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Abstract. We prove that if F is a foliation of a compact manifold M with all leaves compact

submanifolds, and the transverse saturated category of F is finite, then the leaf space M/F is
compact Hausdorff. The proof is surprisingly delicate, and is based on some new observations about

the geometry of compact foliations. The transverse saturated category of a compact Hausdorff

foliation is always finite, so we obtain a new characterization of the compact Hausdorff foliations
among the compact foliations as those with finite transverse saturated category.

1. Introduction

A compact foliation is a foliation of a manifold M with all leaves compact submanifolds. For
codimension one or two, a compact foliation F of a compact manifold M defines a fibration of M over
its leaf space M/F which is a Hausdorff space, and has the structure of an orbifold [27, 11, 12, 33, 10].

A compact foliation F with Hausdorff leaf space is said to be compact Hausdorff. Millett [22] and
Epstein [12] showed that for a compact Hausdorff foliation F of a manifold M , the holonomy group
of each leaf is finite, a property which characterizes them among the compact foliations. If every leaf
has trivial holonomy group, then a compact Hausdorff foliation is a fibration. Otherwise, a compact
Hausdorff foliation is a “generalized Seifert fibration”, where the leaf space M/F is a “V-manifold”
[29, 17, 22]. In addition, M admits a Riemannian metric so that the foliation is Riemannian.

For codimension three and above, the leaf space M/F of a compact foliation of a compact manifold
need not be a Hausdorff space. This was first shown by an example of Sullivan [30] of a flow on a
compact 5-manifold whose orbits are circles, and the lengths of the orbits are not bounded above.
Subsequent examples of Epstein and Vogt [13, 35] showed that for any codimension greater than two,
there are examples of compact foliations of compact manifolds whose leaf spaces are not Hausdorff,
and for which the “bad set” of leaves with infinite holonomy have arbitrary countable hierarchy.
Also, Vogt gave a remarkable example of a 1-dimensional, compact C0-foliation of R3 with no upper
bound on the lengths of the circle leaves in [36]. The results described below apply to the case of
compact C1-foliations of compact manifolds.

A compact foliation whose leaf space is non-Hausdorff has a closed, non-empty saturated subset, the
bad set X1 ⊂M , which is the union of the leaves whose holonomy group is infinite. The image of X1

in the leaf space M/F consists of the points which do not have the Hausdorff separation property
for the quotient T1 topology on M/F . That is, for a leaf L0 ⊂ X1 with image point [L0] ∈ M/F
there exists a leaf L1 ⊂M so that any open neighborhoods in M/F of [L0] and [L1] must have non-
trivial intersection. The work by Edwards, Millett and Sullivan [10] established many fundamental
properties of the geometry of the leaves of a compact foliation near its bad set, yet there is no general
structure theory for compact foliations, comparable to what is understood for compact Hausdorff
foliations. The results of §§4, 5 and 6 of this work provide new insights and techniques for the study
of these foliations. In particular, we introduce in Definition 5.1 the notion of a tame point for the
bad set X1, which is a key idea for this work.

The transverse Lusternik-Schnirelmann (LS) category of foliations was introduced in the 1998 thesis
of H. Colman [4, 8]. The key idea is that of a transversally categorical open set. Let (M,F) and
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(M ′,F ′) be foliated manifolds. A homotopy H : M ′ × [0, 1] → M is said to be foliated if for all
0 ≤ t ≤ 1 the map Ht sends each leaf L′ of F ′ into another leaf L of F . An open subset U of M
is transversely categorical if there is a foliated homotopy H : U × [0, 1]→M such that H0 : U →M
is the inclusion, and H1 : U → M has image in a single leaf of F . Here U is regarded as a foliated
manifold with the foliation induced by F on U . In other words, an open subset U of M is transversely
categorical if the inclusion (U,FU ) ↪→ (M,F) factors through a single leaf, up to foliated homotopy.

DEFINITION 1.1. The transverse (saturated) category cat∩| (M,F) of a foliated manifold (M,F)
is the least number of transversely categorical open saturated sets required to cover M . If no such
finite covering exists, then cat∩| (M,F) =∞.

The transverse category cat∩| (M,F) of a compact Hausdorff foliation F of a compact manifold M
is always finite [8], as every leaf admits a saturated product neighborhood which is transversely
categorical. For a non-Hausdorff compact foliation, our main result is that there is no transversely
categorical covering of the the bad set.

THEOREM 1.2. Let F be a compact C1-foliation of a compact manifold M with non-empty bad
set X1. Then there exists a dense set of tame points Xt

1 ⊂ X1. Moreover, for each x ∈ Xt
1, there is

no transversely categorical saturated open set containing x.

COROLLARY 1.3. Let F be a compact C1-foliation of a compact manifold M . If M admits a
covering by transversely categorical open saturated sets, then F is compact Hausdorff.

Recall that a foliation is geometrically taut if the manifold M admits a Riemannian metric so that
each leaf is an immersed minimal manifold [28, 31, 15]. Rummler proved in [28] that a compact
foliation is Hausdorff if and only if it is taut, and thus we can conclude:

COROLLARY 1.4. A compact C1-foliation of a compact manifold M with cat∩| (M,F) < ∞ is
geometrically taut.

The idea of the proof of Theorem 1.2 is as follows. The formal definition of the bad set X1 in §3
is that it consist of leaves of F such that every open neighborhood of the leaf contains leaves of
arbitrarily large volume. This characterization of the bad set intuitively suggests that it should be a
rigid set. That is, any foliated homotopy of an open neighborhood of a point in the bad set should
preserve these dynamical properties, hence the open neighborhood cannot be continuously retracted
to a single leaf. The proof of this statement is surprisingly delicate, and requires a very precise
understanding of the properties of leaves in an open neighborhood of the bad set. A key result is
Proposition 5.2, an extension of the Moving Leaf Lemma in [10], which establishes the existence of
“tame points”.

The overview of the paper is as follows: The first two sections consist of background material, which
we recall to establish notations, and also present a variety of technical results required in the later
sections. In §2 we give some basic results from foliation theory, and in §3 we recall some basic results
about compact foliations, especially the structure theory for the good and the bad sets. In §4 we
establish a key homological property for compact leaves under deformation by a homotopy. The
techniques introduced in this section are used again in later sections. The most technical results of
the paper are contained in §5, where we prove that tame points are dense in the bad set. Finally,
in §6 we prove that an open saturated set containing a tame point is not categorical. Theorem 1.2
follows immediately from Propositions 5.2 and 6.3.

2. Foliation preliminaries

We assume that M is a compact smooth Riemannian manifold without boundary of dimension
m = p+q, that F is a compact C1-foliation of codimension-q, and that the leaves of F are smoothly
immersed compact submanifolds, so that F is more precisely a C1,∞-foliation. For x ∈ M , denote
by Lx the leaf of F containing x.
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We recall below some well-known facts about foliations, and introduce some conventions of notation.
The books [3, 14, 16] provide excellent basic references; our notation is closest to that used in [3].
Note that the analysis of the bad sets in later sections requires careful estimates on the foliation
geometry; not just in each leaf, but also for nearby leaves of a given leaf. This requires a careful
description of the local metric geometry of a foliation, as given in this section.

2.1. Tangential and normal geometry. Let TF denote the tangent bundle to F , and let Π: Q→
M denote its normal bundle, identified with the subbundle TF⊥ ⊂ TM of vectors orthogonal to
TF . The Riemannian metric on TM induces Riemannian metrics on both TF and Q by fiberwise
restriction. For a vector ~v ∈ TxM , let ‖~v‖ denote its length in the Riemannian metric. Then for
~v ∈ TxF the length in the induced leafwise metric is also denoted by ‖~v‖.

For ε > 0, let T εM ⊂ TM denote the disk subbundle of vectors with length less than ε, and let
T εF ⊂ TF and Qε ⊂ Q be the corresponding ε-disk subbundles of TF and Q, respectively.

Let dM : M ×M → [0,∞) be the distance function associated to the Riemannian metric on M .
Given r > 0 and a set K ⊂M , let

(1) BM (K, r) = {y ∈M | dM (K, y) < r} .

For a leaf L ⊂M , let dL : L×L→ [0,∞) be the distance function on L for the restricted Riemannian
metric on L. That is, for x, x′ ∈ L the distance dL(x, x′) is the infimum of the lengths of piece-smooth
leafwise paths between x and x′. As L is compact, the manifold L with the metric dL is a complete
metric space, and the distance dL(x, x′) is realized by a leafwise geodesic path from x to x′. We
introduce the notation dF for the collection of leafwise distance functions, where dF (x, y) = dL(x, y)
if x, y ∈ L, and otherwise dF (x, y) =∞. Given r > 0 and a set K ⊂ L, let

(2) BF (K, r) = {y ∈M | dF (K, y) < r} ⊂ L .

Let exp = expM : TM → M denote the exponential map for dM which is well-defined as M is
compact. For x ∈M , we let expMx : TxM →M denote the exponential map at x.

For x ∈ L, we let expFx : TxL→ L denote the exponential map for the leafwise Riemannian metric.
Then expFx maps the ball BTxL(0, r) of radius r in TxL onto the set BF (x, r).

We next chose ε0 > 0 so that it satisfies a sequence of conditions, as follows. For each x ∈ M , the
differential D~0 expMx : TxM ∼= T~0(TxM) → TxM is the identity map. It follows that there exists
εx > 0 such that the restriction expMx : T εxx M → M is a diffeomorphism. As M is compact, there
exists ε0 > 0 such that for all x ∈ M , the restriction expMx : T ε0x M → M is a diffeomorphism onto
its image. Thus, ε0 is less than the injectivity radius of the Riemannian metric on M . (See [1, 9] for
details of the properties of the injectivity radius of the geodesic map.)

We also require that ε0 > 0 be chosen so that for all x ∈M :

(ε1) The open ball BM (x, ε0) is a totally normal neighborhood of x for the metric dM This means
that for any pair of points y, z ∈ BM (x, ε0) there is a unique geodesic contained in BM (x, ε0)
between y and z. In particular, BM (x, ε0) is geodesically convex (See [9, page 72].)

(ε2) The leafwise exponential map expFx : T ε0x F → Lx is a diffeomorphism onto its image.
(ε3) BF (x, ε0) ⊂ Lx is a totally normal neighborhood of x for the leafwise metric dF .

Let expQx : Qx →M denote the restriction of expMx to the normal bundle at x. Then for all x ∈M ,
expQx : Qε0x →M is a diffeomorphism onto its image. We also require that ε0 > 0 satisfy:

(ε4) For all x ∈ M , expQx : Qε0x → M is transverse to F , and that the image expQx (Qε0x ) of the
normal disk has angle at least π/4 with the leaves of the foliation F .

We use the normal exponential map to define a normal product neighborhood of a subset K ⊂ L
for a leaf L. Given 0 < ε ≤ ε0, let Q(K, ε)→ K denote the restriction of the ε-disk bundle Qε →M
to K. The normal neighborhood N (K, ε) is the image of the map, expQ : Q(K, ε)→M . If K = {x}
is a point and 0 < ε < ε0, then N (x, ε) is a uniformly transverse normal disk to F .
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The restriction of the ambient metric dM to a leaf L need not coincide (locally) with the leafwise
geodesic metric dF – unless the leaves of F are totally geodesic submanifolds of M . In any case, the
Gauss Lemma implies that the two metrics are locally equivalent. We require that ε0 > 0 satisfy:

(ε5) For all x ∈M , and for all y, y′ ∈ BF (x, ε0), then dF and dM are related by

(3) dM (y, y′)/2 ≤ dF (y, y′) ≤ 2 dM (y, y′) .

Let dvol denote the leafwise volume p-form associated to the Riemannian metric on TF . Given any
bounded, Borel subset A ⊂ L for the leafwise metric, define its leafwise volume by vol (A) =

∫
A
dvol .

Let L ⊂ M be a compact leaf, then there exists 0 < εL < ε0 such that the normal geodesic
map expQ : Q(K, εL) → M is a diffeomorphism onto the open neighborhood N (K, εL). We thus
obtain a normal projection map along the normal geodesic balls to points in L, which we denote by
ΠL : N (K, εL)→ L. Note that the restriction of ΠL to L is the identity map.

Let F|N (K, εL) denote the restricted foliation whose leaves are the connected components of the
leaves of F intersected with N (K, εL). The tangent bundle to F|N (K, εL) is just the restriction
of TF to N (K, εL), so for x′ ∈ N (K, εL) and x = ΠL(x′), the differential of ΠL induces a linear
isomorphism DFΠL : Tx′F → TxL. Then the assumption (ε4) on ε0 in Section 2.1, implies that
DFΠL satisfies a Lipschitz estimate for some constant C, which is the identity when restricted to
the the leaf tangent bundle TL.

We use this observation in two ways. For L ⊂M a compact leaf, assume that 0 < εL ≤ ε0 satisfies,
for x ∈ L and x′ ∈ N (K, εL) such that x = ΠL(x′):

(ε6) for the leafwise Riemannian volume p-form dvolF

(4) (dvolF |x′)/2 ≤ (DFΠL)∗(dvolF |x) ≤ 2 (dvolF |x′) ;

(ε7) for the leafwise Riemannian norm ‖ · ‖F and ~v′ ∈ Tx′F ,

(5) (‖~v′‖F )/2 ≤ ‖DFΠL(~v′)‖F ≤ 2 (‖~v′‖F ) .

2.2. Regular Foliation Atlas. We next recall some basic properties of foliation charts. A regular
foliation atlas for F is a finite collection {(Uα, φα) | α ∈ A} so that:

(F1) U = {Uα | α ∈ A} is a covering of M by C1,∞–coordinate charts φα : Uα → (−1, 1)m where
each Uα is a convex subset with respect to the metric dM .

(F2) Each coordinate chart φα : Uα → (−1, 1)m admits an extension to a C1,∞–coordinate chart

φ̃α : Ũα → (−2, 2)m where Ũα is a convex subset containing the 2ε0-neighborhood of Uα, so

BM (Uα, ε0) ⊂ Ũα. In particular, the closure Uα ⊂ Ũα.

(F3) For each z ∈ (−2, 2)q, the preimage P̃α(z) = φ̃−1
α ((−2, 2)p × {z}) ⊂ Ũα is the connected

component containing φ̃−1
α ({0}×{z}) of the intersection of the leaf of F through φ−1

α ({0}×
{z}) with the set Ũα.

(F4) Pα(z) and P̃α(z) are convex subsets of diameter less than 1 with respect to dF .

The construction of regular coverings is described in chapter 1.2 of [3].

If the tangent bundle TF and normal bundle Q = TF⊥ to F are oriented, then we assume that the
charts in the regular covering preserve these orientations.

The inverse images

Pα(z) = φ−1
α ((−1, 1)p × {z}) ⊂ Uα

are smoothly embedded discs contained in the leaves of F , called the plaques associated to the given
foliation atlas. The convexity hypotheses in (F4) implies that if Uα ∩ Uβ 6= ∅, then each plaque

Pα(z) intersects at most one plaque of Uβ . The analogous statement holds for pairs Ũα ∩ Ũβ 6= ∅.
More generally, an intersection of plaques Pα1

(z1) ∩ · · · ∩ Pαd(zd) is either empty, or a convex set.
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Recall that a Lebesgue number for the covering U is a constant ε > 0 so that for each x ∈M there
exists U ∈ U with BM (x, ε) ⊂ U . Every covering of a compact Riemannian manifold (in fact, of a
compact metric space) admits a Lebesgue number. We also require that ε0 > 0 satisfy:

(ε8) 2ε0 is a Lebesgue number for the covering {Uα | α ∈ A} of M by foliation charts.

Then for any x ∈M , the restriction of F to BM (x, ε0) is a product foliation, and by condition (F1)
the leaves of F | BM (x, ε0) are convex discs for the metric dF .

For each α ∈ A, the extended chart φ̃α defines a C1–embedding

t̃α = φ̃−1
α ({0} × ·) : (−2, 2)q → Ũα ⊂M

whose image is denoted by T̃α. We can assume that the images T̃α are pairwise disjoint. Let tα
denote the restriction of t̃α to (−1, 1)q ⊂ (−2, 2)q, and define Tα = tα(−1, 1)q. Then the collection
of all plaques for the foliation atlas is indexed by the complete transversal

T =
⋃
α∈A
Tα .

For a point x ∈ T , let Pα(x) = Pα(t−1
α (x)) denote the plaque containing x.

The Riemannian metric on M induces a Riemannian metric and corresponding distance function

dT on each extended transversal T̃α. For α 6= β and x ∈ Tα, y ∈ Tβ we set dT (x, y) =∞.

Given x ∈ T̃α and r > 0, let BT (x, r) = {y ∈ T̃α | dT (x, y) < r}.

Given a subset Z ⊂ Uα let ZP denote the union of all plaques in Uα having non-empty intersection
with Z. We set ZT = ZP ∩ Tα. If Z is an open subset of Uα, then ZP is open in Uα and ZT is an
open subset of Tα.

Given any point w ∈ (−1, 1)p, we can define a transversal Tα(w) = φ−1
α ({w} × (−1, 1)). There is a

canonical map ψw : Tα(w)→ Tα(0) = Tα defined by, for y ∈ (−1, 1)q,

(6) ψw(φ−1
α (w × {y}) = φ−1

α (0× {y}) .

The Riemannian metric on M induces also induces a Riemannian metric and distance function on
each transversal Tα(w). By mild abuse of notation we denote all such transverse metrics by dT .
Then by the uniform extension property of the foliation charts, there exists a constant CT ≥ 1 so
that for all α ∈ A, w ∈ (−1, 1)p and x, y ∈ Tα(w),

(7) dT (x, y)/CT ≤ dT (ψw(x), ψw(y)) ≤ CT dT (x, y) .

We use the maps (6) to translate points in the coordinate charts Uα to the “center” transversal Tα.
The constant CT is a uniform estimate of the normal distortion introduced by this translation.

We will also consider the normal geodesic ε-disk N (y, ε) at y = φ−1
α (w×~0), defined as the image of

the map expQy : Qεy → N (y, ε), which for 0 < ε ≤ ε0 is uniformly transverse to F .

Assume that the image N (y, ε) ⊂ Uα, then we can project it to the transversal Tα along the plaques
in Uα. Denote this projection by ΠFα : N (y, ε) → Tα. We also assume that the constant CT ≥ 1 is
sufficiently large so that for all y ∈ M , for all 0 < ε ≤ ε0, for all α with N (y, ε) ⊂ Uα and for all
z, z′ ∈ N (y, ε) we have

(8) dM (z, z′)/CT ≤ dT (ΠFα (z),ΠFα (z′)) ≤ CT dM (z, z′) .

2.3. Transverse holonomy. The main result of this section is the definition of the module of
uniform continuity function for elements of HnF , and its application in Lemma 2.1.

We first recall the definition of the holonomy pseudogroup of F . A pair of indices (α, β) is said to
be admissible if Uα ∩ Uβ 6= ∅. Let Tαβ ⊂ Tα denote the open set of plaques of Uα which intersect
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some plaque of Uβ . The holonomy transformation hαβ : Tαβ → Tβα is defined by y = hαβ(x) if and
only if Pα(x) ∩ Pβ(y) 6= ∅. The finite collection

(9) H1
F = {hαβ : Tαβ → Tβα | (α, β) admissible} .

generates the holonomy pseudogroup HF of local homeomorphisms of T .

A plaque chain of length n, denoted by P, is a collection of plaques

{Pα0
(z0),Pα1

(z1), . . . ,Pαn(zn)}
satisfying Pαi(zi) ∩ Pαi+1

(zi+1) 6= ∅ for 0 ≤ i < n. Each pair of indices (αi, αi+1) is admissible, so
determines a holonomy map hαiαi+1

such that hαiαi+1
(zi) = zi+1. Let hP denote the composition

of these maps, so that
hP = hαn−1αn ◦ · · · ◦ hα1α2

◦ hα0α1
.

Let HnF = {hP | P has length at most n} ⊂ HF denote the collection of maps obtained from the
composition of at most n maps in H1

F .

Each generator hαβ : Tαβ → Tβα is the restriction of the transition map h̃αβ : T̃αβ → T̃βα defined

by the intersection of the extended charts Ũα ∩ Ũβ . The domain Tαβ ⊂ T̃αβ is precompact with

BT̃ (Tαβ , ε0) ⊂ T̃αβ , so hαβ is a uniformly continuous homeomorphism on its domain. That is, given
any 0 < ε < ε0, there is a module of continuity µαβ(ε) > 0 such that for all x ∈ Tαβ

BT̃ (x, µαβ(ε)) ⊂ T̃αβ and h̃αβ(BT̃ (x, µαβ(ε))) ⊂ BT̃ (hαβ(x), ε) .

For the admissible pairs (α, α) we set µαα(ε) = ε. Given 0 < ε ≤ ε0, define

(10) µ(ε) = min{µαβ(ε) | (α, β) admissible}
so that 0 < µ(ε) ≤ ε. Then for every admissible pair (α, β) and each x ∈ Tαβ the holonomy map hαβ
admits an extension to a local homeomorphism h̃αβ defined by the holonomy of F , which satisfies

h̃αβ(BT̃ (x, µ(ε))) ⊂ BT̃ (hαβ(x), ε).

For an integer n > 0 and 0 < ε ≤ ε0 recursively define µ(1)(ε) = µ(ε) and µ(n)(ε) = µ(µ(n−1)(ε)), so
that µ(n) denotes the n-fold composition. Then define

(11) µ(n, ε) = min{ε, µ(ε), µ(µ(ε)), . . . , µ(n)(ε)}
Note that 0 < µ(ε) ≤ ε implies µ(n, ε) ≤ µ(n)(ε) ≤ ε.

LEMMA 2.1. Given a plaque chain P of length n, and 0 < ε ≤ ε0 set δ = µ(n, ε). Then for any x

in the domain of hP , there is an extension to a local homeomorphism h̃P defined by the holonomy

of F whose domain includes the closure of the disk BT̃ (x, δ) about x in T̃ , and

(12) h̃P(BT̃ (x, δ)) ⊂ BT̃ (hP(x), ε) .

That is, µ(n, ε) is a module of uniform continuity for all elements of HnF .

Proof. For each 0 ≤ i < n, µ(n, ε) ≤ µ(i, ε) hence there is an extension of

hi = hαi−1αi ◦ · · · ◦ hα0α1

to h̃i whose domain includes the disk BT̃ (x, δ) about x. The image hi(BT̃ (x, δ) is contained in a
ball of radius at most µ(n− 1, ε), so that we can continue the extension process to hi+1. �

2.4. Plaque length and metric geometry. We make two observations about the metric leafwise
geometry of foliations [26]. In particular, the technical result Proposition 2.3 below is a key fact for
our proof of the main result of this work.

Let γ : [0, 1]→ L be a leafwise C1-path. Its leafwise Riemannian length is denoted by ||γ||F .

The plaque length of γ, denoted by ||γ||P , is the least integer n such that the image of γ is covered
by a chain of convex plaques

{Pα0(z0),Pα1(z1), . . . ,Pαn(zn)}
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where γ(0) ∈ Pα0(z0), γ(1) ∈ Pα1(z1), and successive plaques Pαi(zi) ∩ Pαi+1(zi+1) 6= ∅.

PROPOSITION 2.2. For any leafwise C1-path γ, ||γ||P ≤ d(||γ||F/ε0)e. Moreover, if γ is
leafwise geodesic, then ||γ||F ≤ ||γ||P + 1.

Proof. Let N = d(||γ||F/ε0)e be the least integer greater than ||γ||F/ε0. Then there exist points
0 = t0 < t1 < · · · < tN = 1 such that the restriction of γ to each segment [ti, ti+1] has length
at most ε0. The diameter of the set γ([ti, ti+1]) is at most ε0, hence there is some Uαi ∈ U with
γ([ti, ti+1]) ⊂ Uαi hence γ([ti, ti+1]) ⊂ Pα(zi) for some zi. Thus, the image of γ is covered by a
chain of convex plaques of length at most N .

Conversely, suppose γ is a leafwise geodesic and {Pα0
(z0),Pα1

(z1), . . . ,Pαn(zn)} is a plaque chain
covering the image γ([0, 1]). Each plaque Pαi(zi) is a leafwise convex set of diameter at most 1 by
the assumption (F4) in Section 2.2, so ||γ||F ≤ (n+ 1) ≤ ||γ||P + 1. �

The extension property (F2) in Section 2.2 implies that for all α ∈ A and z ∈ (−1, 1)q, the closure

Pα(z) is compact, hence has finite leafwise volume which is uniformly continuous with respect to
the parameter z. Hence, there exist constants 0 < Cmin ≤ Cmax such that

(13) Cmin ≤ vol (Pα(z)) ≤ Cmax, ∀α ∈ A, ∀z ∈ [−1, 1]q .

We note a consequence of this uniformity which is critical to the proof of the main theorem.

PROPOSITION 2.3. Let M be a compact manifold. Then there exists a monotone increasing
function v : [0,∞)→ [0,∞) such that if L is a compact leaf, then vol (L) ≤ v(diam (L)). Conversely,
there exists a monotone increasing function R : [0,∞)→ [0,∞) such that if L is a compact leaf, then
diam (L) ≤ R(vol (L)).

Proof. The holonomy pseudogroup of F has a finite set of generators, hence has a uniform upper
bound on the growth rate of words. This implies that given r > 0, there exists a positive integer
e(r) such that any subset of a leaf with leaf diameter at most r can be covered by no more that e(r)
plaques. Thus, if L is a leaf with diameter at most r, then L has volume at most v(r) = Cmax · e(r).

Now suppose that L is a compact leaf with diameter r = diam (L). Then, for any pair of points
x, y ∈ L, there exists a length minimizing geodesic segment γ : [0, 1] → L of length r = dF (x, y),
with γ(0) = x and γ(1) = y. Let BF (γ, ε0) denote the leafwise ε0-tubular neighborhood of the image
of γ, defined by (2). Recall that the restricted metric dF on leaves has uniformly bounded geometry.
Then as ε0 is assumed in assumption (ε2) of Section 2.1 to be less than the injectivity radius for the
leafwise metric, and γ is a length-minimizing geodesic, there is a constant V0 > 0 so that the leafwise
volume vol (BF (γ, ε0)) ≥ V0 · r. Thus, vol (L) > V0 · diam (L), and then set R(v) = v/V0. �

2.5. Captured leaves. The main result is Proposition 2.6, which shows that given a compact leaf
L of F , and another compact leaf L′ which is sufficiently close to L at some point, where how close
depends on vol (L′), then L′ is “captured” by the holonomy of L. We require some preliminary
definitions and observations before giving the proof of this key fact.

Let L ⊂ M be a compact leaf, and recall that in Section 2.1 the constant 0 < εL ≤ ε0 was defined
so that there is a projection map ΠL : N (L, εL)→ L along the transverse geodesic εL-disks to L.

Next, recall that Proposition 2.2 shows that for any leafwise C1-path γ, we have the upper bound
||γ||P ≤ d(||γ||F/ε0)e for the number of plaques required to cover γ.

Suppose that L is a compact leaf, and x ∈ L is a fixed basepoint, then for any y ∈ L there is a
leafwise geodesic γx,y : [0, 1] → L from x to y with ‖γ‖F ≤ diam (L). Thus, γx,y can be covered by
at most d(||γ||F/ε0)e plaques.

For n > 0, the number µ(n, ε0) ≤ ε0 was defined in (11), and the constant CT ≥ 1 was introduced
in (7) and (8) as a bound on the distortion of the projection maps ΠFα0

: N (x, ε0)→ Tα0 . Introduce
the function ∆(r, ε) as given in the following:
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DEFINITION 2.4. For 0 < ε ≤ ε0 and r > 0,

(14) ∆(r, ε) ≡ µ(dr/ε0e+ 2, ε/CT )/CT .

We scale both the domain variable ε and the range value of µ by CT so that we have uniform
estimates for pairs of points in any geodesic normal ball in the chart, a fact which will be used in
the proofs of Lemma 2.5 and Proposition 2.6.

LEMMA 2.5. Given 0 < ε ≤ ε0, and a leafwise C1-path γ : [0, 1] → L of length at most r, the
transverse holonomy along γ defines a smooth embedding

hγ : N (γ(0),∆(r, ε))→ N (γ(1), ε) , hγ(γ(0)) = γ(1) .

Proof. For n = ||γ||P , let P = {Pα0
(z0),Pα1

(z1), . . . ,Pαn(zn)} be a covering of γ by a plaque chain,
with zi ∈ Tαi for 0 ≤ i ≤ n, as in the proof of Proposition 2.2. Set x = γ(0) and y = γ(1), then
x ∈ Pα0

(z0) and y ∈ Pαn(zn).

The constant CT was chosen so that for the projection ΠFα0
: N (x, ε0)→ Tα0 , and for x′ ∈ N (x, ε0),

the condition (8) implies that

(15) dM (x, x′)/CT ≤ dT (ΠFα0
(x),ΠFα0

(x′)) ≤ CT dM (x, x′) .

Likewise, for y′ ∈ N (y, ε0) we have

(16) dM (y, y′)/CT ≤ dT (ΠFαn(y),ΠFαn(y′)) ≤ CT dM (y, y′) .

Given x′ ∈ N (x,∆(r, ε)) then by (15), for x0 = ΠFα0
(x) ∈ Tα0

and x′0 = ΠFα0
(x′) ∈ Tα0

, we have

dT (x0, x
′
0) ≤ CT∆(r, ε) = µ(dr/ε0e+ 2, ε/CT ) .

Then by Lemma 2.1 and the inclusion (12), we have that dT (hP(x),hP(x′)) ≤ ε/CT .

Observe that hP(x) = ΠFαn(γ(1)) and so we set hγ(x′) = (ΠFαn)−1(hP(x′)). Then formula (16)
implies that dM (hγ(x),hγ(x′)) ≤ ε, and so hγ(x′) ∈ N (y, ε) as was to be shown. �

We apply Lemma 2.5 to obtain the following “captured leaf” property.

PROPOSITION 2.6. Let L be a compact leaf of F , with the constant 0 < εL ≤ ε0 as introduced
in Section 2.1. Given Λ > 0 , there exists 0 < δΛ ≤ εL so that if L′ is a compact leaf with volume
vol (L′) ≤ Λ and L′ ∩N (L, δΛ) 6= ∅, then L′ ⊂ N (L, εL).

Proof. Let R(Λ) be the constant introduced in Proposition 2.3, so that vol (L′) ≤ Λ implies that
diam (L′) ≤ R(Λ), and set δΛ = ∆(R(Λ), εL/2). Note that µ(n, ε) ≤ ε implies δΛ ≤ εL/2 ≤ ε0/2.

Recall that by condition (ε1) in Section 2.1, given any two points y, z ∈ BM (x, ε0), there is a unique
geodesic for the metric dM between y and z.

Given that L′ ∩ N (L, δΛ) 6= ∅, there exists x ∈ L such that there exists y′ ∈ L′ ∩ N (x, δΛ). Let
Ky′ ⊂ L′ ∩BM (x, ε0) be the connected component containing y′. Then there exists a point y ∈ Ky′

which minimizes dM (x, y), and by the choice of y′ we have dM (x, y) ≤ εL/2 ≤ ε0/2. This implies
that y is an interior point for Ky′ hence the geodesic from x to y is contained in BM (x, ε0) and
intersects Ky′ orthogonally. Thus, x ∈ N (y, δΛ).

Let z ∈ L′, then there is a leafwise geodesic path γy,z : [0, 1]→ L′ with ‖γy,z‖F ≤ R(Λ), y = γy,z(0)
and z = γy,z(1). Then by Lemma 2.5, the holonomy map hγy,z : N (y, δΛ)→ N (z, εL) is well-defined.

As x ∈ L ∩N (y, δΛ) then x′ = hγy,z (x) ∈ Lx ∩N (z, εΛ). Thus, z ∈ BM (x′, εΛ) ⊂ N (L, εL).

It follows that L′ ⊂ N (L, εL), as was to be shown. �

Proposition 2.6 has the following useful consequence.
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COROLLARY 2.7. Let L0 be a compact leaf of F . Given Λ > 0, there exists 0 < δΛ < εL0 so that
if L1 is a compact leaf with volume vol (L1) < Λ and L1 ∩ N (L0, δΛ) 6= ∅, then L1 ⊂ N (L0, εL0

).
Moreover, the projection map ΠL0

: N (L0, εL0
) → L0 restricted to L1 is a covering map onto L0.

Furthermore, if the tangent bundle TF is orientable, then vol (L1) ≤ 2 d∗ vol (L0) where d∗ is the
homological degree of the covering map ΠL0

: L1 → L0.

Proof. Let δΛ be as defined in Proposition 2.6, then L1 ⊂ N (L0, εL0
) follows.

By the assumption (ε4) in Section 2.1, the leaves of F are uniformly transverse to the fibers of
ΠL0

: N (L0, εL0
) → L0, so the restriction to L1 is a covering map. As L0 and L1 are compact, the

map ΠL0
: L1 → L0 is onto. Assume that the tangent bundle TF is oriented, then we can choose

a positively-oriented Riemannian volume form on the leaves of F , whose restriction to a leaf L is

denoted by ωL. We have that vol (L) =

∫
L

ωL, so the closed p-form vol (L)−1 · ωL on L is dual to

the fundamental class [L]. Thus, the homological degree d∗ of ΠL0 : L1 → L0 is given by

(17) d∗ =

∫
L1

Π∗L0
(vol (L0)−1 · ωL0) = vol (L0)−1 ·

∫
L1

Π∗L0
(ωL0) .

Condition (ε6) of Section 2.1 gives that for x′ ∈ L1 and x = ΠL0
(x′) ∈ L0 we have

(18) 1/2 · ωL1
|x′ ≤ Π∗L0

(ωL0
)|x ≤ 2 · ωL1

|x′ ,

and thus

(19) 1/2 · vol (L1) = 1/2 ·
∫
L1

ωL1
≤
∫
L1

Π∗L0
(ωL0

) ≤ 2 ·
∫
L1

ωL1
= 2 · vol (L1) .

By (17) we have d∗ · vol (L0) =

∫
L1

Π∗L0
(ωL0) and thus vol (L1) ≤ 2 d∗ · vol (L0). �

3. Properties of compact foliations

In this section, F is assumed to be a compact foliation of a manifold M without boundary. The
geometry of compact foliations has been studied by Epstein [11, 12], Millett [22], Vogt [33, 34, 35]
and Edwards, Millett and Sullivan [10]. We recall some of their results.

3.1. The good and the bad sets. Let vol (L) denote the volume of a leaf L with respect to the
Riemannian metric induced from M . Define the volume function on M by setting v(x) = vol (Lx).
Clearly, the function v(x) is constant along leaves of F , but need not be continuous on M .

The bad set X1 of F consists of the points y ∈ M where the function v(x) is not bounded in any
open neighborhood of y. By its definition, the bad set X1 is saturated. Note also that

X1 =

∞⋃
n=1

X1 ∩ vol−1(0, n] .

The leaves in the intersection X1 ∩ vol−1(0, n] have volume at most n, while v(x) is not locally
bounded in any open neighborhood of y ∈ X1, therefore each set X1 ∩ vol−1(0, n] has no interior.
By the Baire category theorem, X1 has no interior.

The complement G = M r X1 is called the good set. The holonomy of every leaf L ⊂ G is finite,
thus by the Reeb Stability Theorem, L has an open saturated neighborhood consisting of leaves with
finite holonomy. Hence, G is an open set, X1 is closed, and the leaf space G/F is Hausdorff.

Inside the good set is the open dense saturated subset Ge ⊂ G consisting of leaves without holonomy.
Its complement Gh = GrGe consists of leaves with non-trivial finite holonomy.
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3.2. The Epstein filtration. The restriction of the volume function v(x) to X1 again need not be
locally bounded, and the construction of the bad set can be iterated to obtain the Epstein filtration:

M = X0 ⊃ X1 ⊃ X2 ⊃ · · · ⊃ Xα ⊃ · · · .
The definition of the sets Xα proceeds inductively: Let α > 1 be a countable ordinal, and assume
that Xβ has been defined for β < α. If α is a successor ordinal, let α = γ + 1 and define Xα to be
the closed saturated set of y ∈ Xγ where the function v(x) is not bounded in any relatively open
neighborhood of y ∈ Xγ in Xγ .

If α is a limit ordinal, then define Xα =
⋂
β<α

Xβ .

For β < α, the set Xα is nowhere dense in Xβ . Note that since each set M r Xα is open, the
filtration is at most countable. The filtration length of F is the ordinal α such that Xα 6= ∅ and
Xα+1 = ∅.

Vogt [35] showed that for any finite ordinal α, there is a compact foliation of a compact manifold
with filtration length α. He also remarked that given any countable ordinal α, the construction can
be modified to produce a foliation with filtration length α. Such examples show that the bad set
X1 and the subspaces Xα need not be finite unions or intersections of submanifolds; they may have
pathological topological structure, especially when the filtration length is an infinite ordinal.

3.3. Regular points. A point x ∈ X1 is called a regular point if the restricted holonomy of F|X1

is trivial at x. Equivalently, the regular points are the points of continuity for the restricted volume
function v|X1 : X1 → R. If X1 6= ∅, then the regular points form an open and dense subset of
X1 rX2. We recall a key result of Edwards, Millett, and Sullivan (see §5 of [10].)

PROPOSITION 3.1 (Moving Leaf). Let F be a compact foliation of an oriented manifold M
with orientable normal bundle. Suppose that X1 is compact and non-empty. Let x ∈ X1 be a regular
point. Then there exists a leaf L ⊂ Ge and a smooth isotopy h : L× [0, 1)→ Ge such that:

• For all 0 ≤ t < 1, ht : L→ Lt ⊂M is a diffeomorphism onto its image Lt
• Lx is in the closure of the leaves

⋃
t>1−δ

Lt for any δ > 0

• lim sup
t→1

vol (Lt) =∞

While the “moving leaf” Lt limits on X1, the moving leaf cannot accumulate on a single compact
leaf of X1. This follows because a compact leaf L admits a relative homology dual cycle, which for
ε > 0 sufficiently small and x ∈ L, is represented by the transverse disk BT (x, ε). This disk intersects
L precisely in the point x, hence the relative homology class [BT (x, ε), ∂BT (x, ε)] is Poincaré dual
to the fundamental class [L]. Assuming that {Lt} limits on L, for t < 1 sufficiently close to 1,
each Lt ⊂ N (L, ε) and so the intersection number [Lt ∩ BT (x, ε)] = [Lt] ∩ [BT (x, ε), ∂BT (x, ε)] is
constant. Thus the leaves {Lt} have bounded volume as t→ 1, which is a contradiction.

It is precisely this “non-localized limit behavior” for leaves with unbounded volumes approaching
the bad set which makes the study of compact foliations with non-empty bad sets so interesting,
and difficult. There seem to be no results in the literature describing how these paths of leaves must
behave in the limit.

3.4. Structure of the good set. Epstein [12] and Millett [22] showed that for a compact foliation
F of a manifold V , then

v(x) is locally bounded⇔ V/F is Hausdorff ⇔ the holonomy of every leaf is finite .

By definition, the leaf volume function is locally bounded on the good set G, hence the restriction of
F to G is compact Hausdorff, and all leaves of F|G have finite holonomy group. Epstein and Millett
showed there is a much more precise structure theorem for the foliation F in an open neighborhood
of a leaf of the good set:
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PROPOSITION 3.2. Let V denote an open connected component of the good set G, and Ve =
V ∩Ge the set of leaves with no holonomy. There exists a “generic leaf” L0 ⊂ Ve, such that for each
x ∈ V with leaf Lx containing x,

(1) there is a finite subgroup Hx of the orthogonal group O(q) and a free action αx of Hx on L0

(2) there exists a diffeomorphism of the twisted product

(20) φx : L0 ×Hx Dq → Vx

onto an open saturated neighborhood Vx of Lx (where Dq denotes the unit disk in Rq)
(3) the diffeomorphism φx is leaf preserving, where L0×HxDq is foliated by the images of L0×{w}

for w ∈ Dq under the quotient map Q : L0 × Dq → L0 ×Hx Dq
(4) φx maps L0/Hx

∼= L0 ×Hx {0} diffeomorphically to Lx

In particular, if x ∈ Ve then Hx is trivial, and φx is a product structure for a neighborhood of Lx.

The open set Vx is called a standard neighborhood of Lx, and the 4–tuple (Vx, φx, Hx, αx) is called
a standard local model for F . Note that, by definition, Vx ⊂ G hence Vx ∩X1 = ∅.

The Hausdorff space G/F is a Satake manifold; that is, for each point b ∈ G/F and π(x) = b the leaf
Lx has an open foliated neighborhood Vx as above, and φx : L0 ×Hx Dq → Vx induces a coordinate
map ϕb : Dq/Hx →Wb, where Wb = π(Vx). The open sets Wb ⊂ G/F are called basic open sets for
G/F . Note also that π is a closed map [12, 22].

4. Properties of foliated homotopies

In this section, we study some of the geometric and topological properties of a foliated homotopy
of a compact leaf. These results play an essential role in our proof of Proposition 6.3, and hence
of Theorem 1.2. The main result of this section yields an upper bound on both the volumes of the
compact leaves and the topological degrees of the covering maps which arise in a homotopy of a
compact leaf. Note that the results of this section apply for all C1-foliations of a manifold M . We
first recall a “stability” result from the work [18].

THEOREM 4.1. [18, Corollary 1.4] Let F be a C1 foliation of a compact manifold M . Let L be
a compact leaf, and H : L × [0, 1] → M be a foliated homotopy for which H0 is the inclusion map.
Then for all 0 ≤ t ≤ 1, the image Ht(L) is contained in a compact leaf Lt of F , and moreover, the
map Ht : L→ Lt is surjective.

The following technical result is at the heart of the proof of Theorem 1.2.

PROPOSITION 4.2. Let F be a C1 foliation of a manifold M , and let L be a compact leaf.
Suppose that H : L× [0, 1]→M is a foliated homotopy for which H0 is the inclusion map, and let Lt
denote the compact leaf containing Ht(L). Assume that both the tangent bundle TF and the normal
bundle Q to F are oriented. Then there exists d∗ > 0, depending on H and L, such that

(21) 1 ≤ deg(Ht : L0 → Lt) ≤ d∗ .
Moreover, there exists an integer k ≥ 0 such that

(22) vol(Lt) ≤ 4kd∗ · vol (L) , for all 0 ≤ t ≤ 1 .

Proof. Let 0 ≤ t ≤ 1, then there exists 0 < εt = εLt ≤ ε0 such that we have a normal εt-bundle
projection map ΠLt : N (Lt, εt) → Lt. The subset N (Lt, εt) ⊂ M is open, and H is uniformly
continuous, so there exists δt > 0 such that Hs(L) ⊂ N (Lt, εt) for all t − δt < s < t + δt. For such
s, the map Hs : L0 → Ls is onto, so the leaf Ls ⊂ N (Lt, εt), hence the restriction ΠLt : Ls → Lt is
a covering map.

The maps Hs, Ht : L0 → N (Lt, εt) are homotopic in N (Lt, εt), hence for their induced maps on
fundamental classes, their degrees satisfy

(23) deg(Ht : L0 → Lt) = deg(ΠLt : Ls → Lt) · deg(Hs : L0 → Ls) .
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The homological degree of a covering map equals its covering degree, thus the covering degree of
ΠLt : Ls → Lt divides the homological degree of deg(Ht : L0 → Lt).

The collection of open intervals {It = (t − δt, t + δt) | 0 ≤ t ≤ 1} is an open covering of [0, 1], so
there exists a finite set {0 = t0 < t1 < · · · < tk−1 < tk = 1} so that the collection {Iti | 0 ≤ i ≤ k}
is a finite covering of [0, 1]. Choose a sequence {0 < s1 < · · · < sk−1 < 1} such that

t`−1 < s` < t` , t` − δt` < s` < t`−1 + δt`−1

and hence s` ∈ It`−1
∩ It` . Thus for the choices of the constants δt for each 0 < ` < k, we have the

inclusions Ls` ⊂ N (Lt`−1
, εt`−1

) ∩N (Lt` , εt`). Thus, there are finite covering maps

(24) ΠLt`−1
: Ls` → Lt`−1

, ΠLt`
: Ls` → Lt` , for each 1 ≤ ` < k − 1 .

The collection of maps (24) is called a geometric correspondence from L0 to L1. We have shown:

LEMMA 4.3. Let F be a C1 foliation of M , L a compact leaf of F , and H : L × [0, 1] → M a
foliated homotopy for which H0 is the inclusion map. Then there exists a geometric correspondence
from L0 = L to L1 = H1(L).

Introduce the following integer constants associated to a correspondence (24), for 0 < ` < k:

a` = deg(ΠLt`−1
: Ls` → Lt`−1

)(25)

b` = deg(ΠLt`
: Ls` → Lt`) .(26)

Note that a` and b` are equal to the covering degrees of the covering maps in (25) and (26), and
that a1 = 1 as the leaf Ls1 must be a diffeomorphic covering of L0. Then the choice of each εt ≤ ε0
we can apply the Condition (ε6) of Section 2.1 and the estimate (19) in the proof of Corollary 2.7,
to obtain for 1 ≤ ` < k,

a`/2 · vol (Lt`−1
) ≤ vol (Ls`) ≤ 2a` · vol (Lt`−1

)
b`/2 · vol (Lt`) ≤ vol (Ls`) ≤ 2b` · vol (Lt`)

Combine these sequences of upper and lower estimates to obtain the estimate:

(27) 4−k
b1 · · · bk−1

a1 · · · ak−1
· vol (L0) ≤ vol (L1) ≤ 4k

a1 · · · ak−1

b1 · · · bk−1
· vol (L0) .

Set d∗ =
a1 . . . ak−1

b1 . . . bk−1
and we obtain the estimate (22) for t = 1. The uniform bound (21) follows from

the argument above, considering only the homological degrees of the covering maps and ignoring
the volume estimates. A minor modification of the above arguments also yields these estimates for
the values 0 < t < 1. This completes the proof of Proposition 4.2. �

5. Tame points in the bad set

In this section, we introduce the concept of a “tame point” in the bad set X1, which is a point x ∈ X1

that can be approached by a path in the good set. The main result of this section proves the existence
of tame points, using a more careful analysis of the ideas of the Moving Leaf Proposition 3.1. Tame
points are used in section 6 for studying the deformations of the bad set under foliated homotopy.

Recall that the “good set” G ⊂ M is the union of leaves whose holonomy group is finite, and its
complement is the bad set X1 ⊂ M which is the union of the points y ∈ M where the leaf volume
function v(x) is not bounded in any open neighborhood of y. Then there is an open dense saturated
subset Ge ⊂ G consisting of leaves without holonomy.

The bad set X1 is closed, saturated and has no interior. A point x1 ∈ X1 is said to be regular if the
restriction to X1 of leaf volume function v : X1 → R+ is continuous at x1. Equivalently, x1 ∈ X1

is a regular point if the holonomy of the restriction of F to X1 is trivial in some relatively open
neighborhood of x1 ∈ X1.
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DEFINITION 5.1. A regular point x1 ∈ X1 is tame if there exists ε > 0 and a transverse C1-path

(28) γ : [0, 1]→ (N (x1, ε) ∩Ge) ∪ {x1}

with γ(t) ∈ Ge for 0 ≤ t < 1, γ(1) = x1 and such that v(γ(t))) tends uniformly to infinity as t→ 1.

Let Xt
1 ⊂ X1 denote the subset of tame points.

Since the restricted path γ : [0, 1) → Ge lies in the set of leaves without holonomy, it follows that
there is a foliated isotopy Γ: Lγ(0) × [0, 1)→ Ge such that Γt(γ(0)) = γ(t). Thus, a tame point x is
directly approachable by a family of moving leaves whose volumes tend uniformly to infinity.

In the examples constructed by Sullivan [30], it is easy to see that every regular point is a tame
point. In general, though, Edwards, Millet, and Sullivan specifically point out that their proof of
the Moving Leaf Proposition 3.1 in [10] does not claim that a regular point is a tame point. The
problem is due to the possibility that the complement of the bad set need not be locally connected
in a neighborhood of a point in the bad set. In their proof, the moving leaf is defined by a curve that
follows an end ω of the good set out to infinity, passing through points where the volume is tending
to infinity along the way. This end ω of the good set is contained in arbitrarily small ε-neighborhoods
of the bad set, but they do not control the behavior of the end. Thus, the existence of a tame point is
asserting the existence of a “tame end” of the good set on which the volume function is unbounded,
and which is defined by open neighborhoods of some point in the bad set.

PROPOSITION 5.2. Let F be a compact, C1-foliation of a manifold M , and assume that the
tangent bundle TF and the normal bundle Q to F are oriented. Then the set of tame points Xt

1 is
dense in X1.

The proof of this result involves several technical steps, so we first give an overview of the strategy
of the proof. Let x1 ∈ X1 be a regular point, and L1 the leaf through x1. We use a key result in the
proof of the Moving Leaf Lemma to obtain an open neighborhood U of x1 in its transversal space,
on which the volume function is unbounded. We then choose a regular point x∗ ∈ U ∩ X1 which
is sufficiently close to x1, so that the leaf L∗ through x∗ is a diffeomorphic covering of the leaf L1.
Moreover, the point x∗ is approachable by a path in the good set. Then we argue by contradiction,
that if the leaf volume function does not tend uniformly to infinity along this path, then each leaf
through a point in the set U ∩ G is also a covering space of L1 with uniformly bounded covering
degree, from which we conclude that the volume function is bounded on the leaves through points in
U , contrary to choice. It follows that x∗ is a tame point which is arbitrarily close to x1. The precise
proofs of these claims requires that we first establish some technical properties of the foliation F in
a normal neighborhood of L1.

5.1. Technical preliminaries. The leaf L1 is compact, hence has finitely-generated fundamental
group. Thus, we can choose a finite generating set {[τ1], . . . , [τk]} for π1(L1, x1), where [τi] is repre-
sented by a smooth closed path τi : [0, 1] → L1 with basepoint x1. Let ‖τi‖ denote the path length
of τi. Then set

(29) DL1 = 2 max {diam (L1), ‖τ1‖, . . . , ‖τk‖} .

Recall that in Section 2.1, given a compact leaf L the constant 0 < εL ≤ ε0 was defined so that there
is a projection map ΠL : N (L, εL) → L along the transverse geodesic εL-disks to L. Set ε1 = εL1

so that the normal projection map ΠL1 : N (L1, ε1) → L1 is well-defined. Then set ε2 = ∆(DL1 , ε1)
where ∆(DL1

, ε1) is defined in Definition 2.4. Then by Lemma 2.5, for any path σ : [0, 1]→ L1 with
σ(0) = x1 and ‖σ‖ ≤ DL1

the transverse holonomy maps are defined for all 0 ≤ t ≤ 1,

(30) hσ : N (x1, ε2)→ N (σ(t), ε1) .

In particular, the holonomy map hi along each closed path τi is defined on the transverse disk
N (x1, ε2). That is, the transverse holonomy along τi is represented by a local homeomorphism into

(31) hi : N (x1, ε2)→ N (x1, ε1) .
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The assumption that x1 ∈ X1 is a regular point implies that the germinal holonomy at x1 of the
restricted foliation F|X1 is trivial. Thus we can choose 0 < 2δ ≤ ε2 sufficiently small, so that each
holonomy map hi restricted to X1 ∩ N (x1, 2δ) is the identity map. It follows that the holonomy of
F restricted to the closure

(32) Z1 = X1 ∩N (x1, δ) = X1 ∩N (x1, δ) ⊂ X1 ∩N (x1, 2δ)

is trivial. Hence, every point in Z1 is a regular point of the bad set. It follows that the saturation
ZF of Z1 is a fibration over the closed set Z1, and that the leaf volume function v(y) is uniformly
continuous and hence bounded on the compact set Z1. Thus, we may assume that δ is sufficiently
small so that ZF ⊂ N (L1, ε1). That is, for each z ∈ Z1 the leaf Lz ⊂ N (L1, ε1).

Next consider the properties of the the normal projection ΠL1
: N (L1, ε1) → L1 when restricted

to leaves in N (L1, ε1). The restriction πz ≡ Π|Lz : Lz → L1 is a covering projection, which is a
diffeomorphism as F|Z1 has no holonomy, and by the assumption that ε1 ≤ ε0, the estimate (5)
implies the map πz is a quasi-isometry with expansion constant bounded by 2.

Note that N (x1, 2δ) is contained in the the normal transversal N (x1, ε1), so by definition for z ∈ Z1

we have πz(z) = x1, and thus given a path σ : [0, 1]→ L1 with σ(0) = x1, there is a lift σz : [0, 1]→ Lz
with σz(0) = z and πz ◦ σz(t) = σ(t) for all 0 ≤ t ≤ 1. In particular, the closed loop τi lifts via πz

to a closed loop τzi : [0, 1]→ Lz with endpoints z. The homotopy classes of the lifts, {[τz1 ], . . . , [τzk ]},
yield a generating set for π1(Lz, z), which have a uniform bound ‖τzi ‖ ≤ DL1

on their path lengths.

For an arbitrary point y0 ∈ N (x1, δ) and path σ : [0, 1] → L1 with σ(0) = x1 and path length
‖σ‖ ≤ DL1

, by the choice of δ the transverse holonomy map in (30) is defined at y0 hence there is a
lift of the path σ to a path σy : [0, 1]→ Ly ∩N (L1, ε1) with σy(0) = y0 and πy ◦ σy(t) = σ(t) for all
0 ≤ t ≤ 1. This lifting property need not hold for paths longer than DL1

, as there may be leaves of
F which intersect the normal neighborhood N (L1, δ) but are not contained in N (L1, ε1).

We observe a technical point about the distances in the submanifold N (x1, ε1) ⊂M . The inclusion
N (x1, ε1) ⊂M induces a Riemannian metric on N (x1, ε1) which then defines a path-length distance
function on this subspace. Unless N (x1, ε1) is a totally geodesic submanifold of M , the induced
distance function on N (x1, ε1) need not agree with the restricted path-length metric from M . For
y ∈ N (x1, ε1) and 0 < λ ≤ ε1, let BT (y, λ) ⊂ N (x1, ε1) denote the open ball of radius λ about y for
the induced Riemannian metric on N (x1, ε1).

Now consider an arbitrary point y ∈ N (x1, δ) and assume that Ly ⊂ N (L1, δ), so that Ly is in
the domain of the projection ΠL1

: N (L1, ε1) → L1. Given a path σ : [0, 1] → Ly with σ(0) = y,
then Lemma 2.5 implies that there exists 0 < λ < δ, which depends on the length ‖σ‖, so that for

y′ ∈ BT (y, λ) there is a path σy
′
: [0, 1]→ Ly′ satisfying ΠLy (σ(t)) = ΠLy (σy

′
(t)) for 0 ≤ t ≤ 1. We

call the path σy
′

a lifting of σy from Ly to Ly′ .

5.2. Proof of Proposition 5.2. We first recall a key fact from the proof in [10] of the Moving Leaf
Proposition 3.1, whose proof was in turn based on ideas of Montgomery [24] and Newman [25]. (In
particular, Figure 3 on page 23 of [10] and the arguments following it are pertinent.)

LEMMA 5.3. For δ > 0 sufficiently small, there is an open connected component U of N (x1, δ)rZ1

on which the volume function v(y) is unbounded on the open neighborhood U ∩N (x1, δ/2).

Next, fix a choice of regular point x1 ∈ X1 and sufficiently small constant δ > 0 as above so that
(32) holds, then choose a point y0 ∈ U ∩ N (x1, δ/2). Let x∗ ∈ Z1 be a closest point to y0 for the

induced metric on N (x1, δ). That is, consider the sequence of closed balls BT (y0, λ) ⊂ N (x1, δ)rZ1

for λ > 0, expanding until there is a first contact with the frontier of U , then x∗ is contained in this
intersection. Let δ0 ≤ δ/2 denote the radius of first contact, hence δ0 equals the distance from y0 to

x∗ in the induced path-length metric on N (x1, ε1). Then BT (y0, δ0) ⊂ U and x∗ ∈ BT (y0, δ0) ∩ Z1.
(This is illustrated in Figure 1 below.) Let L∗ = Lx∗ denote the leaf containing x∗.

We claim that x∗ is a tame point. As δ > 0 was chosen to be arbitrarily small, and the regular
points are dense in the bad set, the proof of Proposition 5.2 then follows from this claim.
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Figure 1. A tame point in the bad set

By the choice of BT (y0, δ0) ⊂ U , there is a path γ : [0, 1]→ N (x1, δ) such that γ(0) = y0, γ(1) = x∗
and γ[0, 1) ⊂ BT (y0, δ0). The complement of X1 is the good set, hence the image γ[0, 1) ⊂ G. The
set of leaves with holonomy Gh in G is a union of submanifolds with codimension at least 2 by
Proposition 3.2. Thus, by a small C1-perturbation of the path γ in U , we can assume that its image
is disjoint from the set Gh. That is, γ(t) ∈ Ge for all 0 ≤ t < 1, and γ(1) ∈ L∗. Let Lt denote the
leaf containing γ(t).

We claim that the volumes of the leaves Lt tend uniformly to infinity. Assume not, so there exists
a constant Vmax > 0 and a sequence 0 < t1 < · · · < tn · · · → 1 such that xn = γ(tn) → x∗
and the volumes of the leaves Ln = Lxn are bounded above by Vmax. We show this yields a
contradiction to our assumptions. What we show in the following is that if there exists a leaf Ly
for y ∈ U ∩Ge sufficiently close to L∗ with prescribed bounded volume, then using Proposition 2.6
and Corollary 2.7, we show this implies that all leaves intersecting U have bounded volume, which
yields the contradiction.

PROPOSITION 5.4. For Vmax > 0, there is an ε∗ > 0 so that if there exists y ∈ U ∩ Ge such
that d(y, x∗) < ε∗ and vol (Ly) ≤ Vmax, then for all y′ ∈ U , the leaf Ly′ containing y′ has the volume
bound vol (Ly′) ≤ 2Vmax.

Proof. By Proposition 2.3, there is a function R : [0,∞) → [0,∞) such that if L ⊂ M satisfies
vol (L) ≤ Vmax then diam (L) ≤ D∗ ≡ R(Vmax).

Recall that δ was chosen so that 2δ ≤ ε2 where ε2 = ∆(DL1
, ε1) was defined after (29), and so

that (32) holds, hence ZF ⊂ N (L1, ε1). Thus by the choice x∗ ∈ BT (y0, δ0) ∩ Z1, we have that
L∗ = Lx∗ ⊂ N (L1, ε1). Let π∗ = πx∗ : L∗ → L1 denote the normal projection, whose restriction to
L∗ is a covering map, which is a diffeomorphism as x∗ ∈ Z1.

We next choose y ∈ U ∩Ge which is sufficiently close to L∗ so that Ly ⊂ N (L1, ε1) and the holonomy
maps of L∗ based at x∗ are defined on Ly. This will imply that Ly is a finite covering of L∗.

For each 1 ≤ i ≤ k, let τ∗i : [0, 1]→ L∗ be the lift of τi with basepoint x∗. By the definition of DL1

in (29) and the estimate (5), each lifted path has bounded length ‖τ∗i ‖ ≤ DL1 and their homotopy
classes {[τ∗1 ], . . . , [τ∗k ]} form a generating set for π1(L∗, x∗). Denote the holonomy along τ∗i by h∗i .

As L∗ ⊂ N (L1, ε1), there exists 0 < ε3 ≤ ε2 be such that N (L∗, ε3) ⊂ N (L1, ε1).

Set ε∗ = ∆(DL1
, ε3).

By assumption, there exists y ∈ U ∩Ge ∩ BT (x∗, ε∗) with vol (Ly) ≤ Vmax, and by the choice of ε∗
we have Ly ⊂ N (L∗, ε3). Then the holonomy h∗i along τ∗i is represented by a map

(33) h∗i : N (x∗, ε∗)→ N (x∗, ε3) ⊂ N (x1, ε2) .
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Moreover, the bound ‖τ∗i ‖ ≤ DL1 implies that the map h∗i extends to a map

(34) h∗i : N (x∗, ε2)→ N (x∗, ε1) .

As Ly is a compact leaf, its intersection with the transversal N (x∗, ε3) is a finite set, denoted by

(35) Fy = Ly ∩N (x∗, ε3) .

Then for each 1 ≤ i ≤ k, by (34) the holonomy map h∗i satisfies h∗i (Fy) ⊂ Ly ∩ N (x∗, ε3) = Fy.
Thus, the finite set of points Fy is permuted by the action of a set of generators for π1(L∗, x∗).
Thus, compositions of the generators are defined on the set Fy. That is, for any w ∈ π1(L∗, x∗)
the holonomy h∗w along w contains the finite set Fy in its domain. Let H∗ ⊂ π1(L∗, x∗) denote the
normal subgroup of finite index consisting of all words whose holonomy fixes every point in Fy.

Let z ∈ Fy. For each w ∈ H∗, the holonomy h∗w map is defined at z, and so must be defined on
some open neighborhood z ∈ V wz ⊂ U of z, where the diameter of the set V wz depends on z and w.
As y ∈ U ∩ Ge the leaf Ly ⊂ Ge is without holonomy, so the restriction of h∗w to the open set V wz
must fix an open neighborhood in N (x∗, ε1) of z ∈ Uwz ⊂ V wz . Thus, the fix-point set of h∗w contains
an open neighborhood of Fy in N (x∗, ε1). Since y ∈ Ly ∩N (x∗, ε3) = Fy, we have in particular that
there is an open neighborhood y ∈ Uwy ⊂ U ∩BT (x∗, ε∗) contained in the fixed-point set for h∗w.

We next use these conclusions for the holonomy of the leaf L∗ to deduce properties of the holonomy
for the leaf L1. Recall that N (L∗, ε3) ⊂ N (L1, ε1), and each path τ∗i in L∗ is the lift of the path
τi in L1 via the covering map π∗ ≡ Π|L∗ : L∗ → L1. Thus, the holonomy map h∗i on N (x∗, ε3)
is the restriction of the map hi to N (x∗, ε3). Consequently, the restriction of hi to the open set
BT (x∗, ε3) ⊂ N (x1, ε2) equals the restriction in (33) of h∗i to N (x∗, ε∗). In particular, hw is defined
on and fixes the open set Uwy ⊂ BT (x∗, ε∗).

Let {w1, . . . , wN} be a set of generators for H∗. Let m` denote the word length of w` with respect
to the generating set {[τ∗1 ], . . . , [τ∗k ]}, and set m∗ = max{m1, . . . ,mN}.

Fix a choice of w = w` ∈ H∗. Then the closed path representing w in L∗ can be lifted to a path
τyw in the leaf Ly, and as Ly ⊂ N (L1, ε1), its length is bounded above by ‖τyw‖ ≤ m∗ · 2DL1

. We
show that hw is defined on U , and U ⊂ Fix(hw). This implies that there is a uniform bound on
the diameter of the leaves Ly′ for y′ ∈ U , from which it follows that there is an upper bound on the
function vol (Ly′) for y′ ∈ U , which contradicts the choice of U .

We first show that Ly′ is a finite covering of L1 with the same index as the covering Ly → L1.

Choose 0 < δ∗ ≤ ∆(2m∗DL1
, ε∗) ≤ ε∗ such that BT (y, δ∗) ⊂ Uwy .

The open set U ⊂ N (x1, δ) r Z1 is connected, hence is path connected. Thus, given any point
y′ ∈ U there is a continuous path σ : [0, 1] → U ∩ Ge such that σ(0) = y and σ(1) = y′. Then
choose a sequence of points 0 = t0 < t1 < · · · < tm = 1 such that for yi = σ(ti), we have
σ([ti, ti+1]) ⊂ BT (yi, δ∗). See Figure 2 below.

We show that σ([0, 1]) ⊂ Fix(hw) using induction on the index i. For i = 0, y0 = y and by
assumption, the disk BT (y, δ∗) ⊂ Uwy ⊂ Fix(hw) so σ([0, t1]) ⊂ Fix(hw).

Now assume σ([0, tn]) ⊂ Fix(hw), hence yn = σ(tn) ∈ Fix(hw). The closed path τ∗w in L∗ represent-
ing w is the lift of a closed path τw in L1, which lifts to a closed path τynw in Lyn . As τynw ⊂ N (L1, ε1)
we have that ‖τynw ‖ ≤ 2m∗DL1

. Then the holonomy map hw for w fixes yn so near yn it is defined
by a map

hynw : N (yn, δ∗)→ N (yn, ε∗) .

As the points of U ∩ Ge determine leaves without holonomy, the set of fixed-points for hynw is an
open subset of N (yn, δ∗)∩U ∩Ge. The set of fixed-points is also always a (relatively) closed subset,
hence Fix(hynw ) contains the connected component of N (yn, δ∗) ∩ U ∩ Ge which contains the point
yn. By assumption we have that σ([tn, tn+1]) ⊂ N (yn, δ∗) ∩ U ∩Ge, hence

(36) σ([tn, tn+1]) ⊂ Fix(hynw ) ⊂ Fix(hw) .

Thus, by induction we conclude that y′ ∈ Fix(hw).
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Figure 2. A path chain in the good set

The choice of y′ ∈ U was arbitrary, and thus U ⊂ Fix(hw). We conclude that Ly′ is a finite covering
of L1 and isotopic to Ly, hence vol (Ly′) ≤ 2Vmax. This completes the proof of Proposition 5.4. �

6. Proof of Main Theorem

In this section, we show that for a compact foliation of a compact manifold, a categorical open set
cannot contain a tame point in the bad set. A categorical set must be connected, so we may assume
that M is connected. For a connected manifold M , there is a finite covering (of degree d ≤ 4)

M̃ → M for which the lifted foliation F̃ is again compact, and has oriented tangent and normal
bundles. We then apply the following two elementary results to reduce to the oriented case.

LEMMA 6.1. Let π̃ : M̃ →M be a finite covering with foliation F̃ whose leaves are finite coverings
of the leaves of F . Let U ⊂M be a transversely categorical saturated open set, and H : U×[0, 1]→M

a foliated homotopy to the leaf L1 ⊂M of F . Let Ũ ⊂ M̃ be an open subset such that the restriction

π̃|Ũ → U is a homeomorphism. Then there exists a foliated homotopy H̃ : Ũ × [0, 1]→ M̃ such that

π̃ ◦ H̃t = Ht ◦ π̃ for all 0 ≤ t ≤ 1, where H̃t(Ũ) ⊂ L̃1 for a finite covering L̃1 of L1.

Proof. The covering map π̃ has the unique local lifting of paths property, so in particular has the

homotopy lifting property, which yields the existence of the lifted homotopy H̃. �

LEMMA 6.2. Let π̃ : M̃ → M be a finite covering of degree 1 < d < ∞, with foliation F̃ whose

leaves are finite coverings of the leaves of F . Let L̃ ⊂ M̃ be a leaf of F̃ , and let x̃ ∈ L̃ with x = π̃(x̃).

Then x̃ is a tame point in the bad set for F̃ , if and only if x is a tame point in the bad set for F .

Proof. Suppose that x is a tame point for F , then for ε > 0 there exists a continuous path γ : [0, 1]→
M with γ(1) = x, as in Definition 5.1. The map π̃ has the unique local lifting of paths property, so

there exists a unique path γ̃ : [0, 1] → M̃ with γ̃(1) = x̃. Moreover, for each 0 ≤ t < 1 the leaf L̃t
containing γ̃(t) is a finite covering of the leaf Lt ⊂M containing γ(t) where the degree π̃ : L̃t → Lt
has degree at most d. Thus, the volume vol(Lt) tends to infinity as t→ 1, and thus the same holds

for the volume function ṽol(L̃t) in M̃ . Thus, x̃ is a tame point in the bad set for F̃ . Conversely, if

x̃ is tame point for F̃ then the proof that x is a tame point for F follows similarly. �

Here is the main result of this section.

PROPOSITION 6.3. Let F be a compact C1-foliation of a compact manifold M . If V ⊂M is a
saturated open set which contains a tame point, then V is not transversely categorical.
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Proof. As a consequence of Lemma 6.2, we can assume in the following that both the tangent bundle
TF and the normal bundle Q to F are oriented.

Let x1 ∈ X1 be a tame point, V ⊂M an open set with x1 ∈ V , and suppose there exists a leafwise
homotopy H : V × [0, 1] → M with H0 the inclusion map, and H1(V ) ⊂ L∗ for some leaf L∗. We
show that this yields a contradiction.

Recall that for x ∈M , we let v(x) denote the volume of the leaf Lx containing x.

As x1 is a tame point, there is a smooth path γ : [0, 1] → V such that γ(1) = x1, γ(t) ∈ Ge for
0 ≤ t < 1, and the volume v(γ(t)) of the leaf Lt containing the point γ(t) satisfies lim

t→1
v(γ(t)) =∞.

Define a map φ : [0, 1] × [0, 1] → M by setting φs(t) = φ(s, t) = Hs(γ(t)). Denote by Ls,t the leaf
containing φ(s, t). The key to obtaining a contradiction is to analyze the behavior of the leaf volume
function v(φ(s, t)) = vol (Ls,t).

Set xt = γ(t). Then xt ∈ Ge for 0 < t ≤ 1, while x1 ∈ X1 is the given tame point.

As remarked after Definition 5.1, the restricted path γ : [0, 1)→ Ge lies in the set of leaves without
holonomy, hence for the leaf L0 containing x0 = γ(0), there is a foliated isotopy Γ: L0× [0, 1)→ Ge
such that Γt(x0) = xt. In particular, each map Γt : L0 → Lt has homological degree 1.

Also note that for t = 0, and each 0 ≤ s ≤ 1, the map Hs : L0 = L0,0 → Ls,0 is surjective by
Theorem 4.1. Let ds,0 denote its homological degree. The path of leaves s 7→ Ls,0 starting at L0 has
an upper bound DL0

on their volumes by Proposition 4.2, and moreover, there is an upper bound

(37) d0 = sup{ds,0 | 0 ≤ s ≤ 1} .

For L1 the leaf containing the tame point x1 = γ(1) ∈ X1, and each 0 ≤ s ≤ 1, the map Hs : L1 =
L0,1 → Ls,1 is also surjective by Theorem 4.1. Let ds,1 denote its homological degree. The path of
leaves s 7→ Ls,1 starting at L1 has an upper bound DL1

on their volumes by Proposition 4.2, and
moreover, there is an upper bound

(38) d1 = sup{ds,1 | 0 ≤ s ≤ 1} .

Set

(39) DL = max{DL0 , DL1} .

The set V is saturated, so for each 0 ≤ t < 1, the leaf Lt ⊂ V as γ(t) ∈ V . Thus, we can define a
continuous 2–parameter family of maps Φ: [0, 1] × [0, 1) × L0 → M by setting Φs,t(y) = Hs(Γt(y))
for y ∈ L0. It is important to recall the usual caution with the study of compact foliations: the path
of leaves t 7→ Lt with unbounded volumes cannot limit on a compact leaf in the bad set. Thus, the
paths s 7→ Ls,t must become more chaotic as t→ 1, and correspondingly, the family of maps Φs,t is
not defined for t = 1. On the other hand, we are given that the path γ(t) limits on x1 and so the
trace Φs,t(x0) extends to the continuous map φ(s, t) = Hs(γ(t)) for t = 1. We use this extension of
Φs,t(y) for y = x0 to show that the map extends for all y ∈ L0 which gives a contradiction.

The idea of the proof of the existence of this extension is to use the techniques for studying a
homotopy of compact leaves introduced in Section 4, to control the degrees of the maps on the
fundamental classes of the leaves, induced by the maps Φs,t. This will in turn yield bounds on the
volumes of these leaves, which yields bounds on their diameters. We can thus use Proposition 2.6
to conclude that for t∗ < 1 sufficiently close to t = 1, for each 0 ≤ s ≤ 1, the image Φs,t∗(L0) is
contained in a uniform normal neighborhood of Hs(L1). Then the conclusion (43) of Lemma 6.4
for s = 0 contradicts the assumption that lim

t→∞
vol (L0,t) =∞. The proof of these assertions in the

next subsection completes the proof of Proposition 6.3.

6.1. Details of the proof. We now give the details required to fill out the above sketch of the
proof of Proposition 6.3. First, observe that Φ1,t : L0 → L∗, for 0 ≤ t < 1, is a family of homotopic
maps, hence its homological degree is constant. Thus, for all 0 ≤ t < 1,
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deg(H1 : L0 → L∗) = deg(Φ1,0 : L0 → L1,0)

= deg(Φ1,t : L0 → L1,t)

= deg(Γt : L0 → Lt) · deg(H1 : Lt → L1,t = L∗)

= deg(H1 : Lt → L1,t)

It follows that

(40) deg(H1 : Lt → L1,t) ≤ d0 , ∀ 0 ≤ t < 1 .

Let D = R(2d0d1DL) be the maximum diameter of a leaf with volume at most 2 d0 d1DL, where we
recall that d0 is defined in (37), d1 is defined in (38), and DL is defined in (39).

For each 0 ≤ s ≤ 1, recall that Ls,1 is the leaf containing Hs(x1), and let 0 < ε′s = εLs,1 ≤ ε0 be
such that the normal projection ΠLs,1 : N (Ls,1, ε

′
s)→ Ls,1 is well-defined. Set δ′s = ∆(D, ε′s).

Let L be a compact leaf such that vol (L) ≤ 2 d0 d1DL and L ∩ N (Ls,1, δ
′
s) 6= ∅, then by the choice

of D and δ′s, Proposition 2.6 implies that L ⊂ N (Ls,1, ε
′
s). Thus, the restriction ΠLs,1 : L→ Ls,1 is

well-defined and a covering map, and moreover by Corollary 2.7 we have the estimate

(41) vol (L) ≤ 2 deg(ΠLs,1 : L→ Ls,1) · vol (Ls,1) ≤ 2 deg(ΠLs,1 : L→ Ls,1) ·DL .

The next step is to choose a finite covering of the trace of the path xs,1 = Hs(x1) with respect to
the constants δ′s. For each s, N (Ls,1, δ

′
s) is an open neighborhood of Ls,1, so for φ(s, t) = Hs(γ(t))

there exists λs > 0 such that

(42) φ([s− λs, s+ λs]× [1− λs, 1]) ⊂ N (Ls,1, δ
′
s) .

Choose a sequence 0 = s0 < s1 < · · · < sN−1 < sN = 1 of points such that for λn = λsn the
collection of open intervals {In = (sn − λn, sn + λn) | n = 0, 1, . . . , N} is an open covering of [0, 1].

Set δ′′n = δ′sn and ε′′n = ε′sn for 0 ≤ n ≤ N , and λ∗ = min{λn | n = 0, 1, . . . , N} > 0.

Here is the key result:

LEMMA 6.4. For 0 ≤ s ≤ 1 and 1− λ∗ ≤ t < 1 we have that

(43) vol (Ls,t) ≤ 2 d0 d1DL .

Proof. For each 1 ≤ n ≤ N , set ξ0 = 0 and ξN+1 = 1, and for 1 ≤ n ≤ N choose points

ξn ∈ (sn−1, sn−1 + λn−1) ∩ (sn − λn, sn) .

Then the closed intervals {[ξ0, ξ1], [ξ1, ξ2], . . . , [ξN−1, ξN ], [ξN , ξN+1]} form a closed cover [0, 1].

Let µ satisfy 1 − λ∗ ≤ µ < 1, and let Lµ = Γµ(L0) be the leaf through γ(µ). The technical idea of
the proof of (43) is to compare the homological degrees of the maps

Hξi |Lµ : Lµ = L0,µ → Lξi,µ(44)

Hξi |L1 : L1 = L0,1 → Lξi,1(45)

using a downward induction argument on n, starting with n = N , and showing there is a uniform
bound on the ratios of their degrees for all 1− λ∗ ≤ µ < 1.

For n = N , by (42) we have that

φ([1− ξN , 1]× [µ, 1]) ⊂ φ([1− λN , 1]× [1− λN , 1]) ⊂ N (L1,1, δ
′′
N )

and thus for each 1− ξN ≤ s ≤ 1 the point φ(s, µ) ∈ N (L1,1, δ
′′
N ).

Note that L1,µ = L1,1 = L∗, thus for s < 1 sufficiently close to 1 we have Hs(Lµ) ⊂ N (L1,1, ε
′′
N ) as

the homotopy Hs is uniformly continuous when restricted to the compact leaf Lµ.

Let rN be the infimum of r such that r ≤ s ≤ 1 implies Ls,µ ⊂ N (L1,1, ε
′′
N ). The above remark

implies rN < 1. We claim that rN < ξN .
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Assume, to the contrary, that rN ≥ ξN . Let rN < r < 1. Then for r ≤ s ≤ 1, Ls,µ ⊂ N (L1,1, ε
′′
N )

and so the normal projection ΠL1,1
: Ls,µ → L1,1 is well-defined and a covering map. The restriction

H : Lµ × [r, 1]→ N (L1,1, ε
′′
N )

yields a homotopy between Hr : Lµ → Lr,µ and H1 : Lµ → L1,µ = L1,1. Thus,

deg(ΠL1,1 ◦Hr : Lµ → Lr,µ → L1,1) = deg(ΠL1,1 ◦H1 : Lµ → L1,µ → L1,1) = deg(H1 : Lµ → L1,1)

as ΠL1,1 : L1,µ → L1,1 is the identity. The upper bound (40) implies deg(H1 : Lµ → L1,1) ≤ d0,
hence the covering degree of ΠL1,1

: Lr,µ → L1,1 is bounded above by d0, as it is an integer which
divides deg(H1 : Lµ → L1,1). By Corollary 2.7 it follows that

(46) vol (Lr,µ) ≤ 2 d0 · vol (L1,1) ≤ 2 d0 ·DL .

The leaf volume function is lower semi-continuous, hence we also have that

vol (LrN ,µ) ≤ lim
r→rN+

vol (Lr,µ) ≤ 2 d0 ·DL .

Thus, the estimate (46) holds for all rN ≤ r ≤ 1 and 1− λ∗ ≤ µ < 1.

As we assumed that rN ≥ ξN ≥ λN we have that φ(rN , µ) ∈ N (L1,1, δ
′′
N ), hence Proposition 2.6

implies that LrN ,µ ⊂ N (L1,1, ε
′′
N ). By the uniform continuity of Hs restricted to Lµ at s = rN , there

is r < rN such that r < s ≤ rN implies Ls,µ ⊂ N (L1,1, ε
′′
N ). This contradicts the choice of rN as the

infimum of such r, hence we must have that rN < ξN .

This proves the first statement of the inductive hypothesis for n = N , which is that the estimate
(46) holds for all ξN ≤ r ≤ 1 and 1− λ∗ ≤ µ < 1.

We next consider the ratios of covering degrees for a pair of leaves in adjacent normal neighborhoods.
For ξN ≤ s ≤ 1, we have φ(s, 1) ∈ N (L1,1, δ

′′
N ) and vol (Ls,1) ≤ DL hence Ls,1 ⊂ N (L1,1, ε

′′
N−1),

and so the normal projection restricts to a covering map ΠL1,1
: Ls,1 → L1,1. Moreover, this implies

that both LξN ,µ and LξN ,1 are coverings of L1,1, and their homological degrees are denoted by

αµN = deg(ΠL1,1
: LξN ,µ → L1,1)(47)

aN = deg(ΠL1,1
: LξN ,1 → L1,1)(48)

Note that as sN−1 < ξN , the leaves LξN ,µ and LξN ,1 are also coverings of LsN−1,1. We compare their
homological degrees. By the uniform continuity of Hs restricted to the curve γ(t), for 0 ≤ s ≤ 1,
the path t 7→ φ(s, t) has limit xs,1 = Hs(x1). By Proposition 2.6, the volume bound (46) for
1− ξN ≤ s ≤ 1 and 1− λ∗ ≤ t < 1 implies that

(49) Hs(Lt) = Ls,t ⊂ N (Ls,1, ε
′
s) .

Thus, there is a well-defined limit

deg (Φs,1 : L0 → Ls,1) ≡ lim
t→1

{
deg

(
ΠLs,1 ◦ Φs,t : L0 → N (Ls,1, ε

′
s)→ Ls,1

)}
.

The terminology deg (Φs,1 : L0 → Ls,1) is a small abuse of notation, as given y ∈ L0 there is no
assurance that t 7→ Φs,t(y) has a limit at t = 1; it is only given that the image is trapped in the
open neighborhood N (Ls,1, ε

′
s), and the images are homotopic for t sufficiently close to 1.

Then for 1− λs ≤ t < 1, define

(50) Ξ(s, t) =
deg (Φs,1 : L0 → Ls,1)

deg (Φs,t : L0 → Ls,t)
.

We now apply this discussion in the case s = ξN where we have the volume bound (46). It again
follows from Proposition 2.6 that for 1− λ∗ ≤ t < 1, and noting that sN = 1,

(51) HξN (Lt) = LξN ,t ⊂ N (LsN ,1, ε
′′
N ) ∩N (LsN−1,1, ε

′′
N−1) .

Thus, for 1− λ∗ ≤ µ ≤ t < 1 the maps

ΠL1,1
◦ ΦξN ,µ ∼ ΠL1,1 ◦ ΦξN ,t : L0 → N (L1,1, ε

′′
N )
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are homotopic, hence

(52) deg(ΠL1,1
◦ ΦξN ,µ) = deg(ΠL1,1

◦ ΦξN ,t) .

For t sufficiently close to 1 the map ΠL1,1
◦ ΦξN ,t on the left-hand-side of (52) factors

ΠL1,1
◦ ι ◦ΠLξN ,1

◦ ΦξN ,t : L0 → N (LξN ,1, ε
′
ξN−1

)→ LξN ,1 ⊂ N (L1,1, ε
′′
N )→ L1,1

while the map ΠL1,1 ◦ ΦξN ,µ on right-hand-side of (52) factors

ΠL1,1
◦ ΦξN ,µ : L0 → LξN ,µ → L1,1 .

Identifying the degrees of these maps in our terminology, we obtain from (52) that

deg(ΦξN ,µ : L0 → LξN ,µ)·αµN = deg(ΠL1,1
◦ΦξN ,µ) = deg(ΠL1,1

◦ΦξN ,t) = deg(ΦξN ,1 : L0 → LξN ,1)·aN
and so

(53) αµN = Ξ(ξN , µ) · aN .

Thus, the ratio (50) gives the relation between the homological degrees of the maps in (47) and (48).
This completes the proof of the first stage of the induction for the proof of Lemma 6.4.

The general inductive hypotheses involves two statements: Given 0 ≤ n ≤ N , we first assume that:

(54) for all 0 ≤ n ≤ N, for all ξn ≤ s ≤ 1 and 1− λ∗ ≤ t ≤ 1, then vol (Ls,t) ≤ 2 d0 d1 ·DL .

Given (54), then for n ≤ ` ≤ N and 1− λ∗ ≤ µ ≤ 1 define the integers a`, b`, α
µ
` , β

µ
` .

Lξ`,1 ⊂ N (Ls`,1, ε
′′
` ) , a` = deg

(
ΠLs`,1

: Lξ`,1 → Ls`,1

)
Lξ`,1 ⊂ N (Ls`−1,1, ε

′′
`−1) , b` = deg

(
ΠLs`−1,1

: Lξ`,1 → Ls`−1,1

)
Lξ`,µ ⊂ N (Ls`,1, ε

′′
` ) , αµ` = deg

(
ΠLs`,1

: Lξ`,µ → Ls`,1

)
Lξ`,µ ⊂ N (Ls`−1,1, ε

′′
`−1) , βµ` = deg

(
ΠLs`−1,1

: Lξ`,µ → Ls`−1,1

)
For notational convenience, set bN+1 = βµN+1 = 1 and a0 = αµ0 = 1. Second, we assume that:

(55) for all n ≤ ` ≤ N, and 1− λ∗ ≤ µ ≤ 1, then
αµ`
a`

= Ξ(ξ`, µ) =
βµ`
b`

.

We show that if (54) and (55) are true for n, then the corresponding statements are true for n− 1.

The choice of λs > 0 so that (42) holds implies that

φ([sn−1 − λn−1, sn−1 + λn−1]× [1− λ∗, 1]) ⊂ N (Lsn−1,1, δ
′′
n−1)

and hence φ(s, t) ∈ N (Lsn−1,1, δ
′′
n−1) for all ξn−1 ≤ s ≤ ξn and 1− λ∗ ≤ t < 1.

For s = ξn the hypothesis (54) implies that for all 1− λ∗ ≤ t < 1,

(56) vol (Lξn,t) ≤ 2 d0 d1 ·DL and hence Lξn,t ⊂ N (Lsn−1,1, ε
′′
n−1) .

Thus, the restriction ΠLsn−1,1
: Lξn,t → Lsn−1,1 is a covering map. The key to the proof of the

inductive step is to obtain a uniform estimate for the homological degree of this covering map.

LEMMA 6.5. For all 1− λ∗ ≤ t < 1, βtn · deg (Hξn : L0,t → Lξn,t) ≤ d0 d1.

Proof. Consider the diagram

L0,t
-

Hξn
Lξn,t Lξn+1,t · · · LξN ,t

L0,1
-

Hsn−1

Lsn−1,1
�
bn

Lξn,1 -
an

Lsn,1 �
bn+1

Lξn+1,1 · · · LξN ,1 -
aN

L1,1

�
�

�
�	

......

?

@
@
@
@R

�
�
�
�	

......

?

@
@
@
@R

......

?

βtn

Ξ(n, t)

αtn βtn+1

Ξ(n+ 1, t) Ξ(N, t)

αtN

where the integer next to a covering map indicates its homological degree.
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The mapsHξn : L0,1 → Lξn,1 andHsn−1 : L0,1 → Lsn−1,1 are homotopic through maps intoN (Lsn−1,1, ε
′′
n−1),

hence

(57) deg
(
Hsn−1

: L0,1 → Lsn−1,1

)
= bn · deg (Hξn : L0,1 → Lξn,1) .

As deg
(
Hsn−1

: L0,1 → Lsn−1,1

)
= ds,1 ≤ d1 and the degrees of the maps are positive integers, it

follows that 1 ≤ bn ≤ d1.

For n ≤ ` < N and 1 − λ∗ ≤ t < 1, the maps Hξ` : L0,t → Lξ`,t and Hξ`+1
: L0,t → Lξ`+1,t are

homotopic through maps into N (Ls`,1, ε
′′
` ), hence

(58) αt` · deg (Hξ` : L0,t → Lξ`,t) = βt`+1 · deg
(
Hξ`+1

: L0,t → Lξ`+1,t

)
.

Likewise, for n ≤ ` < N , the maps Hξ` : L0,1 → Lξ`,1 and Hξ`+1
: L0,1 → Lξ`+1,1 are homotopic

through maps into N (Ls`,1, ε
′′
` ), hence

(59) a` · deg (Hξ` : L0,1 → Lξ`,1) = b`+1 · deg
(
Hξ`+1

: L0,1 → Lξ`+1,1

)
.

It follows from equation (58) that

deg (H1 : L0,t → L1,t) =
αtN
βtN+1

· deg (HξN : L0,t → LξN ,t)

=
αtN−1α

t
N

βtNβ
t
N+1

· deg
(
HξN−1

: L0,t → LξN−1,t

)
...

=
αtn · · ·αtN−1α

t
N

βtn+1 · · ·βtNβtN+1

· deg (Hξn : L0,t → Lξn,t)

=
αtn · · ·αtN
βtn · · ·βtN

· βtn · deg (Hξn : L0,t → Lξn,t)

so that by the inductive hypothesis (55) we have

βtn · deg (Hξn : L0,t → Lξn,t) =
βtn · · ·βtN
αtn · · ·αtN

· deg (H1 : L0,t → L1,t)

=
bn · · · bN
an · · · aN

· deg (H1 : L0,t → L1,t)(60)

Using (57) we obtain

(61) deg (H1 : L0,1 → L1,1) =
an · · · aN
bn · · · bN

· deg
(
Hsn−1 : L0,1 → Lsn−1,1

)
.

so that

(62)
bn · · · bN
an · · · aN

=
deg

(
Hsn−1

: L0,1 → Lsn−1,1

)
deg (H1 : L0,1 → L1,1)

≤ d1 .

and hence combining (40) , (60) and (62) we obtain

(63) βtn · deg (Hξn : L0,t → Lξn,t) ≤ d1 · deg (H1 : L0,t → L1,t) ≤ d0 d1 .

This completes the proof of Lemma 6.5. �

Fix 1 − λ∗ ≤ µ < 1. Let rn−1 ≤ ξn be the infimum of r satisfying r ≤ ξn such that r ≤ s ≤ ξn
implies that Ls,µ ⊂ N (Lsn−1,1, ε

′′
n−1). As Lξn,µ ⊂ N (Lsn−1,1, ε

′′
n−1), the continuity of Hs at s = ξn

implies that rn−1 < ξn. We claim that rn−1 < ξn−1.
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Assume, to the contrary, that rn−1 ≥ ξn−1. Let rn−1 < r < ξn, then for r ≤ s ≤ ξn, Ls,µ ⊂
N (Lsn−1,1, ε

′′
n−1) and so the normal projection ΠLsn−1,1

: Ls,µ → Lsn−1,1 is well-defined and a cov-

ering map. The restriction
H : Lµ × [r, ξn]→ N (Lsn−1,1, ε

′′
n−1)

yields a homotopy between Hr : Lµ → Lr,µ and Hξn : Lµ → Lξn,µ. Thus,

deg(ΠLsn−1,1
◦Hr : Lµ → Lr,µ → Lsn−1,1) = deg(ΠLξn−1,1

◦Hξn : Lµ → Lξn,µ → Lξn−1,1) .

It follows from the estimate (63) that

(64) deg(ΠLsn−1,1
: Lr,µ → Lsn−1,1) ≤ deg(ΠLsn−1,1

◦Hr : Lµ → Lr,µ → Lsn−1,1) ≤ d0 d1

hence

(65) vol (Lr,µ) ≤ 2 d0 d1 · vol (Lsn−1,1) ≤ 2 d0 d1 ·DL .

The leaf volume function is lower semi-continuous, hence we also have that

(66) vol (Lrn−1,µ) ≤ lim
r→rn−1+

vol (Lr,µ) ≤ 2 d0 d1 ·DL .

Thus, the estimate (65) holds for all rn−1 ≤ r ≤ 1 and 1− λ∗ ≤ µ < 1.

As we assumed that rn−1 ≥ ξn−1 ≥ sn−1 − λn−1 we have that φ(rn−1, µ) ∈ N (Lsn−1,1, δ
′′
n−1) hence

Lrn−1,µ ⊂ N (Lsn−1,1, ε
′′
n−1). By the continuity of Hs at s = rn−1 there is r < rn−1 such that

r < s ≤ rn−1 implies Ls,µ ⊂ N (Lsn−1,1, ε
′′
n−1). This contradicts the choice of rn−1 as the infimum

of such r, hence we must have that rn−1 < ξn−1. This proves the first statement of the inductive
hypothesis for n− 1.

The second inductive statement (55) follows exactly as before.

Thus, we conclude by downward induction that (43) holds for all 1− λ∗ ≤ t < 1 and all 0 ≤ s ≤ 1.

This completes the proof of Lemma 6.4, and so completes the proof of Proposition 6.3. �
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[4] H. Colman, Categoŕıa LS en foliaciones, Publicaciones del Departamento de Topoloǵıa y Geometŕıa, no.
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