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We generalize the Hirsch construction of a smooth foliation on a 3-manifold with a

unique exceptional minimal set, to obtain a method for constructing smooth foli-

ations of arbitrary codimension with exotic minimal sets. The method also yields

a procedure to realize a given system of étale correspondences as the holonomy of

a smooth foliation of a compact manifold. This generalizes the well-known group

suspension construction.

1 Introduction

The “Hirsch foliation”, as originally constructed by Morris Hirsch in [36],
is an analytic codimension one foliation of a compact 3-manifold N with
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a unique minimal set K of exceptional type. All of the leaves of F in K

have exponential volume growth rate, and there is a countable set of leaves
with non-trivial holonomy, generated by a single contraction. This foliation
admits a complete closed transversal diffeomorphic to S1, but the global
holonomy of the foliation is not equivalent to a group acting on S1. The
procedure for constructing the Hirsch foliation is actually a recipe for con-
structing many families of foliations, depending on the choices made. For
example, the literature often considers a variant of the original construc-
tion, one which yields a natural transverse affine structure for the foliation,
and whose global holonomy lifts to an affine action of the group Z[1

2 ] on R.
Section 2 below describes the construction of the Hirsch foliation and some
variations in codimension one.

The purpose of this note is to give a much broader generalization of the
Hirsch construction to obtain foliations in codimension greater than one.
It is possible that the constructions we describe, or some form of them, are
“folklore” since the construction we give is very natural, but the authors
do not know of any published reference for this construction.

Our construction is based on two observations, which can be developed
in multiple ways. First, the Hirsch construction uses the classic solenoid
embedding of the solid 2-torus into itself, where the core circle is mapped
to itself by a 2 − 1 map, which becomes the global holonomy of the result-
ing foliation. There is nothing special about the choice of a degree 2 map,
and the construction is easily generalized to maps of degree n. More impor-
tantly, there is also nothing special about the use of a single self-embedding.
The Hirsch construction generalizes to a collection of self-embeddings, and
even further to realizing a given “system of étale correspondences” as the
holonomy of a foliated compact manifold. The notion of a system of étale
correspondences is introduced in Section 3, which generalizes that of a
finitely-generated group.

The second observation about the Hirsch foliation is that the construc-
tion of the self-embedding uses the property of the circle S1 that it admits
proper self-coverings. A manifold which admits no proper self-covering is
said to be co-Hopfian. A group which admits no proper embedding into
itself is said to be co-Hopfian. (The concept was introduced by R. Baer [2],
and has been more recently studied by many authors; see Section 3.4.) The
q-torus Tq is clearly not co-Hopfian, and for dimension q ≥ 3 there are
many more examples of manifolds which do admit proper self-coverings.
All such examples give rise to foliations via a generalization of the Hirsch
construction. For example, one obtains in this way a large collection of
foliations of codimension q whose transverse geometry is modeled on affine
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manifolds of dimension q, and the holonomy is generated by expanding
diffeomorphisms. To illustrate the usefulness of this construction, we give
three types of examples in Section 6, which hopefully convince the reader
that these foliations often have very interesting dynamical properties.

Example 6.1 shows how to realize a class of Markov minimal sets using a
a very simple construction. The result is a codimension one foliation whose
holonomy has a unique exceptional minimal set with prescribed holonomy.

Example 6.3 constructs a smooth codimension two foliation which ad-
mits an exceptional minimal set that is homeomorphic to a Sierpinski 2–
torus. This provides an affirmative solution to problem 4 of [7]. More
generally, the generalized Hirsch construction yields smooth foliations in
arbitrary codimension with minimal sets which are transversally of the form
of a Sierpinski manifold. This is discussed at length in the paper [5].

Example 6.4 constructs a foliation of codimension q, whose holonomy is
locally equivalent to the action of the group of integer matrices SL(q,Z),
but the foliation is not defined by an action of SL(q,Z) on Tq. This is just
one of many possible examples of this type.

The last Section 7 discusses some of the questions and problems sug-
gested by these examples.

2 Hirsch foliations in codimension one

The “Hirsch example” is not just one example, but is rather a construction
with two ingredients whose choices determine the properties of the resulting
foliation. The original construction as in Hirsch [36] yields a real analytic
foliation with an exceptional minimal set. On the other hand, the con-
struction defined on pages 371–373 of [10] yields a minimal foliation which
is transversally affine. We present here these constructions in full detail.

2.1 Traditional construction

The traditional construction of the affine Hirsch example proceeds as fol-
lows. Choose an analytic embedding of S1 in the solid torus D2 × S1 so
that its image is twice a generator of the fundamental group of the solid
torus. See Figure 1 below.

Remove an open tubular neighborhood of the embedded S1. What
remains is a three dimensional manifold N1 whose boundary is two disjoint
copies of T 2. D2 × S1 fibers over S1 with fibers the 2-disc. This fibration
restricted to N1 foliates N1 with leaves consisting of 2-disks with two open
subdisks removed.
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Now identify the two components of the boundary of N1 by a diffeo-
morphism which covers the map z 7→ z2 of S1 to obtain the manifold N .
Endow N with a Riemannian metric; then the punctured 2-disks foliating
N1 can now be viewed as pairs of pants.

As the foliation of N1 is transverse to the boundary, the punctured 2-
disks assemble to yield a foliation of foliation F on N , where the leaves
without holonomy (corresponding to irrational points for the chosen dou-
bling map of S1) are infinitely branching surfaces, decomposable into pairs-
of-pants which correspond to the punctured disks in N1.

Figure 1. Original Hirsch construction illustrated

2.2 General construction

In this following, we give a more general construction of the Hirsch foliation
in codimension one, which was described in the third author’s thesis [55].
We ask the reader’s patience for the discussion below; the reason is not to
make the traditional construction more “obvious”, but rather to explicitly
list each of the steps which we will discuss later in the generalizations.

The first ingredient needed for the construction is the choice of an integer
n > 1, and an (analytic) embedding of S1 in the solid torus S1 ×D2 so that
its image is n-times a generator of the fundamental group of the solid torus.
Here is an explicit procedure for making this choice. Denote by

D2 = {w ∈ C | |w| ≤ 1} ⊂ C,

S1 = {w ∈ C | |w| = 1} ⊂ D2.

For z ∈ C with 0 < |z| < 1 and ǫ > 0 such that 0 < ǫ < |z|, set

B2(z, ǫ) = {w ∈ C | |w − z| < ǫ} ⊂ D2,

S1(z, ǫ) = {w ∈ C | |w − z| = ǫ} ⊂ D2.
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Set ρ = e2π
√
−1/n which is a generator of the nth-roots of unity. Intro-

duce the flat bundle

E =
(

R1 × R2/(x+ 1, z) ∼ (x, ρ z)
)
→ S1

which corresponds to the representation Z → SO(2) ∼= S1, n 7→ ρn. The
unit disk subbundle of E is the “twisted” solid torus N0 = R1 × D2/(x +
1, z) ∼ (x, ρ z).

The flat bundle E → S1 is trivial as a vector bundle, with the bundle
isomorphism S1 × C ∼= E induced by the map

Φ̃ : R × D2 → R × D2,

Φ̃ : (x, z) → (x, e−2πx
√
−1/n z). (1)

Note that

Φ̃(x+ 1, z) = (x+ 1, e−2π(x+1)
√
−1/nz)

= (x+ 1, ρ−1e−2πx
√
−1/nz) ∼ (x, e−2πx

√
−1/nz) = Φ̃(x, z)

so that Φ̃ descends to a map Φ: S1 ×C → E. The restriction also defines a
trivialization of the unit disk bundles, again denoted by Φ: S1 ×D2 → N0.

Now fix z0 ∈ D2 with 0 < |z0| < 1. For 0 ≤ m < n, set zm = ρm z0.
Choose ǫ > 0 such that 2ǫ < min{|z0|, 1 − |z0|}.

Define the punctured disk P2
0 obtained from D2 by deleting the n disjoint

open disks:

P2
0 = D2 −

(
B2(z0, ǫ) ∪B2(z1, ǫ) ∪ · · · ∪ B2(zn−1, ǫ)

)
. (2)

The result is illustrated in Figure 2 below.

Figure 2. Basic pair of pants P
2

0
with six legs
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Next, we introduce the 3-manifoldN1 ⊂ N0 with boundary as a quotient
of R1 × P2

0

N1 = R1 × P2
0/(x+ 1, z) ∼ (x, ρ z). (3)

Note thatN1 is diffeomorphic to the solid torus S1×D2 with an open tubular
neighborhood removed from an embedding of S1 →֒ S1 × D2 which winds
n-times around the core. The diffeomorphism is given by the restriction of
the map Φ−1 : N0 → S1 × D2.

The boundary of N1 consists of two disjoint tori, ∂N1 = ∂+N1 ∪ ∂−N1

where

∂+N1 = R1 × S1/(x+ 1, z) ∼ (x, ρ z),

∂−N1 = R1 ×
(
S1(z0, ǫ) ∪ · · · ∪ S1(zn−1, ǫ)

)
/(x+ 1, z) ∼ (x, ρ z).

There is a foliation FN1
of N1 whose leaves P2

x are compact 2-manifolds
with boundary, where:

P2
x = {x} × P2

0 ⊂ N1,

S1
x = {x} × S1 ⊂ N1,

S1
x(zi, ǫ) = {x} × S1(zi, ǫ) ⊂ P2

x.

Note that the intersection of the leaf P2
x with the boundary tori ∂+N1 and

∂−N1 consists of the circles S1
x and S1

x(zi, ǫ), so that each boundary torus
is foliated by circles.

The second ingredient in the construction is the choice of a diffeomor-
phism f : ∂+N1 → ∂−N1 chosen so that f maps the foliations of the bound-
ary tori each to the other. Again, we give an explicit construction for f .

Choose an immersion H : S1 → S1 of degree n. The choice of H is
equivalent to the choice of a diffeomorphism h : R → R such that h(x+1) =
h(x) + n, and then H = h mod (1).

Define an embedding g̃n : R1 × D2 → R1 × D2 by

g̃n(x, z) =
(
h(x), e2πh(x)

√
−1/n (z1 + ǫ z)

)
(4)

Then

g̃(x+ 1, z) = (h(x) + n, e2π(h(x)+n)
√
−1/n (z1 + ǫ z))

∼ (h(x), e2πh(x)
√
−1/n (z1 + ǫ z)) = g̃(x, z)

so that g̃ induces an embedding g : S1 × D2 → S1 × D2 of the standard
solid torus into itself. To obtain a map in terms of the twisted torus N1,
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we conjugate g̃ with Φ̃ of (1) to obtain f̃ : R1 × D2 → R1 × D2 where

f̃ = Φ̃ ◦ g̃ ◦ Φ̃−1. In coordinates,

f̃(x, z) = Φ̃ ◦ g̃(x, e2πx
√
−1/n z)

= Φ̃(h(x), e2πh(x)
√
−1/n (z1 + ǫ e2πx

√
−1/n z))

= (h(x), e−2πh(x)
√
−1/n e2πh(x)

√
−1/n (z1 + ǫ e2πx

√
−1/n z))

= (h(x), (z1 + ǫ e2πx
√
−1/n z)).

Then

f̃(x+ 1, z) = (h(x) + n, (z1 + ǫ e2π(x+1)
√
−1/n z))

= (h(x) + n, (z1 + ǫ e2πx
√
−1/n ρ z))

∼ (h(x), (z1 + ǫ e2πx
√
−1/n ρ z))

= f̃(x, ρ z)

so that f̃ descends to a map f : N0 → N0. By construction, the restriction
of f̃ defines a map f̃ : R1 × ∂+P2

0 → R1 × ∂−P2
0. It follows that f induces

a quotient map f : ∂+N1 → ∂−N1 which maps the outer boundary ∂+P2
0

to the inner boundary ∂−P2
0. Define

N = N1/(x, z) ∼ f(x, z). (5)

Note that f̃ maps fibers to fibers, so the leaves of FN1
∩ ∂+N1 are mapped

to leaves of FN1
∩ ∂−N1, hence N has a foliation F whose leaves are the

unions of n-punctured disks P2
x.

2.3 Description of leaves

The typical leaf of F is modeled on a homogeneous n-partite tree, though
exceptional leaves of F contain isolated handles. Let 0 ≤ x < 1 and consider
the n-punctured disk P2

x ⊂ N1. The inner boundary consists of n disjoint
circles,

∂−P2
x = S1

x(z0, ǫ) ∪ · · · ∪ S1
x(zn−1, ǫ). (6)

The map H : S1 → S1 is a submersion of degree n, so the set H−1(x) =
{x0, . . . , xn−1} consists of n distinct points. The map f identifies the outer
boundary circle S1

xℓ
= ∂+P2

xℓ
with an inner boundary component of ∂−P2

x,
f : S1

xℓ
→ S1

x(zi, ǫ) for some i = i(ℓ). Note that the identification joins the
outer circle to the inner circle rotated by the amount ρi.

This processes is iterated both in reverse and forward times, to yield
the leaf Lx through x. Figure 3 illustrates the case n = 2, where P2

0 is a
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two-punctured disk. Note that the rotation in joining the outer and inner
boundary circles is by multiples of −1, so is not apparent in the illustration.

Figure 3. Typical leaf

In the exceptional case where x is a fixed-point for H , then x ∈ H−1(x),
so we assume x = x0. Then the outer boundary circle ∂+P2

x is identified
with an inner boundary circle of ∂−P2

x. Thus, the identifications used to
construct the leaf Lx “in the future” all collapse into a circular identification
on the punctured surface P2

x which creates a handle on Lx with a closed
loop that generates transverse holonomy for F . The leaf Lx is modeled on
a pointed n-partite tree, with a terminal vertex corresponding to the closed
loop produced by the fixed point H(x0) = x0.

2.4 Transverse holonomy

The foliation F on N admits a complete transversal, T : S1 →֒ N , con-
structed as follows: the origin 0 ∈ P2

0 so we can define an embedding
t̃ : R → R1 × P2

0 where t̃(x) = (x, 0). Then

t̃(x+ 1) = (x+ 1, 0) ∼ (x, ρ · 0) = (x, 0) = t̃(x).

Passing to quotient manifolds we obtain t : S1 → N1. Clearly, the image of
t intersects each leaf of FN1

and thus descends to a complete transversal
for the foliation F on N , denoted by T : S1 → N . We will let S1

T denote
the image of this map, which is identified with S1.

Next, consider the holonomy transformations induced on the transversal
S1

T by F . The foliation FN1
is defined by a fibration, so has no holonomy.

Thus, all of the holonomy of F is induced by the identification of the outer
and inner boundaries via the map H . One can visualize this holonomy
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action by considering a short interval (a, b) ⊂ S1
T , considered as in interval

in the covering R1, and then sliding it across the leaves of N1, avoiding the
holes removed on the inner boundary, until reaching the outer boundary
∂+N1. Apply the map h to the points in the interval (a, b) to obtain the
interval (h(a), h(b)) which is identified with an interval in one of the inner
boundary components ∂−N1. Then slide the interval (h(a), h(b)) along the
leaves of FN1

back to the transversal S1
T .

Note that this holonomy construction requires that the domain interval
(a, b) is not a closed loop, as otherwise the sliding actions demanded above
cannot be performed. The image of the full transversal S1

T cannot be par-
allel transported past the interior boundary of N1 as the inner core links
the embedded torus. This is the basis of the remarkable property of the
Hirsch foliation, that even though F has a complete closed transversal, the
foliation is not equivalent to a group action on that transversal. The map
H is not invertible.

2.5 Affine Hirsch foliation

The affine Hirsch foliation is obtained by choosing an integer n > 1 and
setting h(x) = nx. Clearly, h(x+ 1) = h(x) + n. Moreover, the transverse
holonomy as described above is obviously affine, as the map x 7→ nx is an
affine transformation.

We consider one other aspect of this example, the existence of leaves
with holonomy for F . Transverse holonomy for F arises exactly from pe-
riodic orbits of H : S1 → S1. We use the modular notation for H so that
H(x) = nx (1). Then 0 ≤ x < 1 is a fixed point for some power Hk if and
only if nk x = x (1). Thus, x = ℓ/(nk − 1) for some integer 0 ≤ ℓ < nk − 1.
Each such point then generates a closed loop in the leaf Lx through x with
non-trivial transverse holonomy.

Note that the set of points P = {x = ℓ/(nk − 1) | k ≥ 1, 0 ≤ ℓ <
nk − 1} ⊂ S1 is dense, so F has a dense set of leaves with non-trivial
holonomy.

2.6 Hirsch foliation with exceptional minimal set

The construction given by Hirsch in [36] includes an explicit description of
the map H : S1 → S1 of degree 2. Define H in terms of the map h : [0, 1] →
[0, 2] illustrated in Figure 4, and defined by

h(0) = 0; h(.5) = 1.5; h(.75) = 1.75; h(1) = 2; h′(.75) < 1,

h(x) > 3x & h′(x) > 1 for 0 < x < .5.
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Figure 4. 2–1 map with structurally stable fixed-point

Two points x, y ∈ S1 are said to be in the same “grand orbit” of H
if there are positive integers k, ℓ such that Hk(x) = Hℓ(y) (cf. Milnor
[48].) This defines an equivalence relation on S1. We need only check the
transitive condition: suppose Hk(x) = Hℓ(y) and Hu(y) = Hv(z), then
note Hu+k(x) = Hu+ℓ(y) = Hℓ+v(z).

Let O(x) ⊂ S1 denote all the points in the same orbit as x. A subset
K ⊂ S1 is H-invariant if for all x ∈ K, the orbit O(x) ⊂ K. The set K is
minimal if K is closed, and for all x ∈ K the orbit O(x) is dense in K. A
minimal set K is exceptional if it is nowhere dense and not a finite set.

Lemma 2.1 Let H : S1 → S1 be defined by the map in Figure 4. Then
there exists a unique minimal set K ⊂ S1.

Proof. Define the intervals

I = [0, .5] ⊂ R1/x ∼ x+ 1 ∼= S1,

J = (.5, 1) ⊂ R1/x ∼ x+ 1 ∼= S1.

The point z0 = .75 ∈ J is a fixed by H , and the open interval J is a
basin of attraction for y0.

Define the open, H-invariant set U =
⋃

w∈J
O(w).

Set K = S1 −U , which is a closed invariant subset of I. The boundary
points for x0 = 0 and y0 = .5 for I are fixed-points for H , so O(x0) ⊂ K

and O(y0) ⊂ K.
The property h′(x) ≥ x on I implies that h is expansive on I, hence for

any x0 ≤ a < b ≤ y0, there exists ℓ > 0 such that hℓ(a, b) ∩ J 6= ∅. Hence
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U ∩ I is dense in I and thus K is nowhere dense.
We must show that for x ∈ K, the grand orbit O(x) is dense in K. Note

that K = O(x0) ⊂ K. Given x ∈ K ⊂ I, as h : [0, .5) → [0, 1.5) is expansive,
the grand orbit O(x) contains the sequence of points {h−ℓ(x) | ℓ = 1, 2, . . .}
which converge to x0 and thus x0 ∈ O(x). This implies that K ⊂ O(x) ⊂ K.
Hence, it suffices to show that K = K, or that for every x ∈ K there is a
point in O(x0) arbitrarily close.

Let x ∈ K and ǫ > 0, then the intersection (x−ǫ, x+ǫ)∩U 6= ∅. Choose
z ∈ (x− ǫ, x+ ǫ) ∩ U .

Let (a, b) ⊂ U be the largest interval such that a < z < b. Then
either a ∈ (x − ǫ, x + ǫ) or b ∈ (x − ǫ, x + ǫ). Otherwise, we have that
(x− ǫ, x+ ǫ) ⊂ (a, b) ⊂ U , which contradicts x 6∈ U .

The point z ∈ U implies there is some w ∈ J such that Hk(z) = Hℓ(w),
and as H : J → J is the basin of attraction for z0 we have Hk(z) ∈ J . As
H−k(J ) ⊂ U by definition, there is a connected component J1 ⊂ H−k(J )
which contains z. Then J1 ∩ (a, b) 6= ∅ and (a, b) maximal implies J1 ⊂
(a, b).

The endpoints of J are y0 = .5 and x0 = 1, hence the endpoints of
J1 are contained in the orbits O(y0) and O(x0). As x0, y0 ∈ K, it follows
that J1 = (a, b) where Hk(a) = y0 and Hk(b) = x0. This is exactly what
one expects in analogy with the construction of the usual Cantor set, that
the gaps in S1 − K consists of the maximal connected components in the
wandering domain, which in this case is U .

If b ∈ (x− ǫ, x+ ǫ) then O(x0) ∩ (x− ǫ, x+ ǫ) 6= ∅.
If a ∈ (x − ǫ, x + ǫ), we need the observation that y0 ∈ O(x0), hence

O(x0) intersects every open neighborhood of every point in O(y0) which
implies O(x0) ∩ (x− ǫ, x+ ǫ) 6= ∅.

To show that y0 ∈ O(x0) note that y1 = h−1(1) > 0, and that y2 =
h−1(1 + y1) > y1. In general, by induction we have that yn+1 = h−1(1 +
yn) > yn and the sequence {yn} is monotonically increasing to y0 = 1/2.

2

3 Systems of étale correspondences

The suspension of a smooth action of a finitely generated group Γ on a
compact manifold M without boundary is one of the main methods of
constructing foliations cited in textbooks [9, 10, 23, 33]. The basic idea is
to choose a set of generators {γ1, . . . , γk} for Γ so that for each 1 ≤ i ≤ k
there is a diffeomorphism hi = h(γi) : M → M . The second step is to
choose k pairs of disjoint disks in the 2-sphere S2, label the pairs (Ds

i ,D
r
i )
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and chose a diffeomorphism of the boundaries φi : ∂Ds
i → ∂Dr

i . Then the
manifold

N1 = M ×
(

S2 − Ds
1 − Dr

1 − · · · − Ds
k − Dr

k

)

has a foliation F0 defined by the projection to the first factor M . Moreover,
N1 has 2k boundary components, each diffeomorphic to M × S1. The
restriction of F0 to each boundary component is given by the circle fibers.
The boundary components are then pairwise identified by the maps hi ×
φi : M × ∂Ds

i →M × ∂Dr
i to obtain a compact foliated manifold N with M

as transversal, and global holonomy equivalent to the action of Γ on M .
The codimension one Hirsch construction is analogous to the above sus-

pension construction, except that there is a single holonomy map h : S1 →
S1 which is a covering map, but not a diffeomorphism. Our generalization
of this construction, given in Sections 4 and 5, gives a method to realize
a foliation whose holonomy is generated by a collection of endomorphisms
of a given compact manifold M , to form what we call here a system of
étale correspondences. The generating endomorphisms need not be cover-
ings, but are only required to be local covering maps, hence the notation
“étale”. The generating maps are diffeomorphisms of appropriate covering
spaces of M .

Let M be an oriented compact manifold without boundary of dimension
q. We assume that there is a Riemannian metric on TM such that for ω the
volume form onM associated to the Riemannian metric and the orientation
of M , then M has total volume 1. The Riemannian metric yields a norm
on each tangent space TxM , which we denote by ‖ · ‖x.

3.1 Correspondences

An étale correspondence for M is a triple of data (s, r, h) = (s : P →
M, r : Q→M,h : P → Q) where

• s : P →M is a covering map of finite index m which is a local isometry;

• r : Q→ M is a covering map of finite index n which is a local isometry;

• h : P → Q is a diffeomorphism.

We say that (s, r, h) is a correspondence of type (m,n). The data yields a
diagram
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?

P

M

s

- Q
h

?

r

M

For example, if M is simply connected, then every covering map of M
is a diffeomorphism, so the maps s and r are necessarily isometric diffeo-
morphisms, and an étale correspondence is essentially just a choice of a
diffeomorphism r ◦ h ◦ s−1 : M →M .

The simplest non-trivial example is for the case M = S1 with metric
such that S1 has total length 1. For a positive integer n, let ×n : S1 → S1

denote the covering map z 7→ zn. Given a pair of positive integers m,n
we take P = Q = S1, s = ×m and r = ×n. Note that for the lifted
Riemannian metrics, P has total length m and Q has total length n. A
diffeomorphism h : P → Q yields an étale correspondence. The special case
m = 1, n > 1 was considered in Section 2, for in this case the composition
H = r ◦ h ◦ s−1 : S1 → S1 is an immersion of degree n.

3.2 Expansive maps

An orientation-preserving immersion f : M →M is expanding if there exists
C > 1 such that

‖df(x)(~v)‖h(x) ≥ C · ‖~v‖x for all ~v ∈ TxM. (7)

Let n = deg(f) ≥ 1 be the topological degree of f . Let [ω] ∈ Hq(M ; R)
denote the cohomology class of the closed form ω. Then [f∗ω] = f∗[ω] =
n · [ω], so that

n =

∫

M

f∗ω > Cq ·
∫

M

ω = Cq · 1 > 1.

An immersion is a local covering map, and since M is compact, it follows
that f : M → M is a covering map of degree n > 1. Chose a basepoint
x0 ∈ M and let y0 ∈ M be such that f(y0) = x0. Then the induced map
on fundamental groups, f# : π1(M, y0) → π1(M,x0), has image a proper
subgroup Πf ⊂ π1(M,x0).

Let r : Q → M be a canonical covering associated to the subgroup
Πf ⊂ π1(M,x0). (Say, the covering defined by the path-space construc-
tion.) Endow Q with the lifted Riemannian metric so that the covering
map r is a local isometry. Then the total volume of Q is n.
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Let h : M → Q be a lift of the map f , so that r ◦ h = f . Then h is an
immersion of degree 1, hence a diffeomorphism. Thus, take P = M and let
s : P →M be the identity, and we obtain an étale correspondence (s, r, h).

The existence of an expanding map f : M → M is a very strong hy-
pothesis on M . It implies that the universal cover M̃ →M has polynomial
volume growth rate [35, 56], and hence by Gromov [27] the fundamental
group π1(M,x0) has a nilpotent subgroup of finite index. The most obvi-
ous example is for M = Tq, but there are many further examples where
π1(M,x0) is a non-abelian nilpotent group. For example, Hyunkoo Lee
and Kyung-Bai Lee prove in [45] that every nilmanifold whose fundamen-
tal group is two-step nilpotent admits an expanding map. This result was
generalized by Karel Dekimpe and Kyung-Bai Lee, who gave a criteria for
a nilmanifold that it admit an expanding map in [14], and they classified
those nilpotent Lie algebras which admit expanding maps in [15].

3.3 Products

Given two étale correspondences

(s1 : P1 → M1, r1 : Q1 →M1, h1 : P1 → Q1),
(s2 : P2 → M2, r2 : Q2 →M2, h2 : P2 → Q2),

we can form the product correspondence

(s : P →M, r : Q→M,h : P → Q),

where M = M1 ×M2 with the product metric, s = s1 × s2, r = r1 × r2,
and h = h1 × h2. For example, let (s1, r1, h1) be the étale correspondence
associated to an expanding map f1 : M1 → M1. Let f2 : M2 → M2 be
a diffeomorphism of a compact oriented Riemannian manifold, then let
P2 = Q2 = M2 with s2, r2 both the identity maps, and set h2 = f2. Then
the product map f = (r1 × id) ◦ (h1 × h2) : M1 × M2 → M1 ×M2 is a
partially expanding map.

3.4 Self-coverings and the co-Hopf condition

A special case of an étale correspondence (s, r, h) = (s : P → M, r : Q →
M,h : P → Q) is when the source map s : P → M is a diffeomorphism,
so m = 1, and the range map r : Q → M has degree n > 1. Then the
composition f = r ◦ h ◦ s−1 : M →M is a proper self-covering. The funda-
mental group π1(M,x0) must therefore be non-trivial, and the induced map
f# : π1(M,x0) → π1(M,x0) is a proper self-embedding. Moreover, given a
proper self-covering f : M →M and diffeomorphisms g1 and g2 of M , then
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f1 = g1 ◦ f ◦ g2 is again a proper self-covering, so the existence of one such
map ensures the existence of a wide variety of examples.

A group which admits no proper self-embedding is said to be co-Hopfian,
a concept introduced by Reinholt Baer [2]. The existence of proper self-
coverings is related to the venerable question of which fundamental groups
do not have the co-Hopfian property. Ohshika and Potyagailo [49] and
Kapovich and Wise [44] discuss the history of the co-Hopfian property.
Belegradek [3] gave a criterion for when a finitely generated torsion-free
nilpotent group is co-Hopfian.

Note that while the fundamental group π1(M,x0) of a closed manifold
M which admits proper self-coverings is not co-Hopfian, the converse is far
from clear.

The q-torus Tq is the canonical example of a closed manifold admitting
proper self-coverings. There are no other oriented examples for dimension
q = 2.

The study of which 3-manifold groups are co-Hopfian is formulated in
terms of the eight geometries in the Thurston Geometrization Conjecture
[57]. Clearly, M = Σ × S1 where Σ is a closed surface, admits proper
self-coverings. The next simplest examples are when M is a non-trivial
Seifert fiber space over an orbifold. González-Acuña, Litherland and Whit-
ten proved in [24] that if M is a closed 3-dimensional Seifert fiber space,
then its fundamental group is co-Hopfian, if and only if M does not cover
itself non-trivially, if and only if M admits a geometric structure modeled

on S3 or on ˜SL(2,R). Thus, 5 of the 7 geometries which are Seifert fibered
admit non-trivial self-coverings.

González-Acuña and Whitten studied which Haken manifolds have the
co-Hopfian property in their paper [26]. The work of Shi-cheng Wang and
Qing Wu [59] used the Gromov norm invariant [28, 57] of closed 3-manifolds
to study the co-Hopf property; in particular, all hyperbolic 3-manifolds
have non-zero Gromov norm, so are co-Hopfian. Leonid Potyagăılo and Shi
Van (a.k.a. Shi-cheng Wang) study whether the fundamental group of a
3-manifold satisfying Thurston’s conjecture is a co-Hopfian group in [50],
and obtain some necessary and sufficient conditions.

The study of connected sums of 3-manifolds leads to the study of the
class of graph manifolds. Shi-cheng Wang and Feng-chun Yu studied in
[61] the co-Hopfian property of graph manifolds. More generally, they con-
sidered the related Property C that, whenever M1,M2 are homeomorphic
finite covering spaces of M , the degrees of the coverings are the same. They
proved that a closed geometric 3-manifold M has Property C if and only
if M is not covered by either Σ × S1 or a torus bundle over S1. The sur-
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vey paper by Buyalo and Svetlov [8] also gives results on the co-Hopfian
property for graph manifolds.

In dimension q > 3, one class of closed manifolds which admit proper
self-covering maps are those which admit an expanding map f : M → M .
As noted in Section 3.2, the fundamental group ofM necessarily has a nilpo-
tent subgroup of finite index. It is natural to ask which finitely-generated
nilpotent groups are co-Hopfian, or not. This problem was solved by Igor
Belegradek in [3]. Examples of non-Hopfian nilpotent groups give rise to
self-covering maps of nil-manifolds, which are typically partially expanding.

The co-Hopfian property has been studied for two other classes of fini-
tely-generated groups. Ohshika and Potyagailo [49], Wang and Zhou [60],
and Delzant and Potyagailo [17] study which Kleinian groups are co-Hopfian.
Note that if a Kleinian group is torsion-free and co-compact, then the cor-
responding hyperbolic manifold M has non-zero Gromov norm, so is co-
Hopfian.

The question of which (word) hyperbolic groups are co-Hopfian was
posed by Gromov and Thurston. Sela proved in [53] that a non-elementary,
torsion-free hyperbolic group is co-Hopfian if and only if it is freely in-
decomposable. Later, Kapovich and Wise showed in [44] that the co-Hopf
property does not typically descend to subgroups of word hyperbolic groups.

We mention two other results which concern the topological properties
of spaces which admit proper self-coverings. Delgado and Timm [16] gives
restrictions on the fundamental group of a connected finite complex that
has nontrivial finite connected coverings. Andrica and Funar [1] give Morse
type obstructions to the existence of homeomorphisms between coverings
of a closed manifold.

3.5 Systems of étale correspondences

A system of étale correspondences for the Riemannian manifold M is a
collection

C = {(sℓ : Pℓ →M, rℓ : Qℓ →M,hℓ : Pℓ → Qℓ | 1 ≤ ℓ ≤ k},
where each (sℓ, rℓ, hℓ) is an étale correspondence of type (mℓ, nℓ).

Given a finitely generated group Γ and a smooth action ϕ : Γ×M →M ,
choose a set of generators {γ1, . . . , γk} for Γ then set Pℓ = Qℓ = M , let
s, r : M →M be the identity maps, and fℓ = ϕ(γℓ). This yields a system of
étale correspondences C for M , where (sℓ, rℓ, hℓ) = (id, id, fℓ) so (mℓ, nℓ) =
(1, 1).

Conversely, when all of the indices nℓ = mℓ = 1 then for each ℓ we
obtain a diffeomorphism fℓ = rℓ ◦ hℓ ◦ s−1

ℓ , so that the system of étale
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correspondences yields a collection of diffeomorphisms {f1, . . . fk} which
generate a subgroup Γ ⊂ Diff(M).

To analyze the general case, fix a basepoint x0 ∈ M , and set Π =
π1(M,x0). Introduce the collection of all finite index subgroups of Π, de-
noted by ∆ = {π ⊂ Π | [Π : π] < ∞}. For each π ∈ ∆ let pπ : Pπ → M
be the covering of M associated to the model of the universal covering
M̃ → M , using paths based at x0. (In other words, we fix a canonical
model pπ : Pπ → M for the covering associated to each π.) Give Pπ the
Riemannian metric induced by the covering map pπ, so that pπ is a local
isometry.

We say that an étale correspondence (s, r, h) is standard (with respect
to these choices) if there are subgroups πs, πr ∈ ∆ such that

(s, r, h) = (pπs : Pπs →M,pπr : Pπr →M,h : Pπs → Pπr ).

The correspondence (s, r, h) is said to have index (πs, πr), so the type is
(n,m) where m = [Π : πs] and n = [Π : πr]. Given two standard étale
correspondences (s1, r1, h1) of type (πs

1, π
r
1) and (s2, r2, h2) of type (πs

2, π
r
2),

if πr
1 = πs

2 then we can compose then to obtain

(s1, r1, h1) ◦ (s2, r2, h2)

= (s1 : Pπs
1
→M, r2 : Pπr

2
→M,h2 ◦ h1 : Pπs

1
→ Pπr

2
).

In this way, the standard étale correspondences form a pseudogroup P(∆)
with object space the disjoint union

P =
⋃

π∈∆

Pπ.

When M is simply connected, or more if generally Π has no subgroups of
finite index, then P(∆) = Diff(M). If Π does admit a subgroup π ⊂ Π of
finite index, then each f ∈ Diff(M) admits at least one lift to a diffeomor-
phism h : Pπ → Pπ so that P(∆) is no longer simply Diff(M).

The above construction is most interesting when the fundamental group
Π admits many subgroups of finite index; for example, when it is infinite and
residually finite. In fact, we include the above discussion on composition of
étale correspondences, because such a system gives rise to cohomology in-
variants, obtained from the geometric realization of the topological category
P(∆). These cohomology invariants may help characterize the pseudogroup
modeled on M obtained from the étale correspondences modeled on M .
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3.6 Correspondences and pseudogroups

In general, a system of étale correspondences C = {(sℓ : Pℓ → M, rℓ : Qℓ →
M,hℓ : Pℓ → Qℓ | 1 ≤ ℓ ≤ k} for M corresponds to a particular type of
pseudogroup modeled on M . Let U denote the collection of all open subsets
of M which are contractible in M . For each 1 ≤ ℓ ≤ k, the covering map
sℓ : Pℓ →M has degree mℓ, and for each U ∈ U the inverse image

s−1
ℓ (U) = {Ũℓ,1, . . . , Ũℓ,mℓ

}

consists of mℓ disjoint open connected subsets Ũℓ,i ⊂ Pℓ. For each 1 ≤ i ≤
mℓ the restriction sℓ|Ũℓ,i → U is a diffeomorphism, so we can define the
immersion

hℓ,i,U = rℓ ◦ hℓ ◦ (sℓ|Ũℓ,i)
−1 : U → M. (8)

The collection of maps

ΓC = {hℓ,i,U | 1 ≤ ℓ ≤ k, 1 ≤ i ≤ mℓ, U ∈ C}
generates a compactly pseudogroup modeled on M (cf. [29, 30, 31]), which
we again denote by ΓC .

One of the open questions in foliation theory, is which compactly sup-
ported pseudogroups can be realized as the pseudogroup of a foliation on
a compact manifold without boundary. In Section 5 we use a more general
form of the Hirsch construction to realize every pseudogroup ΓC arising
from a system of étale correspondences as the pseudogroup of a foliation.

4 Generalized Hirsch foliations

The generalization of the Hirsch construction of Section 2.2 will be given
in two parts. In this section, we realize a single étale correspondence as the
holonomy of a foliation. In the next section, we extend the construction to
realize a given system of correspondences.

Let (s, r, h) = (pπs : Pπs → M,pπr : Pπr → M,h : Pπs → Pπr ) be an
étale correspondence in standard form with type (m,n). The first step is
the construction in Section 4.3 of the foliated manifold N1 with boundary
∂N1 = ∂sN1 ∪ ∂rN1. We then use h to define a foliation preserving diffeo-
morphism H : ∂sN1 → ∂rN1 which yields the foliated manifold N via the
identification of the boundary components.

The construction of the Hirsch foliation in codimension one in Sec-
tion 2.2 begins with the choice of a point 0 6= z0 ∈ D2 and we form the
set zm = ρm z0, where ρ is an nth root of unity. The set {z0, z1, . . . zn−1}
is the orbit of a cyclic subgroup of O(2) of order n acting on D2. These
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points are the centers of the disks removed in order to obtain P2
0. The

crucial observation in the generalization of the Hirsch construction is to re-
place the cyclic group acting on D2 with a finite subgroup of the orthogonal
group O(p + 1) acting on the unit sphere Sp, where p depends upon the
structure of the correspondence. The n-punctured 2-disk P2

0, which can be
viewed as an n + 1-punctured 2-sphere, will accordingly be replaced with
a suitably punctured p-sphere, so the leaves of the foliation we obtain will
have dimension p.

4.1 Flat bundles

Recall that Π = π1(M,x0). Define the finite coset spaces Xs = Π/πs and
Xr = Π/πr. Note that we do not assume the subgroups πs and πr are
normal in Π, so these coset spaces are not necessarily groups. They do,
however, inherit a left action of Π, which acts as a group of permutations
on each Xs and Xr. Let µs : Π → Perm(Xs) and µr : Π → Perm(Xr) be
the corresponding representations.

Let m denote the cardinality of Xs, and n that of Xr.
Let Vs = R〈Xs〉 denote the inner product R-vector space with orthonor-

mal basis {~ug | g ∈ Xs}.
The permutation action µs of Π onXs induces a representation ρs : Π →

Aut(Vs) ∼= O(m).
Similarly define the space Vr = R〈Xr〉 with orthonormal basis {~vg | g ∈

Xr}, and induced representation ρr : Π → Aut(Vr) ∼= O(n).
Let V = Vs ⊕Vr be the orthogonal direct sum, with orthonormal basis

{~ug | g ∈ Xs} ∪ {~vg | g ∈ Xr}. Let ρ = ρs × ρr : Π → O(m) × O(n) ⊂
O(m+ n) be the product representation.

Define a flat vector bundle over M by

E = M̃ × V/{(γ · x,~v) ∼ (x, ρ(γ)~v), ∀ γ ∈ Π} →M (9)

where M̃ →M is the universal covering of M , and Π acts on the left on M̃
by deck transformations. Note that the representation ρ induces an action
of Π on V by isometries, so E inherits a fiberwise inner product from the
inner product on V. Let E1 ⊂ E denote the subbundle of unit vectors, so if
we let V1 ⊂ V denote the unit vectors in V, then

E1 = M̃ × V1/{(γ · x,~v) ∼ (x, ρ(γ)~v), ∀ γ ∈ Π} →M. (10)

The bundle E → M need not be trivial, even though E is flat. However,
as M is paracompact, there exists a vector bundle F → M such that the
direct sum E ⊕ F →M is the trivial bundle. Choose such a bundle F with
fiber dimension ξ, give F a fiberwise inner product, and give E ⊕ F the
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direct sum inner product. Let εp = M × Rp denote the product bundle,
where p = m+n+ξ, endowed with the standard the fiberwise inner product
inherited from the standard metric on R. Fix a bundle isomorphism Φ: E⊕
F ∼= εp which is a fiberwise isometric map. Finally, let εp+1 = εp ⊕ ε be
the orthogonal direct sum, where the additional summand of the trivial
line bundle ε is also given the fiberwise inner product inherited from the
standard metric on R.

Let N0 = M × Sp ⊂ εp+1 denote the Sp-subbundle of unit vectors
in εp+1.

4.2 Tubular sections

The next step in the construction is to define submanifolds W s
0 ,W

r
0 ⊂ N0

of dimension q such that the projection N0 →M restricts to covering maps
associated with the subgroups πs and πr, respectively. (Recall that q is the
dimension of M .) We will first construct submanifolds W s,W r ⊂ E1 such
that the projection E1 → M restricts to the required covering maps, and
then use the inclusion followed by the trivialization map Φ to obtain the
isometric embedding

ι0 : E1 ⊂ E ⊂ E ⊕ F ⊕ ε ∼= εp+1 (11)

to obtain W s
0 and W r

0 . The stabilizing summands F ⊕ ε have no role in
the construction of W s and W r, but are rather introduced so that for
ǫ > 0 sufficiently small, the normal ǫ-disk bundles of the submanifolds
W s

0 ,W
r
0 ⊂ N0 are trivial.

Let 1s ∈ Xs denote the coset [πs] ∈ Xs, and similarly define 1r ∈ Xr.
Let ~1s ∈ Vs ⊂ Vs ⊕Vr = V be the basis element corresponding to the coset
1s, and ~1r ∈ Vr ⊂ Vs ⊕ Vr = V be the basis element corresponding to 1r.

For γ ∈ Π, set zγ = ρ(γ)(~1s) ∈ V1 and wγ = ρ(γ)(~1r) ∈ V1. We let

z0 = ~1s and w0 = ~1r.
Note that if δ ∈ πs then zδ = z0, and more generally zγδ = zγ . Thus, for

each coset g ∈ Xs = Π/πs there is a well-defined point zg ∈ V1. Of course,
zg is just the point on the sphere V1 corresponding to the basis vector ~ug.

Likewise, if δ ∈ πr then wδ = w0, and more generally wγδ = wγ . Thus,
for each coset g ∈ Xr = Π/πr there is a well-defined point wg ∈ V1 which
corresponds to the basis vector ~vg.

Set Os = {zg | g ∈ Xs} and Or = {wg | g ∈ Xr}. Note that both sets
are invariant under the action of ρ. Define submanifolds of E1 by

W s = M̃ ×Os/{(γ · x,~v) ∼ (x, ρ(γ)~v), ∀ γ ∈ Π},
W r = M̃ ×Or/{(γ · x,~v) ∼ (x, ρ(γ)~v), ∀ γ ∈ Π}.
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Since the action of Π on Os is transitive with stabilizer group πs, the
projection E1 →M restricted to the manifold W s is the standard covering
of M associated to the subgroup πs.

Similarly, the action of Π on Or is transitive with stabilizer group πr,
hence the projection E1 →M restricted to the manifold W r is the standard
covering of M associated to the subgroup πr.

Each fiber of E1 → M over x ∈ M is naturally isometric to the unit
sphere Sm+n−1 ⊂ V, and is given the induced Riemannian metric with
geodesic distance function dv

x, so has circumference 2π. Given any pair of
orthogonal unit vectors ~v, ~u ∈ V, we have dv

x(~v, ~u) = π/2 > 1.
The submanifolds W s and W r intersect the fiber of E1 → M over x in

points corresponding to the orbits Os and Or. Thus, for distinct points
z, w ∈ Os ∪Or , the distance dSp(z, w) = π/2 > 1.

Define W s
0 ,W

r
0 ⊂ N0 as the images of W s and W r respectively un-

der the map ι0 of (11), so we obtain diffeomorphisms ιs0 : W s → W s
0 and

ιr0 : W r → W r
0 .

Let ~n0 : M → N0 be the section defined by ~n0(x) = {x} × (0, . . . , 0, 1).
Similarly, let ~s0 : M → N0 be the section defined by ~s0(x) = {x} ×
(0, . . . , 0,−1). The section ~n0 should be viewed as determining the “north
pole” for each Sp-fiber of N0 → M , and ~s0 is the opposite “south pole”.
The manifold N0 with this section deleted is

N0 − ~n0(M) = M × {Sp − (0, . . . , 0, 1)} ∼= M × Rp, (12)

where the last isomorphism uses stereographic projection from the south
pole in each fiber. For each z ∈ N0 −~n0(M) the identification (12) induces
a framing of the fiberwise tangent space T v

zN0 of N0 at z.
Each fiber {x} × Sp of N0 = M × Sp over x ∈ M has the standard

Riemannian metric with geodesic distance function denoted by dSp , and
with circumference 2π. The inclusion ι0 : E1 → N0 is a fiberwise isometric
embedding, and the image of ι0 is fiberwise orthogonal to the section ~n.
Hence, for each x ∈ M , the submanifolds W s

0 and W r
0 intersect the fiber

of N0 → M over x in points which are fiberwise orthogonal to ~n(x). Let
W s

x = W s
0 ∩ ({x} × Sp) and W r

x = W r
0 ∩ ({x} × Sp). Then for each point

z ∈ W s
x or W r

x the fiberwise distance to the north pole ~n0(x) is π/2.
Let 0 < ǫ < π/4, then each x ∈ M we define the fiberwise disk neigh-

borhoods of W s
x and W r

x by

Dp(W s
x , ǫ) =

⋃

w∈W s
x

{(x, z) ∈M × Sp | dSp(z, w) < ǫ} ⊂ {x} × Sp, (13)

Dp(W r
x , ǫ) =

⋃

w∈W r
x

{(x, z) ∈M × Sp | dSp(z, w) < ǫ} ⊂ {x} × Sp,
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and their boundaries

Sp−1(W s
x , ǫ) =

⋃

w∈W s
x

{(x, z) ∈M × Sp | dSp(z, w) = ǫ} ⊂ {x} × Sp, (14)

Sp−1(W r
x , ǫ) =

⋃

w∈W r
x

{(x, z) ∈M × Sp | dSp(z, w) = ǫ} ⊂ {x} × Sp.

Fix ǫ = 1/10, then define the open tubular neighborhoods of W s
0 and W r

0

in N0 by

Dp(W s
0 ) =

⋃

x∈M

Dp(W s
x , 1/10), (15)

Dp(W r
0 ) =

⋃

x∈M

Dp(W r
x , 1/10),

and their boundaries in N0 by

T s =
⋃

x∈M

Sp−1(W s
x , 1/10), (16)

T r =
⋃

x∈M

Sp−1(W r
x , 1/10).

4.3 Construction of the foliation

We are now prepared to complete the construction. Set N1 = N0 −(
Dp(W s

0 ) ∪ Dp(W r
0 )

)
.

The boundary of N1 has two connected components, ∂N1 = ∂sN1 ∪
∂rN1, where ∂sN1 = T s and ∂rN1 = T r. The manifold N1 fibers over M ,
defining a foliation F0. The fiber of N1 over x ∈M is the set

Pp
x = N1 ∩ ({x} × Sp) =

(
{x} × Sp

)
−

(
Dp(W s

x , 1/10)∪ Dp(W r
x , ǫ)

)
, (17)

so that the typical leaf of F0 is diffeomorphic to the sphere Sp with m+ n
disks removed.

Whereas the traditional “pair of pants” P2
0 used in Section 2.2 has one

hole considered as its “waist”, and has n holes for the “legs”, this modern
hosiery represented by Pp

x has m waist holes and n leg holes. Moreover, it
has dimension p = m+ n+ ξ.

The submanifold T s is disjoint from the north pole section ~n0 so the
fibers of the map T s → M are trivialized by the map (12). The similar
statement holds for T r, so we obtain fiberwise identifications

ϕs : T s ∼= W s
0 × Sp−1,

ϕr : T r ∼= W r
0 × Sp−1.
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Finally, we are given the diffeomorphism h : Pπs → Pπr where Pπs is
standard, so canonically identified with W s and hence with W s

0 , while Pπr

is identified with W r
0 . Thus, h induces a diffeomorphism

H = (ϕr)−1 ◦ (h× Id) ◦ ϕs : T s → T r,

which maps fibers to fibers. That is, H preserves the foliation on the
boundary components of N1 induced by F0.

Define N = N1/T
s ∼ T r, and let F be the foliation whose leaves are

composed of the images under the identification map H of the leaves of F0.
This completes the construction of the “Hirsch foliation” F on N realizing
the étale correspondence (s, r, h).

4.4 Remarks on the construction

The boundary manifolds T s and T r are sphere bundles over the covering
spaces W s

0
∼= Pπs → M and W r

0
∼= Pπr → M , but due to the fact that

the flat bundle E → M may have very complicated structure, and the
trivialization E ⊕ F of this bundle is given abstractly, the embedding of
these manifolds into M × Sp is not easily described. In fact, every aspect
of the above construction is more technically complicated, but the overall
construction is exactly analogous.

The manifold M has a natural embedding M0 = ~s(M) into N as the
image of the south pole section of M × Sp. The proof that the holonomy
pseudogroup of F induced on M0 is equivalent to that defined by the étale
correspondence (s, r, h) on M is also analogous to the proof for the tradi-
tional Hirsch foliation. Hence, the dynamics of F induced on the section
M0 is equivalent to the dynamics of h “acting” on M .

For each x ∈M ∼= M0, the leaf Lx of F through x is assembled from a
countable collection of leaves Pp

y of F0,

Lx =
⋃

y∼x

Pp
y

/
∼,

where y ∼ x means that they are on the same orbit of x ∈ M under the
étale correspondence h.

It would be quite complicated to try to describe the exact geometry of
the leaves and their embeddings into N , as the identification of the various
boundary spheres of the building blocks Pp

y uses the mapH , whose fiberwise
component reflects the topology of the flat bundle E and its trivialization.
It is an interesting question whether there is in fact some topological in-
variant of F reflected by the geometry of the embeddings of the leaves. For
example, Heitsch and Hurder calculated the foliated coarse cohomology of
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the traditional Hirsch foliation (with holonomy h(z) = z2) in the paper
[34]. It would be quite interesting to understand the foliated coarse coho-
mology of the Hirsch foliation F corresponding to an étale correspondence
(s, r, h), and whether the coarse cohomology depends upon the topology of
the embeddings of the leaves into N .

5 Realizing systems of étale correspondences

Suppose there is given a system of étale correspondences for the Riemannian
manifold M

C =
{
(sℓ : Pℓ →M, rℓ : Qℓ →M,hℓ : Pℓ → Qℓ) | 1 ≤ ℓ ≤ k

}
,

where each (sℓ, rℓ, hℓ) is an étale correspondence of type (mℓ, nℓ) and index
(πs

ℓ , π
r
ℓ ). In this section, we show how to modify the construction of the

last section to realize the system C as the holonomy of a foliation F .

5.1 Flat bundles

For each 1 ≤ ℓ ≤ k, define the finite coset spaces Xs
ℓ = Π/πs

ℓ and Xr
ℓ =

Π/πr
ℓ with left action of Π by permutations. Let µs

ℓ : Π → Perm(Xs
ℓ ) and

µr
ℓ : Π → Perm(Xr

ℓ ) be the corresponding permutation representations.
Let mℓ denote the cardinality of Xs

ℓ , and nℓ that of Xr
ℓ .

Let Vs
ℓ = R〈Xs

ℓ 〉 denote the inner product R-vector space with orthonor-
mal basis {~uℓ,g | g ∈ Xs

ℓ }.
The permutation action µs

ℓ of Π onXs
ℓ induces a representation ρs

ℓ : Π →
Aut(Vs

ℓ)
∼= O(mℓ).

Similarly define the space Vr
ℓ = R〈Xr

ℓ 〉 with orthonormal basis {~vℓ,g |
g ∈ Xr

ℓ }, and induced representation ρr
ℓ : Π → Aut(Vr

ℓ)
∼= O(nℓ).

Let V =

k⊕

ℓ=1

Vs
ℓ ⊕ Vr

ℓ be the orthogonal direct sum, with orthonormal

basis

S =

k⋃

ℓ=1

{~uℓ,g | g ∈ Xs} ∪ {~vℓ,g | g ∈ Xr}.

Set m = m1 + · · · +mk and n = n1 + · · · + nk. Let

ρ = ρs
1 × ρr

1 × · · · × ρs
k × ρr

k :

Π → O(m1) × O(n1) × · · · × O(mk) × O(nk) ⊂ O(m+ n)

be the product representation.
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The rest of the construction proceeds almost exactly as for a single étale
correspondence. Define a flat vector bundle over M by

E = M̃ × V/{(γ · x,~v) ∼ (x, ρ(γ)~v), ∀ γ ∈ Π} →M, (18)

where M̃ → M is the universal covering of M , and Π acts on the left on
M̃ by deck transformations. The representation ρ induces an action of Π
on V by isometries, so E inherits a fiberwise inner product from the inner
product on V. Let E1 ⊂ E denote the subbundle of unit vectors, and let
V1 ⊂ V denote the unit vectors in V, then

E1 = M̃ × V1/{(γ · x,~v) ∼ (x, ρ(γ)~v), ∀ γ ∈ Π} →M. (19)

There exists a vector bundle F →M such that the direct sum E⊕F →M
is the trivial bundle. Choose such a bundle F with fiber dimension ξ, give
F a fiberwise inner product, and give E ⊕ F the direct sum inner product.
Let εp = M×Rp denote the product bundle, where p = m+n+ξ, endowed
with the standard the fiberwise inner product inherited from the standard
metric on R. Fix a bundle isomorphism Φ: E⊕ F ∼= εp which is a fiberwise
isometric map. Finally, let εp+1 = εp ⊕ ε be the orthogonal direct sum,
where the additional summand of the trivial line bundle ε is also given the
fiberwise inner product inherited from the standard metric on R.

Let N0 = M × Sp ⊂ εp+1 denote the Sp-subbundle of unit vectors
in εp+1.

5.2 Tubular sections

Let 1s
ℓ ∈ Xs

ℓ denote the coset [πs
ℓ ] ∈ Xs

ℓ , and similarly define 1r
ℓ ∈ Xr

ℓ .

Let ~1s
ℓ ∈ Vs

ℓ ⊂ V be the basis element corresponding to the coset 1s
ℓ , and

~1r
ℓ ∈ Vr

ℓ ⊂ V be the basis element corresponding to 1r
ℓ .

For γ ∈ Π, set zℓ,γ = ρ(γ)(~1s
ℓ) ∈ V1 and wℓ,γ = ρ(γ)(~1r

ℓ) ∈ V1. We let

zℓ,0 = ~1s
ℓ and wℓ,0 = ~1r

ℓ .
Note that if δ ∈ πs

ℓ then zℓ,δ = zℓ,0, and more generally zℓ,γδ = zℓ,γ .
Thus, for each coset g ∈ Xs

ℓ = Π/πs
ℓ there is a well-defined point zℓ,g ∈ V1.

Of course, zℓ,g is just the point on the sphere V1 corresponding to the basis
vector ~uℓ,g.

Likewise, if δ ∈ πr
ℓ then wℓ,δ = wℓ,0, and more generally wℓ,γδ = wℓ,γ .

Thus, for each coset g ∈ Xr
ℓ = Π/πr

ℓ there is a well-defined point wℓ,g ∈ V1

which corresponds to the basis vector ~vℓ,g.
Set Os

ℓ = {zℓ,g | g ∈ Xs
ℓ } and Or

ℓ = {wℓ,g | g ∈ Xr
ℓ }. Note that both

sets are invariant under the action of ρ. For 1 ≤ ℓ ≤ k, define submanifolds
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of E1 by

W s
ℓ = M̃ ×Os

ℓ/{(γ · x,~v) ∼ (x, ρ(γ)~v), ∀ γ ∈ Π},
W r

ℓ = M̃ ×Or
ℓ/{(γ · x,~v) ∼ (x, ρ(γ)~v), ∀ γ ∈ Π}.

Since the action of Π on Os
ℓ is transitive with stabilizer group πs

ℓ , the
projection E1 →M restricted to the manifold W s

ℓ is the standard covering
of M associated to the subgroup πs

ℓ .
Similarly, the action of Π on Or

ℓ is transitive with stabilizer group πr
ℓ ,

hence the projection E1 →M restricted to the manifold W r
ℓ is the standard

covering of M associated to the subgroup πr
ℓ .

Each fiber of E1 → M over x ∈ M is naturally isometric to the unit
sphere Sm+n−1 ⊂ V, and is given the induced Riemannian metric with
geodesic distance function dv

x, so has circumference 2π. Given any pair of
orthogonal unit vectors ~v, ~u ∈ V, we have dv

x(~v, ~u) = π/2 > 1.
The submanifolds W s

ℓ and W r
ℓ intersect the fiber of E1 → M over x in

points corresponding to the orbits Os
ℓ and Or

ℓ . Thus, for distinct points
z, w ∈ Os

ℓ ∪ Or
ℓ , the distance dSp(z, w) = π/2 > 1. By construction, for

ℓ 6= λ, the vector subspaces Vs
ℓ , Vr

ℓ , Vs
λ and Vr

λ are all pairwise orthogonal.
Thus, if z ∈ Os

ℓ ∪Or
ℓ and w ∈ Os

λ ∪ Or
λ, then dSp(z, w) = π/2.

Define the inclusion of the sphere bundle E1 into N0 via the composition

ι0 : E1 ⊂ E ⊂ E ⊕ F ⊕ ε ∼= εp+1. (20)

Define W s
ℓ,0 ⊂ N0 and W r

ℓ,0 ⊂ N0 as the images under the map ι0 of (11)
of W s

ℓ and W r
ℓ respectively, so we obtain diffeomorphisms ιsℓ : W s

ℓ → W s
ℓ,0

and ιrℓ : W r
ℓ →W r

ℓ,0.
Let ~n0 : M → N0 be the north-pole section defined by ~n0(x) = {x} ×

(0, . . . , 0, 1). Similarly, let ~s0 : M → N0 be the south-pole section defined by
~s0(x) = {x} × (0, . . . , 0,−1). The manifold N0 with the north-pole section
deleted is

N0 − ~n0(M) = M × {Sp − (0, . . . , 0, 1)} ∼= M × Rp, (21)

where the last isomorphism uses stereographic projection from the south
pole in each fiber. For each z ∈ N0 −~n0(M) the identification (21) induces
a framing of the fiberwise tangent space T v

zN0 of N0 at z.
Each fiber {x} × Sp of N0 = M × Sp over x ∈ M has the standard

Riemannian metric with geodesic distance function denoted by dSp , and
with circumference 2π. The inclusion ι0 : E1 → N0 is a fiberwise isometric
embedding, and the image of ι0 is fiberwise orthogonal to the section ~n.
Hence, for each x ∈ M , the submanifolds W s

ℓ and W r
ℓ intersect the fiber

of N0 → M over x in points which are fiberwise orthogonal to ~n(x). Let
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W s
ℓ,x = W s

ℓ ∩ ({x}× Sp) and W r
ℓ,x = W r

ℓ ∩ ({x} × Sp). Then for each point
z ∈ W s

ℓ,x or W r
ℓ,x the fiberwise distance to the north pole ~n0(x) is π/2.

Let 0 < ǫ < π/4, then each x ∈ M and 1 ≤ ℓ ≤ k, define the fiberwise
disk neighborhoods Dp(W s

ℓ,x, ǫ) and Dp(W r
ℓ,x, ǫ) of W s

ℓ,x and W r
ℓ,x as in (13).

Their boundaries Sp−1(W s
ℓ,x, ǫ) and Sp−1(W r

ℓ,x, ǫ) are defined as in (14).
Fix ǫ = 1/10, then define the open tubular neighborhoods Dp(W s

ℓ ) and
Dp(W r

ℓ ) of W s
ℓ and W r

ℓ in N0 as in (15). Their boundaries T s
ℓ ⊂ N0 and

T r
ℓ ⊂ N0 are defined as in (16).

5.3 Construction of the foliation

Set

N1 = N0 −
(

Dp(W s
1 ) ∪ Dp(W r

1 ) ∪ · · · ∪ Dp(W s
k ) ∪ Dp(W r

k )
)
.

The boundary of N1 has 2k connected components,

∂N1 = ∂s
1N1 ∪ ∂r

1N1 ∪ · · · ∪ ∂s
kN1 ∪ ∂r

kN1,

where ∂s
ℓN1 = T s

ℓ and ∂r
ℓN1 = T r

ℓ . The manifold N1 fibers over M , defining
a foliation F0. The fiber of N1 over x ∈M is the set

P
p
ℓ,x = N1 ∩

(
{x} × Sp

)
=

(
{x} × Sp

)

−
(

Dp(W s
ℓ,x, 1/10) ∪ Dp(W r

ℓ,x, ǫ) ∪ · · · ∪ Dp(W s
ℓ,x, 1/10)∪ Dp(W r

ℓ,x, ǫ)
)
.

The typical leaf of F0 is diffeomorphic to the sphere Sp with m+n = m1 +
· · ·+mk +n1 + · · ·+mk disks removed, and the dimension is p = m+n+ξ.

Each submanifold T s
ℓ is disjoint from the north pole section ~n0 so the

fibers of the map T s
ℓ → M are trivialized by the map (21). The similar

statement holds for T r
ℓ , so we obtain fiberwise identifications

ϕs
ℓ : T s

ℓ
∼= W s

ℓ,0 × Sp−1,

ϕr
ℓ : T r

ℓ
∼= W r

ℓ,0 × Sp−1.

For each 1 ≤ ℓ ≤ k, we are given the diffeomorphism hℓ : Pπs
ℓ
→ Pπr

ℓ

where Pπs
ℓ

is standard, so canonically identified with W s
ℓ and hence with

W s
ℓ,0, while Pπr

ℓ
is identified with W r

ℓ,0. Thus, hℓ induces a diffeomorphism

Hℓ = (ϕr
ℓ)

−1 ◦ (hℓ × Id) ◦ ϕs
ℓ : T s

ℓ → T r
ℓ ,

which maps fibers to fibers. That is, Hℓ preserves the foliation on the
boundary components ∂s

ℓN1 and ∂r
ℓN1 of N1 induced by F0.

Define N = N1/ ∼, where we identify Hℓ : T s
ℓ ∼ T r

ℓ for each component.
Let FC be the foliation whose leaves are obtained from the those of F0 by
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the identification maps Hℓ. This completes the construction of the “Hirsch
foliation” realizing the family of étale correspondences C.

The manifold M has a natural embedding M0 = ~s(M) into N as the
image of the south pole section of M × Sp, and the holonomy pseudogroup
of FC induced on M0 is equivalent to the pseudogroup ΓC as defined in
Section 3.6. Hence, the dynamics of FC induced on the section M0 is
equivalent to the dynamics of ΓC acting on M .

Note that the leaves of FC have even more complicated topology as
immersed submanifolds of N than in the case of a single étale correspon-
dence. Again, it would be quite interesting to understand the foliated coarse
cohomology of these Hirsch foliations, and whether the topology of the em-
beddings of the leaves into N are part of the data required to calculate the
cohomology groups.

6 Examples

In this section, we will give three examples of generalized Hirsch foliations.

Example 6.1 Markov minimal sets in codimension one

A Markov system is a special class of 1-dimensional dynamical system,
which has fundamental importance in the study of codimension one folia-
tions. The most general definition has been given by Takashi Inaba and
Shigenori Matsumoto. We recall their definition from Section 5 of [43].

Definition 6.2 Let T be a compact 1-dimensional manifold, and r ≥ 0. A
Cr Markov Minimal Set K ⊂ T is a closed nowhere dense subset such that

1. there are closed intervals Ii ⊂ T for 1 ≤ i ≤ k,

2. Int(Ii) ∩ Int(Ij) = ∅ for i 6= j,

3. K ⊂ I1 ∪ · · · ∪ Ik,

4. K ∩ Int(Ii) 6= ∅ for all 1 ≤ i ≤ k,

5. there is an open interval Ui with Ii ⊂ Ui and a Cr-diffeomorphism
onto its image hi : Ui → T ,

6. if hi(Ii) ∩ Int(Ij) 6= ∅, then Ij ⊂ hi(Ii),

7. K is a minimal set for the dynamical system given by the pseudogroup
Γ modeled on T generated by the maps {h1, . . . , hk}.

Note that the 1-manifold T need not be connected, though typically
one takes either T = [0, 1] ⊂ R or T = S1. The definition of a Markov
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Minimal Set in [11, 12, 58] replaces condition (6.2.2) above with the stronger
hypothesis

2 ′ Ii ∩ Ij = ∅ for i 6= j.

Section 6 of [43] gives a construction of exceptional minimal sets which only
satisfy this more general definition, in that the natural Markov partition
cannot be chosen to consist of disjoint closed intervals. The papers [13, 42]
give constructions of foliations realizing a Markov Minimal Set satisfying
the stronger condition (6.2.2’).

We show here how to realize a special case of a Cr-Markov system (one
for which Ij ⊂ hi(Ii) for all i, j) using the Hirsch construction of Section 2.2.
We assume there is given the following data:

• I0 = [a0, b0], I1 = [a1, b1], . . . , Ik = [ak, bk] , Ii ⊂ I0 for all 1 ≤ i ≤ k,

• Ii ∩ Ij = ∅ for i 6= j and i, j 6= 0,

• Cr expansive maps ψi : Ii → I0, 1 ≤ i ≤ k.

For r ≥ 1 we can require that the maps ψi satisfy ψ′
i(x) > 1 for x ∈ Ii

in which case it is called a hyperbolic Markov system. The pseudogroup
generated by the maps {ψ1, . . . ψk} has an exceptional minimal set K ⊂ I0
which is characterized by the condition

K = ψ−1
1 (K) ∪ · · · ∪ ψ−1

k (K).

We first normalize the given data. The endpoints of the intervals are
labeled in increasing order:

a0 < a1 < b1 < a2 < · · · < bk−1 < ak < bk < b0.

We are interested in the realization of the minimal set K ⊂ I0, so we can
assume both a0 ∈ K and b0 ∈ K, as otherwise we simply restrict the domain
I0 so that a0 is the least fixed-point of ψ1 : I1 → I0, and b0 is the greatest
fixed-point of ψk : Ik → I0. The holonomy pseudogroup is only defined
up to Cr-diffeomorphism, so without loss of generality we can assume that
a0 = 0 and 0 < b0 < 1, so I0 ⊂ [0, 1).

Following the construction in Section 2.2, we need to choose an im-
mersion H : S1 → S1 of degree k, which is equivalent to the choice of a
diffeomorphism h : R → R such that h(x + 1) = h(x) + k. Then H = h
mod (1). Figure 5 below illustrates the definition of h : [0, 1] → [0, 3] for
k = 3.
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Figure 5. 3–1 map realizing Markov system

The formal definition is as follows:

h(x) =





ψi(x) if ai ≤ x ≤ bi , 1 ≤ i ≤ k,

fi(x) + (i− 1) if bi ≤ x ≤ ai+1 , 1 ≤ i < k,

g(x) + (k − 1) if bk ≤ x ≤ 1,

where fi : [bi, ai+1] → [b0, 1] is a Cr-diffeomorphism onto, chosen so that h
is Cr at the points bi and ai+1. The map g : [b0, 1] → [b0, 1] is as pictured,
a Cr-contraction on the open interval J = (b0, 1) with a unique attracting
fixed-point at z0 = (b0 +1)/2. The map g satisfies g(b0) = b0 and g(1) = 1,
and is chosen so that the resulting map h is Cr at the endpoints b0 and 1.

Define the open set U ⊂ S1 to be the union of the orbits of the open
interval J , and K = S1 − U . Then K ⊂ I1 ∪ · · · ∪ Ik.

The proofs that K is non-empty, nowhere dense, and that the orbit of
every point in K is dense in K, are all exactly the same as in Section 2.6.

Example 6.3 Sierpinski carpet minimal sets in codimension two.

This example constructs a smooth 4− 1 covering map h : T2 → T2 with
a unique exceptional minimal set that is homeomorphic to the “Sierpinski
torus”, which is obtained from the traditional Sierpinski carpet pictured
below by identifying opposites edges.

Let h0 : T2 → T2 be the “2-times” map, defined as the quotient of the
covering map f0 : R2 → R2, with f0(~x) = 2~x. The dynamics of the map h0

is well-known – it is minimal with positive entropy. Both statements are
consequences of the observation that h0 admits a “Markov partition”. This
idea plays an important role in our example, so we recall the construction.
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Figure 6. Classic Sierpinski Carpet

For each pair of integers m,n ∈ Z, the unit square

Sm,n = {(x, y) | m ≤ x ≤ m+ 1, n ≤ y ≤ n+ 1} ⊂ R2

is a fundamental domain for T2 = R2/Z2. The h0 has four “inverse maps”,

g1 = h−1
00 : S00 → P1 = {(x, y) | 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1/2}, (22)

g2 = h−1
10 : S10 → P2 = {(x, y) | 1/2 ≤ x ≤ 1, 0 ≤ y ≤ 1/2}, (23)

g3 = h−1
01 : S01 → P3 = {(x, y) | 0 ≤ x ≤ 1/2, 1/2 ≤ y ≤ 1}, (24)

g4 = h−1
11 : S11 → P4 = {(x, y) | 1/2 ≤ x ≤ 1, 1/2 ≤ y ≤ 1}, (25)

where the interiors of the four partitions Pi of S00 are disjoint. Given a
word I = (i1, . . . , in) of length ‖I‖ = n, where each ij ∈ {1, 2, 3, 4}, form
the composition gI = gin

◦ · · · gi1 : S00 → PI where PI is a square of side
length 2−n. Given any point z ∈ S00 the images {gI(z) | ‖I‖ = n} form
a net in S00 whose distance between points is

√
2/2n. This implies the

orbit of z under the dynamics generated by h0 is dense in T2, and that the
topological entropy of the system is ln 4.

The map h : T2 → T2 is obtained by introducing a sink for the map h0,
in a manner exactly analogous to the construction of the original Hirsch
foliation from the affine 2 − 1 Hirsch foliation. In fact, the map h agrees
with the map h0 on three of the four fundamental partitions: h0|Pi = h0|Pi

for i = 1, 2, 3.
We describe the map h : P4 → S11 on the fourth partition. Let U0 ⊂ P4

be the open set defined by

U0 = {(x, y) | 5/8 < x < 7/8, 5/8 < y < 7/8}.
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Let φ : U0 → U0 be a smooth diffeomoprhism which is the identity on the
boundary ∂U0 = U0 − U0, and on the interior U0 is a contraction to a
fixed-point x0 = (3/4, 3/4).

Let ψ : P4 − U0 → S00 − U0 be a smooth diffeomoprhism which agrees
with the expanding map (x, y) 7→ (2x− 1, 2y− 1) on the outside boundary
∂P4 of P4 − U0, agrees with the identity map on the inside boundary ∂U0

of P4−U0, and is expanding on the interior of P4−U0. Define f : P4 → S11

by

h(x, y) =

{
φ(x, y) + (1, 1) if (x, y) ∈ U0,

ψ(x, y) + (1, 1) if (x, y) ∈ P4 − U0.

Then f : S00 → S00 ∪ S10 ∪ S01 ∪ S11 is a smooth diffeomorphism onto,
and satisfies the Markov partition conditions (22–25) by construction. Let
h : T2 → T2 be the 4 − 1 map induced by f .

Let U be the union of all orbits of points in U0 for the dynamical system
generated by h. Let K = T2 − U , then K is a closed invariant subset for
the dynamical system of h, and it is not hard to see that K is minimal,
using the Markov structure of h.

This example admits many generalizations, which are discussed in [5]
along with many of their properties. It is also interesting to compare this
construction with the methods of [7] where the authors construct homeo-
morphisms with a Sierpinski 2-torus as a unique minimal set. These exam-
ples provide a general solution of Problem 4 of [7].

Example 6.4 Affine foliation of codimension q with local holonomy
SL(q,Z).

Let Γ ⊂ SL(q,Z) be a finitely generated subgroup; or rather, for ma-
trices {A1, . . . , Ak} ⊂ SL(q,Z) let Γ denote the group they generate. For
each index 1 ≤ ℓ ≤ k, let λℓ ∈ N be a positive integer, and let Λℓ = λℓ ·Id
be the diagonal matrix with all diagonal entries λℓ. Let Bℓ = Λℓ · Aℓ be
the integer matrix with inverse B−1

ℓ ∈ SL(q,Q).

An integer matrix C determines an affine map C̃ : Tq → Tq which is the
quotient of the multiplication map C : Rq → Rq, where Tq = Rq/Zq. For
each ℓ we have the commutative diagram

?

Tq

Tq

Id

- Tq
Ãℓ

?

Λ̃ℓ

Tq-

B̃ℓ
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which defines an étale correspondence (sℓ, rℓ, hℓ) = (Id, Λ̃ℓ, Ãℓ) where Pℓ =
Qℓ = M = Tq and the covering indices are mℓ = 1, nℓ = λq

ℓ . This yields a
system of étale correspondences as in Section 5,

C =
{
(sℓ = Id : Tq →Tq , rℓ = Λ̃ℓ : Tq →Tq , hℓ = Ãℓ : Tq →Tq) | 1 ≤ ℓ ≤ k

}
.

The construction in Section 5 then yields a foliation FC of codimension q
with transversal Tq whose global holonomy induced on the section M0 = Tq

is equivalent to the pseudogroup ΓC generated by the maps {B̃ℓ : Tq → Tq |
1 ≤ ℓ ≤ k}.

A special case of the above construction occurs for Γ = SL(q,Z) and
{A1, . . . , Ak} is a set of generators. Note that for any pair 1 ≤ i, j ≤ k we
have that

[Bi, Bj ] = BiBjB
−1
i B−1

j = AiAjA
−1
i A−1

j = [Ai, Aj ]

as the factors Λi and Λj are multiples of the identity. Thus, the subgroup

Γ̂ = 〈B1, . . . , Bk〉 ⊂ SL(q,Q) generated by the matrices {Bℓ} contains a
subgroup isomorphic to the commutator subgroup [Γ,Γ] ⊂ SL(q,Z). (We
thank Alex Furman for this observation.) It is elementary that [Γ,Γ] is a
normal subgroup of finite index in SL(q,Z).

While the commutator [B̃i, B̃j ] of maps is not well-defined as diffeomor-
phisms of Tq, it is well-defined as local elements of the holonomy groupoid
ΓC . Thus, the holonomy groupoid ΓC contains a subgroupoid equivalent to
that generated by the action of [Γ,Γ] on Tq. So, in a sense, ΓC is a virtual
congruence subgroup of SL(q,Z) (in the sense of George Mackey [46, 47, 51]
that holonomy pseudogroups represent virtual subgroups.)

Conjecture 6.5 For q ≥ 3, and Γ ⊂ SL(q,Z) finite index, then for any
choice of generators {A1, . . . , Ak} ⊂ Γ and positive integers {λ1, . . . , λk},
the foliation FC as constructed above is C1-structurally stable.

Note that for all λℓ = 1, the foliation FC is the suspension of the group
action of Γ on Tq so this case follows by the general theory of C1-rigidity of
actions of higher rank lattices (see [21] for the latest results in this area.)

The methods of [37, 38, 40] suffice to prove the foliations FC are stable
under C1 deformations; details will appear in [41].

7 Some Questions

It seems clear that the examples of smooth foliations constructed with the
generalized Hirsch method realize a wide range of dynamical behavior on
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M , as expanding maps provide one of the main sources of hyperbolic and
chaotic behavior in dynamical systems, and these are just some part of the
possible maps in a system of étale correspondences.

Question 7.1 Given a compact manifold M without boundary, and a con-
nected continua K ⊂ M , is there a system of étale correspondences C on
M for which K is a minimal set for the associated pseudogroup ΓC?

The only known “obstruction” is that a minimal set must be “locally
homogeneous”, in that every orbit is dense so any locally-defined property
of K must occur at a dense set of points in K.

There is a variant on this question which seems worth emphasizing.
Suppose that M is a closed 3-manifold which admits a proper self-covering
h : M → M . Then for every pair of diffeomorphisms f, g : M → M the
composition g ◦ h ◦ f : M → M is again a proper self-covering. Every
minimal set K ⊂M for the dynamics of the map g ◦h◦ f will have positive
entropy (see [5]) so the minimal set K has non-trivial dynamical complexity.

Question 7.2 Can one characterize the geometry of the minimal set K for
g ◦ h ◦ f in terms of the topology of the 3-manifold M?

The point is that the topology of a 3-manifold M which admits a self-
map should be closely related to the dynamics of a self-map of M of higher
degree. For example, if M is a Seifert manifold, then must the minimal set
K have a fibration into continua of dimension one?

We say a foliated manifold (M,F) is co-Hopfian if a foliated covering
map h : M →M is necessarily a diffeomorphism.

Question 7.3 Which foliations are co-Hopfian?

There are two obvious ways to construct a foliation which is not co-
Hopfian: a foliated covering map h : M →M can be chosen to be “expand-
ing” along leaf directions, or along transverse directions. Is this always the
case? Does a non-co-Hopf map have degree which factors into tangential
and transverse degrees?

Haefliger has posed the problem of determining which compactly gen-
erated pseudogroups can be realized as the pseudogroup of a foliation on a
closed manifold [31].

Question 7.4 Given a compact manifold M without boundary, is there a
general description of the pseudogroups modeled on M which can be real-
ized up to pseudogroup equivalence by a system of étale correspondences?

One does not expect a ready answer to such a question, but it is com-
pletely unknown just how large a class of pseudogroups are represented
by those equivalent to one of the type ΓC for some system of étale cor-
respondences C. Of course, if M is simply connected, this is just asking
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which pseudogroups on M can be realized by a finitely-generated group of
diffeomorphisms, to which there is also no known answer.
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24. F. González-Acuña, R. Litherland and W. Whitten, Co-Hopficity of
Seifert-bundle groups, Trans. Amer. Math. Soc., 341 (1994), 143–
155.
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