Ũ(n), R) → 0.

As direct limits preserve exact sequences, we have

Proposition 11 There is a short exact sequence

0 �→ lim−→
Ũ

(lim←−
n

1Hk−1
c (Ũ(n), R)) → HXk(F) → lim−→

Ũ
(lim←−

n

Hk
c (Ũ(n), R)) → 0.
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4 Some Examples

Before developing alternate definitions of the coarse cohomology for foliations and their properties,
we discuss a series of examples which illustrate some methods of calculation and relations between
the coarse cohomology and geometric properties of foliations.

Example 1. Let (L, d) be a proper metric space and π: L → pt the map to a point, then F =
(L, d, π, pt) is a metric family and its coarse cohomology is just the coarse cohomology of L as
defined by Roe [R3].

An open covering V of a metric space (L, d) is bounded if there exists R > 0 so that every open
set U ∈ V has diameter at most R. Given a bounded covering V of (L, d), then Roe’s definition of
the coarse cohomology HX(L, d) of (L, d) is the cohomology of the inverse limit cochain complex
ČX∗

c(V, R). This cohomology is independent of the choice of initial bounded covering V.

The definition of the coarse cohomology of (L, d) considered as a parametrized family is the coho-
mology of the direct limit of inverse limit cochain complexes, HX∗(F) ∼= H∗(lim−→

U
ČXk

c(U , R)).

Given an arbitrary open covering U of (L, d) and a bounded covering V of (L, d), then the inter-
section U ∩ V is a bounded refinement of U . Thus, the bounded open covers of (L, d) are cofinal
among all open covers, so we see that HX∗(F) ∼= HX(L, d).

Example 2. Let π: P → M be a smooth fiber bundle, and assume that each fiber Lx = π−1(x)
over x ∈ M is compact. Choose a complete Riemannian metric d on P , and let the metric dx on
Lx be that obtained from the restriction of d to Lx. Then each fiber is (Lx, dx) is a proper metric
space. If K ⊂ M is a compact set, the diameters of the spaces {(Lx, dx) | x ∈ K} are bounded
from above by a constant λK . Then the coarse cohomology of the metric family F is just Ȟ∗

c (M),
the usual Čech cohomology of M with compact supports.

To see this, first note P is a metric space for the metric obtained from the Riemannian metric d,
and the bounded open covers of P are cofinal among all open covers. Thus, it suffices to consider
cochains in ČXp

c (Ũ , R) where Ũ is a locally-finite bounded open cover Ũ of P . Let ω ∈ ČXp
c (Ũ , R),

then define the support of ω to be the union of all open sets Ui such that ω is non-zero on some
(p + 1)-tuple with Ui as an element. As ω has compact support, there are only finitely many such,
and each has bounded diameter, hence there is a compact set Kω ⊂ M such that the support of ω is
contained in π−1(Kω). For n > λKω each open set Ui(n) ∈ Ũ(n) is of the form Ui(n) = π−1(π(Ui)).
Define an open covering V of M whose elements have the form π(U) for U ∈ Ũ . It follows that
ČX∗

c(Ũ , R) ∼= Č∗
c(V, R). Taking cohomology and passing to the direct limit over covers Ũ yields

the result.

Note that the hypothesis that P is a fibration was not essentially used in the above argument; we
required only that π: P → M is an open map between smooth manifolds, and that the diameter of
the fibers Lx is a continuous function of the basepoint x ∈ M . Here is an interesting example sug-
gested by the referee which illustrates this more general case. For the plane R2 let π: R2 → [0,∞)
be the polar coordinate fibration, associating to (x, y) ∈ R2 its magnitude π(x, y) =

√
x2 + y2.

For r > 0 the fiber π−1(r) is a circle of circumference 2πr, while π−1(0) is a singleton. The above
arguments show that HX∗(F) = Ȟ∗

c ([0,∞)) which is trivial.
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Example 3. If F is a foliation of a compact manifold M whose graph GF is Hausdorff, then
F = (GF , d, s, M) is a metric family where s:GF → M is the source map and the metric dx is the
metric on the holonomy cover Gx = L̃x of the leaf through x ∈ M induced from any choice of metric
on M . We refer to this metric family as the metric family associated to the foliation F . For more
on this see Section 5 below. As noted there, compactness is not essential and can be replaced by:
let F be a foliation of a Riemannian manifold so that all its leaves with the induced metric are
proper metric spaces.

A foliation of a compact manifold whose graph is compact is called a generalized Seifert fibration.
Equivalently, F has a compact graph if all leaves of F are compact, and the leaf space M/F
with the quotient topology is a Hausdorff space [EMS]. The same argument as in Example 2
above shows that for a generalized Seifert fibration F , HX∗(F) = Ȟ∗

c (M). Note that there are
examples of foliations of compact manifolds by compact leaves whose graphs are not compact; see
[S, Vo1, Vo2, Vo3]. It is a very interesting problem to calculate HX∗(F) for such foliations.

Example 4. Leafwise surgery on a foliation does not change its coarse cohomology. In particular,
let M be a compact m dimensional manifold with foliation F of codimension q. Let Nm−q×Dk×Sq−k

be an embedded submanifold of M such that for each x ∈ N , the image of {x} × Dk × Sq−k is
contained in a leaf. If k = q we require that there is a uniform bound on the leafwise distance
between the two copies of Dq. If we perform leafwise surgery on the images of the Dk × Sq−k,
we obtain a new manifold M1 and a new foliation F1. These two foliations are leafwise coarsely
equivalent, and thus HX∗(F) ∼= HX∗(F1).

Example 5. (The transversal groupoid) Let F be a codimension–q foliation of a compact
manifold M with Hausdorff holonomy groupoid GF . Let U be a finite cover of M for F which is
“good” in the sense of [HecH, CC]. For each Uj ∈ U with foliation chart φj : Uj → (−1, 1)p×(−1, 1)q,
let Tj = φ−1(0 × (−1, 1)q) be the transversal in Uj . The “good” hypotheses implies that the
closure T j of each Tj is an embedded copy of the closed disc [−1, 1]q, and moreover the transversals
{Tj | Uj ∈ U} are pairwise disjoint. Denote by T = ∪iT j the complete closed transversal associated
to U . We may assume that the T j are pairwise disjoint. The closed transversal groupoid TF ⊂ GF

is the preimage of T × T under the map s × r:GF → M × M. Denote by s: TF → M the map
induced from s:GF → M. Then, TF consists of all the holonomy equivalence classes of paths in GF

which start and end in the complete closed transversal T . Give TF the fiberwise metric d inherited
from GF . That is, for y1, y2 ∈ GF with s(y1) = s(y2) = x the distance dx(y1, y2) is the length of the
shortest geodesic from y1 to y2 in the holonomy covering L̃x. Then FT = (TF , d, s, M) is a metric
family and it is leafwise coarsely equivalent to the metric family F = (GF , d, s, M), so we have

Proposition 12 If F is a foliation of a compact manifold with Hausdorff graph, then

HX∗(F) ∼= HX∗(FT ).

Example 6. (The Hirsch foliation) We give a brief description of the construction, sufficient
to sketch the calculation of its coarse cohomology. The Hirsch foliation is described in detail on
pages 371–373 of [CC], with illustrations. This example was introduced by Morris Hirsch [Hir1] to
show there exist real analytic foliations with only exceptional minimal sets. The example is also
well-known for its geometric properties, as it is transversally affine and every leaf has a Cantor set
of ends.
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Choose an analytic embedding of S1 in the solid torus D2×S1 so that its image is twice a generator
of the fundamental group of the solid torus. Remove an open tubular neighborhood of the embedded
S1. What remains is a three dimensional manifold M1 whose boundary is two disjoint copies of
T 2. D2 × S1 fibers over S1 with fibers the 2-disc. This fibration restricted to M1 foliates M1 with
leaves consisting of 2-disks with two open subdisks removed.

Now identify the two components of the boundary of M1 by a diffeomorphism which covers the map
z �→ z2 of S1 to obtain the manifold M . Endow M with a Riemannian metric; then the punctured
2-disks foliating M1 can now be viewed as pairs of pants.

As the foliation of M1 is transverse to the boundary, the punctured 2-disks assemble to yield a
foliation of foliation F on M , where the leaves without holonomy (corresponding to irrational
points for the chosen doubling map of S1) are infinitely branching surfaces, decomposable into
pairs-of-pants which correspond to the punctured disks in M1.

The leaves with holonomy, corresponding to periodic orbits for the doubling map of S1, are as above
but with a genus one handle attached (see [CC] for details.) In all cases, the holonomy covers of all
leaves are diffeomorphic (and in fact are quasi-isometric). As the foliations is analytic, it follows
that its graph GF is Hausdorff.

We next sketch the proof that the source map π:GF → M is a fibration. Consider the pull-
back of b∗: G̃F → M1, where b: M1 → M is the identification map on the boundary. It is clear
that b∗: G̃F → M1 is a trivial fibration, where the fiber GF,x over x ∈ M1 is obtained by freely
attaching pairs-of-pants to the punctured disk containing x. If we call the circle corresponding to
the outer boundary of the punctured disk the “waist”, and each circle corresponding to boundary
of a puncture a “legging”, then the identification b must map the waist to a legging. However,
as the basepoint x ∈ M1 is moved along the circumference of M1, the two punctures follow the
embedding of S1 and so implements an isotopy of the fibers of b∗: G̃F → M1 from one legging to
another. Thus, the identification of the fibers GF,x as x transverses the outer boundary of M1 with
the fibers along the inner boundary is a “shift” of the surface GF,x followed by an isotopy which
starts at the identity, rotates through half a turn halfway around the outer boundary of M1 (at
which points the two leggings have been switched) then returns to the identity as we complete the
circumnavigation. This defines a global identification of the fibers of G̃F along the outer boundary
of M1 with the fibers along the inner boundary.
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We claim that the fibers of s:GF → M are all coarsely equivalent to a tripartite tree. Let ∆ denote
the “3-spoked complex” on the pair of pants (as indicated on the picture above.) The gluing map of
the boundary of M1 also identifies the vertices at the end of the branches of ∆, yielding a fibration
s:Gδ → M whose fiber Γx = s−1(x) over x ∈ M is a tripartite tree. Let Fδ be the metric family
Fδ = {Gδ, d, s, M} where d is the induced fiberwise metric from the one on GF . The fiberwise
inclusions Γx ⊂ L̃x = s−1(x) induce an inclusion Φi:Gδ → GF . There is also a fiberwise “collapsing
map” ΦC :GF → Gδ, induced on each pair of pants by the map which collapses the pair of pants to
∆, and extended to all of the fiber. The composition ΦC ◦Φi is the identity, while the composition
Φi ◦ ΦC is close to the identity. Thus both F and Fδ have the same coarse cohomology.

The fibers Γx are convex, so given any bounded subset U ⊂ Γx there is an n > 0 such that its
penumbra U(n) is also convex. Moreover, since all the fibers Γx are coarsely isometric, there is
a function C(R) so that if U has diameter less than R then for n > C(R) then U(n) is convex.
It follows that if Ũ is a locally finite cover of Gδ with all open sets bounded in diameter by R,
and whose projections to M are contractible, then for integers n > C(r), the collection of covers
{Ũj(n) | Uj ∈ Ũ}n is a cofinal sequence of Leray covers (i.e. any non-empty intersection of elements
of the cover is contractible.) Thus, the inverse limit stabilizes for n > C(R),

lim←−
m

Hk
c (Ũ(m), R) ∼= Ȟk

c (Ũ(n), R)

Taking the direct limit over the open covers Ũ we have

HX∗(F) ∼= HX∗(Fδ) ∼= Ȟ∗
c (Gδ, R).

The cohomology group Ȟ∗
c (Gδ, R) can be calculated using the spectral sequence for the fibration

s:Gδ → M , where we note that the Ep,q
2 term is isomorphic to Hp

c (M ; Hq
c (Γx)) where the coefficients

Hq
c (Γx) are a module over π1(M). The cohomology group Hq

c (Γx) is trivial for q = 0 or q > 1, while
H1

c (Γx) ∼= C(ε(Γx)), the space of continuous functions on the ends of Γx. The action of π1(M)
on Γx on a typical fiber Gx induces an action on the space of ends ε(Γx), which is surprisingly
complicated. One generator of π1(M) corresponds to a longitude in π1(M1), and its action on the
ends is trivial, as can be seen from the fibration structure described above. On the other hand,
π1(M) is an HNN-extension derived from the doubling map on the meridinal generator of π1(M1),
and this group acts on the ends of Gx leaving only the constant functions invariant.

Example 7. (The double Reeb foliation) Let F be the foliation of S1 × S2 which is obtained
by gluing together two copies of S1 × D2, each with a Reeb foliation. There is one compact leaf
which is T 2, and we choose the gluing so that the meridian generates the holonomy on both sides,
hence its holonomy cover is S1 × R which is coarsely equivalent to R. All the other leaves are
copies of R2 embedded so that they (and their holonomy covers) are coarsely equivalent to the
closed half line R+.

There are obvious collapsing maps (in the sense of coarse geometry) from the holonomy covers
to their coarsely equivalent spaces. Denote by Gδ, the space obtained from GF by collapsing the
holonomy covers to their coarsely equivalent spaces. Let Fδ be the metric family Fδ = {Gδ, d, π, M}
where d is coarsely equivalent to the metric on GF and π:Gδ → M is the induced projection. Denote
by F the metric family F = {GF , d, π, M} corresponding to F . The collapsing map C:GF → Fδ
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defines a leafwise map ΦC = {C, Id}. There is a canonical leafwise map Φi = {i, Id}, where
i:Gδ → GF is an injection. The composition ΦC · Φi is the identity, while the composition Φi · ΦC

is close to the identity. Thus both F and Fδ have the same coarse cohomology. As above, it is
not difficult to see that Gδ has a cofinal set Ũ of locally finite covers for which the cover Ũ(n) is a
good cover in the sense of Leray whenever n > C(R) for Ũ a bounded (by R) locally-finite covering
whose open sets project to contractible open sets in M . Thus, by arguments similar to above,

Proposition 13 For the double Reeb foliation F , HX∗(F) ∼= Ȟ∗
c (Gδ, R).

5 Coarse de Rham Theory

We now restrict our attention to foliations. We shall introduce three more “coarse theories” and
show that they are all isomorphic to our original theory. We will use these theories to compute
more examples and to further develop the properties of coarse cohomology. We begin with the
coarse de Rham theory of a foliation.

Let F be a codimension q foliation of a compact1 n dimensional manifold M without boundary.
Let U be a fixed finite cover of M by foliation charts. We assume that U is a so-called good cover
as in [HecH].

We now present and discuss in greater detail the construction the holonomy groupoid GF of F as
needed to define the coarse de Rham theory of F . (More discussion and other applications can be
found in Winkelnkemper [Wi].) A point y = [γ] ∈ GF is the equivalence class of a path γ: [0, 1] → M
whose image is contained in a single leaf L. Such a γ is called a leafwise path. Two leafwise paths γ1

and γ2 are equivalent provided γ1(0) = γ2(0), γ1(1) = γ2(1) and the holonomy along the two paths
is the same on some transversal containing γ1(0). There are natural maps s, r:GF → M defined by
s(y) = γ(0), and r(y) = γ(1). GF is a (generally non-Hausdorff) 2n − q dimensional manifold with
the topology generated by the following sets. Let y ∈ GF and U and V be foliation charts of s(y)
and r(y) respectively. We require that U and V each be contained in some element of our fixed
finite cover U . Let γ ∈ y. Then the set W = (U, γ, V ) consists of all equivalence classes of leafwise
paths which start in U , end in V and which are homotopic to γ through a homotopy of leafwise
paths whose end points remain in U and V respectively. We may write

W ∼=
⋃

x∈T

Px × P ′
γ(x)

where T is a transversal in U , Px is the plaque in U containing x, P ′
γ(x) is the plaque in V containing

γ(x), γ: T → T ′ is the holonomy along γ and T ′ is a transversal in V . Note that the domain of the
holonomy map γ is in general a proper subset of T which is not necessarily contractible. If U and V
are elements of U , we say W is a basic neighborhood for GF . Denote by Ũ the collection of all such
basic neighborhoods. The maps s and r are continuous with respect to this topology. M embeds
in GF by associating to each x ∈ M the constant path ∗x at x. For each x ∈ M , s−1(x) = L̃x is the
holonomy cover of the leaf Lx of F containing x. These submanifolds form a foliation Fs of GF .

1Compactness is not essential and can be replaced by: let F be a foliation of a Riemannian manifold so that all its
leaves with the induced metric are proper metric spaces, and the open covering by good foliation charts has bounded
diameters.
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Note that GF is not necessarily Hausdorff, [Wi, Prop. 2.1], in which case the fiberwise metrics do
not satisfy our continuity condition. To insure that the associated family F = {GF , d, s, M} is a
metric family, we henceforth assume that GF is Hausdorff.

The Hausdorff property for GF has the following consequences. First, any basic neighborhood is
relatively compact. Second, the proposition above implies the set of basic neighborhoods Ũ forms
a locally finite cover for the foliation Fs of GF . We caution the reader that even if the cover U
is a good cover in the sense of Leray, i.e. any non-empty intersection of elements of the cover is
contractible, the cover Ũ is not in general a good cover in this sense. See the example in Section 7,
where this question is addressed.

A basic neighborhood for G�
F = ×�GF is a product of 
 basic neighborhoods for GF . The collection

of all these basic neighborhoods is denoted by Ũ �. This cover is locally finite and each element is
relatively compact.

We denote by G� the submanifold of G�
F consisting of those points (y1, . . . , y�) with s(y1) = s(yj) for

j = 2, . . . , 
. G� has dimension n + 
(n − q), and we have s:G� → M given by s(y1, . . . , y�) = s(y1).
We also have M → G� given by x �→ (∗x, . . . , ∗x). Note that s−1(x) ∼= L̃x × . . .× L̃x. The topology
on G� is that induced from G�

F and has the following description. Let (y1, . . . , y�) ∈ G� and let
W1, . . . , W� be neighborhoods for GF with yi ∈ Wi. We may assume that Wi = (U, γi, Vi), i.e. the
same U for all i. Let T be a transversal in U , Ti a transversal in Vi, and γi: T → Ti the holonomy
along the path γi. Then W = (W1 × . . . × W�) ∩ G� may be written as

W ∼=
⋃

x∈T

Px × P ′
γ1(x) × . . . × P ′

γ�(x).

We write W = (U, γ1, V1, . . . , γ�, V�). As above, if U and the Vi ∈ U , we call W a basic neighborhood
of G�. Denote the collection of all such basic neighborhoods by Ũ�, and note that this is a locally
finite cover for the foliation whose leaves are s−1(x), x ∈ M. In particular, each element of this
cover is relatively compact.

The plaques of our fixed cover U which lie in a given leaf Lx cover it and their inverse images under
r cover L̃x. A connected component of the inverse image of a plaque P in M is also called a plaque
and it is diffeomorphic to P under r. Define the plaque distance function D(·, ·) on L̃x by

D(y, y′) = inf
σ

{NF (σ)}

Here σ is a path in L̃x with σ(0) = y, and σ(1) = y′. NF (σ) is the minimum number of plaques
needed to cover the image of σ. Note that D is not a distance function, but it is sufficiently like
one to serve our purposes. See [P],[G], [Hu1].

Definition 14 Given A ⊆ G�
F and r > 0,

Pen(A, r) = {(y′1, . . . , y′�) | there is (y1, . . . , y�) ∈ A with s(yi) = s(y′i)

and D(yi, y
′
i) < r for i = 1, . . . , 
 }

Note that if A ⊂ G�, then for all r > 0, Pen(A, r) is actually a subset of G�. The set A we will be
interested in is the diagonal ∆� (∼= GF ) of G�

F .
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Proposition 15 If A ⊂ G�
F is relatively compact, than for any r > 0, Pen(A, r) is relatively

compact.

Proof: We may assume that A ⊂ W a basic neighborhood. Then, Pen(A, r) ⊂ Pen(W, r). As Ũ �

is locally finite and W is relatively compact, it is easy to see that Pen(W, r) is a union of a finite
number of basic neighborhoods and so is relatively compact. �

We next define a bicomplex of forms for F . Denote by Ak,�(F ) the set of all smooth k-forms on
G�+1. Define δv: Ak,�(F ) → Ak,�+1(F ) by

δvω =
�+1∑
j=0

(−1)jπ∗
j ω

where the πj :G�+2 → G�+1 are the obvious projection maps. Denote by d: Ak,�(F ) → Ak+1,�(F )
the usual exterior derivative. The cohomology of the bicomplex {A∗,∗(F ), δv, d} is just the usual
cohomology of M . To see this, let S:G� → G�+1 be given by S(y1, . . . , y�) = (∗s(y1), y1, . . . , y�).
It is easy to check that for fixed k, S induces a contracting homotopy S∗: Ak,�(F ) → Ak,�−1(F )
for the complex {Ak,∗(F ), δv}. Thus the cohomology of the columns of this bicomplex is trivial in
positive dimensions. The kernel of δv: Ak,0(F ) → Ak,1(F ) is easily seen to be Ak(M) the differential
k-forms on M . The E1 term of one of the spectral sequences associated to the double complex is
thus Ek,0

1 = Ak(M) and all other terms are zero. The differential d1: E
k,0
1 → Ek+1,0

1 is just the usual
exterior derivative. Thus the E2 term satisfies Ek,0

2 = Hk(M) and all other terms are zero. The
result is then immediate. To obtain a new theory we must introduce a restriction on the support
of the forms.

Denote by Ak,�
c (F ) the subspace of Ak,�(F ) consisting of k-forms ω such that for all r > 0, sup(ω)∩

Pen(∆�+1, r) is relatively compact. Note that this condition is independent of the finite cover used
to define Pen(∆�+1, r).

Proposition 16 δv and d preserve the subspace A∗,∗
c (F ) . In addition, d2 = δ2

v = 0, and dδv = δvd.

Proof: As d does not increase supports, it is clear that it preserves the bicomplex. The facts
d2 = δ2

v = 0, and dδv = δvd are easy to check. Thus we need only show that δv preserves the
bicomplex.

Let ω ∈ Ak,�
c (F ). We may assume that the sup(ω) ∩ Pen(∆�+1, r) is contained in a single basic

neighborhood W = (U, γ0, V0, . . . , γ�, V�). Now consider sup(π∗
0ω)∩Pen(∆�+2, r). This is certainly

contained in the union of all basic neighborhoods of the form W ′ = (U, γ, V, γ0, V0, . . . , γ�, V�), where
(U, γ, V ) is a basic neighborhood such that for some y ∈ (U, γ, V ) and some i and yi ∈ (U, γi, Vi),
D(y, yi) < 2r. But there are only a finite number of such (U, γ, V ) since the cover Ũ of GF is locally
finite. It follows immediately that δvω ∈ Ak,�+1

c (F ). �

We call {A∗,∗
c (F ), δv, d} the coarse de Rham bicomplex of F, and we call an element ω ∈ Ak,�

c (F ) a
coarse de Rham k, 
 cochain for F.

Definition 17 For p > 0 set
AXp(F ) =

∑
k+�=p

Ak,�
c (F )
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and define δ: AXp(F ) → AXp+1(F ) by

δ | Ak,�
c (F ) = d + (−1)kδv.

The Coarse de Rham Cohomology of F , denoted HX∗(F ), is the cohomology of the complex
{AX∗(F ), δ}.

We shall prove below, see Theorem 28, that HX∗(F ) is isomorphic to HX∗(F), the coarse coho-
mology of the metric family associated to F .

We now define the doubly alternating subcomplex of the coarse de Rham bicomplex and show that
the inclusion of this subcomplex induces an isomorphism in cohomology. The terminology doubly
alternating will be explained in Section 7.

Let β ∈ S�+1, the symmetric group on 
 + 1 elements. Then β acts on G�+1 as follows. For each
(y0, . . . , y�) ∈ G�+1,

β(y0, . . . , y�) = (yβ(0), . . . , yβ(�)).

The subspace of doubly alternating coarse de Rham cochains is

Ak,�
c,a(F ) = {ω ∈ Ak,�

c (F ) | β∗(ω) = (−1)βω}.

Both differentials preserve this subspace of the coarse de Rham cochains so it forms a subcomplex.

Theorem 18 The inclusion map i: A∗,∗
c,a(F ) → A∗,∗

c (F ) induces an isomorphism in cohomology.

Proof: We will prove that i induces an isomorphism on the cohomology of the columns of the two
bicomplexes, i.e. an isomorphism on the E1 terms of one of the two spectral sequences associated
to the bicomplexes. This implies the theorem. Define an inverse system of covers Ũ(n) of GF as
follows. Let U be a finite cover of M for F. For n > 0 and W ∈ Ũ , set W (n) = Pen(W, 3n), and

Ũ(n) = {W (n) | W ∈ Ũ}.

Given any open set U ⊂ GF , set Uq = U q ∩ Gq. Fix an integer k ≥ 0, and consider the kth columns
of the two bicomplexes. Define the presheaves Γq and Γa,q as follows

Γq(U) = Ak(Gq+1) | Uq+1

Γa,q(U) = Ak
a(Gq+1) | Uq+1.

Here Ak denotes smooth k-forms and Ak
a the doubly alternating forms. The Alexander-Spanier

coboundary δ induces maps of presheaves δ: Γq → Γq+1 and δ: Γa,q → Γa,q+1, and i induces the
map of presheaves i: Γa,q → Γq. Note that Γa,0 = Γ0, and that for each open set U ∈ GF , Γ0(U) =
Ak(GF ) | U. Define the presheaf Γ = ker(δ: Γ0 → Γ1) = ker(δ: Γa,0 → Γa,1). Note that for any
open set U ⊂ GF , Γ(U) = s∗(Ak(M)) | U. The one inclusion is obvious. The other follows because
δω = 0 on U implies that δω = 0 on U which implies that ω = s∗(ω1) for some ω1 on s(U) = s(U).
But any such ω1 extends to all of M. In particular, note that for k > dim M , Γ = 0, the zero
presheaf.
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We first consider the presheaves Γ∗. Following the proof of Theorem 3.23 of [R3], form the double
complex

Bp,q = lim←−
n

Cp
c (Ũ(n), Γq).

Roe’s proof that the qth row of this bicomplex forms an acyclic resolution of lim←−
n

H0
c (Ũ(n), Γq) carries

over to our case word for word. In addition, it is easy to see that

lim←−
n

H0
c (Ũ(n), Γq) = Ak,q

c (F ).

We now show that the pth column of Bp,q gives an acyclic resolution of lim←−
n

Cp
c (Ũ(n), Γ). It then

follows immediately that the cohomology of {Ak,∗
c (F ), δv} (i.e. the cohomology of the kth column

of A∗,∗
c (F )), is the same as the cohomology of lim←−

n

C∗
c (Ũ(n), Γ). To finish the proof of the theorem,

repeat the argument with Γa,∗ in place of Γ∗. We then have that the cohomology of {Ak,∗
a,c(F ), δv} is

also isomorphic to the cohomology of lim←−
n

C∗
c (Ũ(n), Γ). Because of the naturalness of the construction

of these two isomorphisms, it is obvious that i induces an isomorphism on the cohomology of the kth

column of the doubly alternating subcomplex to the cohomology of the kth column of the de Rham
bicomplex.

We may not use Roe’s proof for the columns of Bp,q since the presheaves Γ∗ do not give a uniform
resolution of the presheaf Γ. Instead, we give a direct proof that the pth column gives an acyclic
resolution of lim←−

n

Cp
c (Ũ(n), Γ).

Fix p and consider f = (f0, f1, . . .) ∈ Bp,q. Denote by in: Cp
c (Ũ(n), Γq) → Cp

c (Ũ(n − 1), Γq), the
map induced by the natural refinement map Ũ(n − 1) → Ũ(n). Then each fn ∈ Cp

c (Ũ(n), Γq),
and satisfies in(fn) = fn−1. Define D: Bp,q → Bp,q−1 as follows. Let W0, . . . , Wp ∈ Ũ be such
that s(W0) ∩ . . . ∩ s(Wp) �= ∅. Choose the smallest positive integer m = m(W0, . . . , Wp) such that
W0(m) ∩ . . . ∩ Wp(m) ⊃ ∗(s(W0) ∩ . . . ∩ s(Wp)). Let sq:Gq → Gq+1 be given by sq(y1, . . . , yq) =
(∗s(y1), y1, . . . , yq). For any open set U ⊂ GF , with U ⊃ ∗s(U), this map induces a map also denoted
sq: Uq → Uq+1. Now for f as above, set Bf = (Bf0, Bf1, . . .) where if W0(n)∩ . . .∩Wp(n) �= ∅ and
n ≥ m(W0, . . . , Wp)

Bfn(W0(n) ∩ . . . ∩ Wp(n)) = s∗q(fn(W0(n) ∩ . . . ∩ Wp(n))).

For n < m,

Bfn(W0(n) ∩ . . . ∩ Wp(n)) = s∗q(fm(W0(m) ∩ . . . ∩ Wp(m))) | [(W0(n) ∩ . . . ∩ Wp(n))]q.

It is straight forward (if somewhat tedious) to show that Bf ∈ Bp,q−1 and that δ · B + B · δ = I.
Thus B is a contracting homotopy and we have that Hq(Bp,∗) = 0 for q > 0. To finish the proof
we note that H0(Bp,∗) = lim←−

n

Cp
c (Ũ(n), Γ). �

The proof has as a corollary that the cohomology of the kth columns of both A∗,∗
c (F ) and A∗,∗

a,c(F )
are zero provided that k > dim M. This is an immediate consequence of the fact that Γ = 0 in
that case. Thus we have the following result.
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Proposition 19 Set Âk,�
c (F ) = Ak,�

c (F ) for k ≤ dimM and Âk,�
c (F ) = 0 for k > dim M. Then

the natural cochain map π: A∗,∗
c (F ) → Â∗,∗

c (F ) induces an isomorphism on cohomology. A similar
result holds for A∗,∗

a.c(F ).

Proof: π induces an isomorphism on the cohomology of the columns of the two bicomplexes. �

As usual, the complete anti-symmetrization map A: Ak,�
c (F ) → Ak,�

c,a(F ) given by

A(ω) =
1

(
 + 1)!

∑
β

(−1)ββ∗ω

is a cochain map and induces the inverse of i in cohomology. We leave the proof of this to the
reader.

An alternate definition of the coarse de Rham cohomology of F is given as follows. Choose a
metric on M . This induces a metric on each leaf L and so also on L̃ and ×�L̃ which makes them
complete Riemannian manifolds. In addition, their quasi-isometry types are independent of the
choice of metric. This follows from the fact that any two metrics on M are quasi-isometric since M
is compact. Use these metrics to define Pen(A, r), and so also A∗,∗

c (F ). This is the same bicomplex
constructed above from the finite cover U . In particular, it is independent of the metric used to
define it.

As an application of this idea, we now extend Roe’s definition of coarse cohomology for complete
Riemannian manifolds.

Let N be a complete Riemannian manifold. Denote by Ak,�
c (N) the set of all smooth k-forms ω

on N �+1 such that for all r > 0, sup(ω) ∩ Pen(∆�+1, r) is relatively compact. Here ∆�+1
∼= N is

the diagonal of N �+1. As before, we have two differentials d and δv, which preserve the bicomplex
A∗,∗

c (N). The proof that d preserves it is the same as before. For the proof that δv preserves it,
see [R3], or proceed as follows. Choose a discrete subset Y ⊂ N so that the distance between
points of Y is at least 1 and so that the open balls of radius 2 about points of Y cover N. This
open cover of N is locally finite, [R3], and we may use it to define Pen(∆�+1, r). We may now
repeat the proof given above for foliated manifolds to show that δv preserves the complex. The
extended coarse cohomology of N is the cohomology of this bicomplex. We denote this cohomology
by HX∗

e (N). Note that the subcomplex {A0,�
c (N), δv} is the complex used by Roe to define the

coarse cohomology of N, denoted HX∗(N).

Theorem 20 The extended coarse cohomology of N is naturally isomorphic to the coarse coho-
mology of N.

Proof: Consider the kth column Ak,∗
c (N) of the bicomplex. Repeat the proof of Theorem 3.23 of

[R3], but for k > 0, replace the constant presheaf R by the constant presheaf 0, i.e. the presheaf
of k-forms on a point. Set Γq to be the presheaf

Γq(U) = {smooth k-forms on N q+1} | U q+1.

Then
0 �→ 0 → Γ0 → Γ1 → . . .
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is a uniform resolution of the presheaf 0 by fine, flabby ω-sheaves. Roe’s theorem then says that for
k > 0, the cohomology of the kth column of the bicomplex is identically zero. As the cohomology
of the zero th column is just HX∗(N), we are done. �

Now assume that GF is a fiber bundle over M , and the identifications of fibers under local trivi-
alizations can be chosen to be quasi-isometries. Riemannian foliations and foliations constructed
from the suspension of locally-free group actions are two examples of foliations which satisfy this
condition. Using the fact that HX∗

e (L̃) = HX∗(L̃), the proof for the usual cohomology of fiber
bundles carries over to prove the following.

Theorem 21 Suppose that GF is an orientable fiber bundle over M with fiber L̃. Then there is a
spectral sequence which converges to the coarse cohomology of F whose E2 term is

Ep,q
2 = Hp(M, HXq(L̃)),

where the cohomology Hp(M, HXq(L̃)) is with twisted coefficients.

We finish this section by noting that the coarse cohomology for foliations has a Mayer-Vietoris
sequence with respect to the base. Let U be an open subset of M . We define the coarse coho-
mology of F over U , denoted HX∗(F, U) to be the cohomology of the bicomplex A∗,∗

c (F, U) where
Ak,�

c (F, U) consists of all smooth k-forms on the subspace s−1
�+1(U) ⊂ G�+1 satisfying the coarse

support condition. The usual proof (see [BT]) of the exactness of the Mayer-Vietoris sequence also
proves the following.

Theorem 22 Suppose that M = U ∪ V where U and V are open. Then there is a long exact
sequence

· · · → HXq(F ) → HXq(F, U) ⊕ HXq(F, V ) → HXq(F, U ∩ V ) → HXq+1(F ) → · · · .

6 More Examples

Example 8. The foliations constructed in [He1], which showed that the secondary characteristic
classes for foliations are highly non-trivial, have graphs which are orientable fiber bundles over M.
The holonomy covers L̃ have non-positive curvature and are homeomorphic to Euclidean space
of a fixed dimension, say 
 (depending on the particular example). Thus HX�(L̃) ∼= R and is
zero otherwise. See [R3], Theorem 3.42. The spectral sequence of Theorem 21 collapses. The
action of π1(M) on the fiber is a translation, but this induces the identity map on the coarse
cohomology HX�(L̃), so there is no twisting. Thus we have HX∗(F ) ∼= H∗−�(M) ∼= H∗

c (GF ) the
usual cohomology of GF with compact supports.

Example 9. The natural foliations of flat bundles M over a compact Riemannian manifold N
constructed from faithful orientation preserving representations of π1(N) have graphs which are
orientable fiber bundles over M. The holonomy covers L̃ are all isometric to the universal cover Ñ
of N as the holonomy representation is injective. The E2 term of the spectral sequence in thus
Ep,q

2 = Hp(M, HXq(Ñ)), and one may use the spectral sequence to compute in specific cases. In
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particular, if Ñ is rescaleable, or uniformly contractible, or globally of non-positive curvature then
HX∗(Ñ) is naturally isomorphic to H∗

c (Ñ), see [R3], and if there is no twisting, it follows that
HX∗(F ) is then isomorphic to H∗

c (GF ).

Example 10. Let Σg be a closed orientable surface of genus g. Its fundamental group π1(Σg)
has a set of generators α1, β1, . . . , αg, βg where the elements α1, . . . , αg generate a free subgroup
of rank g. Choose rationally independent irrational angles θ1, . . . , θg with 0 < θi < 2π and define
φ: π1(Σg) → SO2 by

φ(βi) = I and φ(αi) = rotation by θi.

The image of φ is a free abelian group of rank g. Form the associated flat bundle

Mg = Σ̃g ×φ S1

and let F be the natural flat foliation. This foliation has no leafwise holonomy and all the leaves, and
their holonomy covers, are diffeomorphic and are Zg covers of Σg. They are coarsely equivalent
to Rg so HXg(L̃) = R and all other HXk(L̃) = 0. This is a Riemannian foliation so GF is an
oriented fiber bundle over M. As above, the spectral sequence collapses and there is no twisting, so
HX∗(F ) = H∗(Mg) ⊗ HX∗(L̃). In particular, HXg+3(F ) �= 0. This shows that given any positive
integer k, there is a codimension one foliation F of a three manifold such that HXk(F ) �= 0.

Example 11. If GF is a product bundle, then HX∗(F ) ∼= H∗
c (M) ⊗ HX∗(L̃). To see this use the

spectral sequence coming from the filtration of the bicomplex by the columns. The E1 term of this
spectral sequence is the cohomology of the rows of the bicomplex. The usual proof of the Künneth
formula gives that

H∗(A∗,�
c (F ), d) ∼= H∗

c (M) ⊗ H∗(A∗,�
c (L̃), d).

One need only check that the maps used preserve the support conditions, but this is easy. The E1

term is thus H∗
c (M) ⊗ H∗(A∗,�

c (L̃), d), and the differential d1 acts only on the second term of the
tensor product and it is the differential of the E1 term of the spectral sequence which computes
HX∗

e (L̃). That is, the spectral sequence which computes HX∗(F ) is just H∗
c (M) tensored with the

spectral sequence which computes HX∗
e (L̃).

7 Coarse Čech and Alexander-Spanier Cohomologies

In this section we define the coarse Čech cohomology of F and show that it is isomorphic to the
coarse de Rham cohomology of F . This is essentially an extension and application of Weil’s beautiful
proof of the de Rham theorem [W]. We then prove the main result of this section, Theorem 28, that
the coarse Čech cohomology of a foliation is isomorphic to the coarse cohomology of its associated
metric family. Finally, we give the definition of the coarse Alexander-Spanier cohomology of F ,
which of course is isomorphic to all the other coarse theories of F . We leave the proof of this fact
to the reader (another application of [W]).

Recall the fixed finite cover U of M from section 5, and the associated locally finite cover Ũ�+1

of G�+1. As noted above, even if the cover U is good in the sense of Leray, (i.e. all non empty
intersections are contractible), the covers Ũ�+1 are not necessarily good in this sense. A simple
example shows this. Let M = S1 × S2 where S1 ⊂ R2 and S2 ⊂ R3 are the standard embeddings
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as unit vectors. Then M is a foliated S2 bundle over S1 which is the suspension of the time-one
flow of the vector field on S2 which is the projection of the vector field ∂/∂z on R3. (Since the
diffeomorphism of S2 defined by the time-one flow is isotopic to the identity, the suspension is a
product bundle.) Now take any foliation neighborhood U of the point ((1, 0), (0, 0,−1)) and any
foliation neighborhood V of the point ((1, 0), (0, 0, 1)). Then it is not hard to see that for any
leafwise path γ from U to V which is sufficiently long, the basic neighborhood (U, γ, V ) has the
homotopy type of S1.

As it will be essential in this section that the covers Ũ�+1 are good in the sense of Leray, we proceed
as follows. Endow GF with the Riemannian metric pull-pack via the immersion s×r:GF → M ×M .
We replace the cover Ũ by a locally finite refinement, also denoted Ũ , so that every open set W ∈ Ũ
is geodesically convex. In particular, we may view the basic neighborhood

W = (U, γ, V ) ∼=
⋃

x∈T

Px × P ′
γ(x),

as a product fiber bundle over the open subset U ′ =
⋃

x∈domγ Px of U and we take the metric on
W which is the pull back of the metric on U ′ tensored with the metric on the fibers P ′

γ(x). As each

W ∈ Ũ is geodesically convex, it follows that Ũ is a good cover in the sense of Leray. In addition,
the associated covers Ũ�+1 constructed from the new Ũ also consist of sets which are geodesically
convex and so these covers are also good in the sense of Leray. By abuse of notation, we will
continue to write W = (U, γ, V ) for W in the new Ũ , and W = (U, γ0, V0, . . . , γ�+1, V�+1) for W in
the new Ũ�+1. We will call any such cover Ũ a convex cover of GF .

Recall that Pen(∆�+1, r) is defined using the finite cover U of M and not Ũ�+1 of G�+1. A coarse
Čech k, 
 cochain f assigns a real number f(W0, . . . , Wk) to each (W0, . . . , Wk) ∈ Ũk+1

�+1 with W0 ∩
. . . ∩ Wk �= ∅ so that for each r > 0, there are only a finite number of elements (W0, . . . , Wk) with
W0 ∩ . . . ∩ Wk ∩ Pen(∆�+1, r) �= ∅, and f(W0, . . . , Wk) �= 0.

The vector space of coarse Čech k, 
 cochains associated to Ũ is denoted by Čk,�
c (Ũ).

We define two differentials δh: Čk,�
c (Ũ) → Čk+1,�

c (Ũ) and δv: Čk,�
c (Ũ) → Čk,�+1

c (Ũ) as follows. For
(W0, . . . , Wk+1) ∈ Ũk+2

�+1 with W0 ∩ . . . ∩ Wk+1 �= ∅,

δhf(W0, . . . , Wk+1) =
k+1∑
j=0

(−1)jf(W0, . . . , Wj−1, Wj+1, . . . , Wk+1)

=
k+1∑
j=0

(−1)jf · πj(W0, . . . , Wk+1)

where πj : Ũk+2
�+1 → Ũk+1

�+1 is the map which deletes the jth entry.

To define δv, let ρi: Ũ�+2 → Ũ�+1 be the map given by

ρi(U, γ0, V0, . . . , γ�+1, V�+1) =

(U, γ0, V0, . . . , γi−1, Vi−1, γi+1, Vi+1, . . . , γ�+1, V�+1).

Then

δvf(W0, . . . , Wk) =
�+1∑
i=0

(−1)if(ρiW0, . . . , ρiWk).
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As in Section 5, the fact that the covers Ũ� are locally finite implies that δv, and δh do preserve the
complex Č∗,∗

c (Ũ). It is also easy to see that δ2
v = δ2

h = 0 and δvδh = δhδv.

Definition 23 For p = 0, 1, . . . set

ČXp
D(Ũ) =

∑
k+�=p

Čk,�
c (Ũ)

and define δ: ČXp
D(Ũ) → ČXp+1

D (Ũ) by

δ | Čk,�
c (Ũ) = δh + (−1)kδv.

Denote the cohomology of the complex {ČX∗
D(Ũ), δ} by ȞX∗

D(Ũ).

If Ṽ is a convex cover of GF which refines Ũ , then Ṽ� refines Ũ�, and given a refining map λ: Ṽ → Ũ ,
it defines a refining map λ: Ṽ� → Ũ�. To see that λ induces a cochain map

λ∗: ČX∗
D(Ũ) → ČX∗

D(Ṽ),

note that any W ∈ Ũ� has compact closure so it has non-trivial intersection with at most a finite
number of elements of the locally finite cover Ṽ�. This implies immediately that λ∗ preserves the
relative compactness condition.

Lemma 24 The map induced by λ∗ on cohomology is independent of λ.

Proof: Let λ and µ be two refining maps. For fixed 
, K: Čk,�
c (Ũ) → Čk−1,�

c (Ṽ), where

Kf(W0, . . . , Wk−1) =
k−1∑
j=0

f(λ(W0), . . . , λ(Wj), µ(Wj), . . . , µ(Wk−1)),

is a cochain homotopy between the maps λ∗, µ∗: {Č∗,�
c (Ũ), δh} → {Č∗,�

c (Ṽ), δh}. The relative com-
pactness of the elements of Ũ� again implies that K does preserve the relative compactness condition.
Thus, λ and µ induce the same map on the E1 term of one of the two spectral sequences associated
to the bicomplex. It follows immediately (since it is a first quadrant bicomplex) that λ and µ
induce the same map from ȞX∗

D(Ũ) to ȞX∗
D(Ṽ). �

Definition 25 The Coarse Čech Cohomology of F is the direct limit,

ȞX∗(F ) = lim−→
Ũ

ȞX∗
D(Ũ).

Theorem 26 ȞX∗(F ) is isomorphic to HX∗(F ). In particular, for every convex cover Ũ of GF ,
ȞX∗

D(Ũ) is isomorphic to HX∗(F ).
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Proof: For fixed 
, note that {Č∗,�
c (Ũ), δh} is just the usual Čech complex, and that {A∗,�

c (F ), d}
is the usual de Rham complex for G�+1, (with the addition of the support conditions). Let {φ

Ũ
|

Ũ ∈ Ũ} be a partition of unity subordinate to Ũ . Given W = (×�
j=0Ũj) ∩ G�+1 ∈ Ũ�+1, and

y = (y0, . . . , y�) ∈ W , set

φW (y) =
�∏

j=0

φ
Ũj

(yj).

Extend φW to all of G�+1 by making it zero off W . Then {φW | W ∈ Ũ�+1} is a partition of unity
subordinate to Ũ�+1. Define A: Čk,�

c (Ũ) → Ak,�
c (F ) by

Af =
∑
Ũk+1

�+1

f(W0, . . . , Wk)φW0dφW1 ∧ . . . ∧ dφWk
.

It is easy to check that Af is indeed in Ak,�
c (F ) and that Aδh = dA.

Lemma 27
Aδv = δvA

Proof:

A(δvf) =
∑
Ũk+1

�+2

(δvf)(W0, . . . , Wk)φW0dφW1 ∧ . . . ∧ dφWk

=
∑
Ũk+1

�+2

∑
i

(−1)if(ρiW0, . . . , ρiWk)φW0dφW1 ∧ . . . ∧ dφWk

=
∑
Ũk+1

�+1

∑
i

(−1)if(Ŵ0, . . . , Ŵk)π∗
i [φŴ0

dφ
Ŵ1

∧ . . . ∧ dφ
Ŵk

∑
A

φa0φa1 . . . φak
]

+
∑
Ũk+1

�+1

∑
i

(−1)if(Ŵ0, . . . , Ŵk)π∗
i [φŴ0

φ
Ŵ1

dφ
Ŵ2

∧ . . . ∧ dφ
Ŵk

∑
A

φa0dφa1φa2 . . . φak
]

+
...
+

∑
Ũk+1

�+1

∑
i

(−1)if(Ŵ0, . . . , Ŵk)π∗
i [φŴ0

φ
Ŵ1

∧ . . . ∧ φ
Ŵk

∑
A

φa0dφa1 . . . dφak
]

where Ŵi = (Ûi, . . .) ∈ Ũ�+1 and given (Ŵ0, . . . , Ŵk) ∈ Ũk+1
�+1 , A =

∏k
i=0 Ai where

Ai = {Ũ ∈ Ũ | Ũ = (U, γ, V ) and U ∩ Ûi �= ∅}.

Note that at any point in G�+2, where π∗
i (φŴ0

. . . φ
Ŵk

) �= 0, π∗
i (

∑
Aj

φaj ) = 1. Thus the first sum
above is just δv(Af), all the succeeding sums are zero, and we have Aδv = δvA.

Thus A is a map of first quadrant bicomplexes and to show that it induces an isomorphism of
the total cohomology, we need only show that A induces isomorphisms on the cohomology of the
rows, i.e. on the E1 term of one of the associated spectral sequences. For that we need only repeat
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Weil’s proof of the de Rham theorem ([W] [BT]) for each row, and the proof goes through because
the covers Ũ�+1 are good covers in the sense of Leray. For the 
th row, the bicomplex we use is
Cp

c (Ũ�+1, Ωq) of p cochains f on the cover Ũ�+1 with values in the q-forms such that for any r > 0,
there are only finitely many elements (W0, . . . , Wp) ∈ Ũp+1

�+1 so that W0∩. . .∩Wp∩Pen(∆�+1, r) �= ∅,
and f(W0, . . . , Wp) �= 0. As the map which A induces in the cohomology of a given row is the
isomorphism constructed by Weil (at least up to sign), we are done. �

We say that f ∈ Čk,�
c (Ũ) is alternating if for all (W0, . . . , Wk) ∈ Ũk+1

�+1 , α ∈ Sk+1,

f(Wα(0), . . . , Wα(k)) = (−1)αf(W0, . . . , Wk).

The alternating cochains form a subcomplex of the Čech cochains and A restricted to this subcom-
plex has the same image (modulo exact forms) as A. Thus Theorem 26 remains true if we replace
the Čech bicomplex by its alternating subcomplex.

For each β ∈ S�+1, define a map β: Ũ�+1 → Ũ�+1 as follows. Suppose that W = (U, γ0, V0, . . . , γ�, V�).
Then ,

β(W ) = (U, γβ(0), Vβ(0), . . . , γβ(�), Vβ(�)).

We say that f ∈ Čk,�
c (Ũ) is doubly alternating if for all (W0, . . . , Wk) ∈ Ũk+1

�+1 , α ∈ Sk+1, β ∈ S�+1,

f(β(Wα(0)), . . . , β(Wα(k))) = (−1)α(−1)βf(W0, . . . , Wk).

As β∗φW = φβ−1(W ), it follows that β∗(Af) = (−1)βAf if f is doubly alternating, i.e. A maps
doubly alternating Čech cochains to doubly alternating de Rham cochains. Essentially the same
proof now shows that Theorem 26 still holds if we replace the de Rham and Čech bicomplexes by
their subcomplexes of doubly alternating cochains. In particular, the inclusion of the doubly alter-
nating Čech cochains into the complex of all Čech cochains induces an isomorphism in cohomology
so each coarse Čech cohomology class has a representative which is doubly alternating.

We now prove that the coarse Čech cohomology of a foliation is isomorphic to the coarse cohomology
of the associated metric family.

Theorem 28 Let F be a foliation of a compact manifold with GF Hausdorff, and let F denote the
associated metric family. Then HX∗(F ) is naturally isomorphic to HX∗(F).

Proof: Let U be a finite cover of M for F and Ũ an associated convex cover of GF . We shall prove
that HX∗(F ) is naturally isomorphic to HX∗(Ũ). The fact that convex covers are cofinal in the
set of all locally finite open covers of GF then implies the Theorem.

We begin by giving an alternate description of the coarse Čech k, 
 cochains associated to Ũ . For
Wj ∈ Ũ �+1, we write Wj = (U j

0 , . . . , U j
� ), and for each n ≥ 1 and k, 
 ≥ 0 set

Wk+1
�+1 (n) = {(W0, . . . , Wk) ∈ ×k+1Ũ �+1 |

�⋂
i=0

Pen(U0
i ∩ . . . ∩ Uk

i , n) �= ∅}.
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Denote by Čk,�
c (W(n)) the set of all finitely non-zero maps g:Wk+1

�+1 (n) → R. Then the coarse Čech
k, 
 cochains Čk,�

c (Ũ) are naturally identified with lim←−
n

Čk,�
c (W(n)). To see this, note that a cochain

g ∈ Čk,�
c (Ũ) assigns a real number to each (W0, . . . , Wk) ∈ ×k+1Ũ �+1 with

⋂�
i=0 Pen(U0

i ∩ . . . ∩
Uk

i , n) �= ∅ for some n. For a given fixed n, there are only a finite number of (W0, . . . , Wk) ∈
×k+1Ũ �+1 with

⋂�
i=0 Pen(U0

i ∩ . . . ∩ Uk
i , n) �= ∅ for which g(W0, . . . , Wk) �= 0.

There are obvious forgetful maps, πj :Wk+1
�+1 (n) → Wk

�+1(n) and ρi:Wk+1
�+1 (n) → Wk+1

� (n). As above,
these may be used to define differentials δh: Čk−1,�

c (W(n)) → Čk,�
c (W(n)) and δv: Čk,�−1

c (W(n)) →
Čk,�

c (W(n)). These differentials induce the differentials δh: Čk−1,�
c (Ũ) → Čk,�

c (Ũ) and δv: Čk,�−1
c (Ũ) →

Čk,�
c (Ũ). Note that under this description of the coarse Čech bicomplex, the subcomplex {Č0,�

c (Ũ), δv}
is just the coarse Čech cochain complex ČX∗

c(Ũ , R).

We now compute the E2 term of the spectral sequence associated to our bicomplex whose E1 term
is the cohomology of its columns. For s = 0, . . . , k, denote by is:Wk+1

�+1 (n) → Wk+2
�+1 (n) the map

given by is(W0, . . . , Wk) = (W0, . . . , Ws, Ws, . . . , Wk). This map induces i∗s: Čk+1,�
c (Ũ) → Čk,�

c (Ũ).
Now for each fixed k, and all 
, define K�+1: Čk,�+1

c (Ũ) → Čk,�
c (Ũ) to be

K�+1g(W0, . . . , Wk) =
�∑

j=0

(−1)jg(W j
0 , . . . , W j

k ),

where Wi = (U i
0, . . . , U

i
�) and we set W j

0 = (U0
0 , . . . , U0

j , U1
j , . . . , U1

� ) and for i > 0, W j
i =

(U i
0, . . . , U

i
j , U

i
j , . . . , U

i
�). We leave it to the reader to check that for each fixed k, K�+1 ·δv +δv ·K� =

π∗
0 · i∗0 − I. As π0 · i0 = I, we have that π∗

0 and i∗0 induce isomorphisms between the columns of the
E1 term, and that i∗0 = π∗

0
−1. Thus each column is isomorphic to the first column. It is easy now to

show that for all s, i∗s · π∗
s = I on the columns of the E1 term. In addition, as πs · is = πs+1 · is, we

have that π∗
s = π∗

s+1, and the differential dk,�
1 =

∑k+1
i=0 (−1)iπ∗

i =
∑k+1

i=0 (−1)iπ∗
0 = 0 or π∗

0 depending
on whether k is even or odd. In particular, the E2 term is non zero only in the first column and
that column is just HX∗(Ũ). �

We have immediately

Corollary 29 If Ũ is a convex cover of GF such that each cover Ũ(n) is a good cover of GF in the
sense of Leray, then HX∗(F ) ∼= H∗

c (GF ).

Proof: The inverse system H∗
c(Ũ(n), R) is degenerate: all the groups H∗

c(Ũ(n), R) are isomorphic
to H∗

c (GF ), and all the maps are the identity. Thus lim←−
n

1H∗
c(Ũ(n), R) = 0 and Proposition 5 gives

the result. �

Note that examples 8 and 9 of Section 6 satisfy the hypotheses of Corollary 29.

We finish by defining the coarse Alexander-Spanier cohomology of F . Denote by ∆k+1
�+1 the diagonal

of G�+1 in Gk+1
�+1 , i.e. ∆k+1

�+1 = {(z, . . . , z) | z ∈ G�+1}. Denote by ∆k+1(Pen(∆�+1, r)) ⊂ Gk+1
�+1 the set

{(z, . . . , z) | z ∈ Pen(∆�+1, r)}. The set Ck,�
c (F ) consists of all locally bounded functions φ:Gk+1

�+1 →
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R such that for all r > 0, there is an open neighborhood W of ∆k+1(Pen(∆�+1, r)) in Gk+1
�+1 with

sup φ ∩W relatively compact. Define δh: Ck,�
c (F ) → Ck+1,�

c (F ) and δv: Ck,�
c (F ) → Ck,�+1

c (F ) by

δhφ(z0, . . . , zk+1) =
k+1∑
j=0

(−1)jφ · πj(z0, . . . , zk+1)

δvφ(z0, . . . , zk) =
�+1∑
i=0

(−1)iφ(ρi(z0), . . . ρi(zk)),

where πj :Gk+2
�+1 → Gk+1

�+1 deletes the jth entry, and ρi:G�+2 → G�+1 deletes the ith entry. Ck,�
0 (F )

consists of those φ ∈ Ck,�
c (F ) such that there is a neighborhood W of ∆k+1

�+1 in Gk+1
�+1 with φ |

W ≡ 0. Then δh and δv induce differentials on the Alexander-Spanier bicomplex CXk,�(F ) =
Ck,�

c (F )/Ck,�
0 (F ). The resulting cohomology, HX∗

AS(F ), is the coarse Alexander-Spanier cohomol-
ogy of F . It is isomorphic to the coarse de Rham and Čech cohomologies by arguments similar
to those above. In addition, there are alternating, doubly alternating, and smooth forms of this
theory, each of which is isomorphic to HX∗(F).

8 Functoriality of Coarse Cohomology

The functorial properties of coarse cohomology require that a given map between foliated manifolds
induce a “nice” map on the corresponding holonomy groupoids. In order to guarantee this, it is
necessary to impose geometric hypotheses on the foliations and the map between them. We first
formulate these conditions, then we will use the coarse de Rham theory, in particular the covers Ũ
and Ũ� associated to the finite cover U of M as in Section 5, to show that the coarse cohomology
of a foliation is a leafwise homotopy invariant.

Let F and F ′ be foliations of compact manifolds M and M ′ respectively. A continuous map
f : M → M ′ which takes each leaf of F to a leaf of F ′ is called a leafwise map. To insure that
f induces a map on the graphs of the foliations, we must assume that f maps leafwise paths
with holonomy the identity to leafwise paths with holonomy the identity. (Leafwise homotopy
equivalences, see below, satisfy this property.) Let f be such a map.

Lemma 30 Given a finite cover U ′ for F ′, there is a finite cover U for F such that for all r > 0,
f(Pen(∆�, r)) ⊆ Pen(∆′

�, r).

Proof: The collection {f−1(U ′) | U ′ ∈ U ′} is an open cover of M. Choose U to be subordinate to
this cover. Then for any plaque P of U , there is a plaque P ′ of U ′ with f(P ) ⊆ P ′. It follows that the
pull-back of the plaque distance function f∗D′, where D′ is defined using the cover U ′, dominates
the plaque distance function D defined using the cover U . The lemma follows immediately. �

More is true. If U and U ′ are any finite covers for F and F ′, then there is a fixed N > 0 so that
for any W ∈ Ũ�, f(W ) is covered by at most N elements of Ũ ′

�. In particular, let V be a finite cover
of M subordinate to f−1(U ′). Then there is N1 > 0 so that any element of U is covered by N1



Coarse Cohomology for Families 26

elements of V. It follows that any element of Ũ� is covered by at most N = N �+1
1 elements of V. As

f maps each element of Ṽ� into an element of Ũ ′
�, this N works.

Note that a leafwise map does not in general induce a map on coarse cochain complexes, since it
will not necessarily preserve the compact support condition on cochains, as the following example
shows. Let F be an irrational slope line foliation of the torus T 2, and let F ′ be the one dimensional
foliation of the circle S1. Then the projection ρ: T 2 → S1 is a leafwise map, but the inverse image
of any non-empty relatively compact set in G′

� is never a relatively compact set in G�.

Definition 31 Let f : M → M ′ be a leafwise map. We say that f :GF → GF ′ is *-proper if for all 
,
the induced map f :G� → G′

� is proper is the sense that the inverse image of any relatively compact
is relatively compact.

Lemma 32 If f :GF → GF ′ is a proper map, then f is *-proper.

Proof: Let W be a basic neighborhood of G′
�. There are basic neighborhoods W1, . . . , W� of GF ′

so that W = (W1 × . . . × W�) ∩ G′
�. But then f−1(W ) = (f−1(W1) × . . . × f−1(W�)) ∩ G�, and the

result follows. �

Definition 33 Two leafwise maps f, g: M → M ′ are leafwise homotopic is there is a continuous
map H: M×I → M ′ so that for all x ∈ M , H(x, 0) = f(x), H(x, 1) = g(x), and H(Lx×I) ⊂ Lf(x).
The map H is a leafwise homotopy from f to g.

Lemma 34 If f, g: M → M ′ are leafwise homotopic, and f is *-proper, then g is *-proper.

Proof: Let H: M × I → M be a leafwise homotopy from f to g. Let F × I be the foliation
of M × I whose leaves are L × I. Let U × I = {U × I | U ∈ U}, which is a finite cover for
F × I. Note that GF×I = GF × I2, and that ŨF×I = {W × I2 | W ∈ Ũ}. H is a continuous
leafwise map so there is N > 0 so that for any element W ∈ Ũ , H(W × I2) is covered by at
most N elements of Ũ ′. To show that H is *-proper (and thus that g is also proper), we need
only show that H−1(W ′) is relatively compact for any W ′ ∈ Ũ ′. If H(W × I2) ∩ W ′ �= ∅, then
H(W × I2) ⊂ Pen(W ′, N). As f(W ) = H(W × {(0, 0)}), we have that f(W ) ∩ Pen(W ′, N) �= ∅,
so W ⊂ Pen(f−1(Pen(W ′, N), 1), a relatively compact set. But it then follows immediately that
W ×I2 ⊂ Pen(f−1(Pen(W ′, N), 1)×I2, which is also a relatively compact set. Thus H is *-proper.
�

Proposition 35 If f : M → M ′ is a *-proper map, then f induces a well defined map

f∗: HX∗(F ′) → HX∗(F )

which depends only on the leafwise homotopy class of f.

Proof: First assume that f is smooth. Clearly f induces a map f∗ from the space of all differential
forms on G′

� to the space of all differential forms on G�, and f∗d = df∗ and δvf
∗ = f∗δv. Lemma 30

says that for all ω ∈ Ak,�
c (F ′),

sup(f∗ω) ∩ Pen(∆�+1, r) ⊆ f−1(sup(ω) ∩ Pen(∆′
�+1, r)).
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This and the fact that f is *-proper immediately imply that f∗ preserves the support condition,
i.e. f induces a map of bicomplexes

f∗: A∗,∗
c (F ′) → A∗,∗

c (F ).

The usual proof of homotopy invariance for de Rham cohomology shows that f∗ induces a map on
the cohomology of each row of the bicomplexes which depends only on the smooth leafwise homotopy
class of f. Thus f∗: HX∗(F ′) → HX∗(F ) depends only on the smooth leafwise homotopy class of
f.

An arbitrary *-proper map f is leafwise homotopic to a smooth *-proper map, say g, and we define
f∗ on coarse de Rham cohomology to be g∗. It is not difficult to show that two smooth leafwise
maps are leafwise homotopic through a smooth leafwise homotopy if and only if they are leafwise
homotopic through a continuous leafwise homotopy. Thus f∗ is well defined on coarse de Rham
cohomology, and depends only on the leafwise homotopy class of f . �

A leafwise map f : M → M ′ is a leafwise homotopy equivalence if there is a leafwise map f ′: M ′ → M
so that f ′ ◦ f and f ◦ f ′ are leafwise homotopic to the identity .

Theorem 36 Suppose that F and F ′ are foliations of compact manifolds M and M ′ respectively.
If f : M → M ′ is a leafwise homotopy equivalence, then f induces an isomorphism from the coarse
cohomology of F ′ to that of F.

Proof: We need only check that f is *proper, i.e. for any element W ′ of Ũ ′, S = f−1(W ′) is
relatively compact. Let f ′: M → M be a leafwise homotopy inverse of f. Then f ′ ◦ f(S) = f ′(W ′)
which is covered by finite number of elements of Ũ , so relatively compact. To finish, we only need
the following lemma.

Lemma 37 There is r > 0 so that S ⊆ Pen(f ′ ◦ f(S), r).

Proof:Let H: M × I → M be a leafwise homotopy from the identity to f ′ ◦ f . Let F × I and
U × I be as above. H is a continuous leafwise map so there is N > 0 so that for any element
W ∈ Ũ , H(W × I2) is covered by at most N elements of Ũ . Now f ′ ◦ f(S) is contained in some
finite union ∪Wi, where the Wi ∈ Ũ . If y ∈ W ∩ S, then y = H(y, 0) and H(y, 1) = f ′ ◦ f(y) ∈ Wi

for some Wi. So H(W × I2) ∩ Wi �= ∅ and H(W × I2) ∩ W �= ∅. As H(W × I2) can be covered by
at most N elements of Ũ , W ⊆ Pen(Wi, N + 1) and S ⊆ Pen(f ′ ◦ f(S), r) for any r > N + 1. �

We now indicate how to show that a *-proper map f induces a well defined map in coarse Čech
cohomology, and that the obvious diagram relating the maps f induces in coarse Čech and de Rham
cohomology commutes. Analogous results hold for coarse Alexander-Spanier cohomology.

Let Ũ and Ũ ′ be good covers for GF and GF ′ respectively. We may assume Ũ is subordinate to the
cover f−1Ũ ′. For each Ũ ∈ Ũ choose λ(Ũ) ∈ Ũ ′ such that f(Ũ) ⊂ λ(Ũ). Then λ induces canonical
maps λ∗: Ũ� → Ũ ′

� for all 
, and also a cochain map λ∗: Č∗,∗
c (Ũ ′) → Č∗,∗

c (Ũ). We leave it to the reader
to check that the support condition is preserved. To see that the map induced in cohomology is
independent of the choice of λ repeat the proof of Lemma 24. The usual proof that passing to
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subordinate covers leads to the obvious commuting diagram in cohomology goes through and it
follows immediately that f induces a well defined map f∗:HX(F ′) → HX(F ).

To see that this f∗ is the same one as in coarse de Rham cohomology, proceed as in the proof of
Theorem 26, (i.e. fix 
), and then repeat the usual proof of this fact for the space G�. This gives a
commutative diagram for the maps induced by f on the E1 terms of one of the associated spectral
sequences and the result follows immediately.

9 The Relationship with Usual Cohomology

In this section we show that there is a natural map from the coarse cohomology of a foliation to
the usual cohomology with compact supports of its graph. We also give conditions on the foliation
which guarantee that this map is an isomorphism.

Set
Ak,�

0 (F ) = {ω ∈ Ak,�
c (F ) | ω ≡ 0 on a neighborhood of ∆�+1}.

This is a subcomplex of Ak,�
c (F ) and we define the standard de Rham bicomplex for F to be

ASk,�
c (F ) = Ak,�

c (F )/Ak,�
0 (F )

with the induced differentials d and δv. Denote its cohomology by H∗
R(GF ). Let c be the natural

map c: Ak,�
c (F ) → ASk,�

c (F ), and denote the induced map in cohomology by c also.

Theorem 38 H∗
R(GF ) is isomorphic to H∗

c (GF ), the usual cohomology of GF with compact supports.

Proof: Let Ũ be a convex cover of GF and set W1 = GF = G1. For 
 > 1 set

W� = [
⋃

W∈Ũ
(×�W )] ∩ G�.

Then W� is a neighborhood of ∆� in G� and for each j, πj :W�+1 → W� is onto. Set

Ak,�
c (W) = Ak

c (W�+1),

the differential k-forms on W�+1 with relatively compact support (i.e. the closure in G�+1 of the
support is compact). Equip Ak,�

c (W) with the differentials obtained by restriction of the differentials
on Ak,�

c (F ).

If Ũ ′ is locally finite refinement of Ũ , then we have the restriction map, Ak,�
c (W) → Ak,�

c (W ′). Note
that by definition,

{AS∗,∗
c (F ), δ} = lim−→

W
{A∗,∗

c (W), δ}.

Thus
H∗

R(GF ) = lim−→
W

H∗({A∗,∗
c (W), δ}).
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Lemma 39 Given any convex cover of GF , there is a locally finite refinement Ũ such that ∆� is a
deformation retraction of W� by a canonical retraction.

Proof: Choose the refinement Ũ so that each plaque is geodesically convex in its leaf. Now
suppose that (y1, . . . , y�) ∈ W�. Then there is W ∈ Ũ with y1, . . . , y� ∈ W, and we may retract
along the geodesics connecting r(y1) to r(y2), . . . , r(y�) to retract (y1, . . . , y�) to (y1, . . . , y1) ∈ ∆�.
This retraction is canonical and lies in W�. �

Now the usual proof shows that for such a refinement, and for fixed 
, H∗({A∗,�
c (W), d}) is iso-

morphic to H∗
c (∆�+1). Thus the E1 term of one of the spectral sequences of this bicomplex is just

Ep,q
1 = Hp

c (∆�+1). As π∗
i on Hp

c (∆�+1) is the identity, we have that the differential dp,q
1 : Ep,q

1 →
Ep,q+1

1 is 0 if q is even and the identity if q is odd. The E2 term is then

Ep,0
2 = Hp

c (∆�+1) and Ep,q
2 = 0 if q > 0.

As ∆�+1
∼= GF , H∗({A∗,∗

c (W), δ}) ∼= H∗
c (GF ). Since the retractions used are canonical and there is

a cofinal subset of such convex covers, we are done. �

Note that {Ak,0
c (F ), d} = {ASk,0

c (F ), d}, i.e. the bottom rows of the coarse and standard bicom-
plexes are the same and both are just the usual de Rham complex with compact supports of GF .
There are natural maps of complexes A∗,∗

c (F ) → A∗,0
c (F ) and AS∗,∗

c (F ) → AS∗,0
c (F ) which make

the following following diagram commute.

HX∗(F )
↘

H∗
c (GF )↓c

H∗
R(GF )

↗

In particular, the lower right hand map is the isomorphism in Theorem 38.

For the Čech case proceed as follows. Let Ũ be a convex cover of GF and set

Čk,�
0 (Ũ) = {f ∈ Čk,�

c (Ũ) | f(W0, . . . ,Wk) = 0 if W0 ∩ . . . ∩ Wk ∩ ∆�+1 �= ∅}.

The differentials preserve Čk,�
0 (Ũ). The standard Čech bicomplex for F is

ČSk,�
c (Ũ) = Čk,�

c (Ũ)/Čk,�
0 (Ũ)

with the induced differentials δh and δv. It follows from Theorem 40 below that the cohomology
of this bicomplex is independent of Ũ . Denote its cohomology by H∗

C(GF ). As above, let c be the
natural map

c: Čk,�
c (Ũ) → ČSk,�

c (Ũ),

and also denote by c the induced map in cohomology.

Note that the bicomplex ČSk,�
c (Ũ) is isomorphic to the bicomplex

ČSk,�
0 (Ũ) = {f: Ũk+1

�+1 → R | sup(f) is finite and
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f(W0, . . . , Wk) = 0 if W0 ∩ . . . ∩ Wk ∩ ∆�+1 = ∅}.

We may make similar constructions in the Alexander-Spanier case, and we denote the resulting
cohomology by HXAS(GF ).

Theorem 40 The following diagram commutes.

ȞX∗(F )

↓

HX∗(F )

↘

↙
HX∗

AS(F )

c �

�

c �

c

H∗
C(GF )

↓

H∗
R(GF )

↙

↘
H∗

AS(GF )

The maps in the left triangle are the isomorphisms given in Section 7. Those of the right triangle
are their analogues and they are also isomorphisms.

Proof: We will show that H∗
C(GF ) ∼= H∗

R(GF ) and leave the rest of the proof to the reader. Let Ũ1

be a convex cover of GF as in Lemma 39 and let W be as in the proof of Theorem 38 for Ũ1. Choose
a cover U of M for F , and an associated convex cover Ũ of GF which satisfies the condition that
for any U ∈ Ũ there is U1 ∈ Ũ1 so that Pen(U, 2) ⊂ U1 where Pen is with respect to the cover U .

Then the map A: Čk,�
c (Ũ) → Ak,�

c (F) defined in Section 7 when restricted to ČSk,�
0 (Ũ) takes values

in Ak,�
c (W). To show that this induces isomorphisms on the 
th rows of the bicomplexes, we merely

repeat Weil’s proof again, using the bicomplex Cp
c,0(Ũ , Ωq), where f ∈ Cp

c,0(Ũ , Ωq) assigns to each
(W0, . . . , Wp) ∈ Ũp+1

�+1 a q-form on W0∩. . .∩Wp such that f(W0, . . . , Wp) = 0 if W0∩. . .∩Wp∩∆�+1 =
∅ and the support of f is finite. The cohomology of the columns of this bicomplex is zero since Ũ
is good. The fact that the cohomology of the rows is zero is proven just as in [W], [BT]. �

As in the coarse case, we may replace the standard de Rham, Čech and Alexander-Spanier bicom-
plexes by their subcomplexes of alternating or doubly alternating cochains. The cohomology of
these subcomplexes is the same as that of the full bicomplexes and the above theorems still hold.

To finish this section we give four general results on when the map c is an isomorphism.

The results of Section 5 give that if F is the natural foliation of a flat bundle over a compact
Riemannian manifold N constructed from a generic orientation preserving representation of π1(N)
and Ñ is rescaleable, or uniformly contractible, or globally of non-positive curvature, and there is
no twisting, then c is an isomorphism.

To state the second result, choose a smooth metric on M . As noted in Section 5 this metric induces
a smooth leafwise metric d on each G� and we may use these to define Pen(A, r). We say that
F is rescaleable [R3] if there is a one-parameter group ρt of automorphisms of GF mapping each
holonomy cover L̃ to itself so that for y1, y2 ∈ GF with s(y1) = s(y2), d(ρt(y1), ρt(y2)) = etd(y1, y2),
for all t ∈ R.

Proposition 41 If F is rescaleable, then the map c: HX∗(F ) → H∗
R(GF ) is an isomorphism.
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Proof: Let r > 0 and for 
 = 1, 2, . . . let W�(r) = Pen(∆�, r). Set

Ak,�
c (W(r)) = Ak

c (W�+1(r)),

the differential k-forms on W�+1(r) with relatively compact support (i.e. the closure in G�+1 of
the support is compact). Equip Ak,�

c (W(r)) with the differentials obtained by restriction of the
differentials on Ak,�

c (F ). For r = r2 − r1 we have the restriction map,

i∗r: A
k,�
c (W(r2)) → Ak,�

c (W(r1)).

By definition,
AS∗,∗

c (F ) = lim−→
r

A∗,∗
c (W(r)),

so
H∗

R(GF ) = lim−→
r

HX∗(W(r)),

where HX∗(W(r)) is the cohomology of A∗,∗
c (W(r)).

Now
A∗,∗

c (F ) = lim←−
r

A∗,∗
c (W(r)),

and the inverse system {A∗,∗
c (W(r)), i∗r} satisfies the Mittag-Leffler condition [DG], see also [A].

Set t = log(r). Then ρt: A∗,∗
c (W(r2)) → A∗,∗

c (W(r1)) is an isomorphism of bicomplexes and ρt is
properly homotopic to ir. It follows that these two maps induce the same map in cohomology and so
all the maps i∗r are isomorphisms. Thus lim←−

r

HX∗(W(r)) ∼= lim−→
r

HX∗(W(r)) and the inverse system

{HX∗(W(r)), i∗r} also satisfies the Mittag-Leffler condition. By [DG] we have lim←−
r

HX∗(W(r)) =

HX∗(F ) . As the composition

HX∗(F ) = lim←−
r

HX∗(W(r)) ∼= lim−→
r

HX∗(W(r)) = H∗
R(GF )

is just the map c, we are done. �

For the third result, let U be a finite cover of M for F and Ũ an associated convex cover of GF .
Recall the inverse system Ũ(n) of covers of GF used to define the coarse Čech cohomology of F.

Definition 42 We say that A ⊆ GF is leafwise contractible inside B ⊆ GF if there is continuous
map ρ: A× I → B so that ρ | A× 0 is the inclusion of A in B, s(ρ(y, t)) = s(y) for all y ∈ A, and
if s(y1) = s(y2), then ρ(y1, 1) = ρ(y2, 1).

Definition 43 We say that F is uniformly contractible if there is a convex cover Ũ of GF so that
for each n1 > 0 there is n2 > 0 so that for all U ∈ Ũ , U(n1) is leafwise contractible inside U(n2).

Proposition 44 If F is uniformly contractible, then the map c:HX∗(F ) → H∗
C(GF ) is an isomor-

phism.
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Proof: For each n, consider the bicomplex A∗,∗
n = Č∗

c(Ũ(n), Ω∗). Here Ωk is the sheaf of k-forms.
This is the bicomplex used in Weil’s proof of the de Rham theorem. Set A∗,∗ = lim←−

n

A∗,∗
n . Weil’s

proof of the de Rham theorem shows that the cohomology of the bicomplex H∗(A∗,∗
n ) ∼= H∗

c (GF )
for all n, and it is immediate that the inclusions Ũ(n) → Ũ(n + 1) induce the identity map on
cohomology. This implies that lim1 H∗(A∗,∗

n ) = 0 and so

H∗(A∗,∗) = lim←−
n

H∗(A∗,∗
n ) ∼= H∗

c (GF ).

Now we compute the column cohomology of the bicomplex A∗,∗. Each column cohomology group
is just the direct sum of groups Hq(lim←−

n

Ω∗(U0(n) ∩ . . . ∩ Up(n))).

Let n1 > 0 and choose n2 so that for all U ∈ Ũ , U(n1) is leafwise contractible inside U(n2). Then
note that for any U0, . . . , Up ∈ Ũ , U0(n1)∩ . . .∩Up(n1) is leafwise contractible inside U0(2n1 +n2 +
1)∩. . .∩Up(2n1+n2+1). In addition, s(U0(n1)∩. . .∩Up(n1)) is contractible, so U0(n1)∩. . .∩Up(n1)
is in fact contractible inside U0(2n1 + n2 + 1) ∩ . . . ∩Up(2n1 + n2 + 1). Thus we have the following

Lemma 45 For all q > 0,

Hq(Ω∗(U0(2n1 + n2 + 1) ∩ . . . ∩ Up(2n1 + n2 + 1))) → Hq(Ω∗(U0(n1) ∩ . . . ∩ Up(n1)))

is the zero map.

We now have that for q > 0, lim1 Hq(Ω∗(U0(n) ∩ . . . ∩ Uk(n))) = 0, and lim←−
n

Hq(Ω∗(U0(n) ∩ . . . ∩

Uk(n))) = 0. Thus Hq(lim←−
n

Ω∗(U0(n)∩. . .∩Uk(n))) = 0 also. Thus the E1 term for one of the spectral

sequences associated to the bicomplex A∗,∗ satisfies Ep,q
1 = 0 if q > 0, and Ep,0

1 = lim←−
n

Čc(Ũ(n), R).

It follows that the E2 is non zero only for p = 0 and these groups are just the simple coarse
cohomology groups of F . The Proposition follows. �

Finally, we have

Theorem 46 Let F be a foliation such that each holonomy cover L̃ is simply connected and has
non-positive curvature. Then the map c:HX∗(F ) → H∗

c (GF ) is an isomorphism.

Proof: Use the isomorphism HX∗(F ) ∼= HX∗
AS(F ) and adapt the proof of Theorem 3.42 of [R3]

using Corollary 29. �
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