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Tangential LS category and cohomology for foliations

Hellen Colman and Steven Hurder

Abstract. The purpose of this paper is to give lower-bound estimates on the
tangential category catF (M) of a foliated manifold in terms of cup-length in
the associated foliation spectral sequence. We first show that the nilpotency
index of the reduced filtered cohomology, for r > 0, provides a lower bound

nil E
∗,+
r (M,F) ≤ catF (M). This generalizes the estimate by the first author

nil H
+
F (M) ≤ catF (M) in terms of the nilpotency of the foliated cohomology.
The second theme of this paper is to develop tools for showing that a

particular cup-product in H+(M,F) or E
∗,+
1 (M,F) is non-zero. We develop

three approaches to this problem: pairing with the foliation current associated
to a transverse invariant measure; pairing with foliation k-currents associ-
ated with elements of Haefliger’s transverse cohomology; and evaluation of the
Godbillon-Vey class of the foliation.

Singhof and Vogt [44] proved that for a foliation with leaf dimension m,
catF (M) ≤ m + 1. We give several classes of foliations for which the lower
bound estimates using cup-length is catF (M) ≥ m+1, hence catF (M) = m+1.
For example, we prove that the category of the foliation defined by a locally
free R

m action on a compact manifold is m+1. We also show that the category
is m + 1 for the weak-stable foliation of dimension m associated to a contact
Anosov flow on a compact manifold. These calculations extend to products of
the foliations considered.
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1. Introduction

The manifolds, maps and foliations considered in this paper are assumed to
be smooth unless otherwise noted. Let M be a manifold without boundary and
F a foliation. Let m denote the leaf dimension and n the codimension of F . Key
definitions and background results are given in §§2,3.

The purpose of this paper is to give lower-bound estimates on the tangential
category catF(M) of the foliated manifold using cup-length in the associated foli-
ation spectral sequence. When the estimates of this paper are combined with the
upper bound estimate catF (M) ≤ m + 1 of Singhof and Vogt [44], this yields in
many cases an exact calculation of the tangential category.

The foliation spectral sequence Ep,q
r (M,F) =⇒ H∗(M) is a natural tool for

the study of the geometry of F . For example, the foliated cohomology Hq
F(M)

studied by many authors is the first derived cohomology group E0,q
1 (M,F). In the

thesis of the first author, it was shown that the nilpotency index of the reduced
foliated cohomology H+

F (M) is a lower bound for catt(M,F). The basic idea of
this paper is to extend this lower bound to the derived cohomology algebras in the
foliation spectral sequence, and that there are many classes of foliations for which
this extension yields an exact calculation of the tangential category.

The following is proved in §3.

Theorem 1.1.

nil E∗,+
∞ ≤ nil E∗,+

2 ≤ nil E∗,+
1 ≤ catF(M)(1.1)

nil H+
F (M) ≤ nil E∗,+

1 ≤ catF (M)(1.2)

One of the difficulties with applying the estimates (1.1) or (1.2) is that the
groups E∗,+

r (M,F) are often intractable to calculate. The second theme of this
paper is to develop tools for showing that a particular cup-product in H+(M,F)

or E∗,+
1 (M,F) is non-zero, which is then useful to obtain a lower bound on the

nilpotency index.
Recall that a transverse invariant measure µ for a foliation F is a Borel measure

defined on transversals, so that µ(T ) = µ(h(T )) if h is an element of holonomy of
F and T is a transverse manifold in the domain of µ. This concept was introduced
by J. Plante [34]. Not all foliations admit a non-trivial transverse invariant mea-
sure, and in codimension one this is an especially strong hypothesis to make. In
any case, they do frequently arise naturally. Ruelle and Sullivan observed that a
transverse invariant measure yields a “homology fundamental class” [µ] ∈ Hm(M)
for a foliation [34, 36, 45]. If the measure µ is defined by a integration of a closed
n-form ω along transversals to F , then [µ] is just the Poincaré dual to [ω].

The following is proved in §4.

Theorem 1.2. Let M be a compact manifold, and µ is non-trivial transverse
invariant measure for a foliation F with leaf dimension m. Then there exists a
natural map

∫

µ

: E0,m
1 (M,F) → R

which is non-vanishing on the leafwise volume form of F .

We prove more generally in §4 that
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Theorem 1.3. There is a natural map to the transverse cohomology Hp(Tr F),

χ∗ : Ep,m
2 (M,F) → Hp(Tr F)

Here is an application of Theorem 1.2, proved in §6.1.

Theorem 1.4. Let M be a compact manifold, and assume F is defined by a
locally free action R

m × M → M . Then catF (M) = m + 1.

The following result, proved in §5 as an application of Theorem 1.1, generalizes
a result of H. Shulman [40].

Theorem 1.5. Suppose that GV (F) 6= 0, then catF (M) ≥ n + 2.

Corollary 1.6. Suppose M is a compact manifold of dimension 2n + 1 with
a smooth foliation of codimension n, with GV (F) 6= 0. Then catF (M) = n + 2.

The paper of Singhof and Vogt [44] proves that category is upper semi-continuous
function on the space of foliations in the C1 topology. They show how to calculate
the tangential category of a number of examples by perturbing the given foliation
to one with a compact leaf, and then bounding the category from below by that
of this leaf. This novel technique produces a systematic calculation of category for
many classes of foliations. In §6 of this paper, we apply the techniques of this paper
to obtain lower bound estimates for several classes of foliations. These estimates are
exact, and yield their transverse categories. The examples typically do not admit
perturbations to foliations with compact leaves – for example, the foliations are
structurally stable in some cases. Thus, the transverse categories of the examples
cannot be obtained using the perturbation method of Singhof and Vogt. The list
of examples is not exhaustive, but chosen to illustrate the techniques.

We conclude the paper in §7 by listing various open problems about the tan-
gential category.
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2. Tangential category

Let (M,F) and (M ′,F ′) be foliated manifolds. A map f : (M,F) → (M ′,F ′)
is said to be foliated if it sends leaves into leaves. A homotopy H : M ×R → M ′ is
said to be integrable if H is a foliated map, considering M × R to be foliated with
leaves L × R, L ∈ F . The notation 'F will denote integrable homotopy. Given
an integrable homotopy H , for all t ∈ R we have a foliated map Ht : (M,F) →
(M ′,F ′). Moreover, for each x ∈ M the curve t 7→ Ht(x) is a leafwise curve in M ′.
Thus, an integrable homotopy is exactly a homotopy for which all of the “traces”
are leafwise curves. As a consequence, it is easy to see that if f 'F g then f and
g induce the same map between the spaces of leaves.

An open subset U of M is tangentially categorical if the inclusion map (U,FU ) ↪→
(M,F) is integrably homotopic to a foliated map c : U → M which is constant on
each leaf of FU . Here U is regarded as a foliated manifold with the foliation FU

induced by F on U . The leaves of FU are the connected components of L∩U , where
L is a leaf of F . A major technical point about this definition of a categorical set
is that while the map c is constant on the leaves of FU , it need not be constant on
the sets L ∩ U unless these sets are connected.

Definition 2.1. The tangential category catF (M) of a foliated manifold (M,F)
is the least number of tangentially categorical open sets required to cover M . If no
such covering exists, let catF (M) = ∞.

When F is a foliation by a single leaf, an open subset is tangentially categorical
if and only if it is categorical, so catF(M) = cat M . For a foliation by points, we
have catF(M) = 1.

A distinguished open set of a foliated chart is always categorical, so catF(M)
is finite if F is a foliation of a compact manifold.

Tangential category is an invariant of integrable homotopy between manifolds.
Each leaf L of a foliation supports two different topologies: the submanifold

topology τL which has the plaques as a basis, and the relative topology τ ⊂ τL

induced by the ambient manifold. We have that cat(L, τL) ≤ cat(L, τ). In this
paper, unless otherwise specified, we will assume cat L = cat(L, τL), the category
of the leaf as a submanifold of M .

Since the integrable homotopy on a tangentially categorical subset U restricted
to a leaf of FU gives a contraction on the corresponding leaf of F , we have

Proposition 2.2 ([9]). For any leaf L ∈ F , cat L ≤ catF (M).

We will say that a foliated manifold is tangentially contractible if catF (M) = 1.
In this case every leaf is contractible and closed. Thus, if M is a compact manifold,
(M,F) is tangentially contractible if and only if F is a foliation by points. The
contractibility of every leaf is not sufficient to contract tangentially the manifold,
as shown by the example of the linear foliation on the torus with irrational slope.
For an example on a non-compact manifold, the Reeb foliation of the plane R

2 also
has contractible leaves and catF (M) = 2.

2.1. Fibrewise category. We now compare the tangential category with the
fibrewise category introduced by I.M. James and J.R. Morris in [28]. Recall that a
fibrewise space X over B is a topological space X together with a map p : X → B.
An open set U ⊂ X is said to be fibrewise categorical if there exists a global section
s : B → X such that the inclusion iU : U → M and the map c = s ◦ p |U : U → M
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are fibrewise homotopic (i.e. integrably homotopic in the continuous sense). The
fibrewise category catBX is the least number of fibrewise categorical open sets
required to cover X . If no such covering exists, the fibrewise category is said to be
infinite.

Consider a smooth version of the fibrewise category, where we require that all
objects and maps are smooth. If the projection p : M → M/F onto the space
of leaves has a global section, we can compare the tangential category with the
fibrewise category of M as a fibrewise space over M/F . It is clear that

Proposition 2.3. catF(M) ≤ catM/FM

Cohomological lower bounds for fibrewise category are obtained by taking the
quotient of the reduced cohomology H̃∗(X) by the ideal 〈p∗H̃∗(B)〉 ⊂ H̃∗(X)

generated by the subring p∗H̃∗(B). James and Morris proved that

catBX ≥ nil
H̃∗(X)

〈p∗H̃∗(B)〉
.

The existence of a good quotient space M/F , and moreover of a section M/F →
M , are very strong assumptions, so the fibrewise category has limited application
for the study of foliations.

2.2. Foliated cohomology. We can obtain cohomological lower bounds for
the tangential cohomology by considering the foliated cohomology [11, 20, 29, 32,

35]. Let Ωr(F) be the space of smooth r-forms along the leaves. That is, an r-form
ω ∈ Ωr(F) is a section of the rth exterior power of the cotangent bundle of the
leaves,

∧r
TF∗. The differential along the leaves will be denoted by

dF : Ωr(F) → Ωr+1(F)

The foliated cohomology HF (M) is the cohomology of the complex Ωr(F), dF . If
the foliation is by points, the tangential cohomology is 0 in positive degrees.

There is a “geometric” interpretation of foliated cohomology [32, 17]. Let
MF denote the set M considered as the union of leaves of F , so is a manifold
of dimension m, the dimension of the leaves. That is, MF is M with the leaf
topology [32]. Then the identity map j : MF → M is an immersion, Ωr(F) is the
image of the “restriction map” j∗ : Ωr(M) → Ωr(MF ), and dF is the restriction
of the differential of Ωr(M). In this way, HF (M) is identified with the de Rham
cohomology of MF .

A form ω ∈ Ωr(F) if it can be written locally as

ω =
∑

f(x, y)dxi1 ∧ · · · ∧ dxir

where (x1, . . . , xp, y) is a distinguished open set of a foliated chart, the coordinate
1-forms dxi are differentials along the leaves.

Let H+
F (M) =

⊕

k>0

Hk
F (M) denote the foliated cohomology in positive degrees.

Proposition 2.4 ([9]). Let U be a tangentially categorical open subset of M .
Then the map i∗ : H+

F (M) → H+
FU

(U) induced by the inclusion U ↪→ M is null.

Theorem 2.5 ([9]). For any foliated manifold, catF(M) ≥ nil H+
F (M).
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The tangential cohomology of a manifold is in general hard to calculate [32, 11].
W. Singhof and E. Vogt [44] gave a cohomological bound for the tangential category
using ordinary cohomology instead of foliated cohomology which allows explicit
calculation of the tangential category in many cases. We will generalize their result
in the next section.

A fundamental result by the same authors proves a generalization of the clas-
sical estimate of category by the dimension of the space.

Proposition 2.6 (Singhof and Vogt [44]). catF(M) ≤ dimF + 1

This estimate together with the lower bound by the category of the leaves,
give the exact value of the tangential category for a large number of foliations,
namely all foliations containing a leaf L such that cat L = dim L + 1. Classes
of manifolds L verifying this condition have been studied by various authors. For
example, J. Oprea and J. Walsh [33] showed that these include symplectic manifolds
(M2n, ω) with ω|π2M = 0, and also aspherical and hyper-aspherical manifolds. Here
are some other results, whose proofs follow quickly from upper bound estimate
catF (M) ≤ dimF + 1.

Proposition 2.7 (Singhof and Vogt [44]). Let M be a compact manifold, and
F a 1-dimensional foliation defined by a flow. Then catF (M) = 2.

Proof: If F is a foliation of a compact manifold M , we have that (M,F) is
tangentially contractible if and only if F is a foliation by points. Then, for any flow
F , 1 < catF (M) ≤ 2. �

Proposition 2.8 (Colman [7]). Any 2-dimensional (non-trivial) Seifert fibra-
tion on a compact manifold has catF(M) = 3.

Proof: Since the leaves are 2-dimensional compact manifolds, they are either
2-spheres or surfaces of category 3. If F is a non-trivial Seifert fibration, then it
contains a leaf L with non-trivial holonomy. The regular leaves of F are non-trivial
coverings of L. In particular, π1(L) 6= 0 and L is not a 2-sphere. Then there exists
a leaf of maximal category. �

Proposition 2.9 (Colman [7]). catF(M) = 3 for every 2-dimensional folia-
tion of the 3-sphere.

Proof: As a consequence of Novikov’s theorem, we have that any codimension
one foliation of S3 has a compact leaf homeomorphic to a 2-dimensional torus. Then
any 2-dimensional foliation of the 3-sphere contains a leaf of maximal category. �
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3. Spectral sequence of F

Let TF be the tangent bundle of the foliation F and Q = TM/TF the normal
bundle. Choose a Riemannian metric on TM , and identify Q with the orthogonal
distribution TF⊥, so TM = TF ⊕ Q. This induces an embedding of the leafwise
cotangent bundle TF∗ ⊂ TM∗ complementing the natural inclusion Q∗ ⊂ TM∗.

Let Ωq(F) denote the smooth q-forms given by sections of the exterior sub-
bundle

∧q
TF∗, and Ωp(Q∗) the smooth p-forms given by sections of the exterior

subbundle
∧p Q∗.

A form ω ∈ Ωs(M), s = p + q, is said to have type (p, q) if it is locally a
sum of forms α ∧ β with α ∈ Ωq(F) and β ∈ Ωp(Q∗). The bigraded differential
complex Ωp,q(M,F) is the space of differential forms of type (p, q). Note that
Ωp,0(M,F) ∼= Ωp(Q∗).

The exterior differential on Ω∗(M) splits in three operators d′ = d0,1, d′′ = d1,0

and δ = d2,−1 of bidegrees (0, 1), (1, 0) and (2,−1) respectively. The identity
d ◦ d = 0 is equivalent to d′ ◦ d′ = 0, d′ ◦ d′′ + d′′ ◦ d′ = 0, δ2 = 0, and d′′ ◦ d′′ +
d′ ◦ δ + δ ◦ d′ = 0. The identity d′ ◦ d′ = 0 implies the subalgebra Ω0,∗(M,F) is a
differential subcomplex. The other identities arise in the definition and calculation
of the spectral sequence of the foliation.

The defining ideal of F is the differential ideal J (M,F) generated by Ω1(Q∗).
A form ω ∈ Ω1(M) is in Ω1(Q∗) exactly when ι(X)ω = 0 for every vector field X
tangent to F .

Recall that MF is the set M with the leaf topology, and j : MF → M is
the identity map, considered as an immersion. Then Ω1(Q∗) is the kernel of the
restriction map j∗ : Ω1(M) → Ω1(MF ), and J (M,F) is the kernel of the restriction
map on all forms, j∗ : Ω∗(M) → Ω∗(MF ).

The powers of J (M,F) define a multiplicative differential filtration of Ω∗(M)
where F pΩp+q(M) = J (M,F)p ∧ Ωq(M). The associated spectral sequence Ep,q

r

is an important tool for the study of geometric properties of foliations. We will
use the notation Ep,q

r (M,F) when there is a need to indicate the foliated manifold
(M,F).

The memoir by M. Mostow [32] gives a fundamental treatment of “continuous
cohomology”, which includes the foliated cohomology as a special case. There are
several excellent surveys of the definition and properties of the foliation spectral
sequence, notably those by El Kacimi [11], Roger [35], and Chapter 4 of Tondeur’s
monograph [47]. We recall the main features.

The 0th-order term of the spectral sequence is the quotient space

Ep,q
0 ≡ F pΩp+q(M)/F p+1Ωp+q(M)

= J (M,F)p ∧ Ωq(M)/J (M,F)p+1 ∧ Ωq−1(M)
∼= Ωp,q(M,F)

The subsequent terms are defined as usual by Ep,q
r = H(Ep,q

r−1) with differential

dr : Ep,q
r → Ep+r,q−r+1

r .
Note that Ep,q

0 = 0 if p > n or q > m. Thus, there is s ≥ 0 such that
Ep,q

r+1
∼= Ep,q

r for all r ≥ s, and we write Ep,q
∞ = Ep,q

s for such s. The spectral
sequence of the foliation converges to the de Rham cohomology of the manifold:

⊕

p,q

Ep,q
r =⇒

⊕

p,q

Ep,q
∞

∼= H(M)
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The differential dq
0,1 : Ωp,q(M,F) → Ωp,q+1(M,F) is called the foliated differ-

ential, and variously denoted by dq
F , dF , d0,1 or just d′. The space

Ep,q
1 = Hp,q(M,F) =

ker dq
F

im dq−1
F

is the cohomology of type (p, q) of the foliation F .

For p = 0, E0,q
1 = H0,q(M,F) is the foliated cohomology of (M,F), and there is

a natural isomorphism with the group defined in section 2, H0,q(M,F) ∼= Hq
F(M).

For q = 0, Ep,0
1 is the space of basic forms Ωp

b(M,F). The differential dp
1,0 : Ωp,q(M,F) →

Ωp+1,q(M,F) of bidegree (1, 0) induces on Ωp
b(M,F) the basic differential, and

Ep,0
2 = H(Ep,0

1 ) is the basic cohomology of (M,F).
We have a product of forms of type (p, q) induced by the regular multiplicative

structure of Ω∗(M):

∧ : Ωp,q(M,F) × Ωp′,q′

(M,F) → Ωp+p′,q+q′

(M,F)

The definition of the complex Ωp,q(M) requires the choice of a splitting TM =
TF ⊕ Q which is not natural; that is, the splitting need not be preserved by a
foliated map f : (M,F) → (M ′,F ′). The point is that while the inclusion of the
dual Q∗ ⊂ TM∗ is canonical, the inclusion TF∗ ⊂ TM∗ need not be preserved,
so that f∗Ω0,1(M ′,F ′) ⊂ Ω0,1(M,F) + Ω1,0(M,F). However, f∗Ωp,0(M ′,F ′) ⊂
Ωp,0(M,F) and consequently there is a canonical induced map of graded complexes

f∗ : E
′p,q
0 → Ep,q

0

The naturality of the induced map on foliation spectral sequences only applies for
the associated graded complexes. This is a subtle point not stressed in the folia-
tion literature, but a well-known issue with morphisms between filtered differential
graded algebras (see Theorem 3.2 and the related discussion in §1.5, [31].) This
point arises in the proof of Proposition 3.2 below.

Proposition 3.1. If f, g : (M,F) → (M ′,F ′) are two integrably homotopic
maps then they induce the same homomorphism in cohomology

f∗ = g∗ : E
′p,q
1 → Ep,q

1

Proof: This was proved by El Kacimi for the foliated cohomology case [11],
and the same method applies here.

Let f : (M,F) → (M ′,F ′) be foliated maps, and H : M ×R → M ′ an integrable
homotopy between them. Recall this mean that H is a foliated map considering
M×R foliated by leaves L×R, L ∈ F . The point is to define for all p, q a homotopy
operator K : Ωp,q(M ′,F ′) → Ωp,q−1(M,F) such that d0,1 ◦K ±K ◦ d0,1 = f∗ − g∗.

Hence, f∗ and g∗ induce the same maps on E
′p,q
1 .

Given a form ω ∈ Ωp,q(M ′,F ′) note that H∗ω ∈ Ωp,q(M,F × R). Let ∂/∂t be
the coordinate vector field along R, which defines a vector field on M × R tangent
to the leaves of F × R. Thus, the contraction operator

ι(∂/∂t) : Ωp,q(M,F × R) → Ωp,q−1(M,F × R)

We define

K(ω) =

∫ 1

0

ι(∂/∂t)H∗(ω) dt

and the standard calculation shows d0,1 ◦ K ± K ◦ d0,1 = f∗ − g∗. �
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Proposition 3.2. Let U be a F-categorical open set and i∗ : Ep,q
1 (M,F) →

Ep,q
1 (U,FU ) the map induced in cohomology of type (p, q) by the inclusion map

U ↪→ M . Then i∗ = 0 for all q > 0.

Proof: Let c : U → M be a map integrably homotopic to the inclusion, and
constant on the leaves of FU . Then, by Proposition 3.1, i∗ = c∗. Note that
c∗ : T (U) → T (M) vanishes on the tangent vectors to the foliation, so c∗Ωs(M) ⊂
Ωs,0(U,FU ) for all s. In particular, c∗Ωp,q(M,F) ⊂ Ωp+q,0(U,FU ).

Consider now the induced map on graded complexes c∗ : Ep,q
0 (M,F) → Ep,q

0 (U,FU )
for q > 0. For ω ∈ Ωp,q(M) representing the graded class [ω] ∈ Ep,q

0 (M,F), then

c∗ω ∈ Ωp+q,0(U,FU ) ⊂ J p+q(U,FU ) ⊂ J (U,FU )p+1 ∧ Ωq−1(U)

hence c∗[ω] = [c∗ω] = 0 ∈ Ep,q
1 (U,FU ) as a graded class. �

Remark 3.3. The induced map i∗ : Ep,0
1 (M,F) → Ep,0

1 (U,FU ) is not necessar-

ily zero. As noted already, Ep,0
1 is the complex of basic forms of (M,F). Suppose

that H deforms U into a transversal T , where T is considered as foliated by points.
Let Φ: U → T denote the map H1 mapping to its image, and iT : T → M the
inclusion. Then i∗ = c∗ = i∗T ◦ Φ∗, where i∗T : Ep,0

1 (M,F) → Ep,0
1 (T ) = Ωp(T ) is

just the restriction of the basic forms to T , and Φ∗ : Ep,0
1 (T ) → Ep,0

1 (U,F) is the
isomorphism from p-forms on T to basic p-forms for (U,FU ). Thus, if F has a
non-trivial basic p-form, then for some categorical U the map i∗ will be non-trivial.

3.1. Relative cohomology of type (p, q). We develop a relative theory of
type (p, q) by explicitly defining the natural notions of relative foliated complex
E∗,∗

1 (M, U) and a cup product on it.
Following the usual definition of the mapping cone [5], if U is an open subset

of M , we consider the complex

Ωp,q(M, U) = Ωp,q(M) ⊕ Ωp,q−1(U)

with differential
d(ω, θ) = (dF ω, ω|U − dF θ).

We define the relative cohomology of type (p, q), Ep,q
1 (M, U), to be the cohomology

of the complex above. Here U is regarded as a foliated manifold with the foliation
induced by F .

We have the short exact sequence

0 → Ωp,q−1(U)
α
−→ Ωp,q(M, U)

β
−→ Ωp,q(M) → 0(3.1)

with α(η) = (0, η) and β(ω, θ) = ω. There is a long exact sequence in cohomology
of type (p, q)

· · · → Ep,q−1
1 (U)

α∗

−→ Ep,q
1 (M, U)

β∗

−→ Ep,q
1 (M)

i∗
−→ Ep,q

1 (U) −→ · · ·
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3.2. Products in relative cohomology of type (p, q). Let U, V ⊂ M be
open sets with the respective induced foliations. We take a smooth partition {f, g}
of unity subordinate to the covering {U, V } of U ∪ V .

Then we define a product of relative forms of type (p, q)

• : Ωp,q(M, U) × Ωp′,q′

(M, V ) → Ωp+p′,q+q′

(M, U ∪ V )

by

(ω, θ) • (z, t) = (ω ∧ z, η)(3.2)

where η ∈ Ωp+p′,q+q′−1(U ∪ V ) is given as follows:

η |U= θ ∧ z |U +(−1)pd(θ ∧ gt) + g
(

(−1)p(ω − dθ) ∧ t − θ ∧ (z − dt)
)

|U∩V

and

η |V = (−1)pω |V ∧t − (−1)pd(fθ ∧ t) − f
(

(−1)p(ω − dθ) ∧ t − θ ∧ (z − dt)
)

|U∩V .

The form η is well defined in the intersection U ∩ V and the induced product in
cohomology of type (p, q) does not depend on the partition of the unity. Then we
have a well defined product:

Ep,q
1 (M, U) × Ep′,q′

1 (M, V ) → Ep+p′,q+q′

1 (M, U ∪ V )

3.3. Index of nilpotency of E∗,+
1 . The ring A is said to be nilpotent if

there exists some integer k > 0 such that a1 · · · ak = 0 for any elements (not units)
a1, . . . , ak ∈ A. The least integer k = nil A with this property is called the index
of nilpotency of A.

Theorem 3.4. catF(M) ≥ nil E∗,+
1 .

Proof: Let {U1, . . . , Uk} be a covering of M by F -categorical open sets. For
each U = Uj we consider the long exact sequence of the pair (M, U),

· · · → Ep,q−1
1 (U)

α∗

−→ Ep,q
1 (M, U)

β∗

−→ Ep,q
1 (M)

i∗
−→ Ep,q

1 (U) −→ · · ·

where β∗ is onto for q > 0 due to Proposition 3.2. Let x1, . . . , xk be arbitrary
elements of E∗,+

1 . For each xj , there exists zj ∈ Ep,q
1 (M, U) such that β∗(zj) = xj .

Moreover,

βU∪V (x • y) = βU (x) ∧ βV (y).

Thus the product x1 · · ·xk = β∗(z1•· · ·•zk) = 0 because z1•· · ·•zk ∈ E∗,+
1 (M, M).

This means that nil E∗,+
1 ≤ k. �

3.4. Other lower bounds. The reduced foliated cohomology of a foliated
manifold, H+

F (M), is contained in E∗,+
1 , so

nil H+
F (M) ≤ nil E∗,+

1 ≤ catF (M)

Thus, Theorem 3.4 generalizes the lower bound in terms of the foliated cohomology
given in [9].

The r-term of the spectral sequence is Ep,q
r = H(Ep,q

r−1), hence nil E∗,+
r ≤

nil E∗,+
1 , for all r ≥ 1, so we have

nil E∗,+
∞ ≤ nil E∗,+

2 ≤ nil E∗,+
1 ≤ catF(M)
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While the calculation of nil E∗,+
1 gives the strongest estimate for catF (M) via the

methods of this section, the invariant nil E∗,+
2 may prove easier to compute in

examples.

Set Es
∞ =

⊕

p+q=s

Ep,q
∞ . The isomorphism Hs(M) ∼= Es

∞ decomposes the reduced

cohomology of the manifold into two parts, H̃∗(M) ∼= E∗,+
∞ ⊕E+,0

∞ the latter being
the image of the reduced basic cohomology of the foliated manifold by the following
morphism

p∗ : H̃p
b (M) ∼= Ep,0

2 −→ · · · −→ Ep,0
∞ ⊂ Ep

∞
∼= H̃p(M)

Note that for all p ≥ 0, Ep,0
r+1 = Ep,0

r / im{d} hence each of the maps Ep,0
r → Ep,0

r+1

is surjective.
We can generalize for foliations the James’ estimate (2.1) in terms of the spec-

tral sequence by taking the basic cohomology instead of the cohomology of the base.
First note that 〈p∗H̃b(M)〉 = E+,0

∞ ∧ E+
∞ hence we have a surjection

H̃∗(M)

〈p∗H̃∗
b (M)〉

−→ E1,0
∞ ⊕ E0,1

∞ ⊕ E0,2
∞ ⊕ · · · ⊕ E0,m

∞

with E1,0
∞ = p∗H1

b (M) and
⊕

q≥1

E0,q
∞ ⊂ H̃∗

F (M).
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4. Fundamental classes

In this section we develop techniques for showing the non-triviality of classes
in the cohomology groups Ep,q

r , and discuss applications to obtaining lower bounds
on the tangential category catF (M).

We assume that M and F are oriented, and M is compact. Choose a Rie-
mannian metric on TM , which restricts also to a Riemannian metric on TF . Let
θ ∈ Ωm(MF ) be the positively oriented leafwise volume form. Then dF θ = 0 and
we let [θ]F ∈ Hm

F (M) denote its cohomology class.

Definition 4.1. A fundamental class for F is a continuous linear map I : Ωm(MF ) →
R such that I ◦ dF = 0 and I(θ) > 0.

It follows that I induces a map I∗ : Hm
F (M) → R such that I∗[θ]F 6= 0. In

particular, if F admits a fundamental class then [θ]F 6= 0. The fundamental class
need not be unique. For example, if F has a compact leaf L then integration defines
a map

∫

L

: Ωm(MF) → R(4.1)

which maps the the leafwise volume form θ to the volume of L. Distinct com-
pact leaves yield distinct linear functionals on Ωm(MF), and may also induce
distinct maps on cohomology. Consider the case where F is defined by a fi-
bration M → M/F with typical compact connected fiber L, then Hm

F (M) ∼=
C∞(M/F ; Hm(L)) ∼= C∞(M/F , R). Evaluation of the cohomology class [ω]F at
the point [L] ∈ M/F is given by integrating a representing m-cocycle ω on the
fundamental class

∫

L.
Continuing, assume L is a compact leaf. Suppose there exist classes x1, . . . , xk ∈

Ω∗(MF) with
∫

L
x1 ∧ · · · ∧ xk 6= 0. Then

0 6= [x1 ∧ · · · ∧ xk] = [x1] • · · · • [xk] ∈ Hm
F (M)

and hence catF (M) ≥ k.
Note the inclusion i : L ⊂ M induces a restriction mapping i∗ : H∗

F (M) →
H∗(L) which preserves products, so if we set zi = i∗[xi] then

〈z1 • · · · • zk, [L]〉 =

∫

L

x1 ∧ · · · ∧ xk 6= 0

so cat L ≥ k also. Hence, using a fundamental class defined by a compact leaf
to estimate the nilpotency index of E∗,+

1 (M,F) does not improve upon the basic
estimate catF (M) ≥ cat L of Proposition 2.2. However, by suitably generalizing
the above argument, we can extend the estimate for compact leaves to a more
general estimate using foliation currents which yields new results.

4.1. Transverse invariant measures. Recall that a transverse invariant
measure µ for a foliation F is a Borel measure defined on transversals, so that
µ(T ) = µ(h(T )) if h is an element of holonomy of F and T is a transverse manifold
in the domain of µ.

Theorem 4.2. Suppose that µ is non-trivial transverse invariant measure for
a foliation F with leaf dimension m. Then there exists a fundamental class for F

∫

µ

: Ωm(MF) → R(4.2)
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Proof: We sketch the proof from Ruelle and Sullivan [36, 45, 17].
Let U = {U1, . . . , Ur} be a covering of M by foliation charts ϕi : Ui → [−1, 1]m+n,

with local coordinates ϕ(p) = (~x, ~y) = (x1, . . . , xm, y1, . . . , yn) where ~x is the leaf-
wise direction and ~y is the transverse coordinate. The local transversal

Ti = ϕ−1
i (~0 × [−1, 1]n) ⊂ Ui

is a submanifold on M , and without loss we can assume Ti are disjoint, and set
T =

⋃

Ti.
Let H denote the holonomy pseudogroup on T induced by F .
Choose a partition of unity {λ1, . . . , λr} subordinate to U .
Given ω ∈ Ωm(MF ) the form ωi = λiω has compact support in Ui. Express ωi

in local coordinates

ωi = fi(~x, ~y)dx1 ∧ · · · ∧ dxm

then
∫

µ

ω =

r
∑

i=1

∫

µ

ωi =

r
∑

i=1

∫

[−1,1]n

{

∫

[−1,1]m
fi(~x, ~y)dx1 ∧ · · · ∧ dxm

}

dµ(~y)

If ω = dF φ then the leafwise Stokes’ Theorem yields
∫

µ
φ = 0.

For the volume form θ, λi ≥ 0 and λ1 + · · · + λr = 1 implies
∫

µ

θ =
r

∑

i=1

∫

[−1,1]n

{

∫

[−1,1]m
λi |θ|d~x

}

dµ(~y) > 0

where |θ|d~x denotes the restriction of θ to the plaques in Ui. �

A closed form η ∈ Ωn(M) yields a transverse measure µ defined by a integration
of its absolute value |η| with respect to the transverse orientation – see [34] – along
a transversal: µ(T ) =

∫

T
|η|. Then

∫

µ

ω =

∫

M

ω ∧ η

This example illustrates a more general fact, that a transverse holonomy invari-
ant measure µ defines a foliation cycle Cµ with associated homology class [Cµ] ∈
Hm(M). In the case where µ is defined by θ then [Cµ] is the Poincaré dual to the
cohomology class [η] ∈ Hn(M) (cf. [36, 45].)

The fundamental class (4.2) will be applied in §6 to estimate catF (M) for group
actions. However, for some foliations, Hm

F (M) = 0 so there are no fundamental
classes (see §6.1), and other methods are needed.

4.2. Transverse cohomology. Haefliger defined the holonomy invariant k-
currents as a generalization of the foliation fundamental classes [17]. We show how
these currents can be used to prove non-triviality of classes in E∗,+

r (M,F).
Recall the definition of the transverse cohomology and holonomy invariant k-

currents. Let T =
⋃

Ti be the transversal introduced above. Let Ωp
c(T ) be the

vector space of smooth p-forms on T with compact support. Denote by Θp
c ⊂

Ωp
c(T ) the subspace generated by elements of the form α − h∗α, where h ∈ H

and α is a p-form with compact support in the range of h. The spaces Θ∗
c are

closed under exterior differentiation. Denote by Ωp
c(T /H) the quotient vector space

Ωp
c(T )/Θp

c . The topology on Ωp
c(T /H) is the quotient topology, which is in general

not Hausdorff.
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The exterior differential dT : Ωp
c(T ) → Ωp+1

c (T ) induces continuous differentials

dT : Ωp
c(T /H) → Ωp+1

c (T /H)

Haefliger proves that the graded differential vector spaces {Ω∗
c(T /H), dT } is in-

dependent of the choice of the complete transversal T up to isomorphism. This
isomorphism class is denoted by Ω∗

c(Tr F).
The transverse cohomology H∗(Tr F) is the cohomology of Ω∗

c(Tr F).
A continuous linear functional c : Ωp

c(Tr F) → R is called a holonomy in-
variant p-current. A holonomy invariant transverse measure µ corresponds to a
0-current via integration on transversals,

∫

µ
: Ω0

c(Ti) → R. This induces a map
∫

µ : H0(Tr F) → R. More generally, a holonomy invariant p-current c induces a

linear functional c∗ : Hp(Tr F) → R.
For example, there is always a transverse fundamental class

∫

T
: Ωn

c (Tr F) → R

defined by integration of the n-form φ ∈ Ωn
c (T ) over the transversal T . This

is a closed current which vanishes on Θn
c so induces the fundamental current

[T ] : Hn(Tr F) → R.
One key point about H∗(Tr F) is that it is often infinite dimensional when

non-zero [17, 19], because the subspace Θp
c need not be closed in Ωp

c(T ). Note that
a continuous linear functional on Ωp

c(T ) which vanishes on Θp
c must vanish on its

closure Θp
c , so this suggests the motivation for Hector’s definition of the reduced

transverse cohomology [19]. Define

Ω
p

c(T /H) = Ωp
c(T )/Θp

c

which is the Hausdorff quotient of Ωp
c(T /H). The reduced transverse cohomology,

denoted by H∗(tr F), is the cohomology of Ω
∗

c(T /H). The reduced cohomology
H∗(tr F) is a quotient of H∗(Tr F), and often more calculable. For example,
Hector proved in Theorem 1.11 [19] that the natural restriction map Ωp

b (M,F) →

Ω∗
c(T /H) induces an isomorphism Ep,0

2 (M,F) ∼= Hp(tr F) if F is a Riemannian
foliation.

The transverse cohomology can be used to detect elements of Ep,m
2 (M,F). The

following result is essentially in [17], though the realtion with the foliation spectral
sequence is not stated there. We recall the proof and this relation.

Theorem 4.3. There is a natural map

χ∗ : Ep,m
2 (M,F) → Hp(Tr F)(4.3)

Proof: Haefliger defined the “integration along the leaves” map
∫

F

: Ωp+m
c (M) → Ωp

c(Tr F)(4.4)

which commutes with the differential (Theorem 3.1, [17].) We use this to define a
map which commutes with the indicated differentials,

χ : (Ep,m
1 (M,F), d′′) → (Ωp(MF), dT )(4.5)

The map χ∗ is the induced map on cohomology.
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The definition of
∫

F
is similar to that of the fundamental class from a transverse

measure, and we use the same notation as in the proof of Theorem 4.2. Let ω ∈
Ωp+m

c (M) and write ωi = λiω. Then in coordinates

ωi =
∑

J

fJ(~x, ~y) dx1 ∧ · · · ∧ dxm ∧ dyJ + terms of degree < m in dx1, . . . , dxm

where J = (j1, . . . , jp) and dyJ = dyj1 ∧ · · · ∧ dyjp
. Then

∫

F

ω =

r
∑

i=1

∫

F

ωi where

∫

F

ωi =
∑

J

{

∫

[−1,1]m
fJ(~x, ~y) dx1 ∧ · · · ∧ dxm

}

dyJ

According to Haefliger, dT

∫

F

ω =

∫

F

dω.

For ω ∈ Ωp,m
c (M,F) we have dω = d0,1ω + d1,0ω + d2,−1ω. Observe that

d2,−1ω ∈ Ωp+2,m−1
c (M,F) so the restriction of d2,−1ω to a leaf of F vanishes, and

thus

∫

F

d2,−1ω = 0. Also note that d0,1ω ∈ Ωp,m+1
c (M,F) = 0 so

∫

F

d0,1ω = 0.

Hence we have

dT

∫

F

ω =

∫

F

dω =

∫

F

d′′ω(4.6)

Suppose that ω = d0,1φ for φ ∈ Ωp,m−1
c (M,F). Then

∫

F

ω =

∫

F

d0,1φ =

∫

F

dφ = dT

∫

F

φ = 0

where the last integral vanishes for dimension reasons. We conclude that the map
(4.4) descends to a map on quotients Ep,m

0 and as (4.4) also vanishes on the image

of d0,1 further descends to Ep,m
1 = Ep,m

0 /d0,1E
p,m−1
0 yielding the map χ of (4.5).

By (4.6) the map χ commutes with differentials, so we obtain the map χ∗ of (4.4).
�

Corollary 4.4. A holonomy invariant p-current c : Ωp
c(Tr F) → R induces a

natural map

χc : Ep,m
1 (M,F) → R(4.7)

which vanishes on the image of d′′ : Ep−1,m
1 (M,F) → Ep,m

1 (M,F). �

If µ is a transverse invariant measure with associated holonomy invariant 0-
current cµ then its evaluation on E0,m

1 (M,F) agrees with the evaluation of the
fundamental class defined by the current as given in Theorem 4.2.
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5. Secondary classes

H. Shulman defined the covering dimension for a foliation, cd(M,F), to be the
minimal number of open sets in a covering of M by foliation charts [40]. Clearly,
cd(M,F) ≥ catF (M). The open sets in the covering are coordinate charts, so
diffeomorphic to R

m+n, hence are categorical in M so cd(M,F) ≥ cat M . The
covering dimension cd(M,F) is thus clearly a distinct invariant from catF(M),
though similar in spirit.

The secondary classes of a foliation F of codimension n are determined by a
characteristic map ∆: H∗(WOn) → H∗(M), which factors through the classifying
map for the foliation hF : M → BΓn (see [3, 29].) In his thesis, Shulman used
the Milnor join realization of BΓn and the semi-simplicial de Rham theory for
BΓn to prove that the secondary classes “vanish below the diagonal” in BΓn (see
[39, 4, 41]). This was key to his proof of the following

Theorem 5.1 ([40]). If ∆(z) 6= 0 for z ∈ Hn+k(WOn), then cd(M,F) > k.

In fact, this theorem remains true as well for catF(M).

Theorem 5.2 ([24]). If ∆(z) 6= 0 for z ∈ Hn+k(WOn), then catF (M) > k.

The idea of the proof is that the classifying space of the holonomy groupoid
(T ,H) can be realized by a complex BΓF with dimension ≤ n + catF(M) − 1,
and that the characteristic map ∆ factors through H∗(BΓF). This gives the lower
bound n+k+1 on the dimension of BΓF , which we prove in [24] is bounded above
by catF(M) + n.

The cup length estimate for spectral sequence cohomology of §3 can be used
to give a quick proof of Theorem 5.2 for the case of the Godbillon-Vey class. Let
ω be a defining n-form for F . That is, ω is a non-vanishing section of the ideal
J n(M,F). Then there exists a 1-form η such that dω = ω ∧ η. Then ω ∧ dη = 0,
and so d(η ∧ (dη)n) = (dη)n+1 = 0. The Godbillon-Vey class of F is defined as the
cohomology class of η ∧ (dη)n

GV (F) = [η ∧ (dη)n] ∈ H2n+1(M)

This is a well-defined, and very well studied invariant of F [14, 13, 23].

Theorem 5.3. Suppose that GV (F) 6= 0, then catF (M) ≥ n + 2.

Proof: Since ω ∧ dη = 0 we have that j∗η ∈ Ωr(F) is closed, and its image

[η] ∈ E0,1
1 (M,F) is called the Reeb class of F . The identity ω ∧ dη = 0 also implies

that dη ∈ J (M,F) so we can consider its image [dη] ∈ E1,1
1 (M,F). The (n+1)-fold

product
[η] • [dη] • · · · • [dη] ∈ En,n+1

1 (M,F)

is represented by the closed form η ∧ (dη)n ∈ Ω2n+1(M) so survives to the limiting
term

[η ∧ (dη)n] ∈ En,n+1
∞ (M,F) ⊂ E∗,∗(M,F) ∼= H2n+1(M)

which is non-zero by assumption. Then catF(M) ≥ n + 2 by Theorem 3.4. �

For example, if M is a compact manifold of dimension 2n+1 with a codimension
n foliation with non-trivial Godbillon-Vey class, then catF(M) = n + 2.
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6. Applications and Examples

6.1. R
m actions. A smooth action α : R

m × M → M is locally free if for all
z ∈ M the stabilizer Λz = {~x ∈ R

m | α(~x)z = z} is a discrete subgroup of R
m. The

orbits of α define a foliation Fα of dimension m.

Theorem 6.1. catFα
(M) = m + 1.

Proof: Let x1, . . . , xm denote the standard coordinates on R
m with corre-

sponding coordinate 1-forms dxi. Then the Lie algebra cohomology H∗(Rm) ∼=
∧∗

(dx1, . . . , dxm).
Given z ∈ M the leaf through z is identified with the orbit, Lz

∼= R
m · z ∼=

R
m/Λz. The forms dxi are invariant under the action of the stabilizers Λz so

descend on each orbit to yield closed leafwise 1-forms, again denoted by dxi ∈
Ω1(MF). The exterior product θ = dx1 ∧ · · · ∧ dxm is the leafwise volume form.

Thus, in E0,∗
1 (M,F) we have

[dx1] • · · · • [dxm] = [θ] ∈ E0,m
1 (M,F)

The group R
m has polynomial growth, so the choice of a basepoint z ∈ M yields

a transverse invariant measure µ(z) by asymptotic averaging over the orbit R
m · z

(cf. [34].) Clearly,
∫

µ(z)
θ = 1 so [θ] 6= 0 and we can apply Theorem 3.4 to get

catF (M) ≥ m + 1. The estimate catF (M) ≤ m + 1 follows from Singhof and Vogt
[44]. �

Locally free R
m actions occur naturally in many geometric contexts. Arraut

and dos Santos have studied their geometry using a combination of Lie algebra and
foliation techniques [2]. The authors have also given a more general construction
of characteristic classes for group actions, and studied the relations with geometry
and dynamics (see [37, 38]).

The simplest example is that of a locally free R
1 action on a compact manifold,

which is just a non-singular flow α1 on M . The category of the flow is always 2
by Proposition 2.7. Given a collection of non-singular flows αi : R × Mi → Mi for
1 ≤ i ≤ m, their product is an R

m flow on M = M1 × · · · × Mm. If F is the
resulting foliation, then by Theorem 6.1 we have catF (M) = m + 1.

Locally free R
m actions frequently arise in the study of Lie groups, and have an

important role in the study of hyperbolic dynamical systems. Let G be a connected
Lie group of real rank m. Then the maximal R-split torus is a semi-simple subgroup
R

m ⊂ G. Consequently, every space with a locally free G action also has a locally
free R

m-action. The simplest example is to consider a torsion-free uniform lattice
Λ ⊂ SL(m+1, R), and let M = SL(m+1, R)/Λ be the compact quotient manifold.
The subgroup of diagonal matrices with determinant 1 in SL(m+1, R) is isomorphic
to R

m, and its action on M is locally free. There are many more examples of this
type; see for example §7 of [22].
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6.2. Anosov weak-stable foliations. Consider the codimension one folia-
tion on a compact 3-manifold defined as the weak-stable foliation associated to the
geodesic flow of a closed surface of constant negative curvature ([14], page 8 of
[30]). This has an elementary description using Lie groups. Let Γ ⊂ SL(2, R) be a
uniform lattice, and set M = Γ\SL(2, R). Consider the elements of the Lie algebra
of left-invariant vector fields sl(2, R), identified with the matrices of trace 0,

X =

[

1/2 0
0 −1/2

]

, Y =

[

0 1
0 0

]

, Z =

[

0 0
1 0

]

which satisfy [X, Y ] = Y , [X, Z] = −Z and [Y, Z] = 2X .
The vector fields {X, Z} define a Lie subalgebra, corresponding to the subgroup

of lower triangular matrices T (2) ⊂ SL(2, R). The leaves of F are the right cosets
of T (2) acting on M on the left, so the tangent bundle to F is spanned by the vector
fields X, Z. The vector field Z is transverse to F . Define the Riemannian metric on
M by declaring the vector fields {X, Y, Z} everywhere orthogonal. Introduce the
dual forms X∗, Y ∗, Z∗. The leafwise volume form is θ = X∗ ∧ Z∗, and Y ∗ spans
the defining ideal J (M,F).

Note that dX∗ = −2Y ∗ ∧ X∗, so dF X∗ = 0. In fact, [X∗]F ∈ H1
F (M) is non-

zero, since the form X∗ can be integrated against a closed orbit of the flow of X –
which is just the geodesic flow for the Riemannian surface Σ = Γ\SL(2, R)/O(2) –
to get the length of the orbit, which is non-zero.

The relation [X, Z] = −Z implies dZ∗ = X∗ ∧Z∗, so [X∗ ∧Z∗]F = 0. For this
example, we have more generally:

Proposition 6.2. H2
F (M) = 0.

Proof: Let ϕt denote the flow of X on M . Then (ϕt)∗X = X and (ϕt)∗Z =
e−tZ and hence dϕtX

∗ = X∗ and dϕtZ
∗ = etZ∗

Let θ = fX∗ ∧ Z∗. Set

g(z) =

∫ 0

−∞

etf(ϕt(z)) dt, η = gZ∗

The integral defining g exists as f is a bounded function. A much more subtle point
is that g is actually smooth – it is as smooth as the foliation F , so is C∞. (See
Guillemin and Kazhdan [15].) Then dF η = (Xg + g)X∗ ∧ Z∗. Now calculate

Xg(z) = lim
s→0

1

s
{g(ϕs(z)) − g(z)}

= lim
s→0

1

s

{
∫ 0

−∞

etf(ϕt(ϕs(z))) dt) −

∫ 0

−∞

etf(ϕt(z)) dt

}

= lim
s→0

1

s

{
∫ s

−∞

et−sf(ϕt(z)) dt) −

∫ 0

−∞

etf(ϕt(z)) dt

}

= lim
s→0

1

s

{

e−s ·

∫ s

0

etf(ϕt(z)) dt) + (e−s − 1) ·

∫ 0

−∞

etf(ϕt(z)) dt

}

= g(z) − f(z)

Hence, dF η = (Xg + g)X∗ ∧ Z∗ = fX∗ ∧ Z∗. �

This example is a special case of a more general result, which is proved similarly:
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Theorem 6.3. Let ϕ : R × M → M be a smooth Anosov flow on a compact
manifold M of dimension 2n + 1. Let F denote the weak stable foliation of codi-
mension n. Then Hn+1

F (M) = 0.

Proof: First, there is the caveat that the foliation F is generically only Hölder
continuous transversely, but with each leaf smoothly immersed in M [1, 25]. Thus,
the complex of leafwise forms Ω∗

F (M) is assumed to be leafwise smooth, but the
transverse regularity can only be assumed continuous.

Let θ be a leafwise (m + 1)-form, X the vector field generating ϕt, then define
the m-form η

η =

∫ 0

−∞

ι(X)(ϕ∗
t θ)dt

which exists because the flow ϕ is exponentially contracting on the leafwise volume
elements. The calculation dη = θ is similar to the proof of Proposition 6.2, but far
more technical and is omitted. �

The dynamically defined foliations associated to Anosov flows are an important
class of examples, serving as a model for interactions of dynamics and the geometry
of foliations. It is thus interesting that they are also a key example for this work.
Associated to an Anosov flow on an 2n + 1-dimensional manifold are four natural
foliations, the weak stable Fs and weak unstable Fu foliations of codimension n,
and the strong stable Fss and strong unstable Fsu foliations of codimension n + 1.
For the weak stable and weak unstable foliations, the expansiveness of the flow on
the leaves implies they have exponential growth. In fact, by Plante [34] if there is
a leaf of non-exponential growth, then there is a transverse invariant measure for
F , so by the results of §4 the leafwise volume form is non-zero. So Theorem 6.3 is
the complementary result to Theorem 4.2.

In contrast, the strong stable and strong unstable foliations have polynomial
growth, so by Plante [34] and Theorem 4.2 there exists fundamental classes for Fss

and Fsu.

Proposition 6.4. Let Γ ⊂ SL(2, R) be a uniform lattice, M = Γ\SL(2, R) and
F the foliation defined by the left-invariant vector fields X, Z. Then catF (M) = 3.

Proof: It was noted that [X∗]F ∈ H1
F (M) = E0,1(M,F) is non-zero. Also

note that

ι(X)d(Y ∗∧Z∗) = LX(Y ∗∧Z∗)+dι(X)(Y ∗∧Z∗) = (+Y ∗)∧Z∗+Y ∗∧(−Z∗)+0 = 0

so d0,1(Y
∗ ∧ Z∗) = 0. Hence [Y ∗ ∧ Z∗]F ∈ E1,1

1 (M,F) and the product

[X∗]F • [Y ∗ ∧ Z∗]F ∈ E1,2
1 (M,F)

is represented by the volume form on M , so is non-trivial. Hence by Theorem 3.4
catF (M) ≥ 3. As usual, catF(M) ≤ 3 follows from Singhof and Vogt [44]. �

An Anosov flow ϕt with generating vector field X is said to be contact if the dual
1-form X∗ to the flow satisfies X∗ ∧ (dX∗)n is a nowhere vanishing multiple of the
volume form [1]. As mentioned above, the leaves of the weak stable foliation Fs are
smoothly immersed in M , though the transverse regularity of Fs is typically only
Hölder. The complex Ep,q

0 (M,F) can be defined using the p-forms along F with
coefficients in the exterior complex

∧q(TF⊥)∗. Define the differential d0,1 = dF

the leafwise differential, noting that the normal bundle TF⊥ is flat when restricted
to leaves. Then [X∗]F ∈ E0,1(M,F) and [dX∗]F ∈ E1,1(M,F) are well-defined.
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Theorem 3.4 and Proposition 6.4 extend to this context to give the following:

Proposition 6.5. Let F be the weak stable foliation of a contact Anosov flow
ϕt on a manifold M of dimension 2n + 1. Then catF (M) = n + 2.

Finally, given a collection of Anosov flows ϕi : R × Mi → Mi where Mi has
dimension 2ni +1 for 1 ≤ i ≤ k, let Fi denote the weak stable foliation of ϕi. Form
the product foliation F = F1 × · · ·×Fk of M = M1 × · · ·×Mk with leaf dimension
m = m1 + · · ·mk. Then combining the arguments above with Theorem 3.4 and
[44] yields catF (M) = m + 1.

An Anosov flow defined by suspension of an Anosov diffeomorphism is never
contact, and in fact the dual X∗ form is closed. The tangential category for these
foliations and their products can also be calculated using Theorem 3.4 and [44],
with the result that catF(M) is again m + 1.

6.3. Secondary estimates. Our last examples are of a general nature. There
are many constructions of foliations for which the Godbillon-Vey class GV (F) ∈
H2n+1(M) is non-zero [46, 21, 23]. For example, Thurston showed that for each
real α ∈ R there is a foliation Fα of S3 for which 〈GV (Fα), [S3]〉 = α. For α 6= 0,
by Theorem 5.3 we have catFα

(S3) = 3.
This estimate also follows from Proposition 2.9. However, one also knows that

the same result holds for every odd dimensional sphere S2n+1: given α ∈ R there
is a codimension n foliation Fα on S2n+1 with 〈GV (Fα), [S2n+1]〉 = α. For α 6= 0,
catFα

(S2n+1) = n + 2.
Similarly, for all of the Heitsch examples in [21], which are foliations of dimen-

sion n+1 and codimension n with non-zero Godbillon-Vey invariant, their category
is n + 2.

Given a collection of foliated manifolds (Mi,Fi) for 1 ≤ i ≤ k, where Mi has
dimension 2ni + 1 and Fi has codimension ni. Assume that GV (Fi) 6= 0 for all
i. Form the product foliation F = F1 × · · · × Fk of M = M1 × · · · × Mk with
codimension n = n1 + · · · + nk. Then catF (M) = n + k + 1. To see this, note the
proof of Theorem 5.3 used the definition of the Godbillon-Vey class to construct
classes in E0,1

1 for which we can apply Theorem 3.4 to get a lower bound estimate.
This cup-length estimate works as well applied to the forms X∗

i and dX∗
i for each

foliation Fi. The resulting product is represented by the product of Godbillon-Vey
classes, which is non-zero in cohomology.

This extension to products is similar to the extension of the contact Anosov case
to products. In fact, these two classes of examples coincide for weak-stable foliations
to the algebraic Anosov flows. But in general, these two cases are completely
different. For example, there are no Anosov flows on S3, while most weak stable
foliations are not even smooth [25], so have no Godbillon-Vey invariant.
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7. Open Questions and Problems

We mention a few of the open questions about the tangent category of foliations:

Problem 7.1. Let F be foliation of M and F ′ foliation of M ′ , set M ′′ =
M × M ′ and F ′′ = F × F ′, then show

catF ′′(M ′′) ≤ catF (M) + catF ′(M ′) − 1(7.1)

The calculations of tangent category in this paper support the estimate (7.1).
Note that our lower bound estimates on catF (M) are based on the cuplength es-
timate, which always satisfies a subadditivity estimate. In general, there is no
technique developed for the general estimation of the category of a product in
terms of the categories of the factors, beyond the upper bound dimension estimate
by Singhof and Vogt.

Problem 7.2. If F is a subfoliation of F ′, what is the relationship between
catF (M) and catF ′(M)?

The leaves of F are all submanifolds of the leaves of F ′, but so what? Every
foliation F is a subfoliation of the foliation F ′ with one leaf M , so a special case is
to ask for the relationship between catF(M) and cat M .

Problem 7.3. Let G be a connected Lie group, with real rank k = rank(G).
Let ϕ : G × M → M a locally free action on a compact manifold M , and F the
foliation by the orbits of G. Show that catF (M) ≥ k

There is a subfoliation F ′ of F by the orbits of the maximal R-split torus
R

k ⊂ G. Then catF ′(M) = k by Theorem 6.1. Does this imply catF(M) ≥ k (cf.
Singhof [42, 43])?

Problem 7.4. Suppose that F has a transverse invariant measure µ. Is there
a relation between catF (M) and the Morse inequalities for measured foliations of
Connes and Fack [10]?

One of the most interesting open problems is to understand the relationship
between catF (M) and analysis on the leaves of F . The Morse theory for foliations
is not well-understood, so perhaps approaching it from the category viewpoint will
yield new insights.

Problem 7.5. Give a homotopy-theoretic interpretation of catF (M) corre-
sponding to the Whitehead and Ganea definitions of category.

This is one of the most important open problems in the subject, and was asked
by Yuli Rudyak during the evening problem sessions. Discussions at the week-long
conference proposed this very natural problem, and several other related questions.
Problems 7.4 and 7.5 are part of the general program to extend to the foliated
context, the well-developed theory of category for spaces and manifolds.

The following result answers a question we were going to include in this list.
It generalizes a theorem of Eilenberg and Ganea [12] that the category of a space
X = K(π, 1) equals the cohomological dimension of π.

Theorem 7.6. Let M be a compact manifold, and assume the holonomy cov-
ering of each leaf of F is contractible, then catF (M) = m + 1.

The proof of this result and Theorem 5.2 appear in [24].
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Geometŕıa , N 93, 1998.
[8] H. Colman, LS-Categories for foliated manifolds, Proc. Foliations: Geometry and Dynamics,

Warsaw 2000, World Scientific Publishing, 2002, pp. 17–28.
[9] H. Colman and E. Macias, Tangential Lusternik-Schnirelmann category of foliations, J. Lon-

don Math. Soc.67 (2002), ?–??.
[10] A. Connes and T. Fack, Morse inequalities for measured foliations, Preprint, 1991, 1998.
[11] A. El Kacimi-Alaoui, Sur la cohomologie feuilletée, Compositio Mathematica, 49 (1983),

195–215.
[12] S. Eilenberg and T. Ganea, On the Lusternik-Schnirelmann category of abstract groups,

Annals of Math. (2) 65 (1957), 517–518.
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177-178, Société Mathématique de France, 1989, pp. 155–181,

[14] C. Godbillon and J. Vey, Un invariant des feuilletages de codimension 1, C.R. Acad. Sci.
Paris, 273 (1971), 92–95.

[15] V. Guillemin and D. Kazhdan, On the cohomology of certain dynamical systems, Topology
19 (1980), 291–299.

[16] A. Haefliger. Homotopy and integrability, Lect. Notes in Math., vol. 197, Springer–Verlag,
New York and Berlin, 1971, pp. 133–163.

[17] A. Haefliger, Some remarks on foliations with minimal leaves, J. Diff. Geom. 15 (1980),

269–284.
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lag, Basel, Boston, Berlin, 1997.

E-mail address: hcolman@math.uic.edu

E-mail address: hurder@uic.edu

Department of Mathematics, University of Illinois at Chicago, 322 SEO (M/C 249),
851 S. Morgan Street, Chicago, IL 60607-7045 USA


