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HOMOGENEOUS MATCHBOX MANIFOLDS

ALEX CLARK AND STEVEN HURDER

Abstract. We prove that a homogeneous matchbox manifold is homeomor-
phic to a McCord solenoid, thereby proving a strong version of a conjecture of
Fokkink and Oversteegen, which is a general form of a conjecture of Bing. A
key step in the proof shows that if the foliation of a matchbox manifold has
equicontinuous dynamics, then it is minimal. Moreover, we then show that a
matchbox manifold with equicontinuous dynamics is homeomorphic to a weak
solenoid. A result of Effros is used to conclude that a homogeneous matchbox
manifold has equicontinuous dynamics, and the main theorem is a consequence.
The proofs of these results combine techniques from the theory of foliations
and pseudogroups, along with methods from topological dynamics and coding
theory for pseudogroup actions. These techniques and results provide a frame-
work for the study of matchbox manifolds in general, and exceptional minimal
sets of smooth foliations.

1. Introduction

A continuum is a compact, connected, and non-empty metrizable space. A topo-
logical space X is homogeneous if for every x, y ∈ X, there exists a homeomorphism
h : X → X such that h(x) = y. We recall a result of Bing:

Theorem 1.1 (Bing [9]). Let X be a homogeneous, circle-like continuum that
contains an arc. Then either X is homeomorphic to a circle or to a Vietoris
solenoid.

In the course of the proof of Theorem 1.1, Bing raised the question: If X is a
homogeneous continuum, and if every proper subcontinuum of X is an arc, must X
then be a circle or a solenoid? An affirmative answer to this question was given by
Hagopian [26], and subsequent (simpler) proofs in the framework of 1-dimensional
matchbox manifolds were given by Mislove and Rogers [33] and by Aarts, Hagopian
and Oversteegen [1]. In this paper, we prove the generalization of this result to n-
dimensional matchbox manifolds, for all n ≥ 1.

We introduce some notation required to state our main result precisely. An
n-dimensional solenoid is an inverse limit space

(1) S = lim
←

{p�+1 : M�+1 → M�},
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3152 ALEX CLARK AND STEVEN HURDER

where for � ≥ 0, M� is a compact, connected, n-dimensional manifold without
boundary, and the maps p�+1 : M�+1 → M� are proper covering maps. A Vietoris
solenoid is a 1-dimensional solenoid, where each M� is a circle.

If all of the defined compositions of the covering maps p� are normal coverings,
then S is said to be a McCord solenoid. McCord solenoids are homogeneous [31],
and conversely, Fokkink and Oversteegen showed in [22] that any homogeneous
n-dimensional solenoid is homeomorphic to a McCord solenoid.

An n-dimensional foliated space M is a continuum which has a local product
structure [12, 36]; that is, every point of M has an open neighborhood homeomor-
phic to an open subset of Rn times a compact metric space (the local transverse
model). The leaves of the foliation F of M are the maximal connected components
with respect to the fine topology on M induced by the plaques of the local product
structure. Precise definitions are given in Section 2.

A matchbox manifold is a foliated space M such that the local transverse models
are totally disconnected. Intuitively, a 1-dimensional matchbox manifold M has lo-
cal coordinate charts U which are homeomorphic to a “box of matches”. Manifolds
and n-dimensional solenoids provide examples of matchbox manifolds.

As remarked above, every homogeneous 1-dimensional matchbox manifold is
homeomorphic to a circle or a solenoid [1]. Our primary result is the generalization
of this 1-dimensional result to n-dimensions, thereby proving a strong version of
a conjecture of Fokkink and Oversteegen [22, Conjecture 4] under a smoothness
assumption, as clarified in Section 2.

Theorem 1.2. Let M be a homogeneous smooth matchbox manifold. Then M is
homeomorphic to a McCord solenoid. In particular, M is minimal.

As a consequence of Theorem 1.2 and the impossibility of codimension-one em-
beddings of solenoids as shown in [14], we obtain the following corollary, which is a
generalization of the result of Prajs [39] that any homogeneous continuum in R

n+1

which contains an n-cube is an n-manifold.

Corollary 1.3. Let M be a homogeneous, smooth n-dimensional matchbox mani-
fold which embeds in a closed orientable (n+ 1)-dimensional manifold. Then M is
a manifold.

The work [16] by the authors studies the problem of finding smooth embeddings
of solenoids into foliated manifolds with codimension q ≥ 2. It is an open problem,
in general, to determine the lowest codimension q > 1 in which a given solenoid can
be embedded, either into a compact manifold, or as a minimal set for a Cr-foliation
of a compact manifold.

The proof of the main theorem involves drawing an important connection be-
tween homogeneity and equicontinuity, based on the fundamental result of Effros
that transitive continuous actions of Polish groups are micro-transitive [5, 19, 51,
52]. As a step in the proof of Theorem 1.2, we show in Theorem 5.2 that Ef-
fros’ Theorem implies that a homogeneous matchbox manifold is equicontinuous.
Combining the results of Theorem 8.9 and Proposition 10.1, we obtain:

Theorem 1.4. A smooth matchbox manifold M is homeomorphic to an n-dimen-
sional solenoid if and only if M is equicontinuous.

Examples of equicontinuous smooth matchbox manifolds which are not homoge-
neous are given in Section 10, showing the results of Theorem 1.2 and Theorem 1.4
are optimal.
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HOMOGENEOUS MATCHBOX MANIFOLDS 3153

There is an analogy between Theorem 1.2, and the classification theory for Rie-
mannian foliations [35, 34]. Recall that a Riemannian foliation F on a compact
manifold M is said to be transversally parallelizable (or TP) if the group of foliation-
preserving diffeomorphisms of M acts transitively. In this case, the minimal sets
for F are principal H-bundles, where H is the structural Lie group of the foliation.
Theorem 1.2 is the analog of this result for matchbox manifolds. It is interest-
ing to compare this result with the theory of equicontinuous foliations on compact
manifolds, as in [4].

However, ifM is equicontinuous but not homogeneous, then the analogy becomes
more tenuous. Clark, Fokkink and Lukina introduce in [15] the Schreier continuum
for solenoids, an invariant of the topology of M, which they use to calculate the end
structures of leaves. In particular, they show that there exist non-McCord solenoids
for which the number of ends of leaves can be between 2 and infinity. It is not known
if such behavior is possible for Riemannian foliations which are not transversally
parallelizable. (See [54] for a discussion of ends of leaves in Riemannian foliations.)

We say that a matchbox manifold M is a Cantor bundle if there exists a base
manifold M0 and a fibration π0 : M → M0 so that for each b ∈ M0 the fiber
Fb = π−1

0 (b) is a Cantor set. The proofs of Theorems 1.2 and 1.4 are much simpler,
at least technically, if we assume that M is a Cantor bundle. In fact, in [13] the
first author gave a proof of Theorem 1.2 in the case where M is a Cantor bundle
with base an n-torus Tn, for n > 1. The technical simplifications are due to two
properties of Cantor bundles, one is that for each b ∈ M0 the fiber Fb ≡ π−1

0 (b) ⊂ M

is a transversal to the foliation F of M. The second simplification is that the local
holonomy maps along leaves of F are the restrictions of global automorphisms of a
fixed fiber F0 ≡ π−1

0 (b0). The extension of the arguments of [13] from the case of
a base manifold M0 = T

n to an arbitrary compact base manifold M0 involves few
technical complications. In the general case, the main technical difficulties arise
due to the absence of given uniform transversals to the foliation F on M, and the
consequent need for uniform estimates on the domains and dynamical behavior of
the leafwise holonomy maps.

Section 2 introduces the basic concepts of matchbox manifolds, and in Section 3
the holonomy maps and their properties are considered. Properties of equicontinu-
ous matchbox manifolds are developed in Section 4, and properties of homogeneous
matchbox manifolds in Section 5.

Section 6 begins the proof of Theorem 1.2 in earnest, as we develop the notion of
the orbit coding for an equicontinuous matchbox manifold. This leads to a “Borel”
version of the results of the main theorem. Section 7 shows how to obtain the
covering quotient maps associated to the Borel structures obtained in the previous
section. The results of Section 8 depend upon Theorem 8.3, which is fundamental
for the analysis of the general case, but whose proof is quite technical and long,
and thus relegated to the companion work [17].

Finally, in Section 9 we show that the solenoid structure obtained in Section 8 is
a McCord solenoid with the additional hypothesis of homogeneity. This completes
the proof of Theorem 1.2.

Section 10 gives examples of matchbox manifolds which are equicontinuous but
not homogeneous. Section 11 discusses an application of the main theorem to
codimension-one embeddings of solenoids. Finally, Section 12 discusses a selection
of open problems.
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3154 ALEX CLARK AND STEVEN HURDER

2. Foliated spaces

In this section, we discuss the basic concepts of foliated spaces. A more detailed
discussion with examples can be found in [12, Chapter 11] and [36, Chapter 2].

Definition 2.1. A continuum M is a foliated space of dimension n if there exists
a compact separable metric space X, and for each x ∈ M there is a compact
subset Tx ⊂ X, open subset Ux ⊂ M, and homeomorphism defined on its closure
ϕx : Ux → [−1, 1]n × Tx such that ϕx(x) = (0, wx), where wx ∈ int(Tx). The
subspace Tx of X is called the local transverse model at x.

Let πx : Ux → Tx denote the composition of ϕx with projection onto the second
factor.

For w ∈ Tx the set Px(w) = π−1
x (w) ⊂ Ux is called a plaque for the coordi-

nate chart ϕx. We adopt the notation, for z ∈ Ux, that Px(z) = Px(πx(z)), so
that z ∈ Px(z). Note that each plaque Px(w) is given the topology so that the
restriction ϕx : Px(w) → [−1, 1]n × {w} is a homeomorphism. Then int(Px(w)) =
ϕ−1
x ((−1, 1)n × {w}).
Let Ux = int(U i) = ϕ−1

x ((−1, 1)n × int(Tx)). We require, in addition, that if
z ∈ Ux ∩ Uy, then int(Px(z)) ∩ int(Py(z)) is an open subset of both Px(z) and
Py(z).

The collection of sets

V = {ϕ−1
x (V × {w}) | x ∈ M , w ∈ Tx , V ⊂ (−1, 1)n open}

forms the basis for the fine topology of M. The connected components of the fine
topology are called leaves and define the foliation F of M. For x ∈ M, let Lx ⊂ M

denote the leaf of F containing x.
Note that in the above definition, the collection of transverse models {Tx | x ∈

M} need not have union equal to X. This is similar to the situation for a smooth
foliation of codimension q, where each foliation chart projects to an open subset of
R

q, but the collection of images need not cover Rq.
A smooth foliated space is a foliated space M as above, such that there exists

a choice of local charts ϕx : Ux → [−1, 1]n × Tx such that for all x, y ∈ M with
z ∈ Ux ∩ Uy, there exists an open set z ∈ Vz ⊂ Ux ∩ Uy such that Px(z) ∩ Vz and
Py(z) ∩ Vz are connected open sets, and the composition

ψx,y;z ≡ ϕ−1
y ◦ ϕx : ϕx(Px(z) ∩ Vz) → ϕy(Py(z) ∩ Vz)

is a smooth map, where ϕx(Px(z) ∩ Vz) ⊂ Rn × {w} ∼= Rn and ϕy(Py(z) ∩ Vz) ⊂
Rn × {w′} ∼= Rn. Moreover, we require that the maps ψx,y;z depend continuously
on z in the C∞-topology on maps.

A closed saturated subset M ⊂ M of a smooth foliation F of a compact Rie-
mannian manifold M defines a smooth foliated space, but there are many other
types of examples of smooth foliated spaces, as discussed in [12, Chapter 11] and
also in this paper.

A map f : M → R is said to be smooth if for each flow box ϕx : Ux → [−1, 1]n×Tx

and w ∈ Tx the composition y 
→ f ◦ ϕ−1
x (y, w) is a smooth function of y ∈

(−1, 1)n, and depends continuously on w in the C∞-topology on maps of the plaque
coordinates y. As noted in [36] and [12, Chapter 11], this allows one to define
smooth partitions of unity, vector bundles, and tensors for smooth foliated spaces.
In particular, one can define leafwise Riemannian metrics. We recall a standard
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HOMOGENEOUS MATCHBOX MANIFOLDS 3155

result, whose basic idea dates back to the work of Plante [38] if not before. The
proof for foliated spaces can be found in [12, Theorem 11.4.3].

Theorem 2.2. Let M be a smooth foliated space. Then there exists a leafwise
Riemannian metric for F , such that for each x ∈ M, Lx inherits the structure
of a complete Riemannian manifold with bounded geometry, and the Riemannian
geometry depends continuously on x. �

In this paper, all foliated spaces are assumed to be smooth, equipped with a
leafwise Riemannian metric as in Theorem 2.2.

Definition 2.3. A matchbox manifold is a continuum with the structure of a
smooth foliated space M, such that for each x ∈ M, the transverse model space
Tx ⊂ X is totally disconnected.

2.1. Metric properties. Bounded geometry on the leafwise metric for F implies
that for each x ∈ M, there is a leafwise exponential map expFx : TxF → Lx which is
a surjection, and the composition ι ◦ expFx : TxF → Lx ⊂ M depends continuously
on x in the compact-open topology.

The study of the dynamics of a foliated space M requires generalizing various
concepts for flows, and group actions more generally, about the orbits of points in
M, to the properties of leaves L of a foliation F . On a technical level, it is very
useful in developing these generalizations to have a strong local convexity property
for the leaves, generalizing the local convexity of the orbit of a flow.

Another nuance about the definition of foliated spaces, and matchbox manifolds
in particular, is that for given x ∈ M, the neighborhood Ux in Definition 2.1 need
not be “local”. As the transversal model Tx need not be connected, the set Ux need
not be connected, and a priori its connected components need not be contained in
a metric ball around x.

The following technical procedures ensure that we can always choose the local
charts for a matchbox manifold M to satisfy strong local convexity, as well as other
metric regularity properties.

Let dM : M×M → [0,∞) denote the metric on M, and dX : X×X → [0,∞) the
metric on X.

For x ∈ M and ε > 0, let DM(x, ε) = {y ∈ M | dM(x, y) ≤ ε} be the closed ε-ball
about x in M, and BM(x, ε) = {y ∈ M | dM(x, y) < ε} the open ε-ball about x.

Similarly, for w ∈ X and ε > 0, let DX(w, ε) = {w′ ∈ X | dX(w,w′) ≤ ε} be
the closed ε-ball about w in X, and BX(w, ε) = {w′ ∈ X | dX(w,w′) < ε} the open
ε-ball about w.

Each leaf L ⊂ M has a complete path-length metric induced from the leafwise
Riemannian metric. That is, for x, y ∈ L define

dF (x, y) = inf
{
‖γ‖ | γ : [0, 1] → L is C1 , γ(0) = x , γ(1) = y

}
and where ‖γ‖ denotes the path length of the C1-curve γ(t). If x, y ∈ M are not
on the same leaf, then set dF (x, y) = ∞.

For each x ∈ M and r > 0, let DF (x, r) = {y ∈ Lx | dF (x, y) ≤ r}. The Gauss
Lemma implies that there exists λx > 0 such that DF (x, λx) is a strongly convex
subset for the metric dF . That is, for any pair of points y, y′ ∈ DF (x, λx) there
is a unique shortest geodesic segment in Lx joining y and y′ and it is contained
in DF (x, λx) (cf. [10], [18, Chapter 3, Proposition 4.2]). Note then, that for all
0 < λ < λx, the disk DF (x, λ) is also strongly convex.
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3156 ALEX CLARK AND STEVEN HURDER

Lemma 2.4. There exists λF > 0 such that for all x ∈ M, DF (x, λF) is strongly
convex.

Proof. M is compact and the leafwise metrics have uniformly bounded geometry.
�

If F is defined by a flow without periodic points, so that every leaf is diffeo-
morphic to R, then the entire leaf is strongly convex, so λF > 0 can be chosen
arbitrarily. For a foliation with leaves of dimension n > 1, the constant λF must
be less than the injectivity radius for each of the leaves.

2.2. Regular covers. We next define a “regular covering” ofM by foliation charts,
which is a finite collection of foliation charts which are well-adapted to the metrics
dM on M and dX on X, and the leafwise metric dF . The definition is somewhat
technical, but this seems to be a necessary aspect of working with foliated spaces,
as the usual metric properties of charts which hold for smooth foliations need not
hold in general, and are replaced by the estimates imposed below on the charts.

Lemma 2.5. There exists εF > 0 such that for all x ∈ M, there exists a compact set

U
′ ⊂ M such that DM(x, 3εF ) ⊂ int(U

′
), and for each leaf L of F , each connected

component of L ∩ U
′
is a strongly convex subset of L.

Proof. For each x ∈ M, let ϕx : Ux → [−1, 1]n × Tx be a foliation chart with
ϕx(x) = (0, wx) as above. Then there exists εx > 0 such that DM(x, εx) ⊂ Ux. By
the continuity of ϕx and the assumption that wx ∈ int(Tx), there exists ε′x > 0
such that DX(wx, ε

′
x) ⊂ int(Tx) and

(2) T ′
x ≡ ϕ−1

x ({0} ×DX(wx, ε
′
x)) ⊂ BM(x, εx) .

As T ′
x is compact and BM(x, εx) is open, there exists 0 < δ′x ≤ λF such that for

each y ∈ T ′
x the strongly convex disk DF (y, δ

′
x) ⊂ BM(x, εx). Let

U
′
x =

⋃
y∈T ′

x

DF (y, δ
′
x) ⊂ BM(x, εx) .

The image ϕx(U
′
x) ⊂ [−1, 1]n ×Tx contains (0, wx) in its interior, so the collection

U ′ = {U ′
x | x ∈ M} forms a covering. Let εU

′ > 0 be a Lebesgue number for this
covering. Set εF = εU

′/3. �

Next, introduce coordinate charts with diameter bounded above by εF . For each
x ∈ M, let ϕx : Ux → [−1, 1]n × Tx be a foliation chart with ϕx(x) = (0, wx) as
above. Then there exists ε′′x > 0 such that DX(wx, ε

′′
x) ⊂ int(Tx) and

T ′′
x ≡ ϕ−1

x ({0} ×DX(wx, ε
′′
x)) ⊂ BM(x, εF) .

As T ′′
x is compact and BM(x, εF ) is open, there exists 0 < δx ≤ λF/4 such that

for each y ∈ T ′′
x the strongly convex disk DF (y, δx) ⊂ BM(x, εF ). Let

(3) U
′′
x =

⋃
y∈T ′′

x

DF (y, δx) ⊂ BM(x, εF) .

The restriction of ϕx to U
′′
x can be smoothly modified to ϕ′′

x (for example, using
the inverse of the leafwise exponential map followed by a smooth map from the

rx-ball in TxLx to the unit cube) so that ϕ′′
x : U

′′
x → [−1, 1]n × DX(wx, ε

′′
x) is a

homeomorphism onto.
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HOMOGENEOUS MATCHBOX MANIFOLDS 3157

Replace Tx with DX(wx, ε
′′
x), Ux with U

′′
x, and ϕx with ϕ′′

x. Thus, for each
x ∈ M, we can assume there are given ε′′x, δx > 0, wx ∈ X and a foliation chart
ϕx : Ux → [−1, 1]n × Tx such that Ux ⊂ BM(x, εF ), and the plaques of ϕx are
leafwise strongly convex subsets with diameter 2δx ≤ λF/2.

The collection of open sets

{Ux ≡ int(Ux) = ϕ−1
x ((−1, 1)n ×BX(wx, ε

′′
x)) | x ∈ M}

forms an open cover of the compact space M, so there exists a finite subcover
“centered” at the points {x1, . . . , xν}, where ϕxi

(xi) = (0, wxi
) for wxi

∈ X. Set

(4) δFU = min{δx1
, . . . , δxν

} .

Each open set Uxj
can be covered by a finite collection of foliation charts of the

form (3) with leafwise radius δFU . Thus, we can assume without loss that each Uxi

is defined by (3) where δxi
= δFU . This covering by foliation coordinate charts will

be fixed and used throughout, so we simplify notation.
For 1 ≤ i ≤ ν, set U i = Uxi

, Ui = Uxi
, and εi = ε′′xi

. Let U = {U1, . . . , Uν}
denote the corresponding open covering of M. Then there are corresponding coor-
dinate maps

ϕi = ϕxi
: U i → [−1, 1]n × Ti, πi = πxi

: U i → Ti, λi : U i → [−1, 1]n .

For z ∈ U i, the plaque of the chart ϕi through z is denoted by Pi(z) = Pi(πi(z)) ⊂
U i. Note that the restriction λi : Pi(z) → [−1, 1]n is a homeomorphism onto.

Also, define sections

(5) τi,ξ : Ti → U i , τi,ξ(w) = ϕ−1
i (ξ, w) ; τi = τi,�0 .

Note that πi(τi,ξ(w)) = w. Let Ti denote the image of τi and set T = T1∪· · ·∪Tν ⊂
M.

Let T∗ = T1 ∪ · · · ∪ Tν ⊂ X; note that T∗ is compact, and if each Ti is totally
disconnected, then T∗ will also be totally disconnected.

Definition 2.6. A regular covering of a smooth foliated space M is a covering
by foliation charts satisfying the above conditions: locality, that is, each U i ⊂
BM(xi, εF ), and local convexity.

We assume that such a covering U = {ϕi : U i → [−1, 1]n × Ti | 1 ≤ i ≤ ν} of M
has been chosen.

If F is a smooth foliation of a compact manifold M , and M ⊂ M is a closed
saturated set, then the restriction to M of a regular covering for F on M (as defined
for example in [12, Chapter 2]) provides a regular covering of the foliated space M

in the sense of Definition 2.6.

Lemma 2.7. Suppose that z ∈ Ui ∩ Uj. Then Pi(z) ∩ Pj(z) is a strongly convex
subset of Lz.

Proof. Our assumptions imply that Ui∪Uj has diameter at most 2εF . Hence there

exists Û ⊂ M as in Lemma 2.5 such that each plaque Pi(z) and Pj(z) is contained in

a strongly convex subset of Lz ∩ Û . As these sets intersect, they must be contained

in the same connected component of Lz ∩ Û , which is strongly convex, and thus
Pi(z) ∩ Pj(z) is also strongly convex. �
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3158 ALEX CLARK AND STEVEN HURDER

Lemma 2.7 eliminates the possibility that one of the charts U i might contain
“very long” leaf segments, which could intersect another chart U j in more than one
connected component.

2.3. Local estimates. We next introduce a number of constants based on the
choices made in Section 2.2, which will be used throughout the paper when making
metric estimates.

Let εU > 0 be a Lebesgue number for the covering U . That is, given any z ∈ M

there exists some index 1 ≤ iz ≤ ν such that the open metric ball BM(z, εU ) ⊂ Uiz .
The local projections πi : U i → Ti and sections τi,ξ : Ti → U i are continuous

maps of compact spaces, so admit uniform metric estimates as follows.

Lemma 2.8. There exists a continuous increasing function ρπ (the modulus of
continuity for the projections πi) such that:

(6) ∀ 1 ≤ i ≤ ν and x, y ∈ U i, dM(x, y) < ρπ(ε) =⇒ dX(πi(x), πi(y)) < ε .

Proof. Set ρπ(ε) = min{ε,min{dM(x, y) | 1 ≤ i ≤ ν , x, y ∈ U i , dX(πi(x), πi(y))
≥ ε}}. �

Lemma 2.9. There exists a continuous function ρτ (the modulus of continuity for
the sections τi,ξ) such that:

(7) ∀ ξ ∈ [−1, 1]n , ∀ 1 ≤ i ≤ ν , ∀w,w′ ∈ Ti,

dX(w,w
′) < ρτ (ε) =⇒ dM(τi,ξ(w), τi,ξ(w

′)) < ε .

Proof. Set ρτ (ε) = min{dX(w,w′) | ξ ∈ [−1, 1]n , 1 ≤ i ≤ ν , w,w′ ∈ Ti,
dM(τi,ξ(w), τi,ξ(w

′)) ≥ ε}, unless the set of points (w,w′) satisfying these restraints
is empty, in which case we set ρτ (ε) = ε. �

Finally, we introduce two additional constants, derived from the Lebesgue num-
ber εU chosen above.

The first is derived from a “converse” to the modulus function ρπ. Set:

εTU =max{ε | ∀ 1 ≤ i ≤ ν, ∀ x ∈ U i , DM(x, εU/2) ⊂ U i,

DX(πi(x), ε) ⊂ πi(DM(x, εU/2))}.
(8)

Note that εTU ≥ ρτ (εU/2).
Introduce a form of “leafwise Lebesgue number”, defined by

(9)
εFU (y) = sup {ε | ∀y ∈ M, DF (y, ε) ⊂ DM(y, εU/8)} , εFU = min

{
εFU (y) | ∀y ∈ M

}
.

Thus, for all y ∈ M, DF (y, ε
F
U ) ⊂ DM(y, εU/8). Note that for all r > 0 and

z′ ∈ DF (z, ε
F
U ), the triangle inequality implies that BM(z′, r) ⊂ BM(z, r + εU/8).

3. Holonomy of foliated spaces

The holonomy pseudogroup of a foliated manifold (M,F) generalizes the dis-
crete cascade associated to a section of a flow. The holonomy pseudogroup for a
matchbox manifold (M,F) is defined analogously, although there are delicate issues
of domains which must be considered.

A pair of indices (i, j), 1 ≤ i, j ≤ ν, is said to be admissible if the open coordinate
charts satisfy Ui∩Uj �= ∅. For (i, j) admissible, define Di,j = πi(Ui∩Uj) ⊂ Ti ⊂ X.

Then the closure Di,j = πi(U i∩U j). The hypotheses on foliation charts imply that
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HOMOGENEOUS MATCHBOX MANIFOLDS 3159

plaques are either disjoint, or have connected intersection. This implies that there
is a well-defined homeomorphism hj,i : Di,j → Dj,i with domain D(hj,i) = Di,j

and range R(hj,i) = Dj,i. The map hj,i admits a unique continuous extension to

hj,i : Di,j → Dj,i.

The maps G(1)
F = {hj,i | (i, j) admissible} are the transverse change of coordi-

nates defined by the foliation charts. By definition they satisfy hi,i = Id, h−1
i,j = hj,i,

and if Ui∩Uj∩Uk �= ∅, then hk,j ◦hj,i = hk,i on their common domain of definition.
The holonomy pseudogroup GF of F is the topological pseudogroup modeled on X

generated by compositions of the elements of G(1)
F .

A sequence I = (i0, i1, . . . , iα) is admissible if each pair (i�−1, i�) is admissible
for 1 ≤ � ≤ α, and the composition

(10) hI = hiα,iα−1
◦ · · · ◦ hi1,i0

has non-empty domain. The domain D(hI) is the maximal open subset of Di0,i1 ⊂
Ti0 for which the compositions are defined.

Given any open subset U ⊂ D(hI) we obtain a new element hI |U ∈ GF by
restriction. Introduce

(11) G∗
F = {hI |U | I admissible andU ⊂ D(hI)} ⊂ GF .

The range of g = hI |U is the open set R(g) = hI(U) ⊂ Tiα ⊂ X. Note that each

map g ∈ G∗
F admits a continuous extension g : D(g) = U → Tiα .

We introduce the standard notation for the orbits of the pseudogroup GF , where
for w ∈ X, set

(12) O(w) = {g(w) | g ∈ G∗
F , w ∈ D(g)} ⊂ T∗ .

Given an admissible sequence I = (i0, i1, . . . , iα), for each 0 ≤ � ≤ α, set I� =
(i0, i1, . . . , i�) and

(13) hI�
= hi�,i�−1

◦ · · · ◦ hi1,i0 .

Given ξ ∈ D(hI) we adopt the notation ξ� = hI�
(ξ) ∈ Ti� . So ξ0 = ξ and hI(ξ) =

ξα.
Given ξ ∈ D(hI), let x = x0 = τi0(ξ0) ∈ Lx. Introduce the plaque chain

PI(ξ) = {Pi0(ξ0),Pi1(ξ1), . . . ,Piα(ξα)} .

For each 0 ≤ � < α, we have int(Pi�(ξ�)) ∩ int(Pi�+1
(ξ�+1)) �= ∅. Moreover, each

Pi�(ξ�) is a strongly convex subset of the leaf Lx in the leafwise metric dF . Recall
that Pi�(x�) = Pi�(ξ�), so we also adopt the notation PI(x) ≡ PI(ξ).

Intuitively, a plaque chain PI(ξ) is a sequence of successively overlapping convex
“tiles” in L0 starting at x0 = τi0(ξ0), ending at xα = τiα(ξα), and with each Pi�(ξ�)
“centered” on the point x� = τi�(ξ�).

3.1. Leafwise path holonomy. A leafwise path is a continuous map γ : [0, 1] →
M with image in some leaf L of F . The construction of the holonomy map hγ

associated to a leafwise path γ is a standard construction in foliation theory ([40],
[25], [11], [12, Chapter 2]). We describe this in detail below, paying particular
attention to domains and metric estimates.

Let I be an admissible sequence. We say that (I, w) covers γ if there exists a
partition 0 = s0 < s1 < · · · < sα = 1 such that for the plaque chain PI(w) =
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{Pi0(w0),Pi1(w1), . . . ,Piα(wα)} we have

(14) γ([s�, s�+1]) ⊂ int(Pi�(w�)) , 0 ≤ � < α, & γ(1) ∈ int(Piα(wα)).

It follows that w0 = πi0(γ(0)) ∈ D(hI).
Now suppose we have two admissible sequences, I = (i0, i1, . . . , iα) and J =

(j0, j1, . . . , jβ), such that both (I, w) and (J , v) cover the leafwise path γ : [0, 1] →
M. Then

γ(0) ∈ int(Pi0(w0)) ∩ int(Pj0(v0)), γ(1) ∈ int(Piα(wα)) ∩ int(Pjβ (vβ)).

Thus both (i0, j0) and (iα, jβ) are admissible, and v0 = hj0,i0(w0), wα = hiα,jβ (vβ).

Proposition 3.1. The maps hI and hiα,jβ ◦ hJ ◦ hj0,i0 agree on their common
domains.

Proof. Let ξ ∈ D(hI) ∩ D(hiα,jβ ◦ hJ ◦ hj0,i0). Set ξ′ = hI(ξ), ζ = hj0,i0(ξ) and
ζ ′ = hJ (ζ). We must show that ξ′ = hiα,jβ (ζ

′).
Let 0 = s0 < s1 < · · · < sα = 1 and 0 = r0 < r1 < · · · < rβ = 1 be the partitions

associated to I and J , respectively. Condition (14) is open, so without loss of
generality, we can assume that the two partitions have no points in common except
endpoints. Let 0 = t0 < t1 < · · · < tω = 1 be the partition obtained by forming
the common refinement of the two partitions: for each �, either t� = sm for some
0 ≤ m ≤ α, or t� = rm′ for some 0 ≤ m′ ≤ β.

For each 0 ≤ � ≤ ω we are given that γ(t�) ∈ Uim�
∩Ujm′

�

, where m� is the largest

m with sm ≤ t� and m′
� is the largest m′ with rm′ ≤ t�. Reindex the plaque chains

PI(ξ) and PJ (ζ) as follows:
Let ξ� = ξm�

= hIm�
(ξ), so that Pim�

(ξ�) denotes the plaque of U im�
correspond-

ing to ξm�
.

Let ζ� = ζm′
�
= hJm′

�

(ζ), so that Pjm′
�

(ζ�) denotes the plaque of U jm′
�

corre-

sponding to ζm′
�
.

We inductively construct a plaque chain P̂ = {P̂0, P̂1, . . . , P̂ω} which covers

both plaque chains PI(ξ) and PJ (ζ), so that Piα(ξα) ∪ Pjβ (ζβ) ⊂ P̂ω and thus
ξ′ = hiα,jβ (ζ

′).
For � = 0, the plaques PI(ξ0)∩PJ (ζ0) �= ∅ as ξ ∈ D(hj0,i0). Thus, the diameter

of the set U i0 ∪U j0 is at most 2εF . By Lemma 2.5, there exists a coordinate chart

Û0 such that U i0 ∪ U j0 ⊂ int(Û0). Let P̂0 be the plaque of Û0 containing the
connected set PI(ξ0) ∪ PJ (ζ0).

Now proceed by induction. Assume that coordinate charts
{
Û0, Û1, . . . , Ûk

}
have been chosen so that U i� ∪ U j� ⊂ int(Û�) for 0 ≤ � ≤ k, and a plaque chain

{P̂0, P̂1, . . . , P̂k} defined with P̂� ⊂ Û� and for 0 < � ≤ k,

Pim�−1
(ξ�−1) ∪ Pjm′

�−1

(ζ�−1) ∪ Pim�
(ξ�) ∪ Pjm′

�

(ζ�) ⊂ P̂� .

There are now two cases: either mk �= mk+1 and m′
k = m′

k+1, or mk = mk+1

and m′
k �= m′

k+1. Consider the first case, so that U jm′
k

= U jm′
k+1

and Pimk
(ξk) ∩

Pimk+1
(ξk+1) �= ∅. We also have γ(tk+1) ∈ Uimk+1

∩ Ujm′
k+1

, from which it follows

that the union {U ik ∪ U jk ∪ U ik+1
∪ U jk+1

} is connected with diameter at most

3εF . By Lemma 2.5, there exists a coordinate chart Ûk+1 containing the union in
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its interior. Let P̂k+1 be the plaque of Ûk+1 containing the connected set

Pimk
(ξk) ∪ Pjm′

k

(ζk) ∪ Pimk+1
(ξk+1) ∪ Pjm′

k+1

(ζk+1) ⊂ P̂k+1 .

This completes the induction. The resulting plaque chain {P̂0, P̂1, . . . , P̂ω} thus
covers both plaque chains PI(ξ) and PJ (ζ). In particular,

Piα(ξα)∪Pjβ (ζβ)=Pω∩
(
U iα ∪ U jβ

)
=⇒ Piα(ξα)∩Pjβ (ζβ) = Pω∩

(
U iα ∩ U jβ

)
�= ∅.

Now, ξ′ = πiα(Piα(ξα)) and ζ ′ = πjβ (Pjβ (ζβ)), so ξ′ = hiα,jβ (ζ
′) follows. �

The interested reader can compare the above argument to the proof of [12,
Proposition 2.3.2], where it is shown that the germinal holonomy along a path is
well-defined. The two proofs are essentially the same, yet a detailed proof of Propo-
sition 3.1 is included, as the study of equicontinuous maps depends fundamentally
on having equality on domains of fixed size, and not just germinal equality.

3.2. Admissible sequences. Given a leafwise path γ : [0, 1] → M, we next con-
struct an admissible sequence I = (i0, i1, . . . , iα) with w ∈ D(hI) so that (I, w)
covers γ and has “uniform domains”.

Inductively, choose a partition of the interval [0, 1], 0 = s0 < s1 < · · · < sα = 1
such that for each 0 ≤ � ≤ α, γ([s�, s�+1]) ⊂ DF (x�, ε

F
U ), where x� = γ(s�). As a

notational convenience, we let sα+1 = sα, so that γ([sα, sα+1]) = xα.
For each 0 ≤ � ≤ α, choose an index 1 ≤ i� ≤ ν so that BM(x�, εU ) ⊂ Ui� . Note

that, for all s� ≤ t ≤ s�+1, BM(γ(t), εU/2) ⊂ Ui� , so that x�+1 ∈ Ui� ∩ Ui�+1
. It

follows that Iγ = (i0, i1, . . . , iα) is an admissible sequence. Set hγ = hIγ
. Then

hγ(w) = w′, where w = πi0(x0) and w′ = πiα(xα).
The construction of the admissible sequence Iγ above has an important special

property. For 0 ≤ � < α, note that x�+1 ∈ DF (x�+1, ε
F
U ) implies that for some

s� < s′�+1 < s�+1, we have that γ([s′�+1, s�+1]) ⊂ DF (x�+1, ε
F
U ). Hence,

(15) BM(γ(t), εU/2) ⊂ Ui� ∩ Ui�+1
, for all s′�+1 ≤ t ≤ s�+1 .

Then for all s′�+1 ≤ t ≤ s�+1, the uniform estimate defining εTU > 0 in (8) implies
that

(16) BX(πi�(γ(t)), ε
T
U ) ⊂ Di�,i�+1

and BX(πi�+1
(γ(t)), εTU ) ⊂ Di�+1,i� .

For the admissible sequence Iγ = (i0, i1, . . . , iα), recall that x� = γ(s�) and set w� =
πi�(x�). Then by definition (10) of hIγ

condition (16) implies that DX(w�, ε
T
U ) ⊂

D(h�).
That is, hIγ

is the composition of generators of G∗
F which have uniform estimates

on the radii of the metric balls contained in their domains, where εTU is independent
of γ.

There is a converse to the above construction, which associates to an admissible
sequence a leafwise path. Let I = (i0, i1, . . . , iα) be admissible, with corresponding
holonomy map hI , and choose w ∈ D(hI) with x = τi0(w).

For each 1 ≤ � ≤ α, recall that I� = (i0, i1, . . . , i�), and let hI�
denote the

corresponding holonomy map. For � = 0, let I0 = (i0, i0). Note that hIα
= hI and

hI0
= Id : T0 → T0.

For each 0 ≤ � ≤ α, set w� = hI�
(w) and x� = τi�(w�). By assumption, for � > 0,

there exists z� ∈ P�−1(w�−1) ∩ P�(w�).
Let γ� : [(� − 1)/α, �/α] → Lx0

be the leafwise piecewise geodesic segment from
x�−1 to z� to x�. Define the leafwise path γx

I : [0, 1] → Lx0
from x0 to xα to be the
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3162 ALEX CLARK AND STEVEN HURDER

concatenation of these paths. If we then cover γx
I by the charts determined by the

given admissible sequence I, it follows that hI = hγx
I
.

Thus, given an admissible sequence I = (i0, i1, . . . , iα) and w ∈ D(hI) with
w′ = hI(w), the choices above determine an initial chart ϕi0 with “starting point”
x = τi0(w) ∈ Ui0 ⊂ M. Similarly, there is a terminal chart ϕiα with “terminal
point” x′ = τiα(w

′) ∈ Uiα ⊂ M. The leafwise path γx
I constructed above starts at

x, ends at x′, and has image contained in the plaque chain PI(x).
On the other hand, if we start with a leafwise path γ : [0, 1] → M, then the

initial point x = γ(a) and the terminal point x′ = γ(b) are both well-defined.
However, there need not be a unique index j0 such that x ∈ Uj0 and similarly for
the index jβ such that x′ ∈ Ujβ . Thus, when one constructs an admissible sequence
J = (j0, . . . , jβ) from γ, the initial and terminal charts need not be well-defined.
This was already observed in the proof of Proposition 3.1, which proved that

hI |U = hiα,jβ ◦ hJ ◦ hj0,i0 |U for U = D(hI) ∩D(hiα,jβ ◦ hJ ◦ hj0,i0).

We introduce the following definition, which gives a uniform estimate of the effect
of this ambiguity.

Lemma 3.2. There exists a continuous function κ : (0,∞) → (0,∞) such that for
all admissible (i, j) there is a uniform estimate:

(17) dX(hj,i(w), hj,i(w
′)) ≤ κ(r) for all w,w′ ∈ Di,j with dX(w,w

′) ≤ r .

Moreover, lim
r→0

κ(r) = 0.

Proof. For (i, j) admissible, the holonomy map hj,i extends to a homeomorphism of

the closure of its domain, hj,i : Di,j → Dj,i. Thus, for r > 0, the product map hj,i×
hj,i is continuous on the compact set Br

i,j = {(w,w′) | w,w′ ∈ Di,j , dX(w,w
′) ≤

r}. Hence we obtain a finite upper bound

(18) κ(r) = max
{
dX(hj,i(w), hj,i(w

′)) | (i, j) admissible , (w,w′) ∈ Br
i,j

}
.

Note that lim
r→0

κ(r) = 0 follows from continuity of the maps hi,j . �

We conclude this discussion with a useful observation which yields a key technical
point, that the holonomy along a path is independent of “small deformations” of
the path. First, we recall a standard definition:

Let h : U → V be a homeomorphism, where U, V ⊂ T∗ are open subsets, and
let w ∈ U . Let a second homeomorphism h′ : U ′ → V ′ be a homeomorphism,
where U ′, V ′ ⊂ T∗ are also open subsets, with w ∈ U ′. Then define an equivalence
relation, where h ∼ h′ if there exists an open set w ∈ V ⊂ U ∩ U ′ such that
h|V = h′|V .

Definition 3.3. The germ of h at w is the equivalence class [h]w under this relation,
which is also called the germinal class of h at w. The map h : U → V is called a
representative of [h]w. The point w is called the source of [h]w and denoted s([h]w),
while w′ = h(w) is called the range of [h]w and denoted r([h]w).

Let I = (i0, i1, . . . , iα) be admissible, with associated holonomy map hI . Given
w, u ∈ D(hI), then the germs of hI at w and u admit a common representative,
namely hI . Thus, if γ, γ

′ are leafwise paths defined as above from the plaque chains
associated to (I, w) and (I, u), then the germinal holonomy maps along γ and γ′

admit a common representative by Proposition 3.1. This is the basic idea behind
the following technically useful result.
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Lemma 3.4. Let γ, γ′ : [0, 1] → M be leafwise paths. Suppose that x = γ(0), x′ =
γ′(0) ∈ Ui and y = γ(1), y′ = γ′(1) ∈ Uj . If dM(γ(t), γ′(t)) ≤ εU/4 for all 0 ≤
t ≤ 1, then the induced holonomy maps hγ , hγ′ agree on their common domain
D(hγ) ∩D(hγ′) ⊂ Ti.

Proof. Choose a partition of the interval [0, 1], 0 = s0 < s1 < · · · < sα = 1 such
that for each 0 ≤ � ≤ α, both paths satisfy the conditions

dM(γ(s�), γ(s�+1)) < εFU , dM(γ′(s�), γ
′(s�+1)) < εFU .

Set x� = γ(s�) and x′
� = γ′(s�) for 0 ≤ � ≤ α, and where for notational convenience,

we let sα+1 = sα.
Then note that for all sα−1 ≤ t′ ≤ sα+1 we have

(19)
dM(γ(sα), γ

′(t′)) ≤ dM(γ(sα), γ
′(sα)) + dM(γ′(sα), γ

′(t′)) ≤ εU/4 + εU/8 < εU/2.

For each 0 ≤ � ≤ α, choose an index 1 ≤ i� ≤ ν so that BM(x�, εU ) ⊂ Ui� .
Then for all s� ≤ t ≤ s�+1, BM(γ(t), εU/2) ⊂ Ui� , so that x�+1 ∈ Ui� ∩ Ui�+1

. It
follows that I = (i0, i1, . . . , iα) is an admissible sequence. Set hγ = hI .

Also, by (19) we have γ′([s�−1, s�+1]) ⊂ BM(γ(s�), εU/2) so that I is also an
admissible sequence defining hγ′ = hI . Thus, x, x

′ ∈ D(hI) ⊂ Ti0 .
As the domains for hγ and hγ′ are defined to be the maximal subsets of Ti0 where

the maps are defined, this shows they agree on the subset D(hI) ⊂ D(hγ)∩D(hγ′),
so we are done by Proposition 3.1. �

3.3. Homotopy independence. Two leafwise paths γ, γ′ : [0, 1] → M are homo-
topic if there exists a family of leafwise paths γs : [0, 1] → M with γ0 = γ and
γ1 = γ′. We are most interested in the special case when γ(0) = γ′(0) = x and
γ(1) = γ′(1) = y. Then γ and γ′ are endpoint-homotopic if they are homotopic
with γs(0) = x for all 0 ≤ s ≤ 1, and similarly γs(1) = y for all 0 ≤ s ≤ 1. Thus,
the family of curves {γs(t) | 0 ≤ s ≤ 1} are all contained in a common leaf Lx. The
following property then follows from an inductive application of Lemma 3.4:

Lemma 3.5. Let γ, γ′ : [0, 1] → M be endpoint-homotopic leafwise paths. Then
their holonomy maps hγ and hγ′ agree on some open subset U ⊂ D(hγ)∩D(hγ′) ⊂
T∗. In particular, they determine the same germinal holonomy maps.

Proof. Let H(s, t) : [0, 1] × [0, 1] → M with H(0, t) = γ(t), H(1, t) = γ′(t), and
H(s, 0) = γ(0), H(s, 1) = γ(1). Choose a partition of the interval [0, 1], 0 = t0 <
t1 < · · · < tα = 1 such that for all 0 ≤ s ≤ 1 the leafwise distance estimate holds,

dM(H(s, t�), H(s, t�+1)) < εFU .

Then choose a partition 0 = s0 < s1 < · · · < sβ = 1 so that for all 0 ≤ � < β we
have the uniform estimate

dM(H(s�, t), H(s�+1, t)) ≤ εU/4 for all 0 ≤ t ≤ 1.

Then apply Lemma 3.4 inductively to the paths t 
→ H(s�, t) and t 
→ H(s�+1, t)
for 0 ≤ � < β, and the conclusion follows. �
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The following is another consequence of the total convexity of the plaques in the
foliation covering:

Lemma 3.6. Suppose that γ, γ′ : [0, 1] → M are leafwise paths for which γ(0) =
γ′(0) = x and γ(1) = γ′(1) = x′, and suppose that dM(γ(t), γ′(t)) < εU/4 for all
a ≤ t ≤ b. Then γ, γ′ : [0, 1] → M are endpoint-homotopic. �

Given g ∈ G∗
F and w ∈ D(g), let [g]w denote the germ of the map g at w. Set

(20) ΓF ,w = {[g]w | g ∈ G∗
F , w ∈ D(g) , g(w) = w}.

Given x ∈ Ui with w = πi(x) ∈ T∗, the elements of ΓF ,w form a group, and by
Lemma 3.5 there is a well-defined homomorphism hF ,x : π1(Lx, x) → ΓF ,w which
is called the holonomy group of F at x.

3.4. Non-trivial holonomy. Note that if y ∈ Lx, then the homomorphism hF ,y

is conjugate (by an element of G∗
F ) to the homomorphism hF ,x. A leaf L is said

to have non-trivial germinal holonomy if for some x ∈ L, the homomorphism hF ,x

is non-trivial. If the homomorphism hF ,x is trivial, then we say that Lx is a leaf
without holonomy. This property depends only on L, and not the basepoint x ∈ L.
The foliated space M is said to be without holonomy if for every x ∈ M, the leaf
Lx is without germinal holonomy.

Lemma 3.7. Let M be a foliated space without holonomy. Fix a regular covering
for M as above. Let I, J be two plaque chains such that w ∈ Dom(hI)∩Dom(hJ )
with hI(w) = w′ = hJ (w). Then hI and hJ have the same germinal holonomy at
w. Thus, for each w′ ∈ O(w) in the G∗

F orbit of w, there is a well-defined holonomy
germ hw,w′ .

Proof. The composition g = h−1
J ◦ hI satisfies g(w) = w, so by assumption there

is some open neighborhood w ∈ U for which g|U is the trivial map. That is,
hI |U = hJ |U . �

We introduce a mild generalization of the notion of a foliation without holonomy.

Definition 3.8. The foliated space M is said to have finite holonomy if there is a

(compact) foliated space without holonomy M̃ with foliation F̃ , and a finite-to-one

foliated map Π: M̃ → M which is a surjection, and the restrictions of Π to leaves

of F̃ are covering maps onto leaves of F .

Finally, we recall a basic result of Epstein, Millet and Tischler [21] for foliated
manifolds, whose proof applies verbatim in the case of foliated spaces.

Theorem 3.9. The union of all leaves without holonomy in a foliated space M is a
dense Gδ subset of M. In particular, there exists at least one leaf without germinal
holonomy. �

4. Matchbox manifolds and equicontinuity

Let M be a matchbox manifold. Then the local transverse models for F are
totally disconnected, and the leaves of F are defined to be the path components for
the induced fine topology on M. These remarks are the basis for several elementary
but important observations.

Lemma 4.1. Every continuous map γ : [0, 1] → M is a leafwise path.
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Proof. Let a ≤ c ≤ b and choose a local chart ϕi : Ui → (−1, 1)n×Ti with γ(c) ∈ Ui.
The image path πi(γ(t)) ∈ Ti must be constant for t near to c, as Ti is assumed to
be totally disconnected. Thus, by standard arguments, γ(t) lies in the leaf Lx of F
containing the initial point x = γ(a). �

Corollary 4.2. Let X be a path connected topological space, and h : X → M a
continuous map. Then there exists a leaf Lh ⊂ M for which h(X) ⊂ Lh.

Proof. Let x ∈ X and Lh be the leaf of F containing h(x). Then apply Lemma 4.1.
�

Corollary 4.3. Let M and M′ be matchbox manifolds, and h : M′ → M a contin-
uous map. Then h maps the leaves of F ′ to leaves of F .

Proof. The leaves of F ′ are path-connected, so their images under h are contained
in leaves of F . �

Corollary 4.4. A homeomorphism h : M → M of a matchbox manifold is a foliated
map. �

Let H(M) denote the group of homeomorphisms of M, and H(M,F) the sub-
group of H(M) consisting of homeomorphisms which preserve the foliation F ; that
is, every leaf of F is mapped to some leaf of F . Then Corollary 4.4 states that
H(M) = H(M,F).

4.1. Equicontinuous pseudogroups. The following is one of the main concepts
used in this work.

Definition 4.5. The holonomy pseudogroup GF of F is equicontinuous if for all
ε > 0, there exists δ > 0 such that for all g ∈ G∗

F , if w,w
′ ∈ D(g) and dX(w,w

′) < δ,
then dX(g(w), g(w

′)) < ε.

We note that equicontinuity is a strong hypothesis on a pseudogroup. In partic-
ular, as noted by Plante [37, Theorem 3.1], Sacksteder proved:

Theorem 4.6 (Sacksteder [45]). If GF is an equicontinuous pseudogroup modeled
on a compact Polish space X, then there exists a Borel probability measure μ on X
which is GF -invariant. �

We also introduce the notion of a distal pseudogroup. While not used directly
in this work, we refer to this in discussing open questions in Section 12.

Definition 4.7. The holonomy pseudogroup GF of F is distal if for all w,w′ ∈ T∗,
if w �= w′, then there exists δw,w′ > 0 such that for all g ∈ G∗

F with w,w′ ∈ D(g),
then dX(g(w), g(w

′)) ≥ δw,w′ .

Distal and equicontinuous pseudogroups are closely related [3, 20, 24, 29, 53].
We next prove the fundamental result, that the equicontinuity hypothesis on GF

gives uniform control over the domains of arbitrary compositions of the generators
of G∗

F .

Proposition 4.8. Assume the holonomy pseudogroup GF of F is equicontinuous.
Then there exists δTU > 0 such that for every leafwise path γ : [0, 1] → M, there
is a corresponding admissible sequence Iγ = (i0, i1, . . . , iα) so that BX(w0, δ

T
U ) ⊂

D(hIγ
), where x = γ(0) and w0 = πi0(x).
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Moreover, for all 0 < ε1 ≤ εTU there exists 0 < δ1 ≤ δTU independent of the path
γ, such that hIγ

(DX(w0, δ1)) ⊂ DX(w
′, ε1), where w′ = πiα(γ(1)).

Thus, G∗
F is equicontinuous as a family of local group actions.

Proof. Recall that εTU > 0 is defined by (8). Let δTU > 0 be the modulus associated
to ε = εTU by Definition 4.5. Note that δTU ≤ εTU as G∗

F contains the identity map
for every open subset of T∗.

Given γ : [0, 1] → M, let 0 = s0 < s1 < · · · < sα = 1 be a partition of the interval
[0, 1] as in Section 3, so that for each 0 ≤ � ≤ α, γ([s�, s�+1]) ⊂ DF (x�, ε

F
U ), where

x� = γ(s�). Moreover, for the associated admissible sequence Iγ = (i0, i1, . . . , iα),
we have that for all 0 ≤ t ≤ 1, BM(γ(t), 12εU ) ⊂ Ui� .

For each 1 ≤ � ≤ α′, set x� = γ(s�) and let w� = πi�(x�). Set I� = (i0, i1, . . . , i�)
with corresponding holonomy map hI�

. Then hI�
(w0) = w�. Let h� = hi�+1,i� so

that h� ◦ hI�
= hI�+1

and h0 = hI1
.

We use induction on � to show that BX(w0, δ
T
U ) ⊂ D(hIγ

). First, note that

δTU ≤ εTU implies BX(w0, δ
T
U ) ⊂ BX(w0, ε

T
U ). By the remarks following (15) we

have that BX(w0, ε
T
U ) ⊂ D(h0) = D(hI1

). By the definition of δTU we have that
hI1

(BX(w0, δ
T
U )) ⊂ BX(w1, ε

T
U ). Then BX(w1, ε

T
U ) ⊂ D(h1). Thus BX(w0, ε

T
U ) ⊂

D(hI2
).

Suppose that BX(w0, ε
T
U ) ⊂ D(hI�

). As before, we have that

hI�
(BX(w0, δ

T
U )) ⊂ BX(w�, ε

T
U ) ⊂ D(h�).

Thus, BX(w0, ε
T
U ) ⊂ D(hI�+1

) and hI�+1
(BX(w0, δ

T
U )) ⊂ BX(w�+1, ε

T
U ).

This completes the induction. The last assertion on the existence of δ1 given ε1
is just a restatement of equicontinuity for hIγ

. �

Note that similar techniques can be used to prove the following, which implies
that equicontinuity is a property of the foliation F of M and does not depend on
the particular covering chosen:

Proposition 4.9. Let M be a foliated space, with a regular covering U such that
GF is an equicontinuous pseudogroup. Then for any other choice of regular covering
U ′ of M, the resulting pseudogroup G′

F will also be equicontinuous. �
We say that M is equicontinuous if for some regular covering of M, the groupoid

GF is equicontinuous.

4.2. Minimal foliations.

Definition 4.10. A foliated space M is minimal if each leaf L ⊂ M is dense.

The following is an immediate consequence of the definitions:

Lemma 4.11. A foliated space M is minimal if and only if for some regular cov-
ering of M, the holonomy pseudogroup GF of F is minimal; that is, for all w ∈ T∗,
the GF orbit O(w) of w is dense.

A standard argument shows that equicontinuity of the action of GF on T∗ implies
that for each w ∈ T∗ the closure O(w) of its orbit is a minimal set. This argument
also applies in the case of an equicontinuous foliation of a compact manifold M
(see [4]) and implies that the ambient space M is a disjoint union of minimal
sets. However, as seen from the case of Riemannian foliations, where the closures
of the leaves in M can form a non-trivial fibration, this does not imply that the
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foliated manifold itself is minimal. Thus, the following result is, at first glance,
very surprising: An equicontinuous action of the holonomy pseudogroup GF on the
totally disconnected transverse space associated to matchbox manifolds is minimal.
This has been previously shown in the context of flows on homogeneous matchbox
manifolds in [1, page 5], and for homogeneous Rn-actions in [13, page 275], and
previously a version for equicontinuous group actions on compact Hausdorff spaces
appears in J. Auslander [2]. The proof below is a technical generalization of these
proofs and extends the previous results to an equicontinuous action of a holonomy
pseudogroup GF of F for a matchbox manifold. In fact, the result can be thought
of as a partial generalization to foliated spaces of a well-known result of Sacksteder
[45] for codimension-one foliations.

Theorem 4.12. If M is an equicontinuous matchbox manifold, then M is minimal.

Proof. The assumption that M is a continua implies that it is connected. Thus,
if M is the disjoint union of open saturated subsets U, V , then one of them must
be empty. As the F-saturation of disjoint open subsets of T∗ are disjoint and
open in M, this implies that a clopen subset W ⊂ T∗ which is GF -invariant must
be all of T∗. We show below that if there exists a GF -invariant open non-empty
proper subset W ⊂ T∗, then T∗ contains a proper clopen subset, which contradicts
that M is connected. Thus, if w ∈ T∗ and its orbit closure O(w) �= T∗, then the

complement W = T∗ −O(w) is an open, non-empty proper subset, which leads to
a contradiction. Thus, the closure of every orbit of GF must be all of T∗.

Let W ⊂ T∗ be a GF -invariant open proper subset and w ∈ W . Let iα be an
index such that w ∈ Tiα . The assumption T∗ that is totally disconnected implies
that its topology has a basis of clopen subsets. Thus w has a neighborhood system
consisting of sets which are both open and closed, hence compact.

Let W0 ⊂ W ∩ Tiα be a clopen neighborhood of w. The GF -saturation of W0 is
the set

(21) O(W0) =
⋃

{g(W0 ∩D(g)) | g ∈ G∗
F , D(g) ∩W0 �= ∅} ⊂ T∗.

Since each map g : D(g) → R(g) is a homeomorphism, and D(g) is open, the set
O(W0) is open.

We claim that O(W0) is closed. If not, then there exists w∗ ∈ O(W0)−O(W0) ⊂
T∗. Choose {w� ∈ O(W0) | � = 1, 2, . . .} such that lim�→∞ w� = w∗. For each � ≥ 1,
there exists an admissible sequence I(�) and ξ� ∈ W0 ∩ D(hI(�)) ⊂ Tiα such that
w� = hI(�)(ξ�). As T∗ is the finite union of the compact sets {Ti | i = 1, . . . , ν}, by
passing to a subsequence, we can assume that there exists an index iβ such that
w� ∈ Tiβ for all � ≥ 1. Moreover, as W0 is compact, we can also assume without
loss of generality, that lim�→∞ ξ� = ξ∗ ∈ W0.

Let δTU > 0 be the constant of Proposition 4.8. As W0 is open, there exists
0 < ε1 < εTU such that BX(ξ∗, 2ε1) ⊂ W0. Let 0 < δ1 ≤ δTU be the constant of
equicontinuity for the action of G∗

F corresponding to ε1 which exists by Proposi-
tion 4.8 as well.

Let γ� denote the leafwise path from y� = τiβ (w�) to x� = τiα(ξ�) determined by

the reverse of the admissible sequence I(�). Thus, γ�(0) = y� and γ�(1) = x�. By
Proposition 4.8, for each � ≥ 1, the path γ� defines an admissible sequence J (�) such
that hJ (�)(w�) = ξ�, BX(w�, δ

T
U ) ⊂ D(hJ (�)) and hJ (�)(BX(w�, δ1)) ⊂ B(ξ�, ε1).
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Choose �0 sufficiently large so that � ≥ �0 implies dX(ξ∗, ξ�)
< ε1 and dX(w∗, w�) < δ1. Then dX(w∗, w�) < δ1 implies w∗ ∈ BX(w�, δ1), and
dX(ξ∗, ξ�) < ε1 implies BX(ξ�, ε1) ⊂ W0.

Thus, hJ (�)(BX(w�, δ1)) ⊂ W0, so hJ (�)(w∗) ∈ W0; hence w∗ ∈ O(W0), contrary
to its choice.

Thus, O(W0) is a clopen subset of W and is proper in T∗ as W is proper. �

5. Homogeneous matchbox manifolds

We next draw a connection between the homogeneity of a matchbox manifold and
the dynamics of its associated foliation. To do so, we first recall a fundamental result
of Effros [19], presented in the spirit of [5, 51]. All topological spaces considered
here are assumed to be separable and metrizable.

5.1. Micro-transitive actions. Let G be a topological group with identity e. An
action A of G on the space X is a continuous map A(g, x) = gx from G×X to X
such that ex = x for all x ∈ X, and f(gx) = (fg)x for all f, g ∈ G and x ∈ X.
For U ⊆ G and x ∈ X, let Ux = {gx | g ∈ U}. An action of G on X is transitive
if Gx = X for all x ∈ X. It is micro-transitive if for every x ∈ X and every
neighborhood U ⊂ G of e, Ux is a neighborhood of x. According to the theorem
of Effros, if a completely metrizable group G acts transitively on a second category
space X, then it acts micro-transitively on X. This result is a form of the “Open
Mapping Principle” [51].

Now consider the homeomorphism group H(X) of a separable, locally compact,
metric space X with the metric dH on H(X) induced by the metric dX on X:

dH (f, g) := sup {dX (f(x), g(x)) | x ∈ X}+ sup
{
dX

(
f−1(x), g−1(x)

)
| x ∈ X

}
.

With this metric, H(X) is complete and acts continuously on X in the natural
way: for h ∈ H(X) and x ∈ X, hx = h(x). Notice that X is homogeneous if
and only if this action is transitive. Effros’ Theorem applied to this action states
that if it is transitive, then it is also micro-transitive. In the special case that X
is compact, we obtain that for any given ε > 0 there is a corresponding δ > 0 so
that if dX(x, y) < δ, there is a homeomorphism h : X → X with dH(h, idX) < ε
and h(x) = y.

Let the homeomorphism group H(M) have the metric dH induced from the
metric dM. Then H(M) is complete, so we can apply the theorem of Effros to
obtain:

Corollary 5.1 (Effros). Let M be a homogeneous foliated space. Given ε∗ > 0,
there is a corresponding 0 < δ∗ ≤ ε∗ so that for any x, y ∈ M with dM(x, y) < δ∗,
there is a homeomorphism h : M → M with dH(h, idM) < ε∗ and h(x) = y. �

5.2. A key application. The papers [1, 4, 50] give applications and examples of
Effros’ Theorem related to the dynamics of flows. The fact that H(M) = H(M,F)
by Corollary 4.4 is a key fact in these applications, and for the following application
to foliated spaces.

Theorem 5.2. If M is a homogeneous matchbox manifold, then M is equicontin-
uous.

Proof. The idea of the proof is simple in principle, though somewhat technical to
show precisely. Basically, given a point w ∈ T∗ and an element hI ∈ G∗

F with

Licensed to Univ of Illinois at Chicago. Prepared on Thu Mar 21 16:27:03 EDT 2013 for download from IP 128.248.155.225.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



HOMOGENEOUS MATCHBOX MANIFOLDS 3169

w ∈ D(hI), let γ be a path defining the admissible sequence I. Then for a point
η ∈ D(hI), the value of hI(η) is defined by a path γη starting at η and shadowing
the path γ. Using Corollary 5.1, for ε > 0 given, and η sufficiently close to w,
we can find such a path γη = γh starting at η which is a conjugate of γ by a
homeomorphism h of M which is ε close to γ. It follows that the endpoint of γh is
within ε of hI(w); hence the action is equicontinuous. We give the details below.

Fix a regular cover of M, and let GF be the associated groupoid, with notation
as above.

Let ε > 0 be given. Recall that κ as defined by (18) satisfies limr→0 κ(r) = 0, so
there exists r0 > 0 so that for all 0 < r ≤ r0 we have κ(r) < ε. Choose 0 < ε′ < ε
so that κ(ε′) < ε.

Set ε∗ = min{ρπ(ε′), εU/4}, where ρπ is the uniform modulus of continuity func-
tion for the projections πi introduced in Lemma 2.8.

Let δ∗ be determined by ε∗ as in Corollary 5.1, and also assume that δ∗ ≤ ε∗.
Let δ = ρτ (δ

∗), where ρτ is the uniform modulus of continuity function for the
sections τi introduced in Lemma 2.9.

Let g ∈ G∗
F be defined by an admissible sequence I = (i0, . . . , iα). That is, g =

hI |U for some open U ⊂ D(hI). We show that for w, ξ ∈ D(hI) with dX(w, ξ) < δ,
then dX(w

′, ξ′) < ε. where w′ = hI(w) and ξ′ = hI(ξ).
Let x = τi0(w) and y = τi0(ξ). Then x, y ∈ Ui0 and dM(x, y) < δ∗ ≤ εU/2 by

the definition of ρτ in Lemma 2.9. Then set x′ = τiα(w
′) and y′ = τiα(ξ

′) so that
x′, y′ ∈ U iα .

Let γx
I : [0, 1] → M be a leafwise piecewise geodesic path from x to x′ determined

by the plaque chain PI(x), as in Section 3. Let 0 = s0 < s1 < · · · < sβ = 1 be
a partition, and J = (j0, . . . , jβ) an admissible sequence covering γx

I so that by
equation (15),

(22) BM(γx
I(t), εU/2) ⊂ Uj� for all s� ≤ t ≤ s�+1.

Proposition 3.1 implies that hI |U = hiα,jβ ◦ hJ ◦ hj0,i0 |U , where U = D(hI) ∩
D(hiα,jβ ◦ hJ ◦ hj0,i0).

For s = 0, by (22) we have that x, y ∈ Uj0 ; hence x, y ∈ Ui0 ∩Uj0 . Also, x′ ∈ Ujβ

by construction.
Let η = πj0(y) = hj0,i0(ξ) and w′′ = πjβ (x

′) = hjβ ,iα(w
′).

The essence of the proof of Theorem 5.2 is the following.

Lemma 5.3. Let η ∈ D(hJ ). Set η′ = hJ (η). Then dX(w
′′, η′) < ε′.

Proof. As dM(x, y) < δ∗, by Corollary 5.1 there exists h ∈ H(M) with h(x) = y
and dH(h, idM) < ε∗.

By Corollary 4.4, the composition γh
I (t) = h ◦ γx

I(t) is a leafwise path from
y = h(x) to z = h(x′), which satisfies

(23) dM(γh
I (t)), γ

x
I(t)) < ε∗ ≤ εU/4 , for all 0 ≤ t ≤ 1.

The conditions dM(h(γx
I(t)), γ

x
I(t)) < εU/4 for all 0 ≤ t ≤ 1, andBM(γx

I(t), εU/2)
⊂ Uj� for each s� ≤ t ≤ s�+1, imply that γh

I ([s�, s�+1]) ⊂ Uj� for all 0 ≤ t ≤ 1.
Thus, η ∈ D(hJ ) and the trace of γh

I (t) is contained in the plaque chain PJ (y).
Set z = γh

I (1) = h(x′), and note that η′ = πjβ (z). Then by (23) we have

that dM(x′, z) < ε∗ < ρπ(ε
′), so by the definition of ρπ we have dX(w

′′, η′) =
dX(πjβ (x

′), πjβ (z)) < ε′. This completes the proof of the lemma. �
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By Lemma 5.3 and Proposition 3.1 we have that

ξ′ = hI(ξ) = hiα,jβ ◦ hJ ◦ hj0,i0(ξ) = hiα,jβ ◦ hJ (η) = hiα,jβ (η
′).

Since w′ = hiα,jβ (w
′′) by the definition of κ and ε′, we have that

dX(w
′, ξ′) ≤ κ(dX(w

′′, η′)) ≤ κ(ε′) < ε.

This completes the proof of Theorem 5.2. �

We make another observation about the dynamics of homogeneous foliated
spaces, which imposes further restrictions on which matchbox manifolds can be
homogeneous.

Lemma 5.4. If M is a homogeneous foliated space, then F is without holonomy.

Proof. By Theorem 3.9 the set of leaves without holonomy is a dense Gδ; hence
there exists at least one leaf Lx without holonomy. Given any other leaf L′ of
F , choose basepoints x ∈ Lx and y ∈ L′. As M is homogeneous, there exists a
homeomorphism h ofM such that h(x) = y, and h is a foliated map by Corollary 4.4.
Then the restriction h : L → L′ is a homeomorphism; hence L′ also is without
holonomy. �

6. Transverse holonomy and orbit coding

Let M be an equicontinuous matchbox manifold. In this section, we show that
the orbits of the equicontinuous pseudogroup associated to F admit finite codings,
which is the basis for the proof of Theorem 1.4. The techniques are inspired by
the paper of Thomas [49] which showed a similar result for equicontinuous actions
of group Z on a Cantor set. For matchbox manifolds with dimension n ≥ 2, this
requires extending the basic ideas from group actions to pseudogroup actions.

Fix a regular covering U = {ϕi : U i → [−1, 1]n×Ti | 1 ≤ i ≤ ν} and pseudogroup
GF as in Section 3. Let δTU > 0 be the constant of Proposition 4.8, such that for
every leafwise path γ : [0, 1] → M, we have BX(w0, δ

T
U ) ⊂ D(hγ) for the holonomy

map hγ ∈ G∗
F , where w0 ∈ Ti corresponds to γ(0).

Theorem 4.12 implies that for any open subsetW ⊂ T∗ the GF -saturation O(W ),
as defined in (21), is all of T∗. We study the dynamics of GF restricted to sufficiently
small clopen subsets of T∗.

6.1. Holonomy groupoids. Fix a coordinate transversal, say T1, and a basepoint
w0 ∈ int(T1).

Choose W ⊂ BX(w0, δ
T
U /4) ⊂ T1 such that W is clopen and w0 ∈ int(W ) = W .

The leaf Lw0
of F through w0 is dense in M, so by the minimality of F , the union

of all images of W under the holonomy along Lw0
is all of T∗. The goal is to choose

a sequence of clopen subsets

(24) w0 ∈ · · · ⊂ V � ⊂ V �−1 ⊂ · · · ⊂ V 1 ⊂ V 0 ⊂ W,

all which contain w0, and such that the G∗
F -orbits of each V � have a “finite order

periodic coding”.
Let RF ⊂ T∗ × T∗ denote the equivalence relation on T∗ induced by F , where

(w,w′) ∈ RF if and only if w,w′ correspond to points on the same leaf of F .
Let (w,w′) ∈ RF , and γ = γx,x′ : [0, 1] → M denote a path from x = τix(w)

to x′ = τix′ (w
′). Recall from Definition 3.3 that [hγ ]w denotes its germinal class,

which by Lemma 3.5 depends only on the endpoint-fixed homotopy class of γ. The
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holonomy groupoid ΓF of F is the collection of all such germs, and the source and
range maps from Definition 3.3 define a groupoid map s× r : ΓF → RF .

Given an element g ∈ ΓF with s(g) = w and r(g) = w′, there exists a path
γ = γx,x′ : [0, 1] → M from x = τix(w) to x′ = τix′ (w

′), where w ∈ W , so that
g = [hγx,x′ ]w. Note that by Proposition 4.8, there is a plaque chain covering γ

such that W ⊂ D(hγx,x′ ) for the associated holonomy map hγx,x′ . As the constant

δTU > 0 is independent of the choice of the path γ, given g ∈ ΓF we abuse notation,
and let γ denote the holonomy map hγx,x′ whose germ is g and satisfies this domain
condition. Then given such a γ and any u ∈ W , let γu denote the germ of γ at u.
Thus, γw = g for example.

We have previously introduced in (20) the germinal holonomy subgroups ΓF ,w ≡
(s× r)−1(w,w) for w ∈ T∗. Also, consider the following subsets of ΓF :

ΓW = {γu ∈ ΓF | u ∈ W} ,
ΓW
W = {γu ∈ ΓF | u ∈ W , r(γu) ∈ W} ,

ΓW
w = {γu ∈ ΓF | u = w , r(γu) ∈ W} .

Note that ΓW
W is a subgroupoid of ΓF , with object space W . For each w0 ∈ W ,

let ∗w0
denote the constant path at w0, and by abuse of notation, also let ∗w0

∈ ΓW
w0

denote the germ of the identity map at w0. The composition rule for ΓF is defined
by the concatenation of paths. In the case where G∗

F is equicontinuous, a stronger
form of composition holds.

Lemma 6.1. There is a well-defined composition law, ∗ : ΓW
W × ΓW

W → ΓW .

Proof. Let γw, γ
′
u ∈ ΓW with w, u ∈ W . Then w′ = r(γw) ∈ W , so w′ ∈ Dom(γ′);

hence w′′ = γ′(w′) is well-defined. Then define

�(25) γw ∗ γ′
u ≡ [γ′ ◦ γ]w so that r(γw ∗ γ′

u) = w′′.

The composition law (25) has a natural intuitive definition in terms of the def-
inition of the holonomy along paths, which yields a slightly stronger conclusion.
The holonomy map γ′ is defined as the holonomy along a leafwise path γ′

y,y′ be-

tween y = τ1(u) and y′ = τ1(u
′). The action of γ′ on the point w′ is defined by

a leafwise path γ′
ξ,ξ′ between ξ = τ1(w

′) and ξ′ = τ1(w
′′) which “shadows” γ′

y,y′ .

Form the concatenation of the two paths, γ′′
x,x′′ = γ′

ξ,ξ′ ∗ γx,x′ which is a leafwise

path between x = τ1(w) and x′′ = ξ′ = τ1(w
′′). Then the product γw ∗ γ′

u is the
germinal holonomy along the path γ′′

x,x′′ . We will use this geometric description
of the composition law in later arguments. Note that by Proposition 4.8, there is
a representative for hγ′′ with W ⊂ D(hγ′′). However, there is no assertion that
hγ′′(W ) = W .

6.2. Coding functions. We use the equicontinuity of GF and that T∗ is totally
disconnected to define the subsets V � ⊂ W in (24), for which the holonomy action
of ΓW

w0
on V � has “uniform return times”. This procedure corresponds to the

procedure in Thomas’ work, in the case where F is defined by a flow, where the
section W is partitioned into sets with uniform return times.

We begin the inductive construction of the clopen sets V � ⊂ W for � ≥ 1.
Let � = 1 and set ε1 = δTU /4. Choose a partition of W into disjoint clopen

subsets,

(26) W1 = {W 1
1 , . . . ,W

1
β1
}, W = W 1

1 ∪ · · · ∪W 1
β1
, w0 ∈ W 1

1 ,
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where each W 1
i has diameter (in X) less than ε1. If ε1 > diamX(W ), one can choose

W 1
1 = W and β1 = 1. However, in the later stages of the inductive construction,

ε� → 0 so β� → ∞. Introduce the first code space C1 = {0, 1, . . . , β1}.
Let η1 = min

{
dX(W,T∗ −W ), dX(W

1
i ,W

1
j ) | i �= j

}
> 0, which is positive as W

is clopen in X.
Let δ1 > 0 be a constant of equicontinuity for GF corresponding to η1.
Next, introduce the coding function corresponding to the partition W1.

Definition 6.2. For w ∈ W , the C1
w-code of u ∈ W is the function C1

w,u : Γ
W
w → C1

defined as, for γ ∈ ΓW
w :

C1
w,u(γ) =

{
i if γ(u) ∈ W 1

i ,

0 if γ(u) ∈ T∗ −W.

The function C1
w,u encodes the terminal point for the path starting at u, and

shadowing the path γ from w to w′ = r(γw) ∈ O(w). In particular, C1
w,u(γ) = 0

corresponds to those points u ∈ W such that γ(u) �∈ W . Thus, if W is invariant
under G∗

F , then the code value C1
w,u(γ) = 0 never occurs.

Lemma 6.3. Let w, u ∈ W and γ′ ∈ ΓW
w . Set w′ = r(γ′) and suppose that

u′ = γ′(u) ∈ W . Then

(27) C1
w′,u′(γ) = C1

w,u(γ ∗ γ′) for all γ ∈ ΓW
w′ .

Proof. The function C1
w′,u′ codes for a path γu′,u′′ starting at u′ and shadowing the

path γ = γw′,w′′ from w′ to w′′ = r(γ) ∈ O(w′) = O(w). Precompose the path
γw′,w′′ with γ′ to obtain paths

γ′′
w,w′′ = γw′,w′′ ∗ γ′

w,w′ ∈ ΓW
w , γ′′

u,u′′ = γu′,u′′ ∗ γ′
u,u′ ∈ ΓW

u ,

where the latter shadows the former. We then have γ(u′) = γ ◦ γ′(u), from which
(27) follows. �

Lemma 6.4. If u, v ∈ W with dX(u, v) < δ1, then C1
w,u(γ) = C1

w,v(γ) for all

γ ∈ ΓW
w . Hence, the function C1

w defined by C1
w(u) = C1

w,u is locally constant, and

so V 1 is open.

Proof. Let γ ∈ ΓW
W , and suppose that u, v ∈ W with dX(u, v) < δ1. Set u′ = γ(u)

and v′ = γ(v). By the equicontinuity of GF , dX(u, v) < δ1 implies dX(u
′, v′) < η1.

Assume that u′ = γ(u) ∈ W 1
i . Then dX(u

′, v′) < dX(W,T∗ −W ) implies v′ ∈ W .
Moreover, dX(u

′, v′) < dX(W
1
i ,W

1
j ) for all j �= i implies that v′ ∈ W 1

i . Thus,

C1
w,u(γ) = C1

w,v(γ). �

We now begin the construction of the coding partitions. For the first stage,
� = 1, set:

V 1 =
{
u ∈ W | C1

w0,u(γ) = C1
w0,w0

(γ) for all γ ∈ ΓW
w0

}
(28)

=
⋂{

h−1
γ (W 1

i ) | γ ∈ ΓW
w0

, γ(w0) ∈ W 1
i

}
⊂ W 1

1 .

Note that w0 ∈ V 1, so that V 1 is non-empty, and it is open by Lemma 6.4.
For γ ∈ ΓW

w0
we have γ(w0) ∈ W by definition of ΓW

w0
, and the function u 
→

C1
w0,u(γ) is constant on V 1; hence γ(V 1) ⊂ W . Moreover, the image γ(V 1) ⊂ W is

open for each γ ∈ ΓW
w0

.
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Lemma 6.5. Let γ ∈ ΓW
w0

and set V 1
γ = γ(V 1). If V 1 ∩ V 1

γ �= ∅, then V 1 = V 1
γ .

Proof. By assumption, there exists u′ = γ(u) ∈ V 1 ∩ V 1
γ for some u ∈ V 1. We

first show that all points v′ ∈ V 1
γ have the same code function as u′ ∈ V 1, so that

v′ ∈ V 1; hence V 1
γ ⊂ V 1.

Let w′ = γ(w0) ∈ W 1
i .

Given v′ ∈ V 1
γ there exists v ∈ V 1 with v′ = γ(v). Then w0, u, v ∈ V 1 implies

by (28) that we have C1
w0,u(γ) = C1

w0,v(γ) = C1
w0,w0

(γ) so that v′ and u′ lie in the

same partition W 1
i .

For γ′ ∈ ΓW
w0

we claim that C1
w0,v′(γ′) = C1

w0,u′(γ′). Let γ̃′ be a path starting at

w′ shadowing γ′.
Define γ′′ = γ̃′ ∗ γ ∈ ΓW

w0
. Then by Lemma 6.3, we have

(29)
C1

w0,v′(γ′) = C1
w′,v′(γ̃′) = C1

w0,v(γ̃
′ ∗ γ) = C1

w0,u(γ̃
′ ∗ γ) = C1

w′,u′(γ̃′) = C1
w0,u′(γ′),

where we also use that the holonomy along the path γ starting at w0 and the path
γ̃ starting at w′ agree by Lemma 3.4. Thus, V 1

γ ⊂ V 1.

The reverse inclusion V 1 ⊂ V 1
γ follows by the same arguments applied to γ−1. �

Lemma 6.6. Let γ, σ ∈ ΓW
W , and V 1

γ = γ(V 1), V 1
σ = σ(V 1). If dX(V

1
γ , V

1
σ ) < δ1,

then V 1
γ = V 1

σ .

Proof. By assumption, there exists ξ, ζ ∈ V 1 such that ξ′ = γ(ξ) ∈ V 1
γ and ζ ′ =

σ(ζ) ∈ V 1
σ such that dX(ξ

′, ζ ′) < δ1. In particular, if ξ′ ∈ W 1
i , then also ζ ′ ∈ W 1

i .
Set w′ = γ(w0). Then by Lemma 6.4, for all γ′ ∈ ΓW

w0
we have C1

w′,ξ′(γ
′) =

C1
w′,ζ′(γ′).

Set ξ′′ = σ−1(ξ′) = σ−1 ◦ γ(ξ). Then for all γ′′ ∈ ΓW
w0

we have C1
w0,ξ′′

(γ′′) =

C1
w0,ζ

(γ′′). As ζ ∈ V 1 this implies ξ′′ ∈ V 1 and thus V 1 ∩ σ−1 ◦ γ(V 1) �= ∅. By

Lemma 6.5 this implies V 1 = σ−1 ◦ γ(V 1); hence V 1
σ = V 1

γ as was to be shown. �

To complete the construction for the first stage, note that V 1 is an open set.
Hence the minimality of F implies that for each ξ ∈ W , we have O(ξ) ∩ V 1 �=
∅. Hence there exists σ ∈ ΓW

W with ξ′ = σ(ξ) ∈ V 1. So for γ = σ−1 we have
ξ ∈ V 1

γ . Thus, the set
{
γ(V 1) | γ ∈ ΓW

w0

}
of all ΓW

w0
-translates of V 1 is an open

cover of the clopen set W . As W is compact, the cover admits a finite subcover
V1 ≡

{
V 1
1 , . . . , V

1
n1

}
.

Moreover, V 1
i ∩ V 1

j = ∅ for i �= j by Lemma 6.6. As V1 is a finite covering of

the compact set W by disjoint open sets, each of the sets V 1
i is also closed, hence

is clopen.
For each 1 ≤ i ≤ n1 choose γ1

i ∈ ΓW
w0

so that V 1
i = γ1

i (V
1). Without loss of

generality, we can assume that γ1
1 = ∗w0

is the constant path, so that V 1
1 = V 1.

Set w1
i = γ1

i (w0).
Note that by definition of the coding function used to define V 1, we have V 1

i ⊂
W 1

j , where j = C1
w0,w0

(γ1
i ). In particular, diamX(V

1
i ) ≤ diamX(W

1
j ) < ε1 by

construction.
Thus, the collection V1 is a finite partition of W by clopen subsets of diameter

less than ε1, which refines the initial partition W1. This concludes the construction
for the initial inductive step � = 1.
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Now consider the general inductive step, for � > 1. Assume that for each 1 <
λ < � there is given:

• a constant ελ with 0 < ελ < ελ−1/2,
• a clopen set V λ with w0 ∈ V λ ⊂ V λ−1,
• a collection {γλ

1 , . . . , γ
λ
nλ

} ⊂ ΓW
w0

with γλ
1 = ∗w0

,

such that Vλ = {V λ
i ≡ γλ

i (V
λ) | 1 ≤ i ≤ nλ} is a finite partition of W by disjoint

clopen sets with V λ
1 = V λ, and the diameter of each V λ

i is less than ελ. Moreover,
we assume that the holonomy maps

{
γλ
i | 1 ≤ i ≤ nλ

}
are such that the collection

V∗
λ =

{
V λ
i | 1 ≤ j ≤ αλ

}
is a partition of the clopen set V λ into disjoint clopen sets.

Furthermore, the covering Vλ is assumed to be given by the union of the translates
of the partition V∗

λ by the maps {γλ−1
j | 1 ≤ j ≤ nλ−1}. That is, the covering Vλ

is a refinement of the covering Vλ−1 obtained by partitioning V λ−1 into the clopen
subsets of V∗

λ and then translating them to obtain the covering Vλ of W . It follows
that nλ = αλ · nλ−1 for some integer αλ ≥ 1.

We begin the construction of the next partition V� = {V �
i ≡ γ�

i (V
�) | 1 ≤ i ≤ n�},

given the above data. First, set

(30) ε� =
1

2
min

{
diamX(V

�−1
i ) | 1 ≤ i ≤ n�−1

}
< eλ�−1

/2.

Let ε′� > 0 be a constant of equicontinuity for GF corresponding to ε�.

Next, choose a partition of V �−1 into disjoint clopen subsets, W∗
� = {W �

1 , . . . ,
W �

α′
�
}, where w0 ∈ W �

1 and each W �
i has diameter less than ε′�. As in the case � = 1,

this partition of V �−1 need not be “compatible” with the dynamics of GF . The
partition will be “pruned” using the coding map, as in the case � = 1, to obtain a
partition that is “compatible” with the dynamics of GF .

Extend the partition W∗
� of V �−1 to all of W , setting W� = W1

� ∪ · · · ∪ Wn�−1

� ,

where W i
� =

{
γ�−1
i (Wj

� ) | 1 ≤ j ≤ α′
�

}
is itself a partition of V �−1

i = γ�−1
i (V �−1)

into clopen sets.
Note that by the choice of ε′� each set V �−1

i has diameter at most ε�. Define

(31) W �
k = γ�−1

i (W �
j ),where k = j + (i− 1) · α′

� , 1 ≤ j ≤ α′
� , 1 ≤ i ≤ n�−1.

That is, we relabel the collection W� using a lexicographical ordering. Set β� =
α′
� · n�−1, and define the code space C� = {1, . . . , β�}.
The corresponding coding function is defined as before:

Definition 6.7. For w ∈ W , the C�
w-code of u ∈ W is the function C�

w,u : Γ
W
w → C�

defined as: for γ ∈ ΓW
w set C�

w,u(γ) = k if γ(u) ∈ W �
k . Then define

(32) V � =
{
u ∈ W �

1 ⊂ V �−1 | C�
w0,u(γ) = C�

w0,w0
(γ) for all γ ∈ ΓW

w0

}
.

Note that γ(V �) ⊂ W for all γ ∈ ΓW
w0

.

Let η� = min
{
dX(W

�
k ,W

�
k′) | 1 ≤ k �= k′ ≤ β�

}
> 0. Let δ� > 0 be a constant of

equicontinuity for GF corresponding to η�. Then the following results are proved
exactly as for the case � = 1.

Lemma 6.8. If u, v ∈ W with dX(u, v) < δ�, then C�
w,u(γ) = C�

w,v(γ) for all

γ ∈ ΓW
w . Hence, the function C�

w defined by C�
w(u) = C�

w,u is locally constant, and

so V � is open.

Lemma 6.9. Let γ ∈ ΓW
w0

and set V �
γ = γ(V �). If V � ∩ V �

γ �= ∅, then V � = V �
γ .
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Lemma 6.10. Let γ, σ ∈ ΓW
W , and V �

γ = γ(V �), V �
σ = σ(V �). If dX(V

�
γ , V

�
σ ) < δ�,

then V �
γ = V �

σ .

The completion of the �-th stage of the induction proceeds as for � = 1. Note
that V � is an open set. Hence the minimality of F implies that for each ξ ∈ W ,
we have O(ξ) ∩ V � �= ∅. Hence there exists σ ∈ ΓW

W with ξ′ = σ(ξ) ∈ V �. So for
γ = σ−1 we have ξ ∈ V �

γ .

Thus, the set
{
γ(V �) | γ ∈ ΓW

w0

}
of all ΓW

w0
-translates of V � is an open cover

of the clopen set W . As W is compact, the cover admits a finite subcover V� ≡{
V �
1 , . . . , V

�
n�

}
.

Moreover, V �
i ∩ V �

j = ∅ for i �= j by Lemma 6.6. As V� is a finite covering of the

compact set W by disjoint open sets, each of the sets V �
i is also closed, hence is

clopen.
From the definition of V � and the coding function C�

w,u we have V � ⊂ W �
1 .

Moreover, if V �
γ = γ(V �) ∩ V �−1 �= ∅, then V �

γ ⊂ V �−1 by Lemma 6.8, following
that of Lemma 6.4. Thus, the collection

V∗
� =

{
V �
γ | γ ∈ ΓW

w0
, V �

γ ∩ V �−1 �= ∅
}

is a partition of V �−1 by clopen sets. Hence there is a finite collection
{
γ�
1, . . . , γ

�
α�

}
⊂ ΓW

w0
so that for V �

j = V �
γj

= γj(V
�) we have V∗

� =
{
V �
j | 1 ≤ j ≤ α�

}
is a partition

of V �−1 by disjoint sets. As before, we can assume that γ1
� = ∗w0

so that V �
1 = V �.

Recall that W∗
� =

{
W �

1 , . . . ,W
�
α′

�

}
is the chosen partition of V �−1 into disjoint

clopen subsets, so by the definition of V �, we have γ�
j(V

�) ⊂ W �
k , where 1 ≤

k = C�
w0,w0

(γ�
j) ≤ α′

�. Thus, V∗
� is a refinement of the partition W∗

� of V �−1. In
particular, note that α� ≥ α′

�.
Finally, extend the partition V∗

� of V �−1 to all of W , setting V� = V1
� ∪· · ·∪V

n�−1

� ,

where V i
� = {γ�−1

i (V �
j ) | 1 ≤ j ≤ α�} is a partition of V i

�−1 = γ�−1
i (V �−1) into clopen

sets. Note that by the choice of ε′� each set γ�−1
i (V �

j ) has diameter at most ε�.
Set n� = α� · n�−1, and for 1 ≤ k ≤ n� relabel the collection V� using a lexico-

graphical ordering,

V �
k = γ�−1

i (V �
j ),where k = j + (i− 1) · α� , 1 ≤ j ≤ α� , 1 ≤ i ≤ n�−1.

Thus, the collection V� is a finite partition of W by clopen subsets of diameter
less than ε�, which refines the initial partition W�. Set w

�
i = γ�

i (w0).
This concludes the general inductive step of the construction of the partitions

V� ≡
{
V �
k | 1 ≤ k ≤ n�

}
.

7. Equicontinuity and Thomas tubes

Let M be an equicontinuous matchbox manifold. In this section, we show how
the partitions V� of the transversal space X, for � ≥ 1, introduced in Section 6, give
rise to a “presentation” of M by what we call the Thomas tubes. In Section 8, we
derive the solenoidal structure of M from this data.

Suppose that the equicontinuous matchbox manifold M is a Cantor bundle,
π0 : M → M0, as discussed in Section 1. That is, we assume there exists a compact
manifold M0, finitely presented group Γ = π1(M0, b0), Cantor set Fb = π−1

0 (b), and
a minimal, equicontinuous action ϕ : Γ × Fb → Fb so that M is homeomorphic to
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the suspension of the action ϕ. Consider V � ⊂ Fb
∼= T∗ and introduce the subgroup

Γ� ≡
{
γ ∈ Γ | ϕ(γ)(V �) = V �

}
.

Then the “Thomas tube” associated to V � is homeomorphic to the suspension of
the action of Γ� on V �, which is a Cantor bundle over the covering space M� → M0

associated to Γ� ⊂ Γ.
The complication which arises for the more general case is that one requires a

“foliated product theorem” in place of the suspension construction, as the leaves of
F are not given as covering spaces of a given fixed base manifold M0. We introduce
the notion of foliated microbundles in the context of matchbox manifolds to obtain
such a product theorem.

7.1. Foliated microbundles. The “foliated microbundle” associated to a leaf in
a foliated space is one of the most basic concepts, originating with the first works of
Reeb (see Milnor [32] for a discussion). Its construction is a generalization of that
for the holonomy map hIγ

associated to a leafwise curve γ, as in Section 3.2, in
that it follows essentially the same procedure, but uniformly for all paths in a given
leaf. We give this construction for foliated spaces; then for the case where Lx is
dense and F is equicontinuous, it provides a framework for analyzing the structure
of M.

Recall that w0 ∈ int(T1) is the fixed basepoint of Section 6. Let x0 = τ1(w0) ∈ U1

and L0 be the leaf through x0. Let hF ,x0
: π1(L0, x0) → Gw0

F denote the holonomy
homomorphism of L0, whose kernel K0 ⊂ π1(Lx0

, x0) of hF ,x0
is a normal subgroup.

Let Π: L̃0 → L0 be the covering associated to K0 and choose x̃0 ∈ L̃0 such that

π(x̃0) = x0. By definition, given any closed path γ̃ : [0, 1] → L̃0 with basepoint
x̃0 = γ̃(0) = γ̃(1), the image of γ̃ in L0 has trivial germinal holonomy as a leafwise

path in M. It follows that the holonomy map defined by a path γ̃ in L̃0 starting at
x̃0 is determined by the endpoint γ̃(1).

The construction of the foliated microbundle associated to L0 begins with the

selection of a collection of points in L̃0 which are “sufficiently dense in L̃0” to
capture the holonomy of L0. This is assured by choosing a suitably fine net in L0

and then lifting this to a net in L̃0.

Definition 7.1. Let (X, dX) be a complete separable metric space. Given 0 <
e1 < e2, a subset N ⊂ X is an (e1, e2)-net (or Delone set) if:

(1) N is e1-separated: for all y �= z ∈ N , e1 ≤ dX(y, z);
(2) N is e2-dense: for all x ∈ X, there exists some z ∈ N such that dX(x, z) ≤

e2.

It is a standard fact that given a separable, complete metric space X and any
e2 > 0, there exists 0 < e1 < e2 and a (e1, e2)-net N ⊂ X.

Recall that εFU defined by (9) was chosen so that every leafwise disk of radius
εFU is contained in a metric ball of M of radius εU/2. That is, for all y ∈ M,
DF (y, ε

F
U ) ⊂ DM(y, εU/2).

Let e2 = εFU /4. Then choose N0 ⊂ L0 an (e1, e2)-net for L0 for some 0 < e1 <
εFU /4. We can assume without loss of generality that x0 ∈ N0. Condition (7.1(2))

implies that the collection of leafwise open disks {BF (z, ε
F
U /2) | z ∈ N0} is a

covering of L0.
For each z ∈ N0, choose an index 1 ≤ iz ≤ ν so that BM(z, εU ) ⊂ Uiz . Without

loss, we can assume that BM(x0, εU ) ⊂ U1. Then note that for all z′ ∈ DF (z, ε
F
U ),
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we have z′ ∈ BM(z, εU/2), so the triangle inequality implies that

(33) DF (z
′, εFU ) ⊂ BM(z′, εU/2) ⊂ BM(z, εU ) ⊂ Uiz .

Lemma 7.2. The collection {Uiz | z ∈ N0} is a subcover for M, with Lebesgue
number εU/3.

Proof. Let y ∈ M. Then L0 is dense, so there exists y′ ∈ L0 with dM(y, y′) < εU/6.
Let z ∈ N0 with dF (y

′, z) < εFU /2. Then y′ ∈ BM(z, εU/2). Hence y ∈ BM(z, εU ) ⊂
Uiz by (33). Therefore, BM(y, εU/3) ⊂ Uiz . �

Let Ñ0 = Π−1(N0), which is an (e1, e2)-net for L̃0 with the Riemannian metric

lifted from L0. The points of Ñ0 are denoted by z̃, where Π(z̃) = z ∈ N0. In

particular, x̃0 ∈ Ñ0 as Π(x̃0) = x0 ∈ N0.

For each z̃ ∈ Ñ0, let z = Π(z̃) and set Ũz̃ = U iz × {z̃}. For (x, z̃) ∈ Ũz̃ define

Π: Ũz̃ → U iz by Π(x, z̃) = x. For z̃ �= z̃′ ∈ Ñ0 with Π(z̃) = Π(z̃′) = z, the sets Ũz̃

and Ũz̃′ are disjoint by definition, though their projections to M agree.

For z̃ ∈ Ñ0 and ỹ = (x, z̃) ∈ Ũz̃, let P̃z̃(ỹ) = Piz (x)× {z̃} denote the plaque of

Ũz̃ containing ỹ. If x ∈ Piz (z), then we abuse notation and identify P̃z̃(ỹ) with the

plaque of L̃0 containing z̃. Note that B
˜L0
(z̃, εFU ) ⊂ P̃z̃(z̃) for each z̃ ∈ Ñ0, so the

collection {P̃z̃(z̃) | z̃ ∈ N0} is a covering of L̃0.

One thinks of the plaques P̃z̃(z̃) as “convex tiles”, and the collection {P̃z̃(z̃) |
z̃ ∈ Ñ0} as a “tiling” of L̃0. The interiors of the plaques need not be disjoint,
so this is not a proper tiling in the usual sense (for example, see [6, 8, 23, 48], or

[12, §11.3.C]). In particular, the combinatorics of the covering of L̃0 by plaques is
not a consequence of the geometry of the “tiles”, but rather is determined by the
dynamical properties of the leaf L0. (See [7, 28] for a discussion of this point of

view.) The net Ñ0 can also be used to generate Voronoi decompositions of L̃0, as
in the work [17].

The foliated microbundle of L̃0 is the foliated space Ñ0 = {
⋃

z̃∈ ˜N0

Ũz̃}/ ∼ , where

ỹ ∈ Ũz̃ and ỹ′ ∈ Ũz̃′ are identified if Π(ỹ) = Π(ỹ′) and P̃z̃(z̃) ∩ P̃z̃′(z̃′) �= ∅. Let F̃
denote the foliation whose leaves are the path components of Ñ0.

For each z̃ ∈ Ñ0, let T̃z̃ = Tiz̃ . The composition ϕ̃z̃ ≡ ϕiz ◦Π: Ũz̃ → [−1, 1]n×Tz̃

defines a foliated coordinate chart on Ñ0 for F̃ . Let π̃z̃ : Ũz̃ → Tz̃ be the normal
coordinate, and λ̃z̃ : Ũz̃ → [−1, 1]n be the leafwise coordinate.

Given z̃ ∈ Ñ0, subset V ⊂ Tz̃ and ξ ∈ [−1, 1]n, we obtain a local section for F̃
by

(34) τ̃z̃,ξ : V → Ũz̃ , τ̃z̃,ξ(w) = ϕ̃−1
z̃ (ξ, w) = (ϕ−1

iz
(ξ, w), z̃).

The foliated microbundle can be viewed as constructing, in a uniform setting,

all of the holonomy maps for paths in the leaf L̃0. To be precise, we say that a

path γ̃ : [0, 1] → L̃0 is nice if there exists a partition a = s0 < s1 < · · · < sα = b

such that for each 0 ≤ � ≤ α, the restriction γ̃ : [s�, s�+1] → L̃0 is a geodesic

segment between points z̃� = γ̃(s�), z̃�+1 = γ̃(s�+1) ∈ Ñ0 with dF (z̃�, z̃�+1) < εFU .

Then I = (iz̃0 , . . . , iz̃α) is an admissible sequence for both F̃ and F , and so defines

holonomy maps h̃I for F̃ and hI for F . Clearly, h̃I is just the lift of hI , and hI
is the holonomy map for the leafwise path γ = Π ◦ γ̃ constructed in Section 3.
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As before, we note that h̃I depends only on the endpoints of I. For z̃ ∈ Ñ0 let

h̃z̃ denote the holonomy along some nice path γ̃z̃ from x̃0 to z̃, considered as a

transformation of the space T̃, which is the disjoint union of the local transversals
Tz̃. Let hz̃ denote the holonomy along the projected path, γz̃ = Π ◦ γ̃z̃.

Recall that W ⊂ BX(w0, δ
T
U /2) ⊂ T1 is the clopen neighborhood of w0 chosen in

Section 6.

Lemma 7.3. Let γ̃ : [0, 1] → L̃0 be a nice path with γ̃(0) = x̃0. Then W ⊂ D(h̃I).

Proof. This follows directly from Proposition 4.8 and the definition of δTU . �

7.2. Thomas tubes. For each � ≥ 1, let V � ⊂ W be the clopen subset defined by

(32). For z̃ ∈ Ñ0 define

(35) V �
z̃ = hz̃(V

�) ⊂ Tiz̃ , Ṽ �
z̃ = h̃z̃(V

�) = V �
z̃ × {z̃} ⊂ Tz̃.

The union of the sets Ṽ �
z̃ is just the saturation of Ṽ � under the action of the

pseudogroup G
˜F .

Lemma 6.9 implies that if Ṽ �
z̃ ∩ Ṽ �

z̃′ �= ∅, then V �
z̃ = V �

z̃′ although this need not

imply that z̃ = z̃′ if L0 has non-trivial germinal holonomy. The sets Ṽ �
z̃ and Ṽ �

z̃′ are
disjoint if z̃ �= z̃′.

Also, introduce the local coordinate chart saturation of each of these sets:

(36) U�
z̃ = π−1

iz̃
(V �

z̃ ) ⊂ U iz̃ , Ũ�
z̃ = π̃−1

z̃ (Ṽ �
z̃ ) = U�

z̃ × {z̃} ⊂ Ũz̃.

Then U�
z̃ is the union of the plaques in U iz̃ through the points of V �

z̃ .

Definition 7.4. The Thomas tube associated with V � is the subset of the mi-
crobundle Ñ0,

(37) Ñ� =
⋃

z̃∈ ˜N0

Ũ
�
z̃.

In the case that � = �0 note that Ñ�0 = Ñ0. For all � ≥ �0, the image Π(Ñ�) ⊂ M

is the saturation by F of the clopen set V �; hence Π(Ñ�) = M.

Note that Ñ� is a (non-compact) foliated space whose leaves L̃ are coverings of

corresponding leaves of F . That is, the restriction Π: L̃ → L is a smooth covering

map, which is a local isometry for the induced leafwise metric on Ñ�. Also, the leaf

space for Ñ� is homeomorphic to V � by construction, and for �′ > � the inclusion

V �′ ⊂ V � induces a natural inclusion Ñ�′ ⊂ Ñ�.

8. Solenoidal structure for equicontinuous foliations

In this section, we show that if M is an equicontinuous matchbox manifold, then
it has a presentation as an inverse limit, and thus is homeomorphic to a generalized
solenoid as in (1).

The strategy of the proof begins with an observation, that if we assume that M
is homeomorphic to a solenoid S, then the bonding maps p�+1 : M�+1 → M� induce,
for each � ≥ 0, a map q� : M → M� which is a fibration [31]. For each x ∈ M� the
fiber K�(x) ≡ q−1

� (x) is an embedded Cantor set in M, and the fibration structure
implies that the family of Cantor sets {K�(x) | x ∈ M�} forms what we call a
Cantor foliation transverse to F . Moreover, the property q� = p�+1 ◦ q�+1 of a
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solenoid implies that the Cantor foliations associated to q� and q�+1 are naturally
related. We show that, given these consequences, M is homeomorphic to a solenoid.

We begin with a definition. Recall that we assume there is a fixed regular
covering {Ui | 1 ≤ i ≤ ν} of M by foliation charts, as in Definition 2.6, with charts
ϕi : U i → [−1, 1]n × Ti, where Ti ⊂ X is a clopen subset. By construction, each

chart admits a foliated extension ϕ̃i : Ũi → (−2, 2)n ×Ti, where U i ⊂ Ũi ⊂ X is an
open neighborhood of U i and ϕ̃i|U i = ϕi.

Definition 8.1. Let M be a matchbox manifold. We say that M admits a Cantor
foliation H transverse to F if there exists an equivalence relation ≈ on M such
that:

(1) for x ∈ M the class Hx = {y ∈ M | y ≈ x} is a Cantor set;
(2) for each x ∈ Ui with w = πi(x) ∈ Ti there exists a clopen neighborhood

w ∈ Vx ⊂ Ti and a homeomorphism Φx : [−1, 1]n × Vx → Ũi such that, for
each ξ ∈ [−1, 1]n, the image Φx({ξ} × Vx) ⊂ U i is a complete equivalence
class.

The leaves of the “foliation” H are defined to be the equivalence classes of ≈.

We call Vx the model space for H at x. For a standard foliation, the space Vx

would be homeomorphic to (−1, 1)n, while for a Cantor foliation, it is homeomor-
phic to a Cantor set.

Condition 8.1(1) implies the leaves of H are Cantor sets, and Condition 8.1(2)
states that these leaves are “vertical” segments for a regular coordinate chart, after
reparametrization by the maps Φx. In other words, every point x ∈ M admits what
is sometimes called in the foliation literature, a “bi-foliated neighborhood”, where
the leaves of F correspond to the “horizontal” Euclidean slices of [−1, 1]n×Vx, and
the leaves of H correspond to the “vertical” Cantor set slices.

For example, if π : M → M is a Cantor bundle over a compact manifold M , then
the fibers of π define a Cantor foliation of M which is transverse to the foliation F
of M. As a Cantor bundle need not be a solenoid, the existence of the transverse
foliation H is clearly not sufficient to show that M is homeomorphic to a solenoid.
What is required, in addition, is that there exists a sequence {H� | � ≥ �0} of
nested Cantor foliations, which in our situation is provided by constructing Cantor
foliations adapted to the Thomas tubes of Definition 7.4.

For � ≥ 1, let Ñ� be the Thomas tube with transversal model V �, with notation

as in Section 7. Recall that the foliated space Ñ� contains the holonomy covering

L̃0 of the leaf L0 ⊂ M corresponding to w0. Also, for �′ > � we have Ñ�′ ⊂ Ñ� is a
foliated subspace.

Definition 8.2. We say that a transverse Cantor foliation H� on M is adapted to

Ñ� if, for each z̃ ∈ Ñ0 and x ∈ U�
z̃ ⊂ M, we can choose Vx = V �

z̃ in Definition 8.1(2).

Note that if H� is adapted to Ñ�, then for each foliated coordinate chart Ũ�
z̃

for F̃ , the leaves of H� form complete transversals to the image of the restriction

Π: Ũ�
z̃ → U�

z̃. It follows that H� induces a transverse Cantor foliation H̃� on Ñ�.
Actually, this is evident from the definitions as well.

Given such H�, let ≈� denote the equivalence relation on M defined by its leaves,
and by a small abuse of notation, we also let ≈� denote the corresponding equiva-

lence relation on Ñ�.
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Observe that for �′ > �, the restriction of ≈� to the foliated subspace Ñ�′ ⊂ Ñ�

defines an equivalence relation, which is denoted by ≈�′ . The Cantor foliation H̃�′

of Ñ�′ defined by ≈�′ is the lift of an adapted transverse Cantor foliation H�′ on M.

The model sets V ′
x for H�′ are given by the collection of translates {V �′

z̃ | z̃ ∈ Ñ0}.
If π : M → M0 is an equicontinuous Cantor bundle over a compact manifold M0,

then the fibers of π define a Cantor foliation of M which adapts to each Thomas

tube Ñ�, for � ≥ 1. For example, this is the case studied in the work [13] by the first
author, for M0 = Tn. In general, the existence of an adapted transverse Cantor
foliation on M is not “obvious”, though in fact one can show:

Theorem 8.3 ([17]). Let M be an equicontinuous matchbox manifold. Then for

some �0 ≥ 1, there exists a transverse Cantor foliation H�0 on M adapted to Ñ�0 .

The idea of the proof of this result is straightforward enough. For each foliated
coordinate chart, U i or a subchart U�

z̃ ⊂ U i, there is a natural “vertical” foliation
whose leaves are the images of the transversals τz̃,ξ. The problem is that on the
overlap of two charts, these vertical foliations need not match up, as the requirement
on a foliation chart for F is that the horizontal plaques match up. The exception is
when M is given with a fibration structure, then the coordinates can be chosen to
be adapted to the fibration structure, and so the fibers of the bundle are compatible
on overlaps.

For the general case, the idea is then to subdivide the horizontal plaques into
small enough regions, and restrict the diameters of the model set Vx = V �

z̃ , so that
the vertical leaves become sufficiently close on overlaps, so that they can be made
compatible on overlaps. More precisely, one constructs a uniform triangulation of
the leaves of F on M so that the triangles have sufficiently small diameter and
in “general position”, so that they are stable in transverse directions, for small
perturbations. Then, the vertical foliations are defined using barycentric coordi-
nates based on each simplex in the triangulation. The functions Φx introduced in
Condition 8.1(2) are the adjustments to the vertical foliation needed to make the
foliations match up. The requirement that the images of the maps Φx be allowed

to take values in the open neighborhood Ũi is due to the fact that on the bound-
ary points of U i, the leaves of the foliation H need not have constant horizontal
coordinate λi.

A uniform triangulation of the leaves (satisfying the required stability conditions
above) is constructed as the Delaunay simplicial complex associated to a very fine
Voronoi tessellation of the leaves. The proof that all this can be done is quite
tedious, and uses only “elementary techniques”, along with effective estimates in
each stage of the process. The details as given in [17] are quite lengthy and involved.

Given Theorem 8.3, we complete the proof of Theorem 1.4. LetM be an equicon-
tinuous matchbox manifold. Assume that �0 is such that there exists an adapted
transverse Cantor foliation H�0 on M. Let ≈� denote the restricted equivalence

relation on M adapted to Ñ�. For each � ≥ �0, introduce the quotient spaces

M̃� ≡ Ñ�/ ≈� and M� ≡ M/ ≈�. Given a point x ∈ M, let [x]� ∈ M� denote its
≈� equivalence class.

Proposition 8.4. Let M be an equicontinuous matchbox manifold, with �0 as spec-
ified in Theorem 8.3. Then for all � ≥ �0, M� is a closed n-dimensional topological
manifold.
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Proof. For each x ∈ M, the equivalence class [x]� is compact; for the quotient
topology, M� is a Hausdorff topological space. As M is compact and connected,
M� is also compact and connected.

For z̃ ∈ Ñ0 and x ∈ U�
z̃ ∩ Uiz̃ , recall that Pz̃(x) is an open plaque of F con-

taining x. The restriction Q� : Pz̃(x) → M� is a homeomorphism onto its image by
Condition 8.1(2). We define the composition

(38) φz̃ : (−1, 1)n ∼= (−1, 1)n × πiz̃ (x) ⊂ (−1, 1)n × V �
z̃

ϕiz̃−→ Pz̃(x)
Q�−→ Q�(Pz̃(x)),

which is a coordinate neighborhood of [x]�. Moreover, if there exists z̃′ such that
x ∈ U�

z̃ ∩U�
z̃′ ∩Uiz̃ , then the change of coordinate map φz̃′ ◦φz̃ is a homeomorphism,

as each of the maps Φiz̃ and Φiz̃′ in Condition 8.1(2) are homeomorphisms. Thus,
M� has the structure of a topological manifold. �

We observe a basic point about the transverse foliations H̃� induced on the

Thomas tube H̃�.

Lemma 8.5. The inclusion map induces a homeomorphism ι� : L̃0
∼= H̃�/ ≈�.

Proof. Each leaf L̃ ⊂ H̃� intersects each transversal leaf of H̃� in exactly one point,
so the map ι� induced by the inclusion is a 1-1 onto map. The equivalences classes

for ≈� in H̃� are compact, so the quotient topology is Hausdorff. The map ι� is
continuous as it is induced by the inclusion of plaques; hence it is a homeomorphism.

�

Let Q� : M → M�, given by Q�(x) = [x]�, denote the quotient map.

Lemma 8.6. For all � ≥ �0, the restriction π̃� = Q�|L̃0 : L̃0 → M� is a covering
map.

Proof. The map π̃� : L̃0 → M� is a homeomorphism when restricted to each plaque

P̃z̃(z̃), so the map is a local homeomorphism of a complete Hausdorff topological
space; hence is a covering map. �

Lemma 8.7. For all �′ > � ≥ �0, there is a covering map q�′,� : M�′ → M� such
that, for q� ≡ q�,�0 , the maps satisfy q�′ = q� ◦ q�′,�.

Proof. For �′ > � ≥ �0 define π̃� = q� ◦ Π: L̃0 → M�. By the definitions of the

equivalence relations ≈� on M and Ñ0, the map π̃� can be factored as a composition

(39) L̃0 −→ Ñ0 −→ M/ ≈�′ ≡ M�′ −→ M/ ≈� ≡ M�.

Define q�,�′ : M/ ≈�′→ M/ ≈� to be the natural quotient map. Then q�′ =
q� ◦ q�′,� follows. �

Recall that the inverse limit of the sequence of maps {q�,�+1 : M�+1 → M� | � ≥
�0} is the topological space
(40)

S{q�,�′ : M�′ → M�} ≡
{
ω = (ω�0 , ω�0+1, . . .) ∈

∞∏
�=�0

M� | q�,�+1(ω�+1) = ω�

}
.

Proposition 8.8. Let M be an equicontinuous matchbox manifold, with �0 as spec-
ified in Theorem 8.3. Then there is a homeomorphism q : M → S{q�,�′ : M�′ → M�}
of foliated spaces.
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Proof. For x ∈ M define

q(x) = ([x]�0 , [x]�0+1, . . .) ∈ S{q�,�′ : M�′ → M�},

which is well-defined by Lemma 8.7. The map to each factor, x 
→ q�(x) = [x]�, is
continuous by Lemma 8.6 and (40); hence the map q(x) is continuous.

Finally, let x, y ∈ M such that q(x) = q(y). Then q�(x) = q�(y) for all � ≥ �0.
That is, x ≈� y for all � ≥ �0. Define

(41) μ� ≡ max {dM(x, y) | x ≈� y , x, y ∈ M} .

For all z̃ ∈ Ñ0 the diameter of V �
z̃ ⊂ T∗ ⊂ X is bounded above by ε� by the

inductive construction in Section 6 of these sets. By Lemma 2.9, the diameters of
the sections τiz̃ (V

�
z̃ ) are bounded above by ρτ (ε�). As ε� → 0 as � → ∞, we also

have that their diameters ρτ (ε�) → 0 as � → ∞. Finally, there is a finite collection
of maps Φiz̃ which arise in Condition 8.1(2) for the fixed �0; hence they have a
uniform modulus of continuity. Thus μ� → 0 as � → ∞ and consequently, the map
q is injective. �

Combining the above results, we obtain:

Theorem 8.9. Let M be an equicontinuous matchbox manifold, let �0 be defined
by Theorem 8.3, and let M� be defined as above. Then M is homeomorphic to the
solenoid S{q�,�′ : M�′ → M�} defined by the bonding maps q�,�+1 : M�+1 → M�. �

9. Homogeneous matchbox manifolds

An equicontinuous matchbox manifold M has the structure of a solenoid by
Theorem 8.9, although it need not be a McCord solenoid. In this section, we
consider the case where M is homogeneous, and therefore is equicontinuous and
without germinal holonomy. The homogeneous hypothesis, and Corollary 5.1 of the
Effros Theorem, implies special normality properties for the conjugation actions of
the fundamental groups in the solenoidal tower (see (43) below), which then implies
Theorem 1.2, that M is homeomorphic to a McCord solenoid.

Note that Theorem 1.2 follows directly from Theorem 3 in Fokkink and Over-
steegen [22], that a homogeneous solenoid is McCord, and the proof we give is
“essentially” the same. We include the proof for matchbox manifolds here, as the
key idea follows naturally from our previous results.

Let M be a homogeneous matchbox manifold. We follow the notation of the
previous sections. Recall that x0 ∈ M is the fixed basepoint, and L0 is the leaf in

M containing x0. As F has no holonomy, we can identify its holonomy covering L̃0

with L0. We assume that the equivalence relations ≈� as in Section 8 have been
defined for all � ≥ �0. Then the basepoint for M� is the equivalence class [x0]�. For
� ≥ �0, set H� = π1(M�, [x0]�).

The bonding maps of the solenoid S{q�,�′ : M�′ → M�} induce homomorphisms
of fundamental groups,

(42) q� = q�0,� : H� → H�0 , p� : H� → H�−1, q� = q�−1 ◦ p�,

so we obtain a tower of groups for � > �0,

(43) · · · −→ H�+1
p�+1−→ H� −→ · · · −→ H�0 .
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Let H� = q�(H�) ⊂ H�0 ≡ H�0 , which results in a descending chain of subgroups
of finite index,

(44) · · · ⊂ H�+1 ⊂ H� ⊂ · · · ⊂ H�0+1 ⊂ H�0 .

Each manifold M� is then naturally homeomorphic to the covering of M�0 defined
by the subgroup H�, and the homeomorphism type of S{q�,�′ : M�′ → M�} is deter-
mined by the chain (44).

The claim of Theorem 1.2 is that M is homeomorphic to a McCord solenoid,
and this is an essential point, as we use a well-known criterion for when two inverse
limit spaces with the same base space M�0 are homeomorphic.

Theorem 9.1. Suppose that M ∼= S{q�,�′ : M�′ → M�} with subgroups H� ⊂ H�0

for � > �0 defined as above. Suppose there is given a second chain of subgroups of
finite index,

(45) · · · ⊂ H′
ν+1 ⊂ H′

ν ⊂ · · · ⊂ H′
ν0+1 ⊂ H′

ν0
≡ H�0

such that there exists �1 ≥ �0 so that for every � ≥ �1 there exists ν� ≥ ν0 with
H′

ν�
⊂ H�, and for every ν ≥ ν0 there exists �ν ≥ �1 with H�ν ⊂ H′

ν . Then the

inverse limit space defined by the covering spaces M̃ν → M�1 associated to the chain
of subgroups (45) is homeomorphic to M.

The proof of this result and its applications can be found in many sources [16,
22, 30, 31, 42, 43, 47].

Thus, to show Theorem 1.2, it suffices to produce �1 ≥ �0 and a chain of normal
subgroups Ni ⊂ H�1 which satisfy the criteria of Theorem 9.1. The existence of
these normal subgroups follows from a geometric argument using the homogeneous
hypothesis.

First, we recall a basic notion of group theory. Let H ⊂ G be a subgroup. Then
the normal core of H, or the core for short, is the largest subgroup N ⊂ H so that
N is normal in G. We use the notation CG(H) = N . It may happen that CG(H)
is the trivial subgroup. If H has finite index in G, then for a set {g1, . . . , gm} ⊂ G
consisting of a representative of each residue class of G/H, then the core of H is
the subgroup

CG(H) =
⋂

1≤i≤m

g−1
i Hgi.

Thus, if G is an infinite group and H has finite index in G, then CG(H) is always
an infinite group, with finite index in H.

For � ≥ �0 introduce the sections

(46) S� ≡ ϕ−1
1 (0, V �) ⊂ T1 ⊂ U1.

Note that x0 ∈ S� ⊂ S�0 , and for any x ∈ S� we have [x]� = [x0]�. For �
′ > � ≥ �0,

the covering maps q�,�′ : M�′ → M� are induced by expanding the equivalence classes
of ≈�′ to those of ≈�.

Corollary 5.1 implies there exists δM so that for any x, y ∈ M with dM(x, y) <
δM, there is a homeomorphism θ : M → M with h(x) = y and dH(θ, idM) ≤ εU/4.

Recall the constants ε� defined in (30) with diamX(V
�) < ε� and where ε� → 0

monotonically. Let �1 ≥ �0 be chosen so that S�1 ⊂ BM(x0, δM). It follows that
for any ξ ∈ S�1 there exists a homeomorphism θ : M → M with dH(θ, idM) < εU/4
and θ(ξ) = x0. Note that this condition implies that the map θ is homotopic to a
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map commuting with the quotient projections Q� : M → M� for � ≥ �1, which is
the condition used in the work [22].

Proposition 9.2. Let � ≥ �1. Then there exists �′ ≥ � such that H�′ ⊂ CH�1
(H�).

Proof. Recall the constants η� = min
{
dX(W

�
k ,W

�
k′) | 1 ≤ k �= k′ ≤ β�

}
> 0 defined

in Section 6.
The subgroup H� has finite index in H�1 , so we can choose {g1, . . . , gm�

} ⊂ H�1

consisting of a representative of each residue class of H�1/H�. Let {γ1, . . . , γm�
} be

leafwise paths so that for 1 ≤ i ≤ m� we have:

γi(0) = x0 , γi(1) = ξi ∈ S�1 , [γi]�1 = gi ∈ H�1 .

Let hi denote the holonomy transformation defined by the path γi. Note that by
Proposition 4.8 and the choice of �0, we can assume that V �1 ⊂ V �0 ⊂ D(hi) for
1 ≤ i ≤ m. Note that the inverse map h−1

i is defined by transport along the reverse

path γ−1
i (t) = γi(1− t) and that [γ−1

i ]�1 = g−1
i ∈ H�1 .

For 1 ≤ i ≤ m�, choose a homeomorphism θi : M → M with θi(ξi) = x0 and
dH(θi, idM) ≤ εU/4.

Let δ� > 0 be the constant of Lemma 6.8 such that BX(w0, δ�) ⊂ V � ⊂ T�.
Set ε∗� = ρπ(δ�), where the modulus function ρπ(ε) for the transverse coordinate
projections was defined in Lemma 2.8.

Each map θi for 1 ≤ i ≤ m� is uniformly continuous, so there exists δ∗� > 0 so
that if ξ, ξ′ ∈ S�1 satisfies dM(ξ, ξ′) < δ∗� , then dM(θi(ξ), θi(ξ

′)) < ε∗� .
Now choose �′ ≥ � so that S�′ ⊂ BM(x0, δ

∗
� ). We claim that H�′ ⊂ CH�1

(H�).

Given gi ∈ {g1, . . . , gm�
} and b ∈ H�′ we show that b ∈ g−1

i H�gi. Equivalently,

we show that the class gibg
−1
i ∈ H�1 is represented by a path σi : [0, 1] → M such

that σi(0) = x0 and σi(1) = ξ ∈ S� and thus gibg
−1
i ∈ H�.

Choose a leafwise path γb : [0, 1] → M so that:

γb(0) = x0 , γa(1) = ξb ∈ S�′ , [γb]�′ = b ∈ H�′ .

The endpoint ξb ∈ S�′ ⊂ S�1 , so we can define a path γ′
i which shadows γi

as in Lemma 3.4, with γ′
i(0) = ξb and γ′

i(1) = ξ′i. Note that ξb ≈�′ x0 and ho-
lonomy transport along any path preserves the coding decomposition V�′ ; hence
ξ′i = hi(ξb) ≈�′ hi(x0) = ξi.

Form the concatenation σ∗
i ≡ γ′

i ∗ γb ∗ γ−1
i : [0, 1] → L0 which satisfies σ∗

i (0) =
ξi ∈ S�1 and σ∗

i (1) = ξ′i ∈ S�1 . As the endpoints of the path σ∗
i are ≈�′ equivalent,

we obtain a class [σ∗
i ]�′ ∈ π1(M�′ , [ξi]�′) which is a representative for the lift of the

element gibg
−1
i ∈ H�1 .

Now define the leafwise path σi = θi ◦ σ∗
i for each 1 ≤ i ≤ m�. Note that

σi(0) = θi(γi(1)) = θi(ξi) = x0, σi(1) = θi(γ
∗
i (1)) = θi(ξ

′
i) = ξ′′i .

As ξi, ξ
′
i ∈ S�′ ⊂ BM(x0, δ

∗
� ), by the choice of �′, δ∗� and ε∗� we have that ξ′′i ≈� x0.

Moreover, the leafwise paths satisfy dM(σi(t), σ
∗
i (t)) < εU/4 for all 0 ≤ t ≤ 1.

Hence by Lemma 3.4, they determine the same holonomy transformations on their
common domain and are homotopic when projected to M�. �

Now apply Proposition 9.2 inductively. Let �1 ≥ �0 be defined as above. Take
� = �1 + 1 and let �2 = �′ be defined using Proposition 9.2. Then repeat, let
� = �2 and set �3 = �′, and so forth. Define the normal subgroups of H�1 by
Ni = CH�1

(H�i), where H�i+1
⊂ Ni.

By Theorem 9.1, this completes the proof of Theorem 1.2.
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10. Two non-homogeneous examples

Every equicontinuous matchbox manifold is homeomorphic to a solenoid by The-
orem 1.4, but it need not be a McCord solenoid and homogeneous. In this section,
we give two general constructions of examples to illustrate this point. Before giving
the examples, we first establish a basic result.

Proposition 10.1. An n-dimensional solenoid is an equicontinuous foliated space.

Proof. Let S = lim
←

{p�+1 : M�+1 → M�} be an n-dimensional solenoid. Recall that

by definition, we assume that each bonding map p� is a proper covering.
For � ∈ N, let q� : S → M� denote projection onto the �–th factor. Fix a point

x0 in M0 and let q̂0 : (M̂0, x̂0) → (M0, x0) be the universal covering. Now let U0

be a neighborhood of x0 homeomorphic to an open ball that is evenly covered

by q̂0 and let Û0 be the component of q̂−1
0 (U0) that contains x̂0, and for u ∈

U0, let û denote the point of Û0 with q̂0(û) = u. We see that q−1
0 (x0) × U0 is

homeomorphic to the open set q−1
0 (U0) in S by considering the homeomorphism

h : q−1
0 (x0)×U0 → q−1

0 (U0) constructed as follows. For a given f = 〈f�〉 ∈ q−1
0 (x0),

let q̂�[f ] : (M̂0, x̂0) → (M�, f�) be the universal covering satisfying p1◦· · ·◦p�◦q̂�[f ] =
q̂0. Then

h((f, u)) = 〈q̂�[f ](û)〉
is the desired homeomorphism. The fiber q−1

0 (x0) is homeomorphic to a Cantor set,
and so if we choose an appropriate open cover ofM0 consisting of sets evenly covered
by q̂0, we see that S meets the definition of a matchbox manifold. Also notice that

M̂0 is path connected and that for a given f = 〈f�〉 ∈ q−1
0 (x0), 〈q̂�(f)(M̂0)〉 is a

path connected and dense subset of S. Thus, the path components of S are dense
and S is a minimal foliated space. (See also [22, Lemma 11 ff.].)

To show that the foliation of F is equicontinuous, we show equicontinuity with re-
spect to a pseudogroup GF determined by a foliation atlas of the form {q−1

0 (V1), . . . ,
q−1
0 (VN )}, where {V1, . . . , VN} is an open cover of M0 and the inverse of each chart
is of the form hi : q

−1
0 (xi)×Vi → q−1

0 (Vi) as above, where each xi ∈ Vi and xi �= xj

for i �= j. Thus, Ti = q−1
0 (xi) and T∗ are subspaces of S. We identify the transverse

space X with T∗, but in X we view the distances between points in distinct Ti as
being 1. Now let 0 < ε < 1. For � ∈ N let

ε� = max{diam(q−1
� (x)) |x ∈ M�}.

Then ε� → 0. Choose k with εk < ε and let d be the degree of the covering
p1 ◦ · · · ◦ pk. For each i ∈ {1, . . . , N} let

{yi1, . . . , yid} = (p1 ◦ · · · ◦ pk)−1(xi)

and define δ > 0 to be the minimum of all the distances in X between the compact
pairwise disjoint sets q−1

k (yij) for (i, j) ∈ {1, . . . , N} × {1, . . . , d}.
Suppose that w = 〈w�〉, z = 〈z�〉 ∈ Tr are within δ and that both are contained in

the domain of g ∈ GF . As w and z are within δ, we must have that wk = zk = yij for
some (i, j) ∈ {1, . . . , N}×{1, . . . , d}. Let I = (i0, . . . , iα) be the admissible sequence
associated to g. Let γw, γz : [0, 1] → S be paths from w to g(w) and z to g(z) covered
by (I, w) and (I, z) respectively and constructed such that q0 ◦ γw = q0 ◦ γz. As
the covering p1 ◦ · · · ◦ pk lifts the path q0 ◦ γw = q0 ◦ γz to the paths qk ◦ γw and
qk ◦ γz that agree on the initial point yij in Mk, the paths must agree on their
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endpoints qk ◦ g(w) = qk ◦ γw(1) = qk ◦ γz(1) = qk ◦ g(z). Thus, the distance
between g(w) and g(z) is less than or equal to εk < ε, as required to show that GF
is equicontinuous. �

10.1. Non-homogeneous solenoids. Observe that Proposition 10.1 implies that
the existence of an n-solenoid without holonomy which is not homogeneous yields
an equicontinuous, minimal, matchbox manifold that is not homogeneous.

The first example of a solenoid that is not homogeneous was provided by Schori
[47]. This example is formed by taking a specific sequence of non-normal three-to-
one coverings of orientable surfaces of increasing genus.

A simpler construction of a non-homogeneous solenoid was constructed by
Fokkink and Oversteegen in [22, Theorem 35], which gives an example with simply
connected path components. We briefly describe this example.

Let Sp denote the p–adic solenoid of dimension one, considered as an abelian
topological group. The example can be described as the orbit space of an involution
I on S3×S35. To describe I, consider S3×S35 to be the inverse limit of an inverse
sequence of tori T2 ≡ R2/Z2 with single bonding map represented by the matrix(

3 0
0 35

)
. The involution (x, y) 
→ (x+ 1

2 ,−y) of T2 then induces the involution

I on S3 × S35. As the orbit space of the involution of the torus described above is
the Klein bottle, this space could also be described as a solenoid over Klein bottles.
This example is similar to an example of Rogers and Tollefson [43], which could be
described as the orbit space of the analogously defined involution on S1 × S2.

10.2. Matchbox manifolds with holonomy. We give a construction of a class of
examples of equicontinuous matchbox manifolds having leaves with infinite germinal
holonomy groups. The method is very general though abstract.

Let Λ1 = 〈g1, . . . , gk〉 be a finitely generated group, K1 a Cantor set with metric
d1, and let ρ1 : Λ1 → Homeo(K1) define a minimal equicontinuous action of Λ1 on
K1.

Let K0 ⊂ [0, 1] be the “standard” middle-thirds Cantor set, with coordinate
0 ≤ t ≤ 1, with 0 ∈ K0. Let d0 be the metric inherited from the interval [0, 1]. Let
Λ1 act on K0×K1 via the second coordinate, where for g ∈ Λ1 and (x, y) ∈ K0×K1

we set g(x, y) = (x, gy). Now let

K = (K0 ×K1)/{0} ×K1,

where we collapse the “vertical slice” {0} × K1 to a point, denoted by w0 ∈ K.
Note that K is again a Cantor set. The action of Λ1 on K0 × K1 descends to a
continuous action on K.

Define the warp product metric dK on K by setting, for (x, y), (x′, y′) ∈ K0×K1

and letting [x, y], [x′, y′] ∈ K denote their equivalence classes,

(47) dK([x, y], [x′, y′]) = d0(x, x
′) + max{x, x′} · d1(y, y′).

Then the induced action of Λ1 on K is equicontinuous for this metric, but not
minimal.

Let K2 be a Cantor set, and φ2 : Z → Homeo(K2) be any minimal equicontinu-
ous action. Choose a homeomorphism Φ: K2 → K and let φ : Z → Homeo(K) be
the conjugate homeomorphism. Then the action φ of Z on K is also equicontinuous,
as K is compact.
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Let M = Σk+1 be a surface of genus m = k + 1, choose a basepoint b0 ∈ M and
a surjection

Λ ≡ π1(M, b0) → Z
∗m = 〈f1, . . . fk, fk+1〉

onto the free group on m generators. Then define a surjection of Z∗m onto the free
product Λ1 ∗ Z, sending fi 
→ gi, for 1 ≤ i ≤ k, and fm 
→ 1 ∈ Z. In this way,
we obtain a minimal equicontinuous action of Λ on K. Furthermore, note that the
subgroup of Λ corresponding to the first generators, 〈f1, . . . , fk〉, fixes the point
w0 ∈ K, yet acts non-trivially on open neighborhoods in K of this point.

Suspend the action thus constructed of the fundamental group Λ on K to obtain
a 2-dimensional matchbox manifold, which is equicontinuous, hence minimal, and
has very large infinite holonomy group for the leaf determined by the point w0 in
the transversal K.

11. Codimension one

If M is a minimal matchbox manifold, any homeomorphic copy of M that occurs
as an invariant subset of a foliation F of the same leaf dimension as M must in fact
be a minimal set of F since M would then be the closure of each of its leaves.

As follows from a famous theorem of Denjoy and its generalization to folia-
tions, any sufficiently smooth foliation of the 2-dimensional torus is either minimal
or has compact (circular) leaves. Reeb [41] conjectured that sufficiently smooth
codimension-one foliations on closed manifolds could not have exceptional leaves.
However, Sacksteder and Schwartz [46] constructed a C1 codimension-one foliation
on a closed 3-manifold that has a 2-dimensional minimal set. This was improved to
a C∞ example by Sacksteder in [44] and to an analytic example by Hirsch in [27].
Thus, smoothness alone poses no obstacle to the existence of exceptional minimal
sets in codimension one. Reeb [41] and Sacksteder [45] did, however, find added
conditions on the foliation that eliminate the possibility of exceptional leaves. Per-
haps most notable of these conditions is that the foliation be defined by a locally
free action of a connected Lie group ([45]).

Alternatively, one could view the Denjoy dichotomy purely topologically. The
exceptional Denjoy minimal sets of foliations of the torus are known to be not
homogeneous; see, e.g., [1, Example 4]. Hence, any homogeneous minimal set of a
foliation of the torus is a circle or the torus itself. As indicated below, our results
imply that this statement generalizes in a natural way. Thus, while smoothness
does not force the regularity of minimal sets, a natural topological condition does.

We recall the definition of an orientable foliated space [12, Definition 11.2.14].

Definition 11.1. A smooth foliated space X is orientable if its tangent bundle is
an orientable vector bundle over X.

Theorem 11.2. Let F be a smooth codimension-one transversely orientable folia-
tion of a closed orientable manifold M . If M is a homogeneous minimal set of F ,
then M is a manifold.

Proof. Suppose M is a homogeneous minimal set of F that is neither a closed leaf
nor all of M . Then M is an exceptional minimal set, which in the codimension-
one case is well known to have the structure of a matchbox manifold in which the
transverse space can be taken to be the Cantor set; see, e.g., [11, III, Theorem 7].
As M is homogeneous, Theorem 1.2 applies to allow us to conclude that M is a
McCord solenoid. By our assumption that F is transversely orientable and that M
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is orientable, the plane field associated to F is orientable; see, e.g., [11, II, Theorem
5]. It then follows that the manifolds Mi formed by collapsing the tubes in Section 8
are orientable. By Lemma 2 of [14], M does not embed (even topologically) in M ,
a contradiction. �

However, there are many examples of codimension n ≥ 2 foliations with ex-
ceptional homogeneous minimal sets. For example, it is not difficult to construct a
smooth flow on a three manifold without fixed points that has the dyadic solenoid as
a minimal set. As the Denjoy exceptional minimal set shows, without the condition
of homogeneity the above theorems fail.

This definition implies that an orientable foliated space admits a foliation atlas
in which all the leafwise transition maps have Jacobians with positive determinant.
If the matchbox manifold M is orientable when regarded as a foliated space and
if M is at the same time a McCord solenoid, then there exists an inverse limit
expansion for M in which all the manifolds are orientable. As a consequence of
this and the impossibility of codimension-one embeddings of solenoids as shown
in [14], we obtain the following corollary, which is a generalization of the result of
Prajs [39] that any homogeneous continuum in Rn+1 which contains an n-cube is
an n-manifold.

Corollary 11.3. Any orientable homogeneous n-dimensional matchbox manifold
embedded in a closed, orientable (n+ 1)-dimensional manifold is itself a manifold.

12. Problems

We state three open problems, motivated by the results of this work and [16].
The first two are in the spirit of Corollary 11.3, as they concern the consequences
of a matchbox manifold being the minimal set for a smooth foliation.

Problem 12.1. Let M be an equicontinuous matchbox manifold embedded as a
minimal set of a C2-foliation F of a closed manifold. Show that there exists a
finite foliated covering Π: M̃ → M, as in Definition 3.8, such that M̃ is a McCord
solenoid.

In [16] we find embeddings of solenoids as minimal sets of smooth foliations.
In all of these examples, the Galois groups of the covers in a presentation of the
solenoid are abelian. This leads to the following problem, which is an even stronger
form of Problem 12.1.

Problem 12.2. Let S be a McCord solenoid embedded in a C2-foliation F of a
compact manifold. Show that S admits a presentation in which all the covers are
abelian.

Finally, we formulate some questions about the relationship between a matchbox
manifold and its group of homeomorphisms. Note that Fokkink and Oversteegen
ask a related question at the conclusion of their work [22]. Define the normal
closed topological subgroup of Homeo(M) consisting of all leaf-preserving homeo-
morphisms

Inner(M) = {h ∈ Homeo(M) | h(L) = L for all L ⊂ M}.
In analogy with geometric group theory constructions, introduce the group of outer
automorphisms of a matchbox manifold M, which is the quotient topological group

(48) Out(M) = Homeo(M)/Inner(M).
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One can think of Out(M) as the group of automorphisms of the leaf space M,
and thus should reflect many aspects of the space M: its topological, dynamical
and algebraic properties. Very little is known, in general, concerning some basic
questions in higher dimensions:

Problem 12.3. Let M be a matchbox manifold with foliation FM.

(1) If Out(M) is not discrete, must it act transitively? If not, what are the
examples?

(2) If Out(M) is discrete and infinite, what conditions on M imply that it is
finitely generated?

(3) Suppose that M is minimal and expansive; must Out(M) be discrete?
(4) For what hypotheses on M must Out(M) be a finite group?
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