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ABSTRACT. In this work, we study the dynamical properties of Krystyna Kuperberg’s aperiodic flows on 3-
manifolds. We introduce the notion of a “zippered lamination”, and with suitable generic hypotheses, show
that the unique minimal set for such a flow is an invariant zippered lamination. We obtain a precise description
of the topology and dynamical properties of the minimal set, including the presence of non-zero entropy-type
invariants and chaotic behavior. Moreover, we show that the minimal set does not have stable shape, yet
satisfies the Mittag-Leffler condition for homology groups.
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1. INTRODUCTION

The “Seifert Conjecture”, as originally formulated in 1950 by Seifert in [44], asked: “Does every non-
singular vector field on the 3-sphere S? have a periodic orbit?” The partial answers to this question have
a long history. F.W. Wilson constructed in the 1966 work [50] a smooth flow on a plug with exactly two
periodic orbits, which was used to modify a given flow on a 3-manifold to obtain one with only isolated
periodic orbits. Paul Schweitzer showed in the 1974 work [43], that for any closed 3-manifold M, there exists a
non-singular C''-vector field on M without periodic orbits. Schweitzer’s result suggested a modified version of
Seifert’s question: “Does every non-vanishing C'* vector field on a closed 3-manifold have a periodic orbit?”
Krystyna Kuperberg showed in her celebrated 1994 work [26], that the smooth Seifert Conjecture is also false
by inventing a construction of aperiodic plugs which is renowned for its simplicity, beauty and subtlety.

THEOREM 1.1 (K. Kuperberg). On every closed oriented 3-manifold M, there exists a C*° non-vanishing
vector field without periodic orbits.

The goal of this work is to understand the dynamical properties of such “Kuperberg flows”, especially the
structure of their minimal sets. In the exploration of these properties, we reveal their beauty and discover the
hidden complexity of the Kuperberg dynamical systems.

Let us recall the strategy of the proofs of the results cited above. A plug is a compact 3-manifold with
boundary in R?, equipped with a flow satisfying additional conditions. The flow in a plug is assumed to be
parallel to the “vertical” part of the boundary, so that it may be inserted in any coordinate chart of a 3-manifold
M to modify the given flow on M, and changes only those orbits entering and leaving the “horizontal” faces
of the plug. Another assumption on the flow in a plug is that there are orbits, which are said to be trapped,
which enter the plug and never exit. The closure of such an orbit limits to a compact invariant set contained
entirely within the interior of the plug, thus the plug must contain at least one minimal set. In the case of the
Wilson Plug, the two periodic orbits are the minimal sets.

A plug is said to be aperiodic if it contains no closed orbits. Schweitzer observed in [43] that the role of
the periodic orbits in a Wilson Plug could be replaced by Denjoy minimal sets, resulting in an aperiodic plug,
which could then be used to “open up” the isolated closed orbits provided by Wilson’s result. The flow in the
Schweitzer Plug is only C*, due to the topology of the minimal set contained in the plug, around which all
trapped orbits for the flow must accumulate. Harrison constructed in [I9] a modified “non-flat” embedding of
the Denjoy continuum into a 3-ball, which she used to construct an aperiodic plug with a C?-flow. In contrast,
Handel showed in [I8] that if the trapped orbits of a plug accumulate on a minimal set whose topological
dimension is one and is the only invariant set for the flow in the plug, then the minimal set is surface-like:
the flow restricted to the minimal set is topologically conjugated to the minimal set of a flow on a surface.

Kuperberg’s construction in [26] of aperiodic smooth flows on plugs introduced a fundamental new idea,
that of “geometric surgery” on a modified version of the Wilson Plug W, to obtain the Kuperberg Plug K as
a quotient space, 7: W — K. The Wilson vector field W on W is modified to provide a smooth vector field K
on the quotient. The flow of I is denoted by ®;. This is said to be a Kuperberg flow on K.

The periodic orbits for the Wilson flow on W get “cut-open” when they are mapped to K, and there they
become trapped orbits for ®;. The essence of the novel strategy behind the aperiodic property of ®; is perhaps
best described by a quote from the paper by Matsumoto [33]:

We therefore must demolish the two closed orbits in the Wilson Plug beforehand. But pro-
ducing a new plug will take us back to the starting line. The idea of Kuperberg is to let closed
orbits demolish themselves. We set up a trap within enemy lines and watch them settle their
dispute while we take no active part.

The images in K of the cut-open periodic orbits from the Wilson flow ¥; on W, generate two orbits for the
Kuperberg flow ®; on K, which are called the special orbits for ®;. These two special orbits play an absolutely
central role in the study of the dynamics of a Kuperberg flow.



6 STEVEN HURDER AND ANA RECHTMAN

There followed after Kuperberg’s seminal work, a collection of three works explaining in further detail the
proof of the aperiodicity for the Kuperberg flow, and investigating its dynamical properties:

e the Séminaire Bourbaki lecture [I7] by Etienne Ghys;
e the notes by Shigenori Matsumoto [33] in Japanese, later translated into English;
e the joint paper [27] by Greg Kuperberg and Krystyna Kuperberg.

It was observed in these works that the special orbits in K each limit to the other, and that a Kuperberg flow
has a unique minimal set, which we denote by ¥X. The topological and dynamical properties of the minimal
sets for the Wilson, Schweitzer and Harrison Plugs are fundamental aspects of the constructions of the flows
in these plugs. For the Kuperberg flow, the minimal set 3 is not specified by the construction, but rather its
topological properties are a consequence of the strong interaction of the special orbits. We will see that with
the proper geometric assumptions in the construction of K, we are able to obtain a detailed understanding of
the topological and dynamical properties of the minimal set ¥ as a result.

The Radius Inequality, stated as hypothesis (K8) in Section [3] is a topological property of the insertion
maps used to construct the quotient space K from the Wilson Plug W. It is an absolutely remarkable aspect
of Kuperberg’s construction, that the Radius Inequality is essentially all that is required to show that the
quotient flow ®; is aperiodic. Moreover, the smooth insertion maps which satisfy hypothesis (K8) admit many
variations in their local behavior near the special orbits for the Wilson flow, with each choice yielding an
aperiodic “Kuperberg flow”.

In order to describe the generic hypotheses that we introduce, we require some notions which are described
more precisely in Sections[2] [Bland[d] The modified Wilson Plug W, as defined in Section 2] contains a cylinder
set R C W which is invariant under the Wilson flow ¥, on W, and the boundary of R consists of the periodic
orbits for the flow. There is a “notched” subset R’ C R, illustrated in Figure which maps to a closed
subset 7(R') C K by the quotient map 7: W — K, as illustrated in Figure The ®;-flow of T7(R') is a
non-compact, embedded surface, My C K, with boundary consisting of the special orbits in K. Thus, the
closure MM = My is a flow invariant, compact connected subset of K, which contains the closure of the special
orbits, hence as observed in [I7, 27, B3], the minimal set ¥ C 9. The existence of this compact subset 9
which is invariant for the Kuperberg flow @, is a remarkable consequence of the construction, and is the key
to a deeper understanding of the dynamical properties of the flow ®;.

This work introduces several new concepts and techniques which are used in the study of the space 9t
and its closure 9. The first is the notion of propellers, which are surfaces with boundary, possibly minus a
point at infinity, embedded in W so that they wrap around the core cylinder R in the Wilson Plug W, as
illustrated in Figure The projections of these surfaces to K are assembled according to the dynamics of
the Kuperberg flow, to yield the embedded surface 9ty as partially illustrated in Figure

The study of the topological structure of 91, reveals the fundamental role played by the local dynamics of
the flow ®; in a small open neighborhood of the core cylinder 7(R’) C K, and especially in sufficiently small
open e-neighborhoods of the special orbits along the boundary of 7(R’). In fact, we show in Proposition
that the return times of a Kuperberg flow to these e-neighborhoods form a syndetic set, so that the global
dynamics of ®@; is essentially determined by its local dynamics in e-neighborhoods of 7(R’). The local dynamics
of ®; depend on the choices made constructing the Wilson vector field W on W and the Kuperberg vector field
K on K. We formulate generic conditions on the choice of W and the construction of X, in order to eliminate
pathologies in the dynamics of the flows for W and KC that may otherwise be possible.

The first type of generic condition is given by Hypothesis [I2.2] In brief, this states that the vertical
component of the Wilson vector field W has quadratic vanishing along the periodic orbits. The anti-symmetry
imposed on the modified Wilson vector field W forces the generic case to be a quadratic vanishing condition.

The second type of generic condition is imposed on the insertion maps o; for ¢ = 1,2 which are introduced in
Section [3|as part of the construction of the space K. These maps are required to satisfy the Radius Inequality,
in order to obtain an aperiodic flow on K, but the smooth properties of these maps also control many other
aspects of the global dynamics of ®;. For example, the propellers associated to the flow ®; which form 9ty are
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generated by the images of curves under the embedding maps o¢; and their inverses, and without assumptions
on the geometries of these curves, it seems impossible to control the geometry of the space My. The precise
statements of the “generic hypotheses” we impose requires various preliminary notations, and are formally
given in Definition In brief, they assert that the insertion maps o; are “uniformly quadratic” in an open
neighborhood of each periodic orbit.

We say that a Kuperberg flow ®; is generic if it satisfies the conditions of Definition [17.3] which includes
the quadratic hypotheses on the Wilson flow in Hypothesis [[2.2] The goal of this work is then to make a
complete investigation of the dynamical properties of generic Kuperberg flows.

We next discuss the results of this work. First, two natural problems concerning the topological dynamics
of the flow ®; are to identify its wandering set 20 and its non-wandering set €2, which are defined in Section
The minimal set X is always contained in the non-wandering set, and we show in Theorem that:

THEOREM 1.2. Let ®; be a Kuperberg flow of K which satisfies Hypothesis[12.4 Then the non-wandering
set ) is a subset of the closure M of the embedded manifold My, and thus the complement of M consists of
wandering points for the flow.

With the additional hypothesis that the flow is generic, then Theorem [I7.1] shows that the minimal set X
equals the non-wandering set €2, and we have:

THEOREM 1.3. Let ®; be a generic Kuperberg flow of K, then ¥ = Q = 9.

The papers [17] and [27] gave examples where the minimal set ¥ equals the space 9, and suggested that
the inclusion ¥ C 901 may be an equality in more generality than the examples they gave. The proof of
Theorem is inspired by the examples and related remarks in these works.

It was remarked above that the topological properties of the minimal set ¥ are a consequence of the “strong
interaction” of the special orbits. The identification ¥ = 9 for a generic flow @, allows to make this remark
precise, using the structure theory for the space 91 that we develop in this work. In fact, a notable aspect of
this work is the precise description of 9t that is developed, which is possibly the first detailed description of
an exceptional minimal set of topological dimension 2 for a flow.

Consider the submanifold 9, C K as a stratified space, with the interior being a stratum of topological
dimension 2, and the boundary curves (the special orbits) being a stratum of topological dimension 1. Thus,
the closure 91 of 9y inherits a type of stratified structure, where the 2-dimensional stratum of 9 are the
leaves of a laminated structure on a subset of 9, obtained from the closure in K of the interior of 9.
The 1-dimensional stratum of 9t can be described as the boundaries of the “leaves” of the “lamination” 9.
Difficulties arise from this description though, as the special orbits for ®; are the two boundary components
of the manifold 9y, which are dense in 90 for a generic flow. That is, the 1-stratum of 97 is dense in the
2-stratum, which is not a normal property for a lamination.

In fact, we show in Theorem that for a generic Kuperberg flow, the space 91 has a stronger property
than these informal observations, in that it satisfies the conditions in Definition which gives it a local
product structure, which is analogous to that of a lamination. We call this type of structure a zippered
lamination, as it is “sewn together” along the special boundary orbits.

THEOREM 1.4. For a generic Kuperberg flow, the space M has the structure of a zippered lamination with
2-dimenstonal leaves.

The basis of many of our results concerning 9, including the proof of Theorem above, is a detailed
structure theory for 9ty based on the properties of finite or infinite, simple or double propellers, arising from
either boundary or interior notches in 9y. The amazing complexity of these aspects of the embedding of 9t
in K are organized using the level function on 9%y, which is introduced in this work.

The notion of the relative level of two points along the same orbit of the Kuperberg flow was introduced
by Kuperberg in [26], and is a key technique for showing that the flow obtained is aperiodic. It is defined by
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equations and in Section [] below. Further properties of the concept of relative level were developed
by Ghys and Matsumoto in [I7,33]. In Section we show that the relative level function along orbits induces
a well-defined level function on My, for which the Reeb cylinder 7(R’) is at level 0. The level function on 9
is used to decompose this space into an infinite union of propellers 9%, for £ > 1, where 2, consists of sets at
level £: for £ = 1 this set is composed by two non-compact propellers attached to 7(R'), while 91, for £ > 2 is
formed by 2¢ families of compact propellers. The level decomposition of 9 is used to analyze its geometry
and dynamics, and consequently also that of 9.

One of the original motivations for this work was a question posed by Krystyna Kuperberg concerning the
topological shape of the minimal set ¥ for the flow ®;. Section [23] gives a very brief introduction to shape
theory, including the definitions of “stable shape” in Definition 23.3] and for a continua to be “movable” in
Definition It is a simple observation that the subspaces 9t and its dense subset 9, have the same
topological shape, and thus for a generic flow, we can use the level decomposition of My to study the shape
properties of the minimal set ¥. As a cumulation of the results in this work, we show in Section the
following results:

THEOREM 1.5. For a generic Kuperberg flow, the minimal set 3. does not have stable shape.

The Mittag-Leffler condition for homology groups, as introduced in Proposition is a homology version
of the movable condition. Proposition yields the following consequence:

THEOREM 1.6. For a generic Kuperberg flow, the minimal set ¥ satisfies the Mittag-Leffler condition for
homology groups.

Theorems [L.5] and follow from three fundamental properties of the minimal set Y. First, that for the
generic Kuperberg flow, the minimal set % equals 91, which is the closure of the non-compact, embedded
surface My obtained from the flow of the Reeb cylinder 7(R’) C K. Second, that the topology of a sufficiently
fine open neighborhood approximation 9t C Uy — as occurs in a shape approximation of 9t — has increasing
topological complexity as the index k tends to infinity. Third, for any finite time, the trace of the flow of
the cylinder 7(R') retracts to the cylinder 7(R'), which implies that for k sufficiently large, the topological
complexity of the approximating spaces Uy, are contained in an arbitrarily small open neighborhood of a space
9} introduced here, from which the Mittag-LefHler condition is shown to follow.

Thus, our study of the shape properties of ¥ uses and combines almost all of the results of this paper. The
details of these arguments are often quite subtle and tedious, and begin with the construction in Section 23]
of a decreasing nested sequence of compact domains 91, C K for ¢ > 0, such that each 91, satisfies I C N,
and has the homotopy type of a finite CW-complex. The spaces M, are constructed using the level function
on My and the observation in Section [I3] that the double propellers introduced there are nested. That is, the
double propellers at level £+ 1 are contained in the closures of the interiors of double propellers at level £. We
show that the first homology groups of the spaces 91, have ranks which grow without bound with ¢, and yet
for an appropriate choice of a subsequence of these spaces, the ranks of the maps induced on homology from
the bonding maps have constant rank 3. We use this to conclude that the shape of ¥ is not stable, but does
satisfy the Mittag-Leffler condition.

Our final collection of results concern the entropy invariants and dynamical complexity of a Kuperberg
flow ®;. The topological entropy of a Kuperberg flow is zero, for as noted by Ghys in [I7], this follows as
a consequence of a result of Katok on C2-flows on 3-manifolds in [23], which implies that the entropy of an
aperiodic smooth flow on a 3-manifold must be zero. Katok’s proof in [23] uses the Pesin Theory for smooth
flows, for example as given in [I], to conclude from Ay, (®;) > 0 that ®; must have a periodic orbit.

Note that Theorem above shows that the non-wandering set of ®; is contained in 91, and hence the flow
entropy Miop(Pe) = hiop(Pi|M), where the latter is the entropy for the flow restricted to 9. This naturally
suggests the question, whether some geometric property of 9 may directly imply that hyp,(®,|90) = 07

It is a standard technique for the study of the dynamics of flows, to choose a section to the flow and study
the dynamics of the induced return maps. There is a natural choice of “section” for the Kuperberg flow @y,
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given by the rectangle Ry C K defined by in Section @ There is a well-defined “return map” d to Ry for
the flow ®,. However, the vector field K is tangent to Ry along the center horizontal line, which complicates
the study of the dynamics for ®. For this reason, we introduce in Section |§| the pseudogroup Gg generated by
the return map d restricted to open subsets of Ry on which the map is continuous.

We show in Section [J] that the global dynamics of the Kuperberg flow is determined by the actions of the
generators for Gx. In particular, the compact set Mgy, = MM N Ry is locally invariant under the return map
&), and so is invariant under the local actions of elements of Gx. The space Mg, is the closure of the set
Mo N Ry, and it turns out that for the collection of special generating maps gg) C Gk as defined in 7
the action of these generators on 9% N Ry has a systematic description in terms of the level decomposition
for the propellers in 9. This is discussed in Section [I3]

Even more is true. The action of the set gg) on the space 9y N Ry has a description in terms of a Cayley
graph for the pseudogroup, as described in Section[I4] Choosing a Riemannian metric on the Kuperberg plug,
induces a metric on My for which this space is quasi-isometric to a tree Tg with valence at most 4. The
notation system for the level decomposition of 2, also labels the vertices of the embedded tree Te C IMy.
The properties of the tree model for the dynamics of Gx are discussed further in Sections [14] and

Section introduces the entropy associated to a finite symmetric set of generators for a pseudogroup,
following the ideas introduced by Ghys, Langevin and Walczak in [16]. To obtain entropy invariants of @y, it
is necessary to choose a finite symmetric generating set in Gx. We work with two such choices:

e The collection gg) defined in ([135]), with associated entropy harw (G5|MR,)-
e The collection Qg{l) defined in ([146)), with associated entropy harw (G |MRr,)-

The results in Section [20] yield the implications:
(1) htop(fbt\im) >0 = hGLW(Q%DﬁRO) >0 = hGLW(Q}k(\SDTRO) >0.

The structure theory of 9, and the subexponential growth estimate Corollary are used in the proof of
Theorem [20.14] to show that hgrw (Gi|Mr,) = 0. We thus conclude:

THEOREM 1.7. Let @, be a generic Kuperberg flow, then hiop(®|9) = 0.

One of the intriguing aspects of the dynamics of the Gxi-action associated to a Kuperberg flow, is the
presence of families of “horseshoe-like” structures, as illustrated in Figure [6] which show that the ®;-orbits
have a form of chaotic behavior. However, the rate of contraction for the return maps of the flow ®; near the
special orbits is “too slow” for this chaotic behavior to yield positive entropy, as is seen in the calculations we
make in Section 20| for the proof of Theorem We say that the flow ®, has “slow chaos” near 9.

We show in the work [2I], that by varying the embeddings o; for ¢ = 1,2 so they no longer satisfy the
Radius Inequality, then the “slow chaos” for the Kuperberg flow, becomes “rapid chaos” associated with a
hyperbolic attractor for the perturbed flow. These observations imply that the construction of the Kuperberg
flow @, places it at “the boundary of hyperbolicity”, in the manner of partially hyperbolic systems [2].

Another pseudogroup model for the dynamics of ®; is introduced in Section which is the pseudogroup
Gon acting on the simple curves in Mg,. This action on curves induces an action on a Cantor set € C Mg,
which is transverse to the leaves of the lamination 9t. The action of Ggy on € can be thought of as the
“essential model” for the chaotic behavior on the flow ®;.

The “slow chaos” property of ®; is quantified by introducing the slow lamination entropy for Gon, denoted
by h&w(Gom) for 0 < o < 1. This invariant for a pseudogroup action, is the analog of the slow flow entropy
introduced in the works of Katok and Thouvenot [24] and Cheng and Li [§]. Our main result in this section
is Theorem which relates the growth of orbits for the pseudogroup with the dynamics of the insertion
maps used in the construction of K.

THEOREM 1.8. Let ®; be a generic Kuperberg flow. If the insertion maps o; have “slow growth” in the
sense of Definition|21.11|, then hg/fw(gm) > 0.
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REMARK 1.9. Let ®; be a generic Kuperberg flow satisfying Definition [21.11] The works [I0} [IT] suggests
that hg LQW (Gom) > 0 implies the Cantor set € has Hausdorff dimension at least 1/2.

One of the conclusions of the calculations in Sections and of the entropy for the pseudogroups
associated to @y, is that the quadratic vanishing of the vertical component of the Wilson vector field, as
specified in Hypothesis is a key to showing that h,(®:9) = 0. Remark is a speculation that it
may be possible to show a more direct relationship between the rate of vanishing for the Wilson field W along
its periodic orbits and the Hausdorff dimension of the closure 9t of 9Mi,.

If the Kuperberg vector field K is constructed using a piecewise smooth Wilson vector field, with hyperbolic
contracting singularities along its periodic orbits, then Theorem @ states that hgrw(Gl) > 0, as a
consequence of the preceding calculations, suitably adapted. Question[21.19]then poses the problem of showing
that hep (P |9N) > 0 for such flows.

It was remarked in [I7, [26] that Kuperberg Plugs can also be constructed for which the manifold K and its
flow K are real analytic. Details of this construction are given in the Ph.D. Thesis [41I] of the second author.
The authors expect that for real analytic flows, many of the results of this work remain valid without the
generic hypotheses in Definition

In general, there are many further questions about the dynamics of flows formed by a “Kuperberg surgery”,
which is the colloquial name for the construction described in Section

To conclude this introduction to our work, we explain how the paper is organized, and at the same time we
summarize the properties of the dynamics of a Kuperberg Plug, making the distinction between the results
which were known for a general Kuperberg flow, and those results obtained in this work.

Of course, the fundamental result is Kuperberg’s theorem, which is Theorem [I.1] above: For any choice of
modified Wilson flow on W as constructed in Section [2] and any pair of insertion maps o; which satisfy the
Radius Inequality from Section |3} the Kuperberg flow ®; constructed on K is aperiodic. Sections [2]to[§]give a
self-contained and very detailed proof of this result, which is based on a synthesis of the results of the papers
[26], [17] and [33].

The papers by Ghys [17] and Matsumoto [33] include further results on the dynamics of the Kuperberg flow
®;. In particular, they show that it has a unique minimal set ¥ contained in the interior of K. Also, Matsumoto
showed that the Kuperberg Plug traps a set with non-empty interior. These results are also discussed and
proved in Sections [2] to [§] of this work, which also establish notations and fundamental techniques required for
the remaining parts of the work.

The pseudogroup Gk acting on a rectangle Ry C K is introduced in Section [0} We choose five maps among
the generators of this pseudogroup that reflect the flow dynamics near the minimal set ¥: the pseudogroup
orbits are syndetic in the flow orbits of points in ¥. The choice of the rectangle is not arbitrary, as it takes
advantages of the symmetries in the construction of the plugs W and K. One unavoidable consequence of the
anti-symmetry property of the Kuperberg flow, is that there must be discontinuities for the return map of the
flow. The nature of these discontinuities is described in Section [0} and again later in Section [20] where they
enter into the calculation of the entropy for various pseudogroups.

The set M that is dense in M is described in Sections[L1]and giving the definition of propeller and the
decomposition of My in level sets. The relation of this decomposition with the pseudogroup Gx is explained
in Section with the introduction of the notion of double propellers. Double propellers play a fundamental
role in the proofs of Theorem

To complete the description of 9y we introduce in Section a graph Tg C 9y, which is a tree with
an additional loop added at the root point wg € Tg. The vertices of T4 are in fact defined by the action
of the five special generators of Gi acting on the root point wy. We call G} the set of words obtained by
composition of the special generators. The geometric interpretation suggests an algebraic decomposition of
words in G, as normal words: a composition of two level monotone words, that is words along which the level
is only increasing or only decreasing. This simplification is described in Section and is a key tool for the
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entropy calculations in Sections 20 and It is also used to calculate in Section 22] the area growth rate of
the special leaf My in M.

In the approach to the set 9y described in Section we introduce and discuss two types of irregular
behaviors that can arise in the description of the structure of 91y, and that depend on the choices made in
the construction of the Kuperberg Plug (Remark . Each type of irregularity results in the existence of
“double propellers” attached to 9y, that change the embedding of 9y in a uniformly bounded way, without
affecting the dynamical invariants of 9. One type of irregularity is studied in Section The second type
is more subtle and the generic hypothesis is needed to control it, hence the description and boundedness of
this phenomena is discussed later in the text, in Section [I§ Neither of these types of irregularities have been
considered previously in the study of the Kuperberg flow.

Theorem is proved in Section The key to the proof are the estimates established in Section [17] for
the orbit behavior of the return map ® near the critical line »r = 2 in Rg. The proofs of these inequalities
are based on the generic assumptions on the insertion maps. It is to be expected that some form of strong
regularity hypotheses is required to prove Theorem as its conclusion is a type of “Denjoy Theorem” for
a smooth flow on a surface lamination. In fact, [27, Theorem 3] gives an example of a PL flow for which the
minimal set is 1-dimensional, hence not all of 9. It seems reasonable to conjecture that a smooth example,
not satisfying the generic hypotheses, can also be constructed for which the inclusion ¥ C 91 is proper.

Section uses the notion of double propellers to prove that the set 91 is the non-wandering set of the
Kuperberg Plug. This result allows us to restrict the entropy calculation for the flow to 91, as discussed in
Section[20] The calculations in this section use almost all the results of the study of the geometry and dynamical
properties of the flow established in previous sections. In particular, the calculations show the usefulness of
the pseudoxgroup Gy defined by the nice set of generators for G mentioned above. The computation of the
entropy that we present uses the results and techniques from Sections [0} [[4] and but avoids the use of Pesin
Theory for flows.

The definition of a zippered lamination is given in Definition [19.3] and Theorem [19.1{shows that for a generic
flow, the space 9 is a zippered lamination. The holonomy pseudogroup Gsyn of the zippered lamination 91 is
introduced in Section and its generators are related to the five special generators of the pseudogroup Gy
induced by the return map of the flow ®; to the section Ry. The notable properties of Gy is that it collapses
the symmetry built into the Kuperberg flow, and also that the holonomy induced by a leafwise path can give
a more efficient representation of the action of words in Gx. These two properties suggest the possibility of
the entropy of the lamination being positive, even if the flow has zero topological entropy. In Section [21] we
show that the entropy of the action of Goy vanishes as well, but under extra hypothesis on the insertion maps,
we prove Theorem [1.8] implying that some chaotic behavior exist in its orbit structure anyway. In Section
we use normal forms of words in Goy to establish the growth type of the leaves of 9.

Finally, Theorems and are proved in Section 23] using the double propellers of Section [13] to build
a suitable sequence of neighborhoods of 9t which are used to study its shape properties.

The reader will quickly observe one of the significant contributions of this work, which is an extensive
collection of illustrations which accompany the text. Many of the dynamical properties that we discuss here
are difficult to grasp without these illustrations, which we hope will aid the reader to a full understanding
of the beauty and complexity of the dynamics of Kuperberg flows. The approach in this paper invokes four
perspectives on the dynamics of the Kuperberg flow, and the illustrations help to understand the relationship
between the dynamics as analyzed using each of these viewpoints. The models of the dynamical behavior
illustrated in each case are related by non-linear transformations, so that it often requires some effort to
visualize the correspondence between each approach.

This paper owes a profound debt to the authors of the works [I7, 26, 27, [33] [41] whose text and pictures
provided many insights to the Kuperberg dynamics during the development of this work, and inspired many
of the illustrations in this paper.
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2. THE MODIFIED WILSON PLUG

A 3-dimensional plug is a manifold P endowed with a vector field X satisfying the following characteristics:
The manifold P is of the form D x [—2,2], where D is a compact 2-manifold with boundary 9D. Set

0yP=0D x[-2,2] , 0,P=Dx{-2} , 0fP=Dx{2}
Then the boundary (with corners) of P has a decomposition

o°P = 0,PUO,P = 9,PUD, PUI;P.

Let % be the vertical vector field on P, where z is the coordinate on [—2,2].

The vector field & on P must satisfy the conditions:

(P1) wertical at the boundary: X = % in a neighborhood of dP; thus, 9; P and d; P are the entry and
exit regions of P for the flow of X', respectively;

(P2) entry-exit condition: if a point (x,—2) is in the same trajectory as (y,2), then = y. That is, an
orbit that traverses P, exits just in front of its entry point;

(P3) trapped orbit: there is at least one entry point whose entire forward orbit is contained in P; we will
say that its orbit is trapped by P;

(P4) tameness: there is an embedding i: P — R? that preserves the vertical direction on the boundary OP.

A plug is aperiodic if there is no closed orbit for X.

Note that conditions (P2) and (P3) imply that if the forward orbit of a point (x, —2) is trapped, then the
backward orbit of (x,2) is also trapped.

A semi-plug is a manifold P endowed with a vector field X as above, satisfying conditions (P1), (P3) and
(P4), but not necessarily (P2). The concatenation of a semi-plug with an inverted copy of itself, that is a copy
where the direction of the flow is inverted, is then a plug. Note that we can generalize the above definition to
higher dimensions: just take the manifold D to have dimension n — 1, where n is the dimension of the ambient
manifold of the flow.

Condition (P4) implies that given any open ball B(z,e) C R with € > 0 and z a point, there exists a
modified embedding i': P — B(xz,€) which preserves the vertical direction again. Thus, a plug can be used
to change a vector field Z on any 3-manifold M inside a flowbox, as follows. Let ¢: U, — (—1,1)3 be a
coordinate chart which maps the vector field Z on M to the vertical vector field a%. Choose a modified
embedding i’: P — B(z,¢) C (=1,1)3, and then replace the flow -2 in the interior of #/(P) with the image of

0z
X. This results in a flow Z’ on M.

The entry-exit condition implies that a periodic orbit of Z which meets 9, P in a non-trapped point, will
remain periodic after this modification. An orbit of Z which meets J;, P in a trapped point never exits the plug
P, hence after modification, limits to a closed invariant set contained in P. A closed invariant set contains a
minimal set for the flow, and thus, a plug serves as a device to insert a minimal set into a flow.

We next introduce the “modified Wilson Plug”, which is the first step in the construction of the Kuperberg
Plug. Consider the rectangle

R=[1,3]x[-22]={(rz) |1<r<3&-2<z<2}.

Choose a C°°-function g: R — [0, go] for go > 0, which satisfies the “vertical” symmetry condition g(r,z) =
g(r,—z). The value of go > 0 is arbitrary; to be definite, we fix go = 1 throughout this work. Also, require
that g(2,—1) = ¢g(2,1) = 0, that g(r,z) = 1 for (r, z) near the boundary of R, and that g(r, z) > 0 otherwise.
Later, in we will specify that g(r,z) = 1 for all points outside of an ey-neighborhood of the vanishing
points (2,—1) and (2,1).

Define the vector field W, = g- a% which has two singularities, (2, +1) and is otherwise everywhere vertical,
as illustrated in Figure[l}

Next, choose a C*°-function f: R — [—1, 1] which satisfies the following conditions:
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T2
1 .

z 0

~1 .

TR 2 3

FIGURE 1. Vector field W,

(r,—z) = —f(r, 2) [anti-symmetry in z].
(&) = 0 for £ near the boundary of R.

(ryz) >0for =2 < 2z <0, and f(r,z) >0for 5/4 <r <11/4 and —7/4 < z < 0.
(ryz) <0for 0<z<2 and f(r,z) <0for 5/4<r<11/4 and 0 < z < 7/4.
(rpz)=1for5/4<r<11/4and -7/4 < z< —1/4.

W6) f(r,z)=—1for5/4<r<11/4and 1/4 <z <7/4.

Condition (W1) implies that f(r,0) = 0 for all 1 <r < 3, and that Conditions (W5) and (W6) are equivalent.
Note that Conditions (W5) and (WG6) are stated more precisely than in the works [26 [17,[33], as it is convenient
to specify the values of f on the specified domain in later considerations.

Next, define the manifold with boundary
(2) W =[1,3] x St x [-2,2] @R x S!
with cylindrical coordinates z = (r, 0, z). That is, W is a solid cylinder with an open core removed, obtained
by rotating the rectangle R, considered as embedded in R?, around the z-axis.

Extend the functions f and g above to W by setting f(r,0,z) = f(r,2) and g(r, 0, z) = g(r, z), so that they
are invariant under rotations around the z-axis. The modified Wilson vector field YW on W is defined by

0 0
(3) WZQ(T,Q,Z)g—‘rf(T,e,Z)% .

Let ¥, denote the flow of W on W. Observe that the vector field W is vertical near the boundary of W, and
is horizontal for the points (r,6,2) = (2,60, £1). Also, W is tangent to the cylinders {r = const.}. The flow
¥, on the cylinders {r = const.} is illustrated (in cylindrical coordinate slices) by Figures [2[ and

M= ==
| I o

r~1,3 ra 2 r=2

FIGURE 2. W-orbits on the cylinders {r = const.}
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.
ot

FIGURE 3. W-orbits in the cylinder C = {r = 2} and in W

We give some of the basic properties of the Wilson flow. Let R,: W — W be rotation by the angle . That
is, Ry(r,0,2) = (r,0 + ¢, z). Define the closed subsets:

C {r =2} [The Full Cylinder]

R = {(2,0,2)| -1<z<1} [The Reeb Cylinder]
A = {z=0} [The Center Annulus]
0; = {(2,0,(-1))} [Periodic Orbits, i=1,2]

Then O, is the lower boundary circle of the Reeb cylinder R, and Os is the upper boundary circle.
PROPOSITION 2.1. Let ¥, be the flow on W defined above, then:

(1) R, o¥, =%,0R, for all ¢ and t.

(2) The flow U, preserves the cylinders {r = const.} and in particular preserves the cylinders R and C.

(8) O; fori=1,2 are the periodic orbits for ¥,.

(4) For x = (2,0,—2), the forward orbit Wi(x) fort > 0 is trapped.

(5) For x = (2,0,2), the backward orbit Ui(z) fort < 0 is trapped.

(6) For x = (r,0,2) with r # 2, the orbit U.(x) terminates in the top face O;f W for some t > 0, and
terminates in 0, W for some t < 0.

(7) The flow U, satisfies the entry-exit condition (P2) for plugs.

Proof. The only assertion that needs a comment is the last, which follows by (W1) and the symmetry condition
imposed on the functions g and f. O

Observe that for the choice of gy = 1 for the maximum value of the function g, the typical orbit of W rises
from z = —2 to z = 2 in less than one revolution around the circle parameter 6. A smaller choice of gg much
closer to 0 will result in a flow which climbs much slower, and so will possibly make many more revolutions
before transiting the cylinder. This observation will be used in the discussion of the pseudogroup dynamics in
Section [9] and also in the discussion of propellers in Sections
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3. THE KUPERBERG PLUG

The construction of the Kuperberg Plug begins with the modified Wilson Plug W with vector field W. The
first step is to re-embed the manifold W in R? as a folded figure-eight, as shown in Figure 4] preserving the
vertical direction. A simple but basic point is that the embeddings of the faces of the plug are not “planar”.

FIGURE 4. Embedding of Wilson Plug W as a folded figure-eight

The fundamental idea of the Kuperberg Plug is to construct two insertions of W into itself, in such a way
that the two periodic orbits will be trapped by these self-insertions. Moreover, the insertions are made so
that the resulting space K is again embedded in R3. A key subtlety of the construction arises in the precise
requirements on these self-insertions. As with the construction of the modified Wilson Plug, the description
of this construction in the works [26] 17, [33] is qualitative, as this suffices to prove the aperiodicity of the
resulting flow. As will be seen in later sections of this work, other properties of the dynamics of the flow
®; in the resulting plug K are strongly influenced by the precise nature of these maps, so we specify the
definitions and some properties of the insertion maps more carefully in this section. Later in the manuscript,
we formulate additional “generic” requirements on the insertion maps, in order to obtain further properties
about the dynamics of the flow ®;.

The construction begins with the choice in the annulus [1,3] x S! of two closed regions L;, for i = 1,2,
which are topological disks. Each region has boundary defined by two arcs: for i = 1,2, o} is the boundary
contained in the interior of [1,3] x S' and «; in the outer boundary contained in the circle {r = 3}, as depicted
in Figure [5

We fix these curves precisely. Let {; = 7/4 and {3 = —7/4, then define the arcs
ar = {@B.0)| [0—G|<1/10} , ax = {(3,0) ] |0 — (| <1/10}.

Let o} be the curves in the interior of L; which in polar coordinates (r, ) are parabolas with minimum values
r = 3/2 and base the line segment «;, as depicted in Figure We choose an explicit form for the embedded
curves, for example, given by of = {r = 3/2+300/2- (6 — (;)*}

Consider the closed sets D; = L; x [-2,2] C W, for ¢ = 1,2. Note that each D; is homeomorphic to a
closed 3-ball, that D; N Dy = () and each D; intersects the cylinder {r = 2} in a rectangle. Label the top and
bottom faces of these regions by

(4) L =1, x {£2}, LT = Ly x {2} .

The next step is to define insertion maps o;: D; — W, for ¢ = 1,2, in such a way that the periodic orbits O
and Oy for the ¥,-flow intersect o;(L; ) in points corresponding to W-trapped entry points for the modified
Wilson Plug. Consider the two disjoint arcs ] in the inner boundary circle {r = 1},

Bi= {LO)] 10— (G +m)|<1/10}
By = {(L0)] |0 (C+m)|<1/10}.



THE DYNAMICS OF GENERIC KUPERBERG FLOWS 17

FIGURE 5. The disks L and Lo

For i = 1,2, choose orientation preserving diffeomorphisms o;: o, — 8}, and extend these maps to smooth
embeddings o;: D; — W, as illustrated in Figure [6] which satisfy the conditions:

K1) o;(af x 2) = B! x z for z € [—2,2], and the interior arc « is mapped to a boundary arc f3;
K2) D;=0;(D;) C{(r,0,2) |1 <r<5/2, |0 —(; +7)] <1/10}, thus Dy N Dy = ;

K3) o1(Ly)N{r >2} C {z <0} and o2(Ly ) N {r > 2} C {z > 0};

K4) For every = € L;, the image Z; , = 0;(z x [—2,2]) is an arc contained in a trajectory of W;
K5) Each slice o;(L; x {z}) is transverse to the vector field W, for all —2 < z < 2;

K6) D; intersects the periodic orbit O; and not O;, for ¢ # j.

Wi

FIGURE 6. The image of Ly x [—2,2] under o1
The “horizontal faces” of the embedded regions D; = o;(D;) C W are labeled by
(5) LY =oi(LY), Ly =oa(L3) -

Note that the arcs Z; , in condition (K4) are line segments from o;(x x {—2}) to o;(x x {2}) which follow
the W-trajectory and traverse the insertion from the bottom face to the top face. Since W is vertical near
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the boundary of W, and horizontal in the two periodic orbits, we have that the arcs Z; , are vertical near
the inserted curve o;(c) and horizontal at the intersection of the insertion with the periodic orbit O;. Thus,
the embeddings of the surfaces o;(L; X {z}) make a half turn upon insertion, for each —2 < z < 2, as
depicted in Figure [} The turning is clockwise for the bottom insertion i = 1 as illustrated in Figure [6] and
counter-clockwise for the upper insertion i = 2, which is not illustrated.

The image of the first insertion o1(D1) in Figure |§| intersects the first periodic orbit of WW and is disjoint
of the second periodic orbit. The image of the second insertion o4(D3) is disjoint from the first insertion and
the first periodic orbit, and intersects the second periodic orbit.

The embeddings o; are also required to satisfy two further conditions, which are the key to showing that
the resulting Kuperberg flow ®; is aperiodic:

or ¢+ = 1,2, the disk L; contains a point (2, 0;) such that the image under o; of the vertical segment
K7) For ¢ = 1,2, the disk L i i 2,0 h that the i d f th ical
(2,0;)x[-2,2] C D; C Wisan arc {r = 2}n{0; < 0 < 0;7}N{z = (1)} of the periodic orbit O; of W.

(K8) Radius Inequality: For all ' = (+',0',2") € L; x [-2,2], let z = (r,0,z) = 0;(r',0',7") € D;, then
r <r' unless ' = (2,6;,2') and then r =1/ = 2.

The Radius Inequality (K8) is one of the most fundamental concepts of Kuperberg’s construction. The
condition (K4) and the fact that the flow of the vector field W on W preserves the radius coordinate on W,
allows restating (K8) in the more concise form for points in the faces £; of the insertion regions D;. For
x=(r,0,2)=0;(r,0,2") € D; we have
(6) r(o; () > r for x € L7, with r(o; *(x)) = r if and only if 2 = 04(2,60;, —2) .

The Radius Inequality (K8) is illustrated in Figure[7]below. This is an “idealized” case, as it implicitly assumes
that the relation between the values of r and ' is “quadratic” in a neighborhood of the special points (2, 6;),

which is not required in order that (K8) be satisfied. Later in this work, this “quadratic condition” will be
added as part of the generic hypotheses on the construction.

r'=3
7! = 2 e—

—

r<2 r=2 r>2
F1GURE 7. The radius inequality illustrated

The embeddings o;: L; X [—2,2] — W, for i = 1,2, can be constructed by first choosing smooth embeddings
of the faces 0;: L; x {—2} — W so that the image surfaces are transverse to the vector field W on W, and
satisfy the conditions (K1), (K3), (K7) and (K8). Then we extend the embeddings of the faces L; x {—2}
to the cylinder sets L; x [—2,2] by flowing the images using a reparametrization of the flow of W, so that we
obtain embeddings of L; x [—2, 2] satisfying conditions (K1) to (K8), and as pictured in Figure [6]

Finally, define K to be the quotient manifold obtained from W by identifying the sets D; with D;. That is,
for each point x € D; identify x with o;(z) € W, for ¢ = 1,2. This is illustrated in Figure

The restricted ¥;-flow on the inserted disk D; = 0;(D;) is not compatible with the image of the restricted
W,-flow on D;. Thus, to obtain a smooth vector field X' from this construction, it is necessary to modify W on
each insertion D;. The idea is to replace the vector field WW on the interior of each region D; with the image
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FiGure 8. The Kuperberg Plug K

vector field, so that the dynamics of @, in the interior of each insertion region D; reverts back to the Wilson
dynamics on D;. This requires a minor technical step first.

Smoothly reparametrize the image of W|p, under o; on an open neighborhood of the boundary of D; so
that it agrees with the restriction of W to the same neighborhood. This is possible since the vector field W
is vertical on a sufficiently small open neighborhood of the boundary of D; so is mapped by o; to an orbit
segment of W by (K4). We obtain a vector field W/ on D; with the same orbits as the image of W|p,. The
case of D; is illustrated in Figure [f]

Then modify W on each insertion D;, replacing it with the modified image W,. Let W’ denote the vector
field on W after these modifications and note that W’ is smooth. By the modifications made above, the vector
field W’ descends to a smooth vector field on K denoted by K. Let ®; denote the flow of the vector field K
on K. The Kuperberg Plug is the resulting space, K C R3.

4. TRANSITION POINTS AND THE RADIUS FUNCTION

In this section, we introduce notations that will be used throughout this work and also some basic concepts
which are fundamental for relating the dynamics of the two vector fields W and K. These results are contained
in the literature [17) 27] 26] B3], though in a variety of differing notations and presentations.

Recall that D; = 0;(D;) for i = 1,2 are solid 3-disks embedded in W. Introduce the sets:
(7) W = W—{D;UD,} , W= W-—{D,UDy}.
The closure W of W is the piege de Wilson creusé as defined in [I7), page 292]. The compact space Wcw
is the result of “drilling out” the interiors of D1 and D5, as the terminology creusé suggests.

For z,y € K, we say that x < y if there exists ¢ > 0 such that ®;(x) = y. Likewise, for 2',y’ € W, we say
that 2’ <y v’ if there exists ¢ > 0 such that W,(2’) = y/.

Let 7: W — K denote the quotient map, which for ¢ = 1,2, identifies a point z € D; with its image
oi(z) € D;. Then the restriction 7/: W — K is injective and onto. Let (7/)~!: K — W’ denote the inverse
map, which followed by the inclusion W C W, yields the (discontinuous) map 7=1: K — W, where i = 1,2,
we have:

(8) 7N r(z)) = for z € D; , and o;(77 ' (7(2))) = 2 for z € D; .
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For # € K, let z = (r,0,2) be defined as the W-coordinates of 7=*(x) C W’. In this way, we obtain
(discontinuous) coordinates (r,6,z) on K. In particular, let r: W' — [1,3] be the restriction of the radius
coordinate on W, then the function is extended to the radius function of K, again denoted by r, where for
z € K set r(z) = r(r71(2)).

The flow of the vector field W on W preserves the radius function on W, so 2’ <y, ¥y’ implies that
r(z') = r(y'). However, x <x y need not imply that r(z) = r(y). The points of discontinuity for the function
t — r(®4(z)) play a fundamental role in the study of the dynamics of Kuperberg flows.

Let 0, K = 7(9, W\ (L7 UL;)) and 8; K = 7(9;y W\ (L ULJ)) denote the bottom and top horizontal faces
of K, respectively. Note that each of the surfaces 9, K and 82'K are closed homeomorphic to a twice-punctured
torus, as can be seen in Figure [§| and have boundary which is the union of two circles. By the choice of I, the
vertical boundary component 9,K = T(W N 9, W) is tangent to K.

Points 2’ € 9;, W and ¢/ € 9;" W are said to be facing, and we write 2’ = v/, if 2’ = (r, 0, —2) and v’ = (1,0, 2)
for some r and 6. The entry/exit property of the Wilson flow is then equivalent to the property that ' = ¢/
if [,y is an orbit from 9, W to 0" W whenever r(2') # 2. There is also a notion of facing points for
xz,y € K, if either of two cases are satisfied:

e Forz=7(2') €0, Kand y =7(y) € GZFK, if 2’ =y then z = y.
e For i =1,2, with z = 0;(2') and y = 0;(¢/), if 2/ = ¢/ then z = y.
The context in which the notation z = y is used dictates which usage applies.

Consider the embedded disks L'?[ C W defined by , which appear as the faces of the insertions in W.
Their images in the quotient manifold K are denoted by:

(9) By=1(Ly), Si=7(L), B2=1(Ly), S2=7(L3) .
Note that 771(E;) = L; , while 771(S;) = L. Also, introduce the notation:
(10) T]C = FBiUE,US US; .

Then by the formulation @ of the Radius Inequality, the points of discontinuity along KC-orbits for the radius
function r: K — [1, 3] are contained in the set T.

The set T C K is transverse to the flow K. The transition points of an orbit of K are those points where
the orbit intersects the transversal Tk, or terminate in a boundary component 9, K or 8;]1{. They are then
either primary or secondary transition points, where x € K is:

e a primary entry point if x € 9, K;
e a primary exit point if x € O,TK;
e a secondary entry point if x € Fy U Fo;
e a secondary exit point x € S1 U Ss.
If a KC-orbit contains no transition points, then it lifts to a WW-orbit in W flowing from 9, W to 8;W~

The special points for the flow ®; are the images, for i = 1,2,
(11) p;:T(Oiﬂﬁi_)GEi,pj:T(Oiﬂﬁj)ESi.
Note that by definitions and the Radius Inequality, we have r(pii) =2fori=1,2.

A We-are is a closed segment [z, y]xc C K of the flow of K whose endpoints {z, y} lie in Tx, while the interior
(z,y)x of the arc is disjoint from Tx. The open interval (z,y)x is then the image under 7 of a unique W-orbit
segment in W/, denoted by (2,y)yy where 7(z') = z and 7(y’') = y (see Figure[9]) Let [2/,y/],» denote the
closure of (z/,y')w in W, then we say that [z/,y]yy is the lift of [z,y]x. Note that the radius function r is
constant along [z, ']y .

The properties of the Wilson flow W on W determine the endpoints of lifts [/, y']yy. We state the six cases
which arise explicitly, as they will be cited in later arguments. Figure [J] helps in visualizing these cases.
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LEMMA 4.1. Let [z,y]x C K be a W-are, and let [2',y'lw C W denote its lift.

(1) (p-entry/entry) If x is a primary entry point, then ' € 9,y W\ (L7 U L3 ) and if y is a secondary
entry point, we have y' € L fori=1 or 2.

(2) (p-entry/exit) If x is a primary entry point, then ' € 9,y W\ (L7 U Ly ) and if y is an exit point,
then y' € 6ZW is a primary exit point, and by the entry/exit condition on W we have x = y.

(3) (s-entry/entry) If x is a secondary entry point, then x' € L7 for i =1 or 2, and if y is an entry
point, then we have y' € Lj_ where j = 1,2 is not necessarily equal to 7.

(4) (s-entry/exit) If x is a secondary entry point, then ' € L; fori=1 or2, and if y is an exit point,
then y' € Lj and x =y by the entry/exit condition of W.

(5) (s-exit/entry) If x is a secondary exit point, then x' € L] fori =1 or2, and if y is an entry point,
so thaty' € L then j=2ifi=2, and j =1,2 if i =1.

(6) (s-exit/exit) If x is a secondary ezit point, then 2’ € L] fori =1 or 2, and if y is a primary exit
point, y' € {0 W\ (LT UL)}. Ify is a secondary exit point, then y' € Lj, where j =1 or 2 is not
necessarily equal to 1.

Figure |§| illustrates some of the notions discussed in this section. The disks L] and L, contained in 9, W
are drawn in the bottom face, though they are partially obscured by the cylinder {r = 1}. The image of L]
under o, is the entry face of the insertion region in the lower half of the cylinder, while the image of L; under
o3 is the entry face of the insertion region in the upper half of the cylinder. Analogously, the disks L] and
L] in 62'W are mapped to the exit region of the insertion regions. The intersection of the W-periodic orbits
O and Oy with W is illustrated, as well as two W-arcs in W’ that belong to the same orbit. One W-arc
goes from 0; W to L, hence from a principal entry point to a secondary entry point (as in Lemma 1).
The second W-arc goes from ET to L1, thus from a secondary exit point to a secondary entry point (as in

Lemma [4.1]5).
T .
/

—

FIGURE 9. W-arcs lifted to W

Introduce the radius coordinate function along K-orbits. For z € K set p,(t) = r(®:(z)). Note that if
O, (x) & Tr then the function p,(t) is locally constant at ¢, and thus we have:

LEMMA 4.2. If the K-arc {®¢(x) | to <t < t1} contains no transition point, then pi(t) = py(to) for all
to <t <t O
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The level function along an orbit indexes the discontinuities of the radius function. Given z € K, set
n4(0) = 0 and for ¢ > 0 define

(12) ne(t) = # {(By UBy) N®y(x) | 0 < s <t} — #{(S1US) Ndy(x) | 0<s <t}

That is, n,(t) is the total number of secondary entry points, minus the total number of secondary exit points,
traversed by the flow of x over the interval 0 < s < ¢. For example, suppose that 1 = &4, () is the first
transition point for ¢ > 0. If 27 is a secondary entry point, then n,(t;) = 1, while n,(t;) = —1 if 27 is a
secondary exit point. Thereafter, n,(t) changes value by +1 at each ¢ > ¢; such that ®;(x) € T and whether
the value increases or decreases, indicates whether the transition point is an entry or exit point.

The function can be extended to negative time by setting, for ¢ < 0,

(13) na(t) = # {(S1US) NBy(x) |t < s <0} — #{(B1UE) Ndy(x) |t <s<0}.

Endow the manifold K with a Riemannian metric, induced from the natural coordinates on W. Along the
boundaries (’“),:—LW it is necessary to make a small adjustment to the Riemannian metric so that it becomes
smooth on the quotient space K. We can assume that the vector field £ on K has unit length, and so the
adjustments are made to the metric transverse to I in a small open neighborhood of these boundaries. Let
dg denote the resulting path length metric on K.

Let dw be the path length metric in W. By the assumption that K is unit length, the metric dy is just the
same as that derived from the time coordinate along the flow ®;. For example, by this convention, the length
of the circles {(r,0,0) |0 < 6§ <27} C K is 27r.

For ' <yy ¢ in W, let dyy(2’,y’) denote the path length of the W-orbit segment [/, y']yy between them.
Similarly, for z <x y in K| let di(x,y) denote the path length of the K-orbit segment [z, y]x. Note that if
[,y is a W-arc with lift [/, y']w), then di(z,y) = dw(2',y').

We establish some basic length estimates which are used in later sections.

LEMMA 4.3. Let 0 < e < 1. There exists L(e) > 0 such that for any & € W with |r(§) — 2| > €, the total
W-orbit segment [x',y']yy through & has length bounded above by L(e).

Proof. Since r(§) # 2, the orbit of W containing ¢ is finite, hence there exists x’g € 0, W such that x’g =d,(¢)
for some ¢ < 0. Likewise, there exists s > 0 such that y; = ®4(§) € O;FW. Then [2%, yelw is the complete
W-orbit containing §. In particular, dyy (g, y;) < oo.

The function § — dyw (z, yg) is continuous on the open domain r(§) # 2. Since the flow in W is rotationally

invariant, this function depends only on r(£). Let L(e) denote the maximum of this length function on the
compact domain |r(§) — 2| > e. O

LEMMA 4.4. There exists 0 < dpmin < dmaz such that if [2',y'lw C W is the lift of a W-are [z,y]k, then
we have the uniform estimate

(14) dmin < dW(x/ay/) < dma;v .

Proof. First, suppose that ' € 9, W and so either ¢/ € £; for i = 1,2 or ¥/ € 9 W. The set of points
x’ € 0;, W whose forward orbit has first transition point in £; is a compact set containing the circle {(2, 60, —2) |
0 <60 <27} C W in its interior. Thus, there is a lower and upper bound for the length dyy,(2’,y").

Away from the core circle in 9, W, the W-orbit for a point 2’ € 9, W with r(z") # 2 is not trapped, so
terminates in 3y’ € 8}TW. Moreover, the set of 2’ whose W-orbit does not intersect the compact set £; has
r(z') value bounded away from 2 by the previous case, and thus there exists € > 0 so |r(z’) — 2| > €. Then by
Lemma [1.3] the length dyy(2’,y’) is then bounded above by L(e). The lower bound on dy(z’,y’) follows from
the compactness of the set {z' € 9, W | |r(z) — 2| > €}.

The analysis of the cases where 2’ € E;-", for ¢ = 1,2, proceeds similarly. O
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COROLLARY 4.5. Let [z,y]x C K be a W-arc. Then there is a uniform length estimate
(15) Amin < dic(l“,y) < dmaz -

These results then combine to give the observation:

COROLLARY 4.6. The Wilson orbit through ' € W with r(z") # 2 contains at most a finite number of
lifts of distinct W-arcs, partially-ordered by the relation <.

We summarize the dynamical properties of orbits for ®; which follow from the above results.

For each z € K the K-orbit {®:(x) | a < t < b}, where —oco < a < b < o0, can be decomposed in a finite
or infinite family of W-arcs {[2},v},1]w} C W. These W-arcs are indexed relative to the initial point by
the level function n,(¢) and the radius function p,(t), both functions are constant along (z;,y;+1)c. Thus,
the W-arcs can be grouped according to the values p,(t) and so grouped, lie in orbits of the Wilson flow in
disjoint cylinders {r = const.}.

The K-orbit of x is then determined by understanding when two segments [z}, y; ] and [z, 9}, ;]w have
the same r-value and so lie in a common cylinder. Then whether they are contained in a common W-orbit
within that cylinder, so that = < @ or ; <)y 2} . By Corollary there can be only a finite number of
segments in each finite W-orbit.

Once the arcs have been grouped according to their “W-orbit type”, it then remains to understand how
these W-arcs are assembled to give the full C-orbit, while satisfying the constraints imposed by the Radius
Inequality (K8).

5. SEMI-LOCAL DYNAMICS

In this section, we establish a variety of properties of the level function and how it relates the dynamical
behavior of the Wilson flow ¥, with the much more complicated dynamical behavior of the Kuperberg flow ®;.
This relationship is one of the main themes in the understanding of the dynamics of the flow ®; as developed
in this work.

We first consider the properties of finite length segments of IC-orbits. The results presented below are
formulations, in our notation, of results which are contained in the works [I7], 27, 26 [33] and are the most
basic techniques used in the analysis of the dynamics of the Kuperberg flow.

We say that the C-orbit of x € K is trapped in forward time if the forward orbit is defined for all ¢ > 0, so
that the segment {®;(z) | t > 0} C K. In particular, this forward orbit never intersects 9, K. Likewise, the
K-orbit of € K is trapped in backward time if the segment {®;(z) | ¢ < 0} C K. When it is clear whether
forward or backward time is meant, such as for points on the faces fﬁK, we simply refer to a trapped orbit.

The K-orbit of x is infinite if it is trapped in both forward and backward time.

For a KC-orbit segment [z, y|ic, we define its “lift” to W, which is a union of lifts of W-orbit segments. This
is a fundamental technical construction and introduces another useful notational convention. Let 0 < ¢ty <
t1 < --- <t, be such that x, = ®,,(x) are the successive transition points in [z, y|x so that

(16) [z, Y]k = [, 2ol U [0, z1]ic U~ - U [z, Tpqa]c U+ U [Zn—1, Znlc U [0, ¥l CK.

By convention, [z, zg]k is defined to be empty if = xg, and otherwise has a well-defined lift [2/, x{]w C w.
The case for y is analogous. Each W-arc [z, 2441 for 0 < £ < n lifts to a W-orbit segment [z}, 3, ]w C W,
where 7(zy, 1) = T(Yp41) = Tey1 though ., # ;. The lift of [z,y]x to W is defined to be the collection
of orbit segments in W,

(17) {[x/,yé}V\h [1'673//1]1/\}7 R [(t;, yé—o—l}Wa Ty [xiz—l,y;z]mh [:L';w y/]W} .

The lift of a K-orbit segment is closely related to the behavior of the level function n,(t) along an orbit. Given
a KC-orbit segment [zg, x, ]k, where 2y = ®p(z), decompose it into W-arcs as in . The orbit ®;(z) for ¢ > 0
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flows from z until it hits a transition point x1. This initial W-arc [xg, z1]x is the image under 7 of a W-orbit
segment [xf, y1]w C W as in . After this first transition point, it then follows the image of the vector field
W under an insertion map o;, Wthh is again the image of a W-orbit segment [z, y5]w C W. At the next

transition point, the flow ®;(x) either exits the insertion and reverts back to the same orbit of W in W, or,
it flows into another insertion, and thus the orbit is the image of a W-arc into an insertion within the first
insertion. This process continues along the entire K-orbit segment. The level function n, (¢) counts the number
of such insertions within insertions along the K-segment [zg, 2, ]k, so measures the “depth of penetration” of
the orbit into the self-insertion process used to construct the plug K.

kﬁ"\‘

ﬁ%—\J///////w; 0,

' 3

v

0 rg ////// oy

FIGURE 10. Decomposition into W-arcs in the cylinders {r = 2} C W

We illustrate this orbit decomposition in Figure that represents the cylinder {r = 2} in W. Consider the
first periodic orbit and its intersection with W, which is pictured as the lower horizontal line in the drawing.
Flowing in forward time, the lift of the KC-orbit first intersects the entry face £ of the lower insertion in a
“special point”. The flow then continues to a point in the lower boundary of the same cylinder {r = 2} where
it enters. Thus the next W-arc in this orbit is in the same cylinder. It starts climbing and turning, until
hits the first insertion and exits the cylinder {r = 2} through £ . We prove, in Proposition that after a
certain time this orbit comes back to the cylinder {r = 2} in the facing point. Thus the IC-orbit will eventually
pass the insertion and continue in the same W-orbit for another turn before hitting the insertion again. This
pattern then repeats infinitely many times. Flowing in backward time, the lift of the K-orbit containing the
arc O1 N W, first intersects the exit face £] in a special point. The orbit then continues to a point in the
upper bound of the cylinder. It thus descends turning until it hits the exit face E;r. Proposition applies,
implying that after a certain time this backward orbit comes back to the cylinder and continues descending
and turning. This process repeats 1nﬁn1tely many times. Remark that the K-orbit containing the arc O; N W
accumulates in forward tlme on O1 N W and in backward time on 02N W. Applying the same analysis to the
KC-orbit containing Oy N W, we obtain the same conclusion. This argument is explained again in the proof of
Proposition [7-1]

We next give a sequence of technical results concerning the properties of the lift of a path as in ,

beginning with the very simple concept of a short-cut, which was introduced in [26], and developed in more
detail in [I7, 27 [33].

LEMMA 5.1 (Short-cut). Suppose that x € E; andy € S; are facing. Then there exists ',y € W such that
7(2') =z, 7(y) =y and &' <y y'. That is, there is a W-orbit segment [x’,y' |y C W (the short-cut) between
' andy'.

Proof. Let o' € L£; with 7(2') =  and ¥ € £ with 7(y') = y. Consider 2” € L; with o;(2”) = 2’ and
y" € L with o;(y”) = y'. Then x = y implies z”” = y” by definition. By (K4) the image o0;(Z; ,~) is a W-orbit
segment in D; with endpoints z’,y’. Thus, 2’ <y ¥'. O
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Note that the short-cut path [2/,4/]yy € W has endpoints in £ and “bridges the gap” between these two
faces in W. In Figure this may be viewed as filling in with a flow line across any of the insertion boxes,
from an entry point to an exit point.

Note that for a short-cut, the length of the path segment [z/,3'])y is bounded above by Lemma
independent of the choice of the points z,y. On the other hand if we are only given that x <x y, then no such
a priori bound exists. Thus, the W-path [/, 3]y is truly a “short-cut” between 2’ and 3y’ when compared to
the length of the KC-path between x and y.

The next result shows that given a pair of W-arcs in K whose inner endpoints are facing, there is a W-orbit
segment in W containing the lifts of both W-arcs.

LEMMA 5.2. Let x,y,z,u € K be successive transition points on a K-orbit, such that x' <y v, 2/ <y v/,
y is an entry point, z is an exit point and y = z. Then z’ <y v’ and hence r(z’) = r(u').

Proof. Observe that 2’ <y y’ implies y must be a secondary entry point, thus by Lemma [4.1} the endpoint 3’
of the W-orbit segment [z, 3']yy must lie in £; for some ¢ = 1,2. Similarly, z must be a secondary exit point,
thus the endpoint 2’ of the W-orbit segment [z’, u']yy must lie in E;r for some j. The assumption y = z implies
that 7 = j. Then by Lemma there is a W-arc in W between ¢y’ and z’, a short-cut. Thus, 3’ < 2/, and
so &' <w ¥ <w 2’ <w v/ which implies 2’ <y v’ and so r(z’) = r(v). O

The following result gives a criteria for when a pair of W-arcs, whose inner endpoints lift to points which
can be joined by a W-orbit segment in W, are themselves contained in a WW-orbit segment and have facing
endpoints.

LEMMA 5.3. Suppose that x € K is an entry point, u € K is an exit point, [x,y|x and [z,u]x are W-arcs
with lifts [« y'lw and [2/,ulw. If y' <w 2/, then ' <y v’ and z = u.

Proof. Let [/, y'lw C W be the lift of [z, y]ic. The fact that x is an entry point implies that ' € 9, W and so
either y' € £; for i = 1,2, or y' € 0;7 W. The assumption that y’ <y, 2’ implies there is a W-orbit segment
from y' to 2’ so the case y’ € 9 W is impossible. Similarly, let [2/,u/]yy C W be the lift of [z, u]x, then u is
an exit point implies that v’ € 9 W and so 2’ € Ej for j = 1,2 as ¥ <y 2’ is given. Thus, concatenating
the W-orbits segments from z’ to 3’ to 2’ to v’ yields 2’ <)y u’. The entry/exit property for the Wilson flow
on W implies that z’ and v’ are facing, hence z = u. O

The next result gives a criteria using the level function, for when a sequence of three KC-arcs admit a lift to
a segment of the W;-flow.

LEMMA 5.4. [33] Corollary 4.2] Let x € K. Given successive transition points ¢ = Oy, (x) where 0 =ty <
t1 <t < t3, suppose that ng,(t) > 0 for all 0 <t < t3, and that ny,(t2) = 0. Then x1 = x2, [ <w Y4 and
hence r(x() = r(y4).

Proof. For 0 < £ < 3, let [x},y;,,]w C W be the lift of the W-arc [ze, Tos1]ic. The fact that ng,(to) = 0 and
the assumption ng, (t1) > 0 implies that n,,(t1) = 1. Then x; is a secondary entry point, with ¢} € £, for
i =1 or i = 2. Similarly, the assumption n,,(t2) = 0 implies that z2 is a secondary exit point, with zf, € E;r
forj=1orj=2.

For the middle W-arc [2},y5lw C W, we must then have xzp € L7 and y) € Lj+. By the entry/exit

assumption on W, we have z} = ¢4 so that i = j and 21 = x9. It follows that there exist a short-cut
[y], zh]w C D; between yj and . Thus we have x(, <y y5. O

In geometric terms, the lifts of the W-arcs in Lemma to W do not form a continuous W-orbit segment,
due to the discontinuity of the map 7, but by replacing the middle segment [z, y4]yy with a short-cut [y], z5]w
through D; we obtain a W-orbit segment [x(, y5]yw. This is illustrated in Figure
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FIGURE 11. Three step curves

Next, we use Lemmas [5.1] to [5.4] to obtain a general form of Lemma [5.4] which is one of the fundamental
results concerning the finite orbits of the Kuperberg flow.

PROPOSITION 5.5. [I7, Lemme p.297] Let « € K. Forn > 3, assume there are given successive transition
points xp = Py, () for 0 =ty < t; < - - < tp_1 < ty. Suppose that ng(t) > 0 for all 0 <t < t, and that
Ny (tn—1) = 0. Then x(; <w vy, and hence r(xy) = r(y,,). Moreover, if xo is an entry point and x,, is an exit
point, then xo = x,.

Proof. For 0 < £ < n,let [z}, y; ]w C W be the lift of the W-arc [€e, xet1]ic. The fact that ng, (t9) = 0 and
the assumption ng, (t1) > 0 implies that n,,(¢1) = 1. Then x; is a secondary entry point, with ¢} € £, for
i =1 or ¢ = 2. Similarly, the assumption n,,(t,—1) = 0 and n,,(t,—2) > 0 implies that x,_; is an exit point.
Then x,_; must be a secondary exit point and thus a},_; € E;r for j = 1 or j = 2. The case n = 3 then
follows from Lemmas (.3 and (.4l

For the case n > 3, we proceed by induction. Assume that the result holds for all XC-segments containing
at most n transition points. We will now prove the result for a segment with n + 1 transition points x, for
0 < ¢ < n. Observe that by hypothesis, ng,(t1) = 1 = ng,(tn—2). If there exists 3 < £ < n — 2 such that
Ny (te—1) = 0, then consider the least such ¢. By the inductive hypothesis, we have that z{, <y y;, and as
Ny (te—1) = 0, we also have that xj_; <y y,. Both WW-segments contain the arc [x}_,, yylw C W. Thus, the
last arc of the W-orbit segment [z(), yy]yy and the first arc of the W-orbit segment [z}_,,y, ]y must agree,
hence xf <y v, as claimed.

If in addition, z( is an entry point and x,, is an exit point, then x{, <y y,, implies zo = x,, by Lemma

If ng,(t) > 1 for all 1 < ¢ < t,_1, then apply the inductive hypothesis to the segment [z1, 2, 1] to obtain
x} <y yl,_;. Using the induction, we have that since x; is an entry point and x,_; is an exit point, hence
21 = 2p—1. Then, Lemma [5.2] implies that z{, <y vy}, and r(z{) = r(y,). If in addition, z¢ is an entry point
and x,, is an exit point, then again, x(; <y y,, implies that zg = z,. O

Proposition implies that the flow ®; on K satisfies the entry/exit condition.

PROPOSITION 5.6. [33 Proposition 5.2| Let € 0, K be a primary entry point and suppose x¢ = @y, (x)
for 0=ty <t; < - <tph_1 <ty are successive transition points. If y = x, is a primary exit point, then
x <w y and hence x =y. Moreover, ng(t) >0 for 0 <t < t,.

Proof. If n =1, then [zg, z1]x is a W-arc, and the conclusion follows by the entry/exit condition for W. The
case n = 2 is impossible by Lemma 4.1

If n = 3, note that x; must be a secondary entry point, hence n,(t;) = 1. The case n;(t3) = 2 is
impossible, as x3 is a primary exit point, hence x5 must be a secondary exit point, contrary to assumption.
Thus n,(t2) = 0. Then by Lemma we have 2] = v} and z{, <y y5. As z( is a primary entry point, and
y4 is a primary exit point of W, they must be facing, or z = y.
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Now assume that n > 3. As before, 1 must be a secondary entry point with n,(¢;) = 1, so it suffices to
prove that n,(t,—1) = 0 and n.(t) > 0 for all 0 < ¢ < t,_1, and then apply Proposition This will imply
that xf <y y,, and as xg = z is a primary entry point and z,, = y is a primary exit point, then = = y.

We claim that n,(t) > 0 for all 0 < ¢ < ¢,. Suppose not, then there exists a least 2 < ¢ < n such that
ng(t) = —1. Then n,(¢) > 0 for all 0 < ¢ < t; and n,(t,—1) = 0. By Proposition we have z(, <w ¥y}, and
since xy is an exit point, we have xg = xy. This implies that x, is a primary exit point, which is a contradiction
as £ < n. We can thus assume that n,(t) > 0 for all ¢y <t <t, and that n,(t;) = 1.

If ny(tn—1) = k > 0, consider the greatest integer 0 < ¢ < n such that n,(t¢) = k and ny(ty—1) = k — 1.
Then the K-orbit segment [z, z, ] satisfies the conditions of Proposition with z, an entry point, so that
xp <w Yy, and z¢ = z,,. As x,, is a primary exit point and x; = x,, the entry/exit property of the Wilson flow
implies that xy is a primary entry point. This is a contradiction as we have that ¢ > 0. Then n,(t,—1) =0
and the proof is finished. O

In summary, the proofs of Propositions and show that, given a K-orbit segment [z, y]|x in K with =
an entry point, y a facing exit point, the condition n,(t) > 0 for the KC-orbit between the two points, then there
exists a W-orbit segment [z, y,,]w in W between lifts 2, of = and y), of y. The W-orbit segment [x{, y,,]w is
obtained by an inductive “short-cut” procedure, which replaces the “dynamics” of the Kuperberg flow with
that of the Wilson flow.

6. DYNAMICS AND LEVEL

In this section, we consider when it is possible to perform an inverse of the short-cut reduction used in
Section [5} which replaces a W-arc with a suitable K-orbit segment that spans the gap between the endpoints
of a W-orbit segment. The solution to this problem depends on the relations between the functions p,(t),
n,(t), and the lengths of W-orbit segments in W as will be shown below. An important application of this
analysis gives criteria for when the IC-orbit of a point x € K must necessarily escape through a face of K,
either in forward or backward time.

Recall that D; = 0;(D;) C W is the inserted compact region. Define
(18) R, =max{R1, Rz} , R, = max{r(z) |z € D;} > 2

Note that for any € W with r(z) > R., the W-orbit of 2 in W does not intercept the inserted regions D;,
but it might intersect the regions D;. Hence the K-orbit of 7(z) € K escapes through the top face 6ZK of K
or intersects the secondary exit regions S; for ¢ = 1 or 2 in forward time, and escapes through the bottom face
0, K or intersects the secondary entry regions I; for ¢ = 1 or 2 in backward time. Also, for the case where
r(x) = R, the orbit of 7(z) in K behaves in the same way as the flow on the boundary of D; agrees with the
Wilson flow on W.

Let C(r) = {x € W | r(x) = r} denote the cylinder in W of radius r, with C(2) = C as defined in Section
Observe that the entry regions E;, for ¢ = 1,2 intersect the cylinders C(r) for 1 < r < R, in lines. Then for
1 < r < R,, the radius inequality and the compactness of C(r) imply there exists a lower bound

(19) §(r) = min{r(o; *(x)) |z €C(r)NE; , i=1,2} > r

with equality only for » = 2. Note that §(2) = 2 and §(R.) = 3, and that §(r) is an increasing function of 7.
The graph of r — §(r) is illustrated in Figure

Fix ro > 2, set 1 = §(rp) and define r, = §(rg—1) recursively, if r,_; < R.. By the compactness of the
regions D; there exists N(rg) > 0 such that r, < R, for k < N(rg), but rp > R, for k = N(ry). Note that rj
is not defined for k > N(rg).

We make an observation concerning the hypothesis “z is not a secondary exit point” which is often imposed
in the statements of the following results. Consider the level function n,(t) for the case where v € K is a
secondary exit point. For e > 0 sufficiently small so that the orbit segment {®,(z) | 0 < ¢t < €} contains no
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FIGURE 12. The function §(r)

transition point, then we have that ng(t) = 0 for 0 < ¢ < € by the definition . Recall that the radius
function 7(x) = 7(771(x)) on K has a discontinuity at a secondary exit point, where r(z) = r(2') for 2’ € D;
with 7(2') = z. As z is a secondary exit point, we have that p,(t) = r(®:(x)) = r(a”) for 0 < ¢t < € where
2" = o;(z') as in (§). By the Radius Inequality (K8), we have r(z”) < r(z') unless r(2') = r(z") = 2 where x
is a special point. Thus, if « is a secondary exit point with r(z) > 2, we have that p,(t) < r(z) for 0 <t <e.
The assumption z is not a secondary point eliminates this possibility.

We now give a sequence of results relating the level function with the properties of the orbits of ®;. First,
we show that N(rg) gives a uniform bound on the level function for forward C-orbits. In what follows, when
we say “for all 7 we mean “for all ¢ such that ®;(z) is defined”.

LEMMA 6.1. Let rg > 2. Suppose that x € K with r(x) > ro and that ny(t) > 0 for allt > 0. If x is not a
secondary exit point, then ng(t) < N(rg) for allt > 0.

Proof. Suppose there exists ¢, > 0 such that ng(t.) > N(ro). We show this leads to a contradiction. Let
xp = Py, (x) with 0 < tg <1 < --+ < ty, < t, be the transition points for {®,(z) | 0 <t < t,}.

Suppose there exists k& > 1 such that n;(tx_1) = nz(to) = 0. Then the segment [zo, x| satisfies the
hypotheses of Proposition so we have x(, <y v}, and thus r(z)_,) = r(z) > ro. The length of the W-orbit
containing the segment [z, y;.]yv is bounded above by L(e) for € = ro — 2, from Lemma Hence there can
exist at most a finite number of values k > 1 for which n,(tx_1) = n,(tg) = 0.

Let k > 0 be the largest index such that n,(t,—1) = n.(to) = 0. Set £; = k. Then the segment [xq, z¢, |k
satisfies the hypotheses of Proposition so we have x( <y yy, and thus r(z), ;) = r(x) > ro. Asn,(t) >0
for all t > 0, we must have 1 = ny(ts,) > n,(te, 1) and thus xy, is a secondary entry point, and so r(zj, ) > r1.

The assumption that ¢; is maximal implies that n,(t) > 0 for t;, <t < t,. If n.(ts,) =1 < N(rg), then
repeat the above process to choose ¢5 to be the largest index such that n,(ts,—1) = 1.

Continuing in this way for j < N(rg), choose the sequence 0 = £y < {1 < --- < £, where n < N(rg) as long
as possible, such that /; is the largest index satisfying n,(t,,—1) = j — 1 and n,(t¢,) = j, for 0 < j < n. Then
r(xy,) = 6(r(z},_1)) = 0(rj—1) = r; since zy, is a secondary entry point and r(zj, _;) =r(zy, ) = 7j-1.

The assumption n,(t.) > N(rg) implies it is possible to choose an index ¢, with n,(t,,) = N(rg). By
the choice of N(rg) we have r, > R, and n,(t) > N(rg) for all ¢ > ¢, , and hence the forward K-orbit
{®s(x) | t > ty, } does not contain a transition point. Thus, p,(t) is constant for ¢t > ¢, and hence the
maximum value of n,(t) is achieved at t = t;,, where the value is N(rg). This contradicts the assumption
that ng(t.) > N(rg). O

COROLLARY 6.2. Suppose that x € K satisfies p,(t) > ro > 2 for all t > 0. Then there exists n(rg) such
that n(rg) < mng(t) < N(rg) for allt > 0.

Proof. Suppose no such lower bound on n,(t) exists. Let z; = @, (z) with 0 < tg <3 < -+ <t, <--- be
the transition points in fC-orbit {®;(x) |t > 0} and {¢; | k = 1,2,...} be an increasing subsequence such that
ng(te,) = —k.
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Consider the flow Zf(z) = @4, —+(2) on K, then Zf(v) = x4, and =, (x) = 2. Moreover, r(Zf(z)) = 7o

for all 0 <t < ty,. Then the level with respect to the flow =k starting at xy, increases to k for 0 <t <ty .
We can then apply the method of proof of Lemma to conclude that the level is bounded above by N(rq),
independent of the choice of k, which contradicts the above. g

These results combine to yield an “escape” result for K-orbits.

PROPOSITION 6.3. Let x € K satisfy ro = r(z) > 2, assume that x is not a secondary exit point and
suppose that n,(t) > 0 for all t > 0. Then the forward K-orbit of x is not trapped.

Proof. Suppose that the forward orbit of z is trapped, then there exists 0 < tg < t; < -+ < ¢, < --- so that
the points z;, = @4, () are the forward transition points for the KC-orbit {®.(z) | ¢ > 0}. By Lemma and
our assumption, we have that 0 < n,(t;) < N(rg) for all £ > 0.

Let 0 < mg < N(rg) be the least integer such that there exists 0 < ¢y < 1 < -+ < ¢} < --- such that
nz(te;) = ng. That is, ng = lirzn>ionf ng(t¢). Since ng is the least such integer, there exists £ > 0 such that
ng(t) > ng for all t > t,, . Then for each integer a > 1, the segment [y, , xy, , . +1]xc satisfies the hypotheses of
Proposition so we have zj, <y yéHa +1- Then by Lemma and Corollary considering the lengths
of the lifted W-orbit segments [x%k,yékwﬂ]w yields the estimate din - (bpra — fx) < L(ro — 2) for all a.
However, we can choose {iy, arbitrarily large and hence also (¢x1o — £x), which yields a contradiction. O

COROLLARY 6.4. Let x € K satisfy p,(t) > 2 for all t > 0, and suppose that liItn>iOnf ng(t) > —oco. Then
the forward IKC-orbit of x is not trapped.

Proof. Let tg > 0 be such that xy = z;, = P4, (x) is a transition point with ny,(tg) = lirtn iOnf ng(t). Then
>
Ny, (t) > 0 for all ¢ > ¢y and we have r(zg) > 2. Then apply Proposition [6.3| for = = z;. O

Ghys remarks in [I7, Lemme, page 300], that for an entry point « € K which escapes to its facing exit point
y, so that = y, “the K-orbit of x contains the image under 7 of all the W-arcs that lie in W’ between z’ and
y', where 3 is the exit point such that =’ = y’.” Propositions [6.5| and below give a precise formulation of
this assertion. Figure [13]illustrates these lifts.

PROPOSITION 6.5. Let ' € W such that x = 7(2’) is a primary entry point in K with r(z) > 2. Then
the KC-orbit of x escapes from K at some primary exit point w, we have that p,(t) > r(x) for all t and the

collection of lifts of the W-arcs in [z, w]x contains all the W-arcs of the W-orbit of 2’ that are in W.

Proof. Suppose that the forward orbit of x is trapped, then there exists 0 = tg < t; < -+ < ¢, < --- with
xg = Dy, (x) the transition points for the K-orbit {®;(zo) | t > 0}. We claim that n,,(t) > 0 for all ¢ > 0, then
the result follows from Proposition [6.3] and Proposition [5.6

Suppose ng,(t) < 0 for some t > 0, then there is a least k& > 0 such that n,,(tx) = —1, and thus
Ngo (tr—1) = 0 and xy, is an exit point. Propositionthen implies that z; <y ), and xo = x). Since zg is a
primary entry point, we must have that xj is a primary exit point, which is a contradiction. Thus, ng,(t) > 0
for all t > 0.

Next, note that as xg is a primary entry point, [x{,yi]x C W is the initial W-arc in the intersection of
the W-orbit of 2/ with W. Then let l1,0s,. .., Ly be the collection of all the indices such that n,,(ts,—1) =0
for all £k = 1,2,...,m. Proposition implies that zj, <w y}l and z; = x4, 1, hence the subsequent lift
[z, 1,90,k C W is the second arc in the intersection of W-orbit of xf with W. Continuing by induction, we

obtain that all the W-arcs for z{, lying in W are contained in the K-orbit of 0. g

There is an important consequence of this result.
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FIGURE 13. The arcs of the lifted IC-segment [z, y] on the cylinder r = r(2’) with z = x¢
and y = zg,

COROLLARY 6.6. Let z € K satisfy r(z) > 2 and n,(t) > 0 for all t > 0. Then the forward K-orbit of
z exits K in a point y = ®r(z) at which n,(T) = 0. Furthermore, z is contained in a bounded orbit of ¥y,
starting at a primary entry point x of K, where x = y.

Proof. Proposition implies that the flow ®; has a primary exit point y at time 7. Note that n,(T) > 0
implies r(y) > r(z) > 2 by Proposition
Then apply Proposition to the reverse flow =7 (¢) = ®7_4(¢) to deduce that there exists t, > T such

that © = EtT (y) is a primary erxit point for =] and hence a primary entry point for ®;. Moreover, the proof of
Proposition [6.5| shows that n,(t) > 0 for all ¢ > 0. Note that y = ®7(z) = P, (z) so we also have n,(t.) = 0.

The fact n,(T") = 0 follows form the equality n,(t) = ng(t. — T +1t) —ngy(t. — T) for all ¢ > 0. Thus
n.(T) = ng(te) —ng(te = T) = —ng(t, —T) < 0. Since T > 0 and n,(T) > 0 by hypothesis, n,(T) = 0 as
claimed. 0

The conclusion of Corollary [6.6] has a simple geometric interpretation. Given a primary entry point z € K
with r(x) > 2, the points z = ®;(z) along the K-orbit of = for which n,(t) = 0 are ezactly those points on
the Wilson flow of 2’ which lie in W. Proposition implies that each such W-arc of the W-orbit of z’ is
contained in the K-orbit of . Observe that by taking z € K with r(z) > 2 and n,(t) > 0 for all ¢ > 0, we
assume that z’ € W such that 7(z") = z belongs to a W-orbit whose entry point is in 9, W — (L} U Ly).

Note that Proposition [6.5] implies that the endpoints of the K-orbit through z are facing, so that z = y.
The following result is valid for secondary entry points, and is used repeatedly in subsequent arguments.

PROPOSITION 6.7. Let x € K be a secondary entry point with r(x) > 2, let y be a secondary exit point
and suppose that x = y. Then x <x y and the collection of lifts of the W-arcs in [x,y|c contains all the
W-arcs of the W-orbit of 2’ that are in W, where 7(x') = x. Hence, if [¢', 2 lw and [y, 2’|y are W-arcs, then
their images under T are both contained in the K-orbit through x.

Proof. Corollary implies there exists a maximal ¢, > 0 such that n,(t) > 0 for 0 < ¢ < t, as x is assumed
to be a secondary entry point. Then z, = ®;, (x) must be an exit point.

Let 0 =tg < t; < -+ < tp, = t, with 2y, = ®;,(x) be the transition points for the K-orbit {®.(z) | 0 <
t < t,}. Then n,(¢t) > 0 for all 0 < ¢ < t,, and ng(t,—1) = 0. Hence x,,_1 and x,, are exit points. By
Proposition xy <w v, and 29 = x,,. The point facing x is unique, so we must have y = x,, = 7(y},) and
T <K Y.

The proof that the segment [z, y]x contains all the W-arcs on the W-orbit of 2’ that are in W follows as

in the proof of Proposition The first transition point x; must be a secondary entry as n.(t1) > 0, thus
ng(t1) = 1. If ny(te) = 0 then x4 is a secondary exit, so by Proposition we have that 2/ <)y 2% and so
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21 = xo. Thus the lift of the W-arc [z, 23]k is contained in the W-orbit of 2. Otherwise, n,(t2) = 2 and
we continue the analysis of cases, until we obtain the first instance where n,(ty—1) = 0. We can then apply
Proposition to conclude that z{, <)y yy. Thus the lift of the W-arc [z¢_1, x|k is contained in the W-orbit
of #’. The rest follows as in the proof of Proposition [6.5 O

Let 2’ € 0;, W with r(z') > 2 and let ' € ;"W be the unique facing point. Let z = 7(2') and y = 7(y/). If
x is a primary entry point, then x <x y by Proposition If = is a secondary entry point, then x <x y by
Proposition Thus, in both cases there exists T}, > 0 such that &7, (z) = ¥.

COROLLARY 6.8. The function ' + Ty is well-defined and continuous for x' € 0, W with r(z') > 2.
Moreover, T, tends to infinity as r(z') tends to 2. O

7. TRAPPED AND INFINITE ORBITS

In this section, we begin the analysis of the trapped orbits of the flow ®;. We first consider the orbits of
points z = 7(2’) with r(z’) = 2. The following result is a general formulation of an observation of Kuperberg,
which provided the original insight leading to her construction [28] and was sketched in Figure

PROPOSITION 7.1. Let ' € W with r(z') = 2 and set x = 7(2'). Then the K-orbit of = is trapped in
either forward or backward time, or both. Moreover, the collection of W-arcs for the K-orbit of x contains
every W-arc lying in W of the W-orbit of ' and there is a subsequence {xz,j | i =1,2,...} of transition points

with r(m}j) = 2 such that {xy, = T(xzj) |j=1,2,...} converges to a special point p; fori=1,2.

Proof. Assume without loss of generality that z is not a transition point and let z;, = @y, (x), for 0 < tg <
t1 < -+ <t, <---, be the transition points for the K-orbit {®;(x) | t > 0}. There are five cases to consider:

) 2(z’) =—1;

) e =1

) —2<z(z') < —1;
) —l<z(2')<1;

Consider first the case of the forward K-orbit of a point = 7(2') with 2’ € W', r(2') = 2 and z(2’) = —1.
Then z¢ € E is the special point p of and for the W-arc [z, yilw C W’ we have x € L; € 0, W. Then
r(z() = 2 by Condition (K7) so that 7(y}) = 2 also. The W-arc [z(, y}]w flows upward from z(z() = —2 until
it intersects at v} € L] with z(y}) < —1, as in Figure Let z} € Ly satisfy 7(x}) = 7(y}), then the Radius
Inequality implies that r(z}]) > 2. Let T; € S be the facing point to x;. Then by Proposition we have
r1 <k T1 and so Ty = x4, 1 for some £1 > 2. Then r(x), ;) = 2, 2(y1) < 2(w), ;) < —1 and [z}, _,yp,]w
is the subsequent W-arc. Thus z,, = 7(y;, ) must be a secondary entry point again and we can repeat this
argument inductively to obtain a subsequence {y; |i = 1,2,...} in L] with @y, = 7(y;,) in Ey converging
to py, so that the forward orbit of z is trapped. The assertion about the collection of lifts of W-arcs in W
follows from Proposition A similar analysis for the backward orbit of x yields a subsequence of transition
points converging to p, .

For the case of z = 7(2) with 2’ € W, r(z') = 2 and z(2’) = 1, note that the first forward transition point
xo € F3 is the special point p; of and so for the W-arc [z(, yi]w C W’ we have x(, € Ly C 0,y W’. Then
again r(x() = 2 by Condition (K7) and the rest of the analysis proceeds similarly to the previous case. Note
that the forward orbits of a point = 7(2’) in the two cases where r(z') = 2 and z(2’) = £1 limit to p;,
while their backward orbits tend to p; .

There are three remaining cases: either —2 < z(z') < —1, =1 < z(2') < 1, or 1 < z(z') < 2. All three cases
proceed in a manner analogous to the two cases above.
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If —2 < z(2’) < —1, then the forward W-orbit of &’ is asymptotic to the periodic orbit O, so in particular
is trapped for the Wilson Plug and each time the W-orbit enters an insertion region D; C W, it subsequently
exits through the facing point. Thus, the forward K-orbit of the point z = 7(2’) has first transition point
o € E1. As 2’ is not in a periodic orbit, we have z{, = 77 !(z0) € Ly with r(z{) > 2. Let 24,1 € S
be the facing point, by Proposition To <Kk Z¢,—1. We then proceed as above, to obtain a subsequence
{z¢, |1=0,1,2,...} in Ey with z,, converging to p; .

Note that the backward W-orbit of ' is not trapped and so exits W at a point y’. The backward K-orbit
of = contains the point y = 7(y'). If y ¢ L; for i = 1,2, then the backward K-orbit of z is not trapped. If
y € L; for i =1,2, then the process continues in the backward direction.

For the case —1 < z(2') < 1, the forward W-orbit of 2’ in W is asymptotic to the periodic orbit Oy, and
each time the W-orbit enters an insertion region D; it subsequently exits the same region. The rest of the
analysis proceeds similarly to the case when —2 < z(z') < —1, yielding a subsequence of secondary entry
points for the forward K-orbit which converge to p; . The backward W-orbit of 2’ in W is asymptotic to the
periodic orbit Oy, yielding in the same manner a subsequence of secondary entry points for the reverse K-orbit
converging to p; .

The last case, for 1 < z(z') < 2, reduces to the case for —2 < z(z') < —1 by reversing the flow ®;. Thus,
the forward KC-orbit of x may escape through G,J{K or may be trapped for all forward time. The backward
W-orbit of x’ always converges to Oy and so yields a subsequence of secondary entry points for the reverse
flow converging to p, . |

We observe two additional consequences of Proposition and its proof.

COROLLARY 7.2. Let x € K and suppose that either x is a primary entry point with r(x) = 2, or x = 7(z’)
where ¢’ € O; "W’ fori =1,2. Then the level function based at x satisfies n,(t) > 0 for allt > 0. Moreover,
if ®(x) is not a transition point for t > 0, then n,(t) = 0 if and only if p,(t) = 2. O

COROLLARY 7.3. Let z € K and suppose there exists t. € R such that y = ®, (x) is a secondary entry
point with py(t.) = 2. Then for all t > t, we have that p,(t) > 2. Moreover, the forward orbit of x contains
an infinite sequence of secondary entry points that limit to p; € E;” fori=1 ori=2. g

We next consider the K-orbits of points € K for which r(z) < 2. We recall results by Ghys [I7] and
Matsumoto [33], which give conditions such that the orbit of z is trapped in forward time and that the closure
of the IC-orbit of x contains a special point. Hence the closure of the K-orbit of z contains the closures of the
orbits of both special points p; and p; .

Fix ¢ = 1,2 and consider the restriction of the insertion map o;: L; — D; C W. Express this map in polar
coordinates (17, 0") on the domain L; and (r, 6, z) on the image. The image under o; of the curve {r’ = 2}NL;
is a “parabolic curve” T which is tangent to the vertical line {r = 2}. For each i = 1,2, we define two regions
(see Figure contained in the image of the region £, N {r < 2}:

o &7 =o,({r <2}nL;)Nn{r <2} with outer boundary T
o & =0;({r > 2N L;)U{r < 2} with inner boundary Y.

We make two basic observations, as used in the proof of [33] Proposition 7.1]. First, the tangency of T
with the vertical line {r = 2} and Taylor’s Theorem implies that for § > 0 sufficiently small, the vertical line
segment & '~ N {r =2 — ¢} has length at least C’ - /3 for some fixed C’ > 0.

The second observation is that the Wilson vector field W is horizontal along the periodic orbits O; as the
vertical component g(r,ﬂ,z)a% in vanishes at the points (2,6, +1). Thus, there exists C” > 0 so that
for § > 0 sufficiently small, the flow ¥;(2') of a point ' € W with r(z') = 2 — ¢ intersects the face £; in
a sequence of points whose vertical spacing near the planes {z = +1} is bounded above by C” - 4. A more
precise estimate can be obtained using the method of proof for Lemma but these approximate results
suffice for the proof of Proposition below.



THE DYNAMICS OF GENERIC KUPERBERG FLOWS 33

—1

r <2 r=2 r> 2

FIGURE 14. The regions & °~ and & " of £

DEFINITION 7.4. We say that 5y > 0 is a Matsumoto constant if for all0 < § < dp; and C’,C" as above,
then

(20) C"5<C Vb
The Matsumoto region for dps is the set U(dpr) = 7({2 — oy <7 < 2}) C K.
PROPOSITION 7.5. [33] Proposition 7.1] Let dpr > 0 be a Matsumoto constant, and v = 7(x") € U(0nr).

(1) If z(z") = —2, then the forward orbit of x is trapped. Moreover, there exists a subsequence of transition
times, 0 < to <ty < -+ <ty <---, such that r(z) ) <2 fori>0 with lim r(z; ) =2.
v i—00 v
(2) If z(x') = 2, then the backward orbit of x is trapped. Moreover, there exists a subsequence of transition
times, 0 > tg > tg, > - >tg, > -+, such that r(z) ) <2 for i >0 with lim r(z} ) = 2.
K i—00 °
(8) If z(z") = 0, then the orbit of x is infinite and there exists a bi-infinite subsequence of transition times
such that r(x), ) < 2 for all i, with ligl r(zy) = 2.
i isdoo © L

Proof. We consider first the case z(z') = —2. The case z(z') = 2 follows analogously, by reversing the flow
®,. Figure [15]illustrates the following construction.

Given xj = (19,6, —2) which satisfies 2 — dpr < 79 < 2, the W-orbit of z{, has increasing z-coordinate in W
and intersects the face £] in the set & o+ possibly repeatedly, until it first intersects either the curve YT or
the region & 7. If ¥, (x() € T for some ¢, > 0, then r(7(¥;, (x())) = 2 and the analysis of the forward orbit
reduces to the case of Corollary [7.3]

Otherwise, the assumption that 2 — §); < rg < 2 implies the initial segment of the K-orbit of xg = ()
contains a sequence of W-arcs which coincide with the initial W-arcs of the W-orbit of z{;, up until the initial
point of the W-arc that is contained in & °~. Then the K-orbit jumps to a radius r; with oy <19 <11 <2
and this pattern repeats itself. We make this sketch of proof precise.

Let xp = ®y, (o) with 0 =to <t < --- <, < --- be the transition points for the K-orbit {®(zo) | £ > 0}.
Denote the corresponding lifts to W of the W-arcs in this forward orbit by [2},v;,,]w. As remarked above,
we can assume that r(z)) # 2 for all £. The orbit of z¢ is then described by an iterative process, as follows.

Note that z(, € 9, W implies that y; € L1, 50 nyy(t1) = 1. If 21 € £, set Ay = 1, 1 = 21 and 71 = 7(n1).
Then note that r(yj) = r(z() = ro while 7o < r(n}) < 2 by the definition of the region & '~ .
Otherwise, we have z; € £ " and so 7(y}) = ro while r() > 2 by definition. Propositionimplies that

there is a least ¢1 > 1 such that ng,(te,—1) = 0, so that z¢ and x,, satisfy xf <y %171 by Proposition
and r(xj, _,) = ro. Then x4, is a secondary entry point.

If ,, € &7 then set Ay =41, m =z, and r1 = r(n1). Otherwise, o, € 5;’+ and so r(le) > 2, and we
repeat this process. By Corollary and the choice of §, this inductive process can be repeated at most a
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finite number of times, until we obtain {0 = £y < f1 < .-+ < Ly, } with r(z}, ;) = 70, r(2),) > 2 for 1 <i < ko
and rg < r(x@ko) < 2. Thus wg, € & . Then set A\; = li,, m =z, and r1 = 7(m1).

We thus obtain the secondary entry points {y; [0 <1 < ko} C {r =ro} N L all contained in a vertical
line r = 7o, plus a new point 7, € Ey with lifts y\ € {r =ro}NL and )\ =ny and ro <7 =7(n;) < 2. We
can then repeat the above process by considering the KC-orbit of 7;, which yields an ascending finite sequence
of secondary entry points {z, } with {y; } contained in the vertical line segment E- T n{r =}, until they
reach the point o =z, € &~ with radius 7o < r; < ro =1r(n2) < 2.

This process then continues recursively, so that the sequence of transition points {z; | ¢ > 0} contains an

infinite collection of finite subsequences lying on the lines {r = r;} N L] with 79 < 7 <7y < --- < 2, where
the initial points n; for each such “finite stack of points” is defined as the secondary entry points where the
sequence transitions from the region &£ "+ to the region &~ . Moreover, the sequence of radii r; — 2 by the

Radius Inequality. Finally, note that the forward K-orbit of xg satisfies 7(n¢) < r(ng+1) so the orbit cannot be
recurrent.

FIGURE 15. Trapped orbits intersecting £, '~ infinitely often

As noted above, if af = (rg,6,2) with 2 — §y; < r9 < 2, then we obtain a similar conclusion using the
reverse time flow and the z-symmetry of the flow W on W.

If zy = (r0,6,0) with 2 — dp; < ro < 2, then the forward W-orbit of z( has increasing z-coordinate in W,
and intersects the face £; in the set &, o+ possibly repeatedly, until it first intersects either the curve T, or the
region & '~ . The analysis then proceeds as above. The backward W-orbit of z{, has decreasing z-coordinate
in W, and we obtain a similar conclusion using the z-symmetry of the Wilson flow. |

Suppose that r(x) < 2 and assume there exists to > 0 such that p,(tp) = 2. Then by Corollary the
forward orbit {®;(z) | t > to} is trapped in the region {r > 2}.

For r(z) < 2, it remains to consider the case where p,(t) # 2 for all t > 0. The proof of the next result is
adapted from the proof of the Théoréme in [I7, page 301].

PROPOSITION 7.6. Let z € K satisfy r(z) < 2 and assume that its forward orbit is trapped and satisfies
pz(t) # 2 for all t > 0. Then there exists an infinite subsequence of transition points {xy, |1 =1,2,...} with
r(x) ) <2 such that lim r(z) ) =2.

4 i—00 K
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Proof. Let xp = @, () with 0 < tg < t; < -+ < t, < --- be the transition points for {®.(z) | t > 0}, with
associated lifts of W-arcs [z, v, |w-

We first show that r(z}) < 2 for an infinite number of indices ¢. If not, then there exists ¢y > 0 which
is the least index such that r(z)) > 2 for all £ > {y. As r(z}) # 2 for all £ > 0, thus r(z}) > 2 for all
¢ > {y. In particular, the choice of £y implies that r(m}o_l) < 2. Then z4, € E; for i =1 or i = 2, and let
T, € L] be the facing point to z € L;. As r(xzj,) > 2, Proposition implies that xg, <k Ty, where
Ty, = 7(T),). Thus there exists /1 > o such that xy, = Ty,. Then xj _; <y xj, by Lemma and so
r(zy,) = r(yy,) = r(zy,_1) < 2. This contradicts the choice of £, and thus the set of indices £ for which
r(z}) < 2 must be infinite.

Next, we show that there exists a subsequence {z} |i=1,2,...} with r(z} ) < 2 such that lim r(z},)=2.
: é i—o00 :
Set 7, = limsup {r(z}) | ¢ > 0 such that r(z;) < 2} and let €, =2 —r, > 0 and 7, = 2 — €, /2 < 2. Assume
that e, > 0, then we show this yields a contradiction.

Note that for all 0 < € < e, the collection {z} | 2 — e < r(z},) < 2} is finite by the definition of r.. We
can thus choose £, > 0 so that 7(zj ) < 2 and satisfying the condition that for all £ > /., if r(x}) < 2 then
r(z)) < 7,. Set t, =tg,.

Observe that Radius Inequality (K8) implies that there exists 6] > 0 so that if (z}) < ), and 2441 is a
secondary entry point, then r(xj ) > r(z}) 4+ 6;. Conversely, the Radius Inequality also implies there exists
0, > 0 such that if r(x}) <rl and 241 is a secondary exit point, then r(xj ) < r(z}) — d; .

LEMMA 7.7. There exists a greatest lower bound N, such that n,(t) > N, for all t > 0.

Proof. The set of values {n,(t) | 0 < t < t.} is finite, so it suffices to show there is a lower bound on n,(t)
when ¢t > t..

If no such bound exists, then there exists an increasing subsequence of indices {¢; > (. | i > 1} with
Ng(te,) = nx(te) — 1 and ny(ts,) = ng(tc) — ¢ for all 4 > 1. Moreover, we can assume that ¢; is the least index
£ > ¢; such that ng(t¢) = n,(te,) — 1. Consequently, each point x,, must be a secondary exit point.

If ;41 > €; + 1, then ng(tr) > ng(te,) for £; < k < ¢;41, so by Proposition we have xj < yzHl and
r(xy,) = r(yp,,, ) For i =1, this yields
r(xg,) <r(ah,y) =00 =r(zp,) — 0, <7l
so that r(zj ) < 2. Then by induction, we have that r(z) ) < r(zj ) — 0, < r, —id, and in particular
r(zy,) < 2.

As r(z),) > 1 and 7, < 2, the value of the index i is bounded by i < 1/d,, contradicting our assumption

* 9

that the subsequence is infinite. O

Let N, = min{n,(t) | t > 0}, and let 0 < t5, < tg, < --- < tg, be the sequence of times such that
ng(te;) = Ni. Note that the sequence ty, < ty,41 < --- < ty,,, 41 satisfies the hypotheses of Proposition for
each i > 1, and thus zj < xziH so r(zy,) = r(x’zi+1). Then as in the proof of Proposition this implies
that =, <y zp, for all i > 1. However, r(x) ) <r, <2 so by Lemma the length of the W-orbit through
ry has an upper bound. This implies there is an upper bound on the number of W-segments [ac}j,yzj+l+1}w
which implies that & is bounded above by a constant k; depending only on r(zj, ).

Then note that n,(t) > N, + 1 for all ¢t > Loy, +1- Repeat the above arguments inductively, to conclude
that for each ¢ > 0, there exists only a finite number of transition points {¢;, | £ > 0} with r(z}) < 2 and
ng(te) = N, + 1. It follows that for some index ¢ > ¢, we have that r(z)) > r,. However, 7, < r(z}) <2 is
forbidden, so we obtain that r(z},) > 2 for all £ > ¢, for k sufficiently large. By Corollary it follows that
the orbit of x4, escapes from K, contrary to assumption.
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Therefore, r. = 2 and so there exists an infinite subsequence of transition points {zy, | i = 1,2,...} with
r(z, ) < 2 such that lim r(z),)=2.
‘ i—>00 4

Finally, note that the above proof shows that likm inf {r(z)) | £ >k} =2. O
— 00

We point out a corollary of the proof of Proposition [7.6}

COROLLARY 7.8. Suppose that x € K satisfies p,(t) < 2 for all t, then x is not trapped. a

Finally, consider the case where x € K with p,(¢t) > 2 for all ¢ > 0. Sections [5| and |§| developed various
criteria for when the orbit of z is not trapped. For example, if the level function n,(¢) > 0 for all ¢ > 0, then
by Proposition the K-orbit escapes. The techniques used above yield the following result for such trapped
orbits. Note that later in this work, in Proposition with the assumption of Hypotheses and
we obtain a stronger conclusion about such orbits.

PROPOSITION 7.9. Let x € K be trapped in forward time. If p,(t) > 2 for all t > 0, then there exists
a special point p; as in and a subsequence {zy, | i = 1,2,...} of forward transition points such that

lim x}i =p; - The analogous result holds if x is trapped in backward time.
71— 00

Proof. By assumption, r(z}) > 2 for all transition points xy = ®,,(x) with ¢, > 0. Suppose that n,(¢) admits
a minimum value, then consider the least ¢ such that n;(t¢) is equal to this minimum. Then, r(z}) > 2 and
Ng,(t) > 0 for all t > 0 and by Proposition the IC-orbit of x escapes.

Hence, there is an infinite sequence ty, < ts, < --- where ¢; is the least index with n,(ty,) = —i, and all
g, must be secondary exit points. We claim that r(zj,) > r(zj,, ) > 2 for all i. Observe that r(z}) > r(zj,)
for all £y < ¢ < {4y and r(x}, ;) = r(z},) by Proposition so that 2 < r(xy,) < r(zy, ;) = r(we,) by the
Radius Inequality.

Continue in this way, to obtain a sequence of points z,, for which
2< - <r(ay,, ) <r(xp,) < <r(rg) <r(rg,).

It follows that lim {r(zj,, ) —r(zf,)} — 0and lim r(zj,) = 7. > 2. The Radius Inequality implies that for
1—00 1—00
each 7 = 1,2, there is a unique fixed point for the radius coordinate on the range and domain of the inverse

0’;1 of the insertion map, which is the point r = 2 and z = (—1)7. Thus, lim r(zy,) = 2 and there is a
1—> 00

subsequence of this subsequence converging to one of the special points. O

COROLLARY 7.10. Suppose that the K-orbit of x € K is forward trapped, then there is a sequence of times
0 <ty <ty <--- such that py(t;) = 2 and z(Py,(z)) — £1. The analogous conclusion holds when the KC-orbit
of x € K is backward trapped.

Proof. Assume that the IC-orbit of x is forward trapped.
If p,(t) > 2 for t > 0, then the claims follow from Proposition
If p.(t) = 2 for some t > 0, then the claims follow from Proposition
If r(z) < 2 and pg(t) # 2 for ¢ > 0 then the claims follow from Proposition
If the K-orbit of z € K is backward trapped, consider the reverse K-orbit to obtain the claims. g
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8. THE KUPERBERG MINIMAL SET

In this section, we give the proof that the flow ®; has no periodic orbits in the plug K, and then discuss
some of the properties of the minimal set ¥ for the flow. We also state some results on the non-wandering set
of the flow.

THEOREM 8.1. The flow ®; in the Kuperberg Plug is aperiodic.

Proof. Suppose there exist a periodic orbit « € K for the flow ®;. We show that this leads to a contradiction.

Let zp = @4, (z) with 0 < tg < t; < -+ < t, < --- be the forward transition points in {®.(z) | ¢t > 0}
and suppose that x,, is the first transition point with =, = & (z¢) = x¢ for ¢t,, > 0. Note that we then have
Dyyy, () = Oy(2) for all ¢.

Let [z}, yp 1w C W be the lift of the W-arc [ze, xe41]k C K for 0 < < n. Then [x(,yi]w = [@),, Y1)
Recall that the r-coordinate is constant on each W-arc [z}, y,,,]w and define 7o = min{r([z},y;,,]w) | 0
¢ < n}. We may assume this minimum occurs for [xf, y]]w.

W-
<

If r([2}, ypqlw) = 2 for some 0 < £ < n, then the K-orbit of z; is either trapped or infinite by Proposi-
tion The same is true for z, which contradicts the assumption that z is a periodic point. Thus r(z}) # 2
for all £. Tf r([x}, y), ]w) < 2 for some 0 < £ < n, then by Proposition the orbit of  contains a special
orbit in its closure, which contradicts the assumption that the orbit is periodic. Thus rq > 2.

As r([z], vhlw) > ro > 2, we have that r(z}) > r(y]) and then Condition (K8) implies that z; must be a
secondary entry point. Thus, n,,(¢1) = 1.

Next, observe that if n,,(¢f) < 0 for some ¢ > 0, then there is a least ¢ > 0 such that n,,(t;) < 0. Hence
Mg, (te—1) = 0, and both z,_; and z; are secondary exit points by the minimality of £. Then by Proposition
we have z{, <y y;. Thus r(z}_,) = r(z() = ro. As r(z}) # 2 and x, is a secondary exit point, it follows that
r(z}) < r(x})_,) = ro, which is a contradiction. Thus, we have ng,(¢t) > 0 for all ¢ > 0.

Next, suppose that ng,(¢,) = 0, we can then apply Proposition to the orbit segment [zg,Zn41]kc to
conclude that zj <y y;,, 1. Hence, x4 <y y1 <w ), <w ¥, .1, but since xg = x,, we conclude x5 <y y; <w
xf. Hence, the W-arc [x(,y]] is contained in one of the W-periodic orbits, in particular r(z¢) = 2 which is a
contradiction.

The only possibility left is that n,(¢,) > 0, but this is impossible by considering the reversed flow and then
it becomes the forbidden case n,(t,) < 0 considered above. O

The above proof is essentially that given by Kuperberg in [26]. Proposition is not formally stated in
her paper, though it is stated explicitly in the subsequent treatments [I7], 27 B33].

We now give a summary of general properties of the minimal set for the Kuperberg flow, as observed in
[17, 27, B3]. These are based on Theorem |8.1f and results of previous sections. Recall that p; = 7(£; N O;)
for ¢ = 1,2 are the special entry points. Define the orbit closures in K,

(21) Y1 = {Pi(p]) | —oo <t <o} , Ey = {Pi(py) | —oo <t < o0}
THEOREM 8.2. For the closed sets ¥; for i =1,2 we have:

(1) X; is ®y-invariant;

(2) r(x) > 2 for all x € ¥;;

(8) L1 =39 and we set ¥ = 31 = Xo;

(4) £ C Z, where Z C K is any closed invariant set for ®.
(5) ¥ is the unique minimal set for ®y;

Proof. For 1) note that the closure of any ®;-orbit is a ®;-invariant set.

For 2) note that for any point z € 7(O1 N W), Corollary shows that n,(¢f) > 0 for all ¢ > 0, hence
pz(t) > r(x) = 2. Thus all points y € ; in the closure of the orbit also satisfy r(y) > 2.
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For 3) first observe that the proof of Proposition for p; implies that ¥; contains p; , and thus ¥y C 3.
It likewise implies that 31 C ¥, and thus ¥ = 3.

For 4) let x € Z then Z is invariant implies that = has an infinite orbit. By Theorem the orbit of x is
not periodic.

If p,(t) = 2 for some ¢ € R, then Proposition shows that the ®;-orbit of x contains a special point in
its closure, hence ¥ C Z. If r(z) < 2 and p,(t) # 2 for all ¢ € R, then Proposition [7.6 shows that the ®;-orbit
of x contains a special point in its closure, hence ¥ C Z. If r(z) > 2 and p,(t) < 2 for some ¢, then we are
reduced to the above cases. Otherwise, if p,(t) > 2 for all ¢, then Proposition shows that the ®;-orbit of
2 again contains a special point in its closure. Thus, in all cases, the closure of an infinite orbit must contain
Y in its closure.

For 5) note that the closure of the ®;-orbit of any x € ¥ contains ¥, so the set is minimal. Suppose that
Z is a minimal set for ®; then given any « € Z, by 4) we have ¥ C Z, so they must be equal. O

We conclude this discussion of the Kuperberg minimal set, with some observations concerning other aspects
of the topological dynamics of a Kuperberg flow, which follow from the results of the previous sections. Recall
that the orbits of the Kuperberg flow are divided into those which are finite, forward or backward trapped, or
trapped in both directions and so infinite. Correspondingly, the asymptotic properties of the orbits must be
considered within this restraint, as the asymptotic behavior outside of the plug K of an orbit which escapes is
not known.

First, we recall some standard definitions from topological dynamics. The forward limit set of a forward
trapped point x € K is the ®;-invariant set

(22) o) = () {@ula) [>T},

and z is forward recurrent if x € a(z). The backward limit set of a backward trapped point = € K is the
d,-invariant set

(23) w@) = () @@ <1

and x is backward recurrent if x € w(x).

COROLLARY 8.3. Let x be forward trapped, then ¥ C a(x). Likewise, if x is backward trapped, then
Y Cw(z).

Proof. Theorem [8.2]4 yields the inclusions ¥ C a(z) and ¥ C w(z). O

Next, consider the opposite extreme from recurrent points. A point z € K is forward wandering if there
exists an open set x € U C K and Ty > 0 so that for all ¢ > Ty we have ®,(U) N U = (). Similarly, =
is backward wandering if there exists an open set z € U C K and Ty < 0 so that for all ¢ < Ty we have
@, (U)NU = 0. A point z with infinite orbit is wandering if it is forward and backward wandering.

Define the following subsets of K:
W’ = {z € K|z orbit is finite}

2t = {x € K|z orbit is forward wandering}
W~ = {ze€K|zorbitis backward wandering}
W>* = {zeK]|uzis wandering}

Note that 2 € 20° if and only if the orbit of 2 escapes through 8;]1{ in forward time, and escapes though 0, K
in backward time. Define

(24) W = Wuwruw uw>e ; Q=K-W.
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The set  is called the non-wandering set for ®;. A point x with forward trapped orbit is characterized
by the property: « € Q if for all ¢ > 0 and T > 0, there exists y and ¢ > T such that dg(z,y) < € and
dg(z,®+(y)) < €, where dg is a distance function defined in Section There are obvious corresponding
statements for points which are backward trapped or infinite.

We now give some of the properties of the wandering and non-wandering sets.

LEMMA 8.4. Q is a closed, ®s-invariant subset, with ¥ C €.

Proof. The fact that each of the sets 20°, 20F, 20~ and 20> is open follows directly from the definition of
wandering, as does their invariance under the flow ®;. For x € ¥, its orbit is recurrent so is not wandering,
hence z € Q. g

LEMMA 8.5. If x € K s a primary entry or exit point, then x € 20.

Proof. Let x € 0, K be a primary entry point. Then for some € > 0, the choice of the vector field W on W
implies that the coordinate function z(®;(z)) is strictly increasing for 0 <t <e. For 0 < § < ¢, let B(x,0) be
the closed ball of radius ¢ centered at x. Then for § sufficiently small, the image ®,(B(z,¢)) is disjoint from
B(x,6) for all t > e. Thus, x € 20 if its orbit is not trapped and x € 20+ if its orbit is trapped. Similar
considerations apply for a primary exit point z € 8;}1{, to show that either € 20° or z € 20~ ]

COROLLARY 8.6. For each x € (), the ®.-orbit of x is infinite.

We can also restrict the radius coordinates of the non-wandering orbits.

PROPOSITION 8.7. Q C {z € K| r(z) > 2}.

Proof. Let x € Q and suppose that r(x) = 19 < 2. Note that = is an infinite orbit implies that r(z) > 1
and x cannot be contained in the orbit of a special point as r(z) < 2. Moreover, it follows as in the proof of
Lemma that the level function n,(t) has a greatest lower bound N, < 0 for all ¢ € R. Let . = &4, (z) be
a transition point with n,(t.) = N.. As Q is ®-invariant, it will suffice to show that z, is wandering, which
is a contradiction. Thus, we may assume that = x, and the level function satisfies n,(t) > 0 for ¢ > 0.

Let zp = @, (x) with 0 =ty < t; < --- <ty <--- be the forward transition points in {®,(z) | ¢ > 0}. Let

.y

[y, Yy 1]w C W be the lift of the W-arc [z, 2¢11]x, for £ > 0.

The proof of Proposition [7.6] shows that there are only a finite number of indices ¢ > 0 such that z, is
a transition point with level n,(t;) = 0. Let £, > 1 be the greatest index for which n,(ts,—1) = 0. Then
ng(te) > 1 for all £ > €y, which implies that both z, and x4, are secondary entry points and thus m}o €L;
fori=lori=2andy, ,, € L; forj=1orj=2.

We have ro = 7(zg) = 7(2j, ;) and set 71 = r(x}, ). As x is not on a special orbit, the Radius Inequality
(K8) implies that r1 > rg. By the geometry of the insertion maps o; it follows that xfgo € L; must be an
interior point for the compact region L; . The flow ®; is transverse to the section Tx defined in (10, so it
follows that there exists dp > 0 such that, for each 0 < £ < £y, the ball B(xy, dp) intersects just one component
of Tx and is disjoint from its boundary.

By the continuity of the flow, we can choose 0 < € < §y sufficiently small so that ®;,(B(z,€)) C B(xy,do)
for each 0 < ¢ < {y. Moreover, for 1, = ro+ (11 —19)/3 and 7] = r1 — (11 — ro)/3 we require that r(y) < r{
for each y € B(x,€) N Tk and r(z) > 7| for each z € B(xg,,dp) N Tk.

For y € B(x,¢€), it then follows that for each 0 < ¢ < ¥, Py (y) is an interior point of Tx for some ¢}
close to t,. In particular, ®;, (y) is a secondary entry point with n, (t%) = ny(te,) = 1. As in the proof of

0
Proposition it follows that n,(t) > 1 for all t > t,, and r(P(y)) > T((I)% (y)) = ry for all t >t . Thus,
Oy (B(z,€)) N B(x,e) =0 for all t > ¢4,, so that x is forward wandering, as was to be shown. O
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9. THE KUPERBERG PSEUDOGROUP

In this section, we define a pseudogroup G acting on a rectangle Ry C K which captures the dynamics of
the flow ®;. The study of the action of G leads to a deeper understanding of the geometry and topology of
the minimal set 3, and gives a framework for the rest of the paper. The analysis of the dynamical properties
of the action of G on Ry uses many of the results and techniques developed in the previous sections and
provides an interpretation of these results in a pseudogroup setting.

Choose a value of 8y such that the rectangle Rg as defined in cylindrical coordinates,
(25) Ro={¢=(rb6p,2)] 1<r<3, -2<z<2} CcW,

is disjoint from both the regions D; and their insertions D; for ¢ = 1,2, as defined in Section [3] For example,
for the curves a; and ] defined in Section 3| we can take 6y = 7, so that Ry is between the embedded regions
D; for i = 1,2 as illustrated in Figure

F1GURE 16. The rectangle Ry in the Kuperberg plug K

As Ry € W', the quotient map 7: W — K is injective on Ry and we denote its image in K also by Ry with
coordinates r = r(§) and z = z(§) for £ € Ry. The metric on Ry is given by

(26) dry (€)= /(" —=1)2+ (' = 2)? for &= (r,m2), & = (7, 2) .
Introduce the special points w; € Ry, given by
(27) wlzolﬁRQZ(Z,ﬂ',—l) s LUQZOQQROZ(QJT,l).

The first transition point of the forward orbit of w; is the special entry point p; = 7(£; NO;) € E;. The first
transition point of the backward orbit of w; is the special exit point p;-" = T(,C;_ NO;) €5;.

We next give a basic result concerning the behavior of K-orbits with respect to Ry.

PROPOSITION 9.1. Let z € K be such that its forward (or backward) K-orbit is trapped, then the orbit
intersects Rg. Hence, if the KC-orbit of © does not intersect Ry, it escapes from K in both forward and backward
time.

Proof. Both the forward and the backward K-orbit of a special point p; limits to each special point p; by
Proposition [7.1] and thus intersects Rg repeatedly. It follows that there is an open neighborhood of each of
the special points {w1, w2} consisting of points whose forward and backward K-orbit intersects Rg. Suppose
that r(x) < 2, then by Proposition the assumption that the forward orbit of z is trapped implies that it
contains a special point in its closure, hence must intersect Ry infinitely often. The case where r(z) > 2 follows
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similarly by Propositions [7.1] and [7.9] The case when the backward orbit is trapped follows by reversing the
flow and applying the above case. O

COROLLARY 9.2. Ifx € K belongs to an infinite KC-orbit, then it intersects Ry in an infinite sequence of
points in both forward and backward time. (|

The first return map ® on Ry for the Kuperberg flow &, is defined at £ € Ry if there is a KC-orbit segment
[€,m)c with n € Ry and its interior (£, 7)k is disjoint from Rg. We then set ®(§) = n. The domain of ® is the
set:

(28) Dom(®)={¢ € Ry |3t >0 such that ®,(¢) € Ry and ®,(¢) ¢ Ry for 0 < s < t}.

Corollary m implies that every z € Ry with infinite orbit is in the domain of </I5, and thus the dynamical
behavior of the map ® reflects the dynamical behavior of the infinite orbits for ®;. We also note that the map
®: Dom(®) — Ry has many points of discontinuity, as will be shown.

Recall the formal definition of a pseudogroup modeled on a space X:

DEFINITION 9.3. A pseudogroup G modeled on a topological space X is a collection of homeomorphisms
between open subsets of X satisfying the following properties:

(1) For every open set U C X, the identity Idy: U — U is in G.
(2) For every ¢ € G with ¢: U, — V,, where U,,V,, C X are open subsets of X, then also oL Vo — Uy,
isin G.
or every p € G with ¢: — and each open subse C Uy, then the restriction ¢ isingG.
3) F G with p: U, — V,, and each bset U' C Uy, then the restricti U'isin G
or every ¢ € G with @: — and every @' € G with ¢': Uy — Vi, 4 C Uy then the
4) F G with U, Ve and e G with ¢': U, Ve, if Vi, C Uy then th
composition ' o v is in G.
C is an open set, {U, C a € are open sets whose union is U, ¢: U — is a
5) IfU C X i U X A h jon s U, p: U Vi
homeomorphism to an open set V.C X and for each o € A we have po, = ¢ | Uy: Uy = Vy isin G,
then o is in G.

We apply this definition to the first return map ® on Ry to obtain:

DEFINITION 9.4. Let Gi be the pseudogroup generated by the map o acting on X = Ry. That is, if
U C Dom(<I>) is an open set with V = ®(U) and the restriction o | U is a homeomorphism, then both <I>\U and
O~V are in Gi. The remaining elements of Gx are given by adding maps as required so that the conditions

of Definition are satisfied.

In the rest of this section, we consider the basic dynamical properties of the action of Gx on Ry and begin
developing the relationship between the dynamics of the flow ®; on K and that of the induced action of D,
We first consider the relation between the actions of the maps ® and ¥ on Ry, where T denotes the return
map to Ry for the Wilson flow ¥;. The dynamical properties of ¥y on W are described in Proposition 2:3]
and illustrated in Figures [2] and

The first return map T on Ry for the Wilson flow ¥, is defined at £ € Ry Aif there is a W-orbit segment
[€,m)w with n € Ry and its interior (§,7)w is disjoint from Rg. We then set U(£) = 5. The domain of ¥ is
the set:

(29) Dom(¥) = {¢ € Ry |3t >0 such that U,(¢) € Ry and W, (¢) ¢ Ry for 0 < s < t}.

The radius function is constant along the orbits of the Wilson flow, so that #(¥(£)) = r(€) for all £ € Dom(¥).
Also, note that the points w; for ¢ = 1,2 defined in are fixed-points for T. For all other points £ € Ry
with € # w;, it was assumed in Section [2 that the function g(r,0,z) > 0, so the W-orbit of £ has a “vertical
drift” arising from the term g(r, 6, z)% in the formula for W.

For ¢ € Ry sufficiently close to the vertical boundary 9, W, function f(r,6,z) = 0 and hence the vector
field W is tangent to Rgy. Then the W;-flow of £ is contained in Ry and hence £ ¢ Dom(\I}).
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For ¢ € Ry such that W is not vertical at &, then the U;-flow of £ exits Ry and has increasing z-coordinate,
and so flows upward until it either returns to Ry, or exits through 8+W without intersecting Ry, in which case
it fails to make a complete revolution around the cylinder. In the latter case, & & Dom(U). If z(€) > 0, then
whether its forward ¥;-flow returns to Ry or not, depends strongly on the choices of the functions g(r, 8, z)
and f(r,6,z) and the minimum distance from the forward orbit of £ to the fixed-point ws.

On the other hand, let £ = (r,m,2) € Rg with z < 0 and suppose that W is not vertical at £&. Then
as before, the forward U;-orbit of £ exits Ry and has increasing z-coordinate, so must intersect the annular
region A = {z = 0}. If the forward orbit does not intersect Ry before crossing A, then by the anti-symmetry
hypothesis on the Wilson flow, the W;-orbit of £ returns to Ry at the point n = (r, 7, —z), and so \Tl(g) =

Note that these remarks imply that for all £ € Ry with z(£) < 0 and such that W is not vertical at £, then
¢ € Dom(V). However, which of the two cases above occurs again depends strongly on the choices of the
functions g(r, 0, z) and f(r,0, z) and the minimum distance from the forward orbit of £ to the fixed-points w;.

Finally, we consider the domain of T in an open neighborhood of the vertical segment {r = 2}. For £ € Ry
sufficiently close to one of the fixed points w; the function g(r, 8, z) is arbitrarily small, so the forward W-orbit
of £ must intersect Ry, and thus & € Dom(\I/). In particular, for each w; the set Dom(\IJ) contains a open
neighborhood of w;. The return map for T at other points close to {r = 2} is considered in three cases, which
are illustrated in Figures [2] and [3]

First, the U;-flow of the points in the open segment
To={(2,mz2) | -1<z<1}C{r=2}NRyg

always return to the same segment, so we have Zy C Dom(\fl) with U: Ty — Zy. Moreover, U is bijective when
restricted to Zg. However, W is not continuous on Zy as we will discuss further below.

The conditions (W5) and (W6) in Section [2| imply there exists a least 0 < ey < 1/4 such that the function
f(2,0,2) > 0 for =24 €; < z < 0. Thus, for the open segment

Jo={2,m2)| 2+e <z< -1} C{r=2}NRy

we have Jy C Dom( ) and \I/(jo) C Jo. By the anti-symmetry condition (W1) for the function f, we also
have that f(2,6,2) <0 for 0 < z < 2 —¢;. Thus, for the open segment

Ko={(2,m2)|1<z<2—¢}C{r=2}NRy

we have Ko C Dom(¥~) and ¥~1(Ko) C Ko. Thus, Zy, Jo and U~1(K,) are in the interior of Dom(¥).

In order to illustrate the regions in the domain of U as described above, assume that 0 < g(r,0,2) <1/10
and that g(r,60,z) = 1/10 when allowed. Thus, the flow of U, rises at an approximate rate of 1/10 in W, and

2(V(6)) =~ 2(€) + r(€)/10. Figure (A) pictures the three regions of the domain in this case.

We next consider the continuity properties of the return map U. Recall that the Wilson flow reverses
direction at the annulus A = {z = 0} C W, and is anti-symmetric with respect to the annulus A by Condition
(W1) in Section [2} so that W is tangent to Ry along the line 7 = A N Ry.

Let & = (r,m,2) € Dom(¥) and n = U(£) = (r,7,0). Then there exists a W-orbit segment [€, 7]y which
intersects Ry only in its endpoints, and the ¥; flow of £ is tangent to Ry at n € T. Let & = (r, 7, 2’) with
z—¢€ <2 <z for € > 0 sufficiently small, then 7/ = U(¢') is defined and satisfies z(¥(¢')) < 0, with value
depending continuously on z’. On the other hand, for £’ = (r,m,2") with z < 2’ < z 4+ €', with ¢/ > 0
sufficiently small, then the point 1" = \T/(g") is again well-defined. But the W-orbit segment [, 7]y is
no longer tangent to Rg near 7, as it traverses W in a counter-clockwise direction in the region {z < 0},
until it crosses the plane {z = 0} before reaching the surface Rg, and then afterwards reverses direction
and subsequently intersects R from the opposite direction in the region {z > 0}, at a point close to P2 (f)
Consequently, the map ¥ has a discontinuity at &, and so £1 = v U—1(T) is a curve of discontinuities for .
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There is another type of discontinuity for ¥ that arises for £ = (r,m,0) € T. For ¢ > 0 sufficiently small,
then for & = (r,m,—2') with 0 < 2z’ < €, we have U(¢') = (r,m,2') due to the anti-symmetry of ¥;. On the
other hand, for & = (r,m,2") with 0 < 2 < ¢, suppose that 7" = ¥(¢") is well-defined then the - W-orbit
segment [£”,7"]yy traverses W in a clockwise direction in the region {z > 0}, and so the value 2(W(g")) is
much larger than 0. Thus, 7 N Dom(¥) is a set of discontinuities for V.

Define the three domains of continuity for the induced return map T on Ry, as illustrated in Figure(A).

D(W)- = {&€ Dom(V)|z(£) <0 and 2(¥()) < 0}
D)t = {£€ Dom(V)|2(€) <0 and z(¥()) > 0}
DWW = {¢£€Dom(¥)|2(¢) >0 and 2(¥(E)) > 0},

(30) U_=UDW)- , Uy=UDW)E , T, =UDW)TF.

A comparable analysis of the domains of continuity for the return map ® for the flow ®; is far more
complicated, and will be postponed until Section[20} when techniques have been introduced which are sufficient
for describing these domains. Our strategy here is to define a collection of special maps in G, obtained by the
restriction of ® to particular domains of continuity, and which correspond to key aspects of the dynamics of
the flow ®;. We show that these special elements and all their compositions in Gx capture all of the essential
dynamical properties of the flow ®,. We first consider elements of Gx corresponding to the entry and exit
dynamics of the two insertions.

Fori=1,2,let Uy C Dom(®) be the subset of Ry consisting of points £ € Dom/(®) with n = &\)(f), such
that the K-arc [£, 7] ;gl contains a single transition point z, with x € FE;. Note that for such &, we see from
Figures |§| and that its KC-orbit exits the surface E; as the W-orbit of a point 2’ € L; with 7(2’) = =,
flowing upwards from 0, W until it intersects Rg again. If the K-orbit of { enters F; but exits through .S;
before crossing Ry, then it is not considered to be in the domain U¢T as it contains more than one transition
point.

Let gbi+ U o V¢7+ denote the element of G defined by the restriction of ®. As the K-arcs [€, ]k defining

¢; do not intersect A, the restricted map ¢ is continuous. The inverse map (¢;)~!: Vy+ — Uy+ is also in
Gk for i = 1,2. The sets U + and V + are sketched in the center illustration in Figure

Fori=1,2,let U,- C Dom(® ) be the subset of Ry consisting of points & € Dom( ) with n = ®(£), such
that the K-arc [¢, ];g contains a single transition point z, with € S;. Then let ¢; : U¢f — V¢f denote
the element of G defined by the restriction of d. Again, as the K-arcs [, n]x defining the maps ¢; do not
intersect A, the restricted map ¢; is continuous. The inverse map (¢; )~ ': V¢; — Uy- Is also in Gy for
1=1,2. The sets U, 6T and V¢Z are sketched in the right hand side illustration in Figure

We comment on some details of the regions in Figures (B) and (C). For the map ¢;, i = 1,2, the domain
contains a neighborhood of the point w;. Flowing the domain U oF forward to F; and then applying the map

1

0,  we obtain a set ﬁ(; C L; containing points with r-coordinate equal to 2. Observe that the Radius

Inequality implies that the maximum radius of points in U + is bigger than the maximum radius of points in

U¢+ The first intersection of the W-orbits of points in U + with Ry is thus a region containing points with

r-coordinate equal to 2 and since these points climb slower than other points, the region folds at {r = 2}. By
the choice of Ry, the points coming from L, are farther than the ones coming from L] and thus V. 5T is above

V¢1+. Similar considerations apply to the maps ¢; for i =1, 2.
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F1GURE 17. Domains and ranges for the maps {\Tl, o, b3, 07,05 }

Observe that each generator gb;" for i = 1,2 corresponds to a flow through a transition point which increases
the level function n,(t) by +1, so the inverse of ¢ decreases the level function by 1. The map ¢; decreases
the level by —1 and its inverse increases the level by +1.

Next, we develop a relation between the action of the return map ¥ for the Wilson flow and the action of
the pseudogroup G . Define subsets of Ry contained in the domain of the Wilson map W:
U, = {(r,m2)€Dom(¥)|r>2} CRyN{r>2}
R, = {(r,mz2) € Dom(¥)|r>2}\ {wr,ws}

Consider ¢,n € R{ such that 7 is contained in the forward W-orbit of &, then if 7(§) > 2, Propositions

and imply that 7 is in the forward IC-orbit of £. Thus, there exists some k& > 0 such that n = EI;]‘“(S) The
following result is a pseudogroup version of this observation.

LEMMA 9.5. The continuous maps defined by restriction,

B o=V {UIND®)T} |, wo=TRl{UN DT} Ly =V {U;ND(V)TT,
each belong to G after restricting to the interiors of their domains.

~

Proof. Consider first the case of 1. We show that for each £ € U;Nint(D(¥)Z) there is an open neighborhood
§eUeCU, Nint(D(¥)~) such that the restriction W | Ue is in G, then the claim that Y_|int(D(¥)7) € G
follows by the gluing condition Condition 5. Let [£,n]w be the W-orbit segment from £ to n = \Tl(ﬁ)

If [¢€,n]w contains no transition point, then it is also a K-orbit segment, so W(¢) = ®(£). As the insertion

~

regions D; are closed, the continuity of the flows implies there is an open neighborhood Us C Ujn D(U)Z of
¢ such that \/I\I|U5 = <T>|U5. By Condition 3, @\Ug is in k.
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If [¢, n]yw N'D; is non empty, which for this case implies ¢ = 1, then the first intersection with D; is a point
2’ € L. This is followed along the W-orbit segment [¢, 7]y by a point 3 € L] before returning to 1 € Ry.
Thus, the first transition point in the K-orbit of £ must be the secondary entry point z = 7(2’) € Ej.

As £ <yy n with z = y, and r(§) > 2 is given, Proposition implies that £ <x 1. Moreover, from its
proof we have that ng(t) > 0 for 0 < ¢t < ¢, where n = ®; (£), and so also pe(t) > 2 for 0 < ¢ < t,. Let
& =& <k & <k - <Kk & = n be the points of intersection of K-arc [, n]c with Ry, then n = <f>k(§) and
r(&) > 2 for each 0 < ¢ < k. By the transversality of the flow K with the faces F; and Sy, it follows that there
is an open neighborhood § € Ug C Uy such that 6’“|U5 is defined, and thus is the composition of elements in

Gk. Thus U|Ue = ®F|U; € G.

The claim for the cases 1y and 1, is shown in the same way. O

Next we show that the maps in G defined in Lemma(J.5|admit continuous extensions to open neighborhoods
of the space Rf. This technical result is fundamental for many subsequent applications of the pseudogroup
approach to the study of dynamics for the flow ®,.

LEMMA 9.6. There exists an open set Uy, C Ry containing R such that the restrictions of\/I\l to the domains
of continuity in Uy define elements of G .

Proof. We first consider the case of the restriction (I\/,|{U;Z N D)~}

~

For ¢ € R§ Nint(D(V)Z) with 7(§) > 2, Lemma shows there is an open neighborhood § € Us C Uy

such that the restriction \T/|U5 defines an element ¢ € G

For ¢ € RyNint(D(W)~) with r(¢) = 2, the return map ¥ is defined on a sufficiently small open neighborhood
of €. Set n = W(¢) and note that r(n) = 2. Let [¢, 7],y be the W-orbit segment from ¢ to 7. If [¢, 7]y contains
no transition point, then this is also a IC-orbit segment, so ¥(§) = ®(£) and there is an open neighborhood

Ue C Ry such that \T!|U§ = </IS\U§. Thus, \/I)|U5 € Gk defines an extension of the map v defined by Lemma
to the open neighborhood Uy of £.

Now assume that [£, 7]y N D; is non empty, and so ¢ = 1 in this case. Then the first intersection with D;
is a point 2’ € £ . This is followed along the W-orbit segment [£, 7]y by a point 3’ € L] before returning to
1 € Rg. Thus, the first transition point in the K-orbit of £ must be the secondary entry point x = 7(2') € Ej.
As &€ <y n with z = y, and r(§) = 2 is given, and £ # w;, the Radius Inequality implies that r(z’) > 2. Then
as above, Proposition [6.7] implies that & <« 7.

Let & = &y <k &1 <k -+ <k & = 1 be the points of intersection of K-arc [, n]c with R, then n = 6’“(5)
As before, we have that ng(t) > 0 for 0 <t < t, where n = ®; (£) and so also pe(t) > 2 for 0 <t < t,.

Then there is an open neighborhood ¢ € U C Ry such that a\)k|U5 is defined and is the composition of
elements in Gr. It follows that W|Us = ®F|U, and so W|Uz € Gk. The vertical line segments {r = 2;2 #

~

+1}Nint(D(¥)_) thus admit coverings by open sets Us C Ry such that ®|Uy is the restriction of an element of
Gk . Thus by the gluing condition Condition 5, there exists an open set Uy_ C Ryg Nint(D(¥)~) containing
R} Nint(D(V)") for which \TI,|U¢7 is continuous, and the restriction of ¢)_ = \TI,|U¢,7 defines a map in Gk.

The proofs for the other two cases in follow similarly, yielding domains denoted by Uy, and Uy, such

that {I\Jo‘Uwo € Gk and {I\J+|Uw+ € 0k. ]

We thus obtain the following maps in Gg
(32) Yo = ‘T’—|Uw, , o= @0|Uwo , Y= ‘T’+|Uw+ .

REMARK 9.7. For convenience of notation in subsequent discussions, we will use the notation 1 for the
union of the three maps ¥_, 1y and Py in . The domains of these three maps are disjoint, so ) € Gk by
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the gluing condition Condition . 5. Moreover, for £ in the domain of ¢ the meaning of V(&) is then clear,
as it is defined by exactly one of these maps.

We have established the existence of five special elements, {¢], 7, ¢35, ¢5 ,%} C G, each of which reflects
aspects of the dynamics of the flow ®; which played key roles in analyzing the dynamics of the flow ®; in the
previous sections of this work. Also, let Id denote the identity map on Ry. We introduce the subset of Gy
generated by the compositions of these words:

DEFINITION 9.8. Let Gj; C Gg denote the collection of all maps formed by compositions of the maps
{Id, ¢1+7 o1, ¢2+7 ¢5 %} and their restrictions to open subsets in their domains.

Note that Gy need not satisfy the condition Definition [9.3]5 on unions of maps, so that G is not a sub-
pseudogroup of Gi. The reason for not imposing this condition, is that many dynamical properties for flows
admit corresponding versions for local maps defined by compositions of maps in a generating set, but not if we
allow for arbitrary unions as in condition (5). This issue is discussed further in Hurder [20] and Matsumoto
[34]. Following the convention of [34], we say that G}, is a pseudoxgroup, where the “x” refers to the definition
as the composition of maps.

A set § C R is syndetic if there exists vs > 0 such that for all @ € R the interval [a,a + vs] satisfies
SNla,a+vs] # 0. The set S has bounded gaps if there exists us > 0 so that |J| < us for all intervals 7 C R
with 7 NS = 0. These two notions are clearly the same.

Let « € K have forward trapped orbit and let z, = ®4,(x) € Tx, where 0 <ty < t; < ---, be the sequence
of transition points. Corollary implies that there is an upper bound on the lengths |t+1 — t¢|, so the set of
transition times has bounded gaps and is a syndetic subset of {¢ > 0}. The study of the dynamical properties
of the K-orbit in previous sections used this property repeatedly.

The dynamics of the pseudogroup Gx acting on Ry provides a second discrete model for the dynamics
of the flow ®;. The following result shows that the Gx-pseudogroup dynamics is an accurate model of the
K-orbit dynamics along the infinite orbits in the region {r > 2}.

PROPOSITION 9.9. Let £ € Ry have infinite orbit for the flow @, with pe(t) > 2 for all t. Then the set
Se = {s| ®5(§) € Ro} is syndetic, for a constant vic which is independent of €.

Proof. We first make some observations about transition points and the rectangle Ry. Recall that Lemma [4.1|
lists the possible cases for a W-arc [z, y|x C K with lift [/, y']yy in W and transition points {z,y}. Figures 9
and (16| help to visualize these possible cases. Note that there does not exists a W-arc [z, y] for the case where
x € Sy and y € Ey. Also, for x € Fy and y € S; or for x € Es and y € S1, again no such W-arc exists by the
facing property of the W;-flow.

The following results describe the cases where a W-arc [z, y|x C K intersects the rectangle Ry.

CASES 9.10. There are 7 cases where a W-arc [z, y|x always intersects Ro:

(1) x € E; fori=1,2 andy € E4

(2) €51 andy € E; for j=1,2

(3) x €Sy andy e S; forj=1,2

(4) x € Sy and y € Es.
CASES 9.11. There are 6 cases where a W-arc [z, y|x may not intersect Ry:

(1) x € E; fori=1,2 and y € E

(2) v € E; fori=1,2 andy € S; (withx =y)
(8) v €Sy andy €S; fori=1,2.

The cases where z € E; for i = 1,2 and y € Ey are notable, for they represent “entry/entry” transitions.
Similarly, the cases where x € Sy and y € S; for ¢ = 1,2, represent “exit/exit” transitions. These W-arcs will
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intersect Ry if r(z) is sufficiently close to 2, but may not intersect Rg for r(x) near the upper limit R, defined
in .

To prove Proposition let & € Rg such that & = </I\>(§O) = ®,, (&) € Ro and [&y, &1]k is a K-orbit segment
containing no interior intersections with Ry. We show that there is a uniform upper bound, independent of
the point &, on the length of [¢y, &1]k.

First, suppose that [y, &1]x contains no transition point, then it is a W-orbit segment and so & = ¥(&p).
If [&o,&1]xc does not contain an interior point with z = 0, then the segment [y, ;] makes one complete
revolution in W from its start to finish in Ry and so admits a uniform upper and lower bound on its length.
Otherwise, if [y, &1]x intersects the annulus A = {z = 0}, the point & must lie below A and flow counter-
clockwise until it meets A. This half of the flow traverses less than one revolution, and then flows clockwise
to the point & which must be symmetric with &, with respect to A. Thus, there is again a uniform upper
bound on the length of the orbit segment between &, and &;. Note that, as £ can be arbitrarily close to A,
there is no lower bound on this length.

If [€0, &1 ]k contains transition points, label them {z1,...,z;} where x; = @, (&) for 0 < t; < -+ <t < 81
with k& > 1. Note that by assumption, r(z;) > 2 for all 1 < i < k. The lengths of the segments [y, 21]c and
[k, &1k in K admit a uniform upper (and lower) bound as the subsets Rg, E; and S; for ¢ = 1,2, are compact.

If [0, &1]kc contains exactly one transition point z7, the above discussion shows that its length is bounded,
as it is a union of two K-orbit segments, both with an endpoint in Rgy. Moreover, if x; is a secondary entry
point in E; then & = ¢ (&) and if x1 is a secondary exit point in S; then & = ¢; (&).

For the remaining cases where k > 2, note that by Corollary the lengths of the arcs [z;, z;+1]x for
1 < < k admit uniform upper (and lower) bounds. Thus, it suffices to show there is an upper bound on the
index k, independent of the initial point £y. Also, note that the assumption [z;, z;41]x does not intersect Rg
limits the possibilities for these K-arcs to the cases listed in Cases We obtain an upper bound estimate
on the number of such K-arcs which can occur.

LEMMA 9.12. There exists N, such that if [x1, zk]|x is a segment of the K-orbit in K with transition points
{z1,..., 21} for k > 2, each x; a secondary entry point with r(z;) > 2 and [z1,xk]xc NRo =0, then k < N,.

Proof. By assumption, z; is a secondary entry point for each 1 < i < k, so there exists z; € L; and
y; # xj satisfying 7(2}) = 7(y;) = x;. Moreover, y;,, € Ly for 1 < i < k, for y;,; € L] implies W-arc
[z}, yi,1]w NRo # 0, contrary to assumption. Thus, each W-arc [z}, y; ]w flows from the point = € 0, W
to the point y;,; € £5 as so misses the surface L7 .

In fact, the W-orbit of each 2} must rise sufficiently fast vertically so that it crosses the annulus A before
intersecting R, where it reverses direction and then flows until it terminates at y;,, € £;. We note that
this is an exceptional condition, in that with some choices of embeddings o1 and o2 it may be impossible to
satisfy.

Note that there exists €’ > 0 such that for all 2’ € 9, W with 2 < r(2’) < 24€”, the W-orbit of 2’ intersects
Ry before intersecting £5 . Thus, r(x}) > 2+ ¢” for 1 <4 < k. In particular, r(z}) > 2+ €.

As ng, (tiv1) = ng (t;) + 1 for 1 < i < k, we apply the Radius Inequality recursively to obtain that
r(xiy) > r(z;) > r(z}) > 2+ ¢’. By Lemma the number k& of successive secondary entry transitions
in the K-orbit segment [z1, x|k is bounded above by the constant N(2 + €’) introduced in its proof. Set
N, = N(2+ €"”) and the result follows. O

LEMMA 9.13. There exists N* > 0 so that if [z1, i) is a K-orbit segment with transition points {x1,...,xy}
for k> 2, each x; is a secondary exit point with r(x;) > 2 and [z1,xk]x "Ro =0 , then k < N*.

Proof. For 1 <i <k, x; is a secondary exit point so there exists z € Ej satisfying 7(z) = z;. A W-arc from
L',f to Lj for j = 1,2 must intersect Ry as noted previously, so we must have z € E;’ for 1 < i < k and thus
Yip1 € L;” for 1 <i <k —1 as well. Note that y}, € Lj for either j =1 or j = 2 is allowed.
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There exists ¢’ > 0 such that for all 2’ € £5 with 2 < r(2') < 2+ ¢, the W-orbit of 2’ must intersect Ry
before it exits W through 0, W. Thus, we must have r(z}) > 2+ ¢" for 1 <i < k.

Let 0 < t; < --- <t be such that x; = @y, (x) for 1 < ¢ < k. Then the level function satisfies n,, (t;) =1—1
for 0 < i < k and thus 2 < 7(xj ;) < r(xj) for all 0 < i < k. By the Radius Inequality, using the same
argument as in the proof of Lemmal6.1] there exists N* such that ¢ > N* implies that r(z}) < 2+ ¢”". By the
choice of ¢’ this implies that [x},y;, ,|x intersects Rg. Thus, we must have & < N* and the result follows. [

We now conclude the proof of Proposition for the cases k > 2, which involves an analysis of the possible
cases which can arise for the KC-arcs [z;, z;41]c for 1 <i < k.

o If x; € £y then z;41 € E» is possible though “exceptional”, while ;41 € S; implies j = 1 and x; = x;41.

o If x; € E5 then x,41 € S1 is not possible, while if z;11 € Sy then x; = z;41. The case z;41 € Es is
possible, although exceptional and then Lemma |9.12 implies that we can repeat this case at most N, times
to yield consecutive secondary entry points in Es, before there is a transition point in Ss.

Combining these two cases, it follows that if x; € E; then after at most N, + 1 transition points, there
follows a secondary exit point.

o If x; € Sy then the K-arc [z;, z;11]x must intersect Rg for all a;4.

o If x; € Sy and x;41 € S1, then the K-arc [z;, z;11]xc must be followed by a K-arc which intersects Rg. If
x; € So and x;41 € Sy, then by Lemma this case can be repeated successively at most N* times before
the path must intersect Ry.

Combining all possible cases above, starting with z;, the number of possible cases which can occur is
bounded by k < 3+ N* 4+ N,. Thus, there is a uniformly bounded number of transition points {z1,...,z;}
which can arise in a K-orbit segment [z1, 2x]|x which does not intersect Ry. O

The following consequence of Proposition shows that, in essence, the dynamical properties of ®; re-
stricted to the non-wandering set €2 are determined by the action of the pseudogroup G restricted to the
compact invariant subset £ N Ry.

COROLLARY 9.14. Let x € Q, then there exists —vi < t, < v such that ®;_ (z) € Ry.

Recall that the pseudoxgroup Gj, is the subset of Gi generated by compositions of maps in the collection
{o7, 07,05, 05,1} Tt is natural to ask if the actions of G and G on Ry are equivalent, which leads to
the consideration of induced maps in G which are not products of these generators. These maps are related
to the maps appearing in the list Cases In the next result, we show that the dynamics of Gx and Gy
restricted to the non-wandering set 2 agree, at least for points £ € Ry with 2 < r(§) < r. where r. is the
“exceptional radius” as defined in below.

Consider the K-arcs as in Cases 1. Given 2’ € L; with 2 < r(z') <2+ €” the W-orbit of 2’ intersects
the rectangle Ry before intersecting the surface £, as in the proof of Lemma Then this case does not
arise if 2 < r(z) < 24 ¢€” for x = 7(a’).

Consider next the K-arcs as in Cases 3. Recall from the proof of Lemma that for 2’ € £§ with
2 <r(z') <2+ €”, the W-orbit of &’ intersects Ry before intersecting the exit region d, W. Then set

(33) re = min{2 +¢’,2 + €"'}.

PROPOSITION 9.15. Let £ € Rg and suppose n = ®(§), with n = &, (§). Assume that 2 < pe(t) < re for
0 <t <t,, then there exists ¢ € G}, such that ¢(&) = .

Proof. If the K-segment [¢, 7], contains no transition points, then ®(&) = ¥(€) = 1(£) and the claim follows.
So consider the case when the K-segment [, 7] contains at least one transition point and let x1 = @y, ()
with 0 < t; < t,, be the first transition point in the KC-segment (£,7)x. Then x; is a secondary entry or exit
point and we consider the possible cases.
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Suppose that z; is a secondary entry point, so the W-orbit of £ intersects one of the surfaces £; in a point
y; with 7(y}) = 1. Note that 7(y}) = r(€) < re. Let 2} € L; be such that 7(z}) = z1, then r(z}) <2+ ¢€".
Let x5 be the next transition point in the KC-orbit of £, we have the three following cases:

e If 25 € Ey, then the W-arc [z, 2] intersects Rg at n and thus n = ¢ (€).

o If x5 € Es, then n belongs also to the W-arc [z1, x2]c since r(2}) <2+ ¢”. Then n = qﬁj(f)

o If 25 € S; for i = 1,2, then 1 = x5 and % is in the W-orbit of 771(£). In this case it might
happen that [z1,x2] does not intersects the rectangle Ry. If this is the case, we have to consider
more transitions points. Let x; = &, (§) with 0 < t1 < t2 < t3 <t, and 1 < i < 3, be the first three
transition points.

According to Cases if z3 is a secondary entry point, the W-arc [x2, z3]xc must intersect Ry.
Thus 1 € [x2, 23]k and since xo is in the Wilson orbit of £, Proposition [6.7] implies that n = ¢(§). If
x3 is a secondary exit point, the choice of r. implies that [z3, x3]x must intersect Rg at . Again we
conclude that n = ¥(§).

Next, suppose that 1 is a secondary exit point, then the W-orbit of £ exits through 8;W in a point y] € L;r
with 7(y;) = @1, for i = 1,2. Let 2} € L be such that 7(z}) = z;.

Assume first that 7 € S;. Let z2 be the following transition point in the /C-orbit of . Cases imply
that the W-arc [x1, z2]x must intersect R, and thus n = ¢ (£).

We are left with the case x1 € Sy. If 25 is a secondary entry point, then xzo € F5 and the W-arc [z1, 2]
must intersect Rg. We conclude that n = ¢, (§). If 2 is a secondary exit point, then by the choice or 7. we
have that r(z}) < 2 + ¢’ and thus the W-arc [z1, 2]k must intersect Rg, implying that n = ¢5 (£).

These cases exhaust the possibilities for the K-orbit segment [, 7] so we have ¢(£) = n where ¢ is one of
the generators of Gy. O

PROPOSITION 9.16. Let £ € Rg have infinite orbit for the flow Oy with 7(§) < re and pe(t) > 2 for all
t. Then the set Sf = {s | ®s(§) € Gi (&) C Ro , r(®s(§)) < re} is syndetic, for a constant v which is
independent of €.

Proof. Let so € S¢ and let s1 € S satisfy so < s1, such that s; is the least such value. We need to show that
there exists a value v§ independent of sy such that s; — s¢ < vg.

It is given that & € Ry has infinite orbit with pe(t) > 2 for all ¢, so the set S¢ = {s | ®5(§) € Ro} is
syndetic in R with constant vx by Proposition Also, by definition there is an inclusion §¢ C S¢. Consider
successive points so, s1 € S¢ with sg < s1. It suffices to show that there exists C(re) > 0, depending on 7, but
independent of &, so that [sg, s1] NS¢ contains at most C(r.) points. We show this first for the case so > 0.

Suppose that for all sg < t < s1 we have 2 < pg(t) < r.. Then by Proposition the intersection
Se N (50, $1) is empty.

If pe(t) < r. for all t > 0, then the above argument shows that [0,00) NS¢ = [0,00) N Sf. Otherwise, let
t1 > 0 be the least time for which p¢(t1) > 7. Then z1 = &4, (£) is a secondary entry point. By Proposition
there exists T%;, > 0 such that Ty = @4, 47, () is the secondary exit point facing 1. Thus for s = T, + ¢ and
€ > 0 small, pe(t1 +5) < re.

Consider the backwards flow of the secondary entry point z; to the first intersection of the orbit with Ry
to obtain a point & = ®@,,(£) € Rg where 0 < uy < ¢1. By the choice of ¢; and the remarks above, we have
that & € G5 (€) and so u; € S¢. Also, note that t; — u; < v as S¢ is syndetic for the constant vk.

Next, let & = ®,,(§) be the first intersection with R of the forward orbit of T1 = &, 47, (£), so that
t1+ Ty, < ug and ug — (t1 + Ty,) < vi. Since pe(ts + Ty, +€) < 1 for € > 0 sufficiently small, by the
choice of 7 in , there are no transition points in the K-orbit segment between ®¢, 47, (&) and &. Then by
Lemma we have that & < &2, which implies that & = 1(&1) for the generator ¢ € Gj,. Thus, & € G5 (§)
with 7(&2) < re. Observe that us —uy < 2uc + T, .
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Lemmal6.1)and Corollary [6.8imply that there exists 7, > 0 such that T}, < T}, for all z1 with r(z1) > r..

Define vg = 2vx +T,,. We can then apply the above process recursively along the forward C-orbit of £ to
obtain that [0, 00) NS is syndetic in [0, 00) for the constant v. The conclusion for the backward flow follows
by reversing the time parameter as usual. O

10. THE LEVEL DECOMPOSITION

We now begin the study of the dynamics of the Kuperberg flow ®; from a more topological point of view.
Many of the results of the previous sections are given topological interpretations in this approach, which
culminates in Section with a description of the dynamics of the flow in terms of the structure of the
“zippered lamination” 91 containing the minimal set 3.

Recall that the periodic orbits O; of the Wilson flow are the boundary circles for the Reeb cylinder R C W.
We introduce the notched Reeb cylinder, R’ = RNW’, which has two closed “notches” removed from R where
it intersects the closed insertions D; C W for ¢ = 1,2. Figure [18)illustrates the cylinder R’ inside W.

FIGURE 18. The notched cylinder R’ embedded in W

Consider the K-orbit of the image 7(R’) C K and its closure
(34) My = {P(7(R)) | —co<t<oo} , M= MCK.

Note that since the special points p; = 7(£; NO;) for i = 1,2 are contained in My, we have 3 C M. Moreover,
the flow ®; restricts to a flow on 901, so the dynamics of ®; on X is defined by the restricted dynamics of the
flow on 9.

The horizontal segments of the boundary of R’ which are not in the notches, are the orbit segments O; "W

of W, while the vertical segments labeled 7/, 7', A’ and N in Figure are transverse to the flow of W. If
x € 7(%') or & € 7(\') is on a vertical segment, the IC-orbit of 2 points into the notch. If in addition z(z) # +1,
then by Proposition the forward K-orbit of x returns in finite time to the opposite vertical boundary 7(%'),

or T(X/) respectively, of the notch. For each 0 < € < 1, introduce the compact set 21§ as follows. Observe that
for x € ' with z(x) > —1 Proposition implies that there is a finite time 7}, such that @7, (7(x)) € 7(¥').

Analogously, for z € X with z(x) < 1 there is a finite time T}, such that @1, (7(z)) € T(X/). Let
M =7(RHU{D(z) |z € T(Y), 2(z) > —14€, 0<t < T, U{P(z) |z eT(N), 2(z) <1—€, 0<t <T,}.
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The regions added to 7(R’) “fill the gap” made by the notches in 7(R’), and yield the compact surface with
boundary 9§ embedded in K (the embedding 7 of R’ in K is illustrated in Figure [24]). The time T, — oo as
x tends to the endpoint of 4/ or A, and the boundary curves of the compact surface 9§ become increasing
complicated, though the surface remains embedded at all times. The limit of these compact surfaces gives
approximations to the set 9g.

The properties of the level function n,(t) for the K-orbit of € K were fundamental for the analysis of the
orbital dynamics of the Kuperberg flow in previous sections. We next show that the level function along orbits
yields a well-defined function on 9%, and use it to introduce the level decomposition of My. The geometry
of My is quite complicated to visualize. Beginning in Section [[I} we formulate the structure of each of the
components in the level decomposition in terms of propellers and develop a precise description of these sets.

For each z € 9, there exists some ' € R’ for which y € 7(R’) such that z = ®,(y) for some ¢t € R.
The point y is not unique, but as any such choice satisfies 7(y) = 2, the proof of Proposition implies that
r(x) > 2. The following result is a consequence of this observation and previous results.

PROPOSITION 10.1. There is a well-defined level function
(35) nolmo—)N:{O,l,Q,...}.

Proof. First, for z € 7(R’) set ng(z) = 0.

Let x € My, then there exists y € 7(R') such that x = &, (y). Define ng(x) = ny(so). Note that we allow
both positive and negative values for sg, using either formulas or .

Let w € 7(R’) be another point such that x = @, (w). Assume without loss of generality that y <x w so
that there exists T > 0 with w = ®7(y). Note that ny(s+ 1) = ny(s) + ny(T), so it suffices to show that
ny (T') = 0.

Suppose that y € 7(R') where y = 7(y’) with z(y’) = %1, so that y is on a special orbit. Then for w € 7(R’)
with y <x w we must have w = 7(w’) where z(w’) = z(y’). This implies there are no transition points in the
W-orbit between y’ and w’, thus n,(T") = 0.

Now suppose that z(y') # £1, and let 0 < tg < t; < -+ < t, < T with ap = P4,(y) be the transition
points for the C-orbit between y and w, for £ > 0. The case k = 0 is again immediate, so assume that k£ > 1.
We show that n,(T") = 0, which will follow using an inductive argument on the number of transition points k
between y and w.

Note that ¢’ € R’ and z(y’) # %1 implies that the first transition point z¢ € E; for i = 1,2, so n,(to) =1
and satisfies r(xz) > 2. Let £ > 0 be the least integer such that n,(t;) = 0, which exists by the proof of
Proposition Then z; is an exit point with g = =z, and so 2y € 7(R’). Choose u = ¥y (y) on the
IC-orbit between z; and x¢41, so that n,(t') = n,(0) = 0 and we have reduced the problem to showing that
ny (T —t') = 0, where the K-orbit segment [u, w]x now has k — £ — 1 transition points. The claim now follows
by induction. 0

Define the level sets of 9y as follows:

(36) My = {xeMy|no(x) <n},n=0,1,2,...

The set MY contains the notched Reeb cylinder 7(R’) and the level 0 points in the boundary of the notches
in 7(R’). The descriptions of the sets 9 for n > 0 is more subtle and will follow from a detailed study of
the K-orbit of the vertical segments 7' and X’ in Section

11. EMBEDDED SURFACES AND PROPELLERS

The invariant set 9% is the union of its level sets, as defined in (36). While the set 90 as described in the
last section is rather simple, the description of the level sets 9t} for n > 0 leads to the introduction of one
of the main ideas of this work, the notion of finite and infinite propellers, which are obtained from the flow
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U, of selected arcs in W. These are defined and studied in this section. For example, 9} is obtained from
IMY by attaching two non-compact surfaces which are infinite propellers, while the level sets 9% for n > 1 are
obtained by attaching finite propellers to smg—l, where the complexity of these added finite propellers at level
n increases as n — oo.

Consider a curve in the entry region, v C 9, W, with a parametrization w(s) = (r(s),6(s), —=2) for0 < s < 1,
and assume that the map w: [0,1] — 0, W is a homeomorphism onto its image. We use the notation ws = w(s)
when convenient, so that wy = w(0) denotes the initial point and wy = w(1) the terminal point of . For
€ > 0, assume that r(wg) =3, r(w;) =2+ eand 2+ e < r(ws) <3 for 0 < s < 1.

The W-orbits of the points in «y traverse W from 9, W to 82'W and hence the flow of v generates a compact
invariant surface P, C W. The surface P, is parametrized by (s,t) — ¥;(w(s)) for 0 < s <1land 0 <t < Ty,
where T is the exit time for the W-orbit of w(s). Observe that as s — 1 and € — 0, Corollary implies
that the exit time Ty — oo.

The surface P, is called a propeller, due to the nature of its shape in R3. It takes the form of a “tongue”
wrapping around the core cylinder C(2+¢) which contains the orbit of w;. To visualize the shape of this surface,
consider the case where v is topologically transverse to the cylinders C(rg) = {r = ro} for 2+ € < rg < 3.
The transversality assumption implies that the radius r(ws) is monotone decreasing as s increases. Figure
illustrates the surface P, as a “flattened” propeller on the right and its embedding in W on the left. As e — 0
the surface approaches the cylinder C = {r = 2} in an infinite spiraling manner.

FiGURE 19. Embedded and flattened finite propeller

We comment on the details in Figure The horizontal boundary 0y, P, is composed of the initial curve
v C 0, W and its mirror image ¥ C 8;{W via the entry/exit condition on the Wilson Plug. The vertical
boundary 0, P, is composed of the vertical segment wy x [—2,2] in 9, W and the orbit {¥;(w;) | 0 <t < T3}
which is the inner (or long) edge in the interior of W. One way to visualize the surface, is to consider the
product surface v x [—2,2] and then start deforming it by an isotopy which follows the flow lines of W, as
illustrated in Figure In the right hand side of the figure, some of the orbits in the propeller are presented,
while in the left hand side, just the boundary orbit is presented.

Consider the orbit {¥;(w;) | 0 < ¢t < T3} of the endpoint wy with r(w;) = 2 + €. The path ¢t — ¥y (wq)
makes a certain number of turns in the positive S'-direction before reaching the core annulus A at z = 0.
The Wilson vector field W is vertical on the plane A, so the flow of w; then crosses A, after which the orbit
U, (w1 ) starts turning in the negative direction and ascending until it reaches B,J{W. The point where the flow
U, (w;) intersects A is called the tip of the propeller P,.

The anti-symmetry of the vector field W implies that the number of turns in one direction (considered as
a real number) equals the number of turns in the opposite direction. To be precise, for wy; = (r1,61,—2), let
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Uy(wy) = (r1(¢),01(t), 21 (t)) in coordinates. The function z (t) is monotone increasing and by the symmetry,
we have 21 (71/2) = 0. Thus, the tip is the point W, /5(w;).

Set ©(2 + €) = 0,(T1/2) — 0,(0), where 0, (t) is a continuous function with 6;(¢t) = 6;(t) mod (27). The
function ©(2 + €) measures the total angle advancement of the curve ¢ — ¥;(w;) between the initial point w;
and the tip W, /2(w1). The number ©(2 + ¢) depends only on the radius 2 + € of the point w;, as the flow ¥,
is rotationally symmetric by Proposition Note that ©(2+ €¢) — oo as € — 0. Also, introduce the notation

(37) A(2+4¢€)=|0(2+¢€)/2n] .
for the integer part of ©(2+ ¢€)/2m, which is the number of times that the curve ¥y (wq)for 0 < ¢ < T} /2 makes
a complete circuit around the cylinder C(2 + ¢).
Next, for fixed 0 < a < 27, consider the intersection of P, with a slice
(38) R,={{=(raz2)| 1<r<3, -2<2z<2}.
The rectangle Ry defined by in Section |§| corresponds to the value a = 7. Each rectangle R, is tangent

to the Wilson flow along the annulus A and also near the boundary W, but is transverse to the flow at all
other points. The case when a = O(2 4+ ¢) mod (27) is special, as the tip of the propeller is tangent to R,,.

Assume that a # ©(2 4+ ¢) mod (27), then the flow ¥;(w;) intersects R, in a series of points on the line
C(2 + ¢) N R, that are paired, as illustrated in Figure Moreover, the intersection P, N R, consists of a
finite sequence of arcs between the symmetrically paired points of ¥;(w;1) N R,. The number of such arcs is
equal to A(2+¢€) £ 1.

=M\ P, N Ry =M\ P, NRy

(A) Infinite propeller P, (B) Finite propeller P,
FIGURE 20. Trace of propellers in Ry

We comment on the details of Figure[20] The vertical line between the points (2,a, —1) and (2, a, 1) (marked
in the figure simply by z = —1 and z = 1, respectively) is the trace of the Reeb cylinder in R,. The trace of a
propeller in R, is a collection of arcs that have their endpoints in the vertical line {r = 2+¢€}. In the left hand
figure, r(w;) = 2 and the propeller in consideration is infinite. The curves form an infinite family, here just
four arcs are shown, accumulating on the vertical line. The right hand figure illustrates the case r(w;) > 2
and the propeller is finite.

Let us now describe the intersection of P, with the annulus A = {z = 0}, which traces out the midpoints
of the curves ¢ +— Wi(w(s)) for 0 < s < 1. That is, the intersection is the curve s +— Wp /9(w(s)) € A, which
is a spiral, turning in the positive S! direction A(2 + €) times around the core circle, as in Figure The
point of the curve on the boundary of A in Figure [22| corresponds to the orbit ¥;(wy) and the point at the
end of the spiral closest to the circle {r = 2} corresponds to the tip of P,. If we change A for another annulus
Ay = {z = b} where b # 0, the intersection P, N A, will be a spiral turning in the positive S'-direction that
is strictly shorter than the one in 4. By symmetry, the traces of P, on A_; and A, are the same.
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FIGURE 21. Intersection of finite propeller P, with Rg

r=3
FIGURE 22. Intersection of a finite propeller P, with A

Finally, consider the case where ¢ = 0, so that the endpoint w; of = lies in the cylinder C. Then for
0 < s < 1, we have r(w(s)) > 2, so the W-orbit of w, € 9, W escapes from W. Define the curve 7 in 8}TW

to be the trace of these facing endpoints in 9 W, parametrized by w(s) for 0 < s < 1, where w(s) = w(s).
Define w; = lirri w(s) so that wy; = wy also.
S5—

Note that the forward W;-orbit of w; is asymptotic to the periodic orbit Oy, while the backward W;-orbit
of W, is asymptotic to the periodic orbit Os. Introduce their “pseudo-orbit”,
(39) Z, =27 U ZF, Z7 ={¥(w1) | t > 0} and ZF = {¥(wy) | t < 0}
Each curve ZAf traces out a semi-infinite ray in C which spirals from the bottom or top face to a periodic
orbit, and thus Z, traces out two semi-infinite curves in C spiraling to the periodic orbits O; U O,.

For 0 < e < 1, denote by ¢ the curve with image w([0, €]), parametrized by
(40) we(s) = w(e- s).
DEFINITION 11.1. Let+y be a curve parametrized by w: [0,1] — W as above, with r(wg) = 3 and r(wy) = 2.

Introduce the infinite propeller and its closure in W:

(41) Pp,=2UlJP ., P,=] P

>0 e>0




THE DYNAMICS OF GENERIC KUPERBERG FLOWS 55

PROPOSITION 11.2. The closure P., of an infinite propeller contains the Reeb cylinder R, with
(42) P, =P, UR.

In particular, the periodic orbits O1 and Oy are contained in f,y.

Proof. The endpoints of the arcs in P,- N R, tend to points in C N R, as € — 0, as illustrated in Figure
so the closure P, contains the set Z,. Thus, the intersection {¥(ws) | 0 <t < Ty} NR, for s — 1 contains
pairs of points arbitrarily close to the intersections O; "R, for ¢ = 1,2. The family of arcs connecting these
points is nested with the vertical line R MR, as the inner boundary. Thus, P, NR, contains arcs joining these
points which are arbitrarily close to RN R, and so RN R, C ﬁv NR,. O

0 <t<T,/2} for s — 1 have O in their closure and

Note that the first-half W-orbit segments {¥;(ws,) |
t <T,} for s — 1 have Oy in their closure.

W,
the second-half W-orbit segments {¥;(w;) | T2/2 <

12. PROPELLERS AND THE LEVEL DECOMPOSITION

In this section, we analyze the structure of the level decomposition of 9ty C K introduced in Section
using the concepts of propellers introduced in the last section. A key point is the introduction of an “intuitive”
labeling system for the collection of propellers generated by the flow of the notched Reeb cylinder. This labeling
gives order to the propellers at each level, which grow in number at an exponential rate. A second key point
is the beginning of the study of the dynamics of the IC-orbit in terms of the action of the pseudogroup Gg
on Ry. In order to eliminate various pathologies that can arise in the study of this action, we first impose
“generic” properties of the choices made in the construction of the Wilson flow W and on the insertions o; for
1 =1,2. For this purpose, we formulate additional assumptions on the insertions o; for ¢ = 1,2, which yield a
stronger form of the Radius Inequality (K8) introduced by Kuperberg in [26].

Let (v',0',2") = o4(x) € D; for i = 1,2, where x = (r,0,z) € D; is a point in the domain of o;. Let
m.(r',0,2") = (r',6,—2) denote the projection of W along the z’-coordinate. We assume that o; restricted
to the bottom face, 0;: L; — W, has image transverse to the vertical fibers of 7,. Then 7, 00;: L; =+ W
is a diffeomorphism into the face 0, W, with image denoted by ®; C 0, W. Given this assumption, let
¥ = (m, 0 O‘i>_12 ©; — L; denote the inverse map, so we have:

(43) v; (T/a 6,7 72) = (7’(’[91 (T/a 0/))a 0(191'(7’/5 9/))5 72) = (Riﬂ"’ (9l7 72)3 G)iﬂ"’ (9l7 72)3 72) .
We formalize the assumptions on the insertion maps o; that are intuitively implicit in Figure [6] Set

HYPOTHESIS 12.1 (Strong Radius Inequality). For i = 1,2, assume that:

(1) 0;: Ly — W is transverse to the fibers of m,;

(2) v =r(oi(r,0,2)) <r, except for (2,0;,2) and then z(0;(2,0;,2)) = (—1);

(3) ©;,(0") =0(9;(r",6,—2)) is an increasing function of @' for each fized r';

(4) Ri(0") =r(0;(r',0',—2)) has non-vanishing derivative for r' = 2, except for the case of 6, defined by
9i(2, 9;7 —=2) = (2,0;,-2);

(5) For v' sufficiently close to 2, we require that the ' derivative of R;.(0") vanish at a unique point
denoted by ¢ (i,r").

Consequently, each surface L] is transverse to the coordinate vector fields 9/00 and 98/0z on W.
Recall from (@) that we have W = g(r, 2) 2 + f(r, 2) %, where g: R — [0, 1], which satisfies the “vertical”
symmetry condition g(r,z) = g(r,—2), g(2,—1) = ¢g(2,1) = 0. Also, we have that g(r,z) = 1 for (r,z) near

the boundary of R, and that g(r,z) > 0 otherwise. These assumptions are made more precise by specifying
that

(44) g(r,z) =1 for (r—2)%+(Jz|-1)2?>¢€
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where 0 < €9 < 1/4 is sufficiently small so that the closed ep-neighborhood of each special point pf intersects
the insertion regions E;t in the interior of the face. We also require that 2+ ¢y < r. where r. is the exceptional
radius defined in . Finally, we require that g(r, z) is monotone increasing as a function of the distance
vV (r —2)2 4 (|z| — 1)2 from the special points (2, —1) and (2, 1).

As g(r,z) > 0, the first derivatives of g must vanish at the points (2,£1) and the 2 x 2 Hessian matrix of
second derivatives at these points must be positive indefinite. The function g is said to be non-degenerate if
its Hessian matrix is positive definite at the points (2, £1), and the value of g(r, z) is a non-decreasing function
of the distance from the points in the eg-ball around each.

HYPOTHESIS 12.2. Assume that f(r,z) satisfies the conditions (W1) to (W6) in Section [§ that the
condition holds and that g is non-degenerate.

Hypotheses and are not required for the results in previous sections, though some version of these
hypotheses appear to be implicitly assumed by certain conclusions stated in [T7], 33].

We next apply these assumptions to the study of the K-orbit of the notched Reeb cylinder R’. First, note
that for each 1 < r < 3, if the intersection C(r)NL; is non-empty, then it is a curve. Hypothesis implies
that each such arc of intersection in C(r) has the property that, as the z-coordinate increases along the curve,
the -coordinate decreases for the curve in £, or increases for the curve in £, .

Consider the intersections of the faces ﬁii with the Reeb cylinder R,
(45) Y =RNL] , ¥ =RNLI ; N=RnLy,, XN =RnLS

which are arcs transverse to the Wi-flow on R, as illustrated in Figure Label their preimages in 8}:—LW
under the insertion maps o; by

(46) y=or'(), =07 7) i A= (V) X=05'(N).

One endpoint of the curve 7 is contained in the boundary Ly N {r = 3} and the other endpoint is the
special point oy '(py) € Ly N {r = 2}. Similarly, one endpoint of the curve \ is contained in the boundary
Ly N{r =3} and the other endpoint is the special point o5 *(p; ) € Ly N {r = 2}.

Hypothesis implies that both v and A are transverse to the cylinders {r = ro} for 2 < rog < 3. As
the z-coordinate of 2’ € v/ decreases towards z = —1, the radius coordinate r of the corresponding point in ~y
monotonically decreases to r = 2, while the angle coordinate # monotonically increases towards 0, as defined
in (K7). For X, as the z-coordinate of 2’ € X increases towards z = 1, the radius of the corresponding point
in A monotonically decreases, while the angle coordinate § monotonically increases towards 6, as defined in
(K7). Thus, the graphs of the curves v and A in 9, W appear as in Figure

r=3
r=2 r=1
r=1 r=2

r=3

FIGURE 23. The curves v and A in 9, W

LEMMA 12.3. The curve 5§ C Li" is the facing curve to v C Ly and X\ C Lg‘ faces A C L, . Moreover,
for each point x € v with r(x) > 2, the facing point T satisfies x <x T. Similarly, for each pointy € \ with
r(y) > 2, the facing point § satisfies y <x 7.
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Proof. The fact that 7 is facing to v and that X is facing to A, follows from the construction of the insertions
0;. The assertions © <x T for r(z) > 2 and y < 7 for r(y) > 2, then follow from Proposition O

Let v be parametrized by w: [0,1] — W, with r(w(0)) = 3 and r(w(1)) = 2. For 0 < e < 1, define ¢
by w(e-s) for 0 < s < 1, as in . Then Lemma implies that for 0 < e < 1 and 0 < s < 1, we
have v¢(s) <x 7°(s). However, the W-orbits of the points w; = w(1) and @W; = w; are both trapped, so
cannot satisfy wy <y wi. Thus, the curves v and 7 are the horizontal boundary curves in afw of the infinite
propeller P, defined by the ®;-flow of v. Similar conclusions hold for A, A and the propeller Py.

Note that in the Definition of the infinite propeller P, we formed the union of the propellers P,
defined by the curves ¢ for 0 < e < 1, with the two trapped orbits Z,. The W-orbit given by the “long
edge” of each P, is a finite W-arc, but as € — 0 their limit converges to the union Z, of infinite orbits. This
behavior is reminiscent of the “Moving Leaf Lemma” in [I4] [47], which is the key to understanding the orbit
behavior in the counter-examples to the Periodic Orbit Congjecture [13].

The K-orbits of the curves v and A projected to K have a complicated, hierarchical structure, which we next
describe using their ®;-flows as the starting model. Define the notched propellers of v and A by P'/y =P,NW
and P = Py N W/, respectively. Note that the vertical “transverse” boundary curves for the notches are not
included in P; and Py.

For x € 7(R'), the level function n,(t) increases from 0 to 1 when the orbit of x intersects either curve 7(v)

or 7(A), then drops back to 0 when it exits through the curves 7(¥) or 7(A). Thus, we have
(47) M = 7(R U7 UN

which is a cylinder, minus two rectangles, embedded in R? as a folded eight having two parts that are tangent
to the boundary of the notches, as in Figure

7(02)

FIGURE 24. Embedding of R’ in K

We comment on the details of Figure Note that the embedding 7 of R’ in K differs from its inclusion
in W as illustrated in Figure as the Reeb cylinder in embedded as a folded figure-eight. The insertions o;
fold parts of the inner loop in the folded eight and make them tangent to the erased rectangles. This process
brings two vertical lines in the cylinder to arcs contained in the erased boundary of the rectangles, covering
the middle half of it. The remaining portions on each interval correspond to the cylindrical complement C — R,
and will be considered later in Section I3

The set 9} again has a simple intuitive description. It is obtained by attaching the points in 9y of level
1 to MY. The curves 7(7) or 7()\) were observed to have level 1, and thus the points in their W-orbits which

lie in W’ are also at level 1. In particular, the images 7(P)) and 7(P5) are at level 1, so are contained in 9.
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Each of the infinite propellers 7(P;) and 7(Py) is obtained by removing an infinite sequence of notches from
the propellers P, and Py and then applying 7. There are two types of notches:

(1) an infinite collection of notches, each having a corner containing a point of level 2 in the intersection
of the KC-orbit of a special point pf[ with the surfaces E; for j =1,2;

(2) a finite number, possibly zero, of interior notches corresponding to the intersections of P, and Py with
D; for j = 1,2, which do not contain points in the ®;-orbit of the special points.

REMARK 12.4. The intersections of the second type give rise to what we call “bubbles” in the propeller and
are discussed in detail later in this section and in Sections[1d and [I8

The precise shape of propellers depends on the choices made in the construction of the Kuperberg plug. In
this section and Section [I5 we consider a first type of internal notches and generated bubbles that can arise.

In Section[17 we introduce new hypothesis on the construction that allow to give a more accurate description
of the shape of propellers. This analysis is thus postponed until Section[18 One consequence of it, will be
another possible situation where internal notches and bubbles arise, as explained at the end of that section.

The construction of the set M2 uses “gluing” of propellers at higher level to the boundaries of these deletions
from the infinite propellers at level 1. In order to give a more precise description of 9}, in preparation for
describing the nuances of the construction of M for n > 2, we develop an indexing system to label these
intersections.

Recall from that for ¢ = 1,2, pf =7(0;N Eli) is called a special point. The corresponding points
w; € Ry fori=1,2, as in , are used to define the level function along the special orbits. That is, the level
function on My along the K-orbit of w; is defined by ng(z) = ny, (t;) for = ®;_(w;). Note that to obtain the
full K-orbits of w;, it is necessary to consider both their forward and backward orbits.

The first transition point for the forward K-orbit of wy is the entry point p; € E; for which ng(p; ) = 1.
Set p(1) = 771 (py) € LT and note that r(p(1)) = 2. The forward W-orbit of p(1) is trapped in the region
CN{z < —1} and thus intercepts £; NC in an infinite sequence of points with increasing z-coordinates between
—2 and —1. Label these points p/(1;1,¢) for £ > 0.

Note that r(p’(1;1,¢)) = 2 for all £ > 0 and we have
(48) —2<z(p(1;1,0)) < - < z(p'(1;1,0) < z(p' (1, £+ 1)) <--- < —1

where z(p'(1;1,4)) = —1 as £ — oo.

Set p(1;1,¢) = o7 *(p'(1;1,£)) € Ly for £ > 0. Then 7(p(1;1,£)) > 2 by the Radius Inequality (K8) and
the sequence p(1;1,¢) accumulates in L] on p(1) as £ — co. Hence r(p(1;1,¢)) — 2 as £ — oco. Note that
no(7(p(1;1,£))) = 2 for all £ > 0.

Similarly, the first transition point for the forward IC-orbit of ws is the entry point p; € Ey with ng(ps ) = 1.
Set p(2) = 771 (py) € Ly and note that r(p(2)) = 2.

The forward W-orbit of p(2) is also trapped in the region C N {z < —1} and thus intercepts £ NC in an
infinite sequence of points with increasing z-coordinates also between —2 and —1. Label these points p’(2;1, ¢)
for £ > 0.

Note that 7(p'(2;1,¢)) = 2 for all £ > 0, and we have
(49) —2<2(p(21,0) < - < 2P (21,0) < 2P (2 1,4+ 1)) <--- < —1

where z(p'(2;1,¢)) = —1 as £ — oo.

Set p(2;1,€) = o7 ' (p'(2;1,0)) € Ly for £ > 0. Again, r(p(2;1,£)) > 2 by the Radius Inequality (K8) and
the sequence p(2;1,¢) also accumulates in L] on p(1) as £ — oo. Thus, r(p(2;1,£)) — 2 as £ — oo and
no(7(p(2;1,¢))) =2 for all £ > 0.
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LEMMA 12.5. The sequences {p'(1;1,£) | £ > 0} and {p’(2;1,¢') | ¢ > 0} are interlaced on the line segment
CNLT N{z< -1} CcW. If 2(p'(1;1,0)) < 2(p'(2;1,0)) then we have

(50) —2<-<z(p(1;1,0) < 2(p'(2;1,0) < 2(p'(1;1,0+ 1)) < -+ < —1.
The analogous conclusion holds when z(p'(2;1,0)) < z(p'(1;1,0)).

Proof. Observe that L] follows L; in the direction of the f-coordinate in W. Since p’(1;1,0) and p’(2;1,0) are
the first intersections of the W-orbit of p(1) and p(2) with £, we cannot predict which is below. Assuming
that z(p'(1;1,0)) < z(p'(2;1,0)), the inequality z(p'(2;1,€)) < z(p'(1;1,£ + 1)), for £ > 1, follows from
the fact that the Wi-flow preserves the cylinder C and so preserves the height relationship. The case when
z(p'(2;1,0)) < z(p'(1;1,0)) follows in the same way. O

Next, consider the backward orbits of the points w;, for ¢ = 1,2, which intersect S; in the points p;" with
~YpF) € L} and r(r=Y(p;)) = 2. Thus, the backward Wilson orbits of 7=%(p;") for i = 1,2 are trapped
in the region C N {z > 1} and so intercept £ in infinite sequences of points with r = 2 and z-coordinates
between 1 and 2.

For the backward W-orbit of 771(p]), label these points p'(1;2,£) € L5, for £ > 0, with r(p'(1;2,£)) = 2
and 1 < z(p'(1;2,¢)) < 2, where z(p/(1;2,£)) — 1 as £ — oo.

Set p(1;2,¢) = 05 (p'(1;2,¢)) € Ly. We then have no(7(p(1;2,¢))) = 2 for £ > 0 by formula (I3). The
Radius Inequality (K8) implies that r(p(1;2,£)) > 2 and note that the sequence p(1;2,¢) accumulates on p(2)
as £ — oco. Thus, r(p(1;2,0)) — 2 as £ — oo.

Similarly, the backward W-orbit of 771(pJ) intercepts £; C W in a sequence of points with r = 2 and
z-coordinate between 1 and 2. Label these points p'(2;2,¢) € L, , for £ > 0. Then r(p/(2;2,¢)) = 2 and
1< 2(p'(2;2,0)) < 2, where z(p'(2;2,£)) — 1 as £ — oo.

Set p(2;2,0) = 05 (p'(2;2,€)) € Ly . Again, we have ng(7(p(2;2,£))) = 2 for £ > 0 by formula (L3). Then

r(p(2;2,¢€)) > 2 by the Radius Inequality (K8) and the sequence p(2;2,¢) accumulates on p(2) as £ — oo.
Thus, r(p(2;2,¢)) — 2 as £ — oo.

The analog of Lemma follows by the same arguments.

LEMMA 12.6. The sequences {p'(1;2,£) | £ > 0} and {p'(2;2,¢') | £ > 0} are interlaced on the line segment
CNLyN{z>1} CW. If 2(p'(1;2,0)) < 2(p'(2;2,0)) then

(51) 1< <2(p(2;2,6+1)) < 2(p/(1;2,0) < 2(p'(2;2,0)) < -+ < 2.
The analogous conclusion holds when z(p'(2;2,0)) < z(p'(1;2,0)).

REMARK 12.7. The points T7(p(1;-,-)) belong to the K-orbit of wy, the points T(p(2;-,-)) belong to the
KC-orbit of wa, while the points T(p(+;1,-)) € E1 and the points 7(p(+;2,-)) € Es.

Next, we consider in detail the intersections of the propellers P, and Py with the surfaces £, for i =1, 2.
Recall that £, was chosen in Section |3|to be transverse to the vector field VW and the insertion D; is obtained
from the W-flow of its points. It follows that the surfaces £; intersect the propellers P, and P transversally,
thus each such intersection must be a union of closed line segments whose boundaries are contained in the
boundaries of either £ or in the boundary of the propellers. The intersections of D; with a propeller are then
obtained as the W;-flow of each such line segment in £, until it reaches the facing line segment in £;. We
consider the possible cases for the line segments £, N P,. The analysis for the propeller Py will be analogous.

Recall that the intersection of P, with Ry is an infinite collection of arcs whose endpoints are on the vertical
line {r = 2}, the lower ones having z-coordinate less than —1 and the upper ones having z-coordinate bigger
than 1, as illustrated in Figure The forward W;-flow of these arcs gives the intersection £; N P,. For ¢ =1,
an arc in £ N P, either has both endpoints on the boundary 0£7, either has its upper endpoint on 9£; and
its lower endpoint is a point p’(1;1, £) for £ > 0. For ¢ = 2, an arc in £; N P, either has both endpoints on the
boundary 9L5, either has its lower endpoint on L5 and its upper endpoint is a point p’(1;2,£) for £ > 0.
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DEFINITION 12.8. If a segment of L, N P, has both endpoints on OL; , the corresponding intersection
of Py with D; defines a “rectangular notch” in the interior of the propeller, called an interior notch for P, .
If a segment of L; N P, has an endpoint in the interior of L, , the corresponding intersection of P, with D;
defines a boundary notch for P, or sometimes simply as a “notch”.

The surface Pé is obtained from P, by deleting the interior and boundary notches for ¢ = 1 and ¢ = 2. This
is illustrated in Figure

7’(1,—1)!:] 7'(1,0) v'(1,1)

p'(1;1,0)

FIGURE 25. Internal and (boundary) notches of P/

For the propeller Py formed by the W;-flow of the curve A, analogous considerations and notations apply
to the connected components of Py N L, for ¢ =1,2.

Observe that P, has a boundary notch for each intersection of the W-orbits of p(1) = 7~ Ypy) and 771 (p])
with £ U £5 . Similarly, P§ has a boundary notch for each intersection of the W-orbits of p(2) = 771(p3)
and 771 (pd) with £ U L5 . There are an infinite number of such boundary notches.

In contrast, there are at most finitely many internal notches, since these correspond to the intersections of
Pl with £ UL5 for which the W-orbits of p(1) = 7~ *(p7 ) and 7! (p{") are away from the insertion region, or
to the intersections of P{ with £ U L5 for which the W-orbits of p(2) = 77(p; ) and 7~!(p3) are away from
the insertion region. Let —b > 0 denote the number of internal notches, with b = 0 if there are no internal
notches, so that the W-orbit of p(1) makes at least |b| revolutions in the §-coordinate, before it intersects the
surface £ .

We now describe the set 9j. The images 7(P)) and 7(P§) consist of points of level 1, and the exit

boundaries of the notches in these propellers are also at level 1, so all belong to 9}.

We index the notches at level 2 as follows. The segment v is said to be based at its inner endpoint
p(1) =771(py) € Ly and X to be based at its inner endpoint p(2) =77 1(p;) € L, .

Next, introduce labels for the four families of boundary notches which arise. It may help to consider the
illustration Figure [25| to keep track of the following definitions.

Let v/(1,¢) C L] for b < ¢ < co denote the curves corresponding to the intersection of P, with £, where
v (1,€) for b < £ < 0 denotes an interior curve of the intersection with £], assuming that such exists. Let
v'(1,£) for £ > 0 denote the boundary curve with lower endpoint p'(1;1,¢). Set v(1,¢) = o7 *(v/(1,£)) C Ly .
We say that the curve y(1, £) for £ > 0 is based at the point p(1;1,¢). For all z € 7(vy(1,¢)), we have ng(z) = 2
and r(z) > 2.

Let XN (1,¢) C L] for b < £ < oo denote the curves corresponding to the intersection of Py with £], where
N(1,¢) for b < ¢ < 0 denotes an interior curve of the intersection with £7, assuming that such exists. Let
N(1,¢) for £ > 0 denote the boundary curve with lower endpoint p’(2;1,€). Set A(1,¢) = o7 *(N(1,£)) C L.
We say that the curve A(1,¢) for £ > 0 is based at the point p(2;1, ¢). For all x € 7(A(1,£)), we have ng(z) = 2
and r(x) > 2.
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Let v/(2,¢) C £ for b < ¢ < co denote the curves corresponding to the intersection of P, with £, where
v (2,¢) for b < £ < 0 denotes an interior curve of the intersection with £5, assuming that such exists. Let
~7'(2,¢) for £ > 0 denote the boundary curve with upper endpoint p’(1;2,¢). Set (2,¢) = o5 (v'(2,¢)) C L3 .
We say that the curve (2, ¢) for £ > 0 is based at the point p(1;2, ). For all z € 7(y(2,¢)), we have ng(z) = 2
and r(z) > 2.

Let XN'(2,¢) C L5 for b < £ < oo denote the curves corresponding to the intersection of Py with £5, where
N(2,0) for b < ¢ < 0 denotes an interior curve of the intersection with £, assuming that such exists. Let
N (2,¢) for £ > 0 denote the boundary curve with upper endpoint p’(2;2,€). Set A\(2,£) = o5 *(N(2,4)) C L5 .
We say that the curve A(2, ) for £ > 0 is based at the point p(2;2, (). For all z € 7(\(2,£)), we have ng(z) = 2
and r(z) > 2.

Lemmas and show that the families of points {p'(1;4,€) | £ > 0} and {p/(2;%,¢') | ¢/ > 0} for
i = 1,2 are interlaced, so the same holds for the v and A curves in J; W and also for the curves with £ < 0.
That is, each A-curve is between two y-curves, and vice-versa, as illustrated in Figures [26] and

7'(1;1,0;1,0)

FIGURE 26. Curves of levels 1 and 2, in £ and in L]

We comment on the details of Figures [26| and The curves in the figures come by pairs, in each pair one
curve has level 1 and the other has level 2. We give details for the level 1 curves, that in the left side figures
can be distinguished by the fact that one of their endpoints is in the vertical line {r = 2}. In the left side of
Figure |26} the closest curve to 9 is 7/(1,0), the boundary of the first boundary notch of P.. The following
level 1 curve is A'(1,0) and the next one is 4'(1,—1). Observe that b might be —1 for P! and zero for P,
but the number of internal notches is each propeller differs at most by 1. On the right side of Figure 26} the
image under o7 * of the curves is illustrated. Observe that the curves v(1,0) and A(1,0) have an endpoint in
the doted line, that is the image under o ! of the line CN{z < -1} N L7 . Analogous considerations apply to
Figure We give the description of the level 2 curves in this section.

Finally, to complete the description of the level 1 set, note that for i = 1,2, each curve 7(v(i,¢)) C E;
defines a facing curve 7(5(i,¢)) C S;. These facing curves in S; are at level 1 again, so belong to 9t}. Thus
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p(2;2,0) .~
p(1;2,0). 7

FIGURE 27. Curves of levels 1 and 2, in £, and in L;

we have

(52) my = r(R) ur(P) urP)usly U [7G6,0) ur(Ai,0) ]

0>b i=1,2

where the propellers and boundary curves are identified via the insertion maps o; as appropriate. Observe
that in the above, we are assuming that b < 0 has a constant value for each family of curves. By the interlaced
property, the number of internal notches in P§ and P} differs at most by one.

For n > 1, the construction of smg“ from My follows a procedure similar to the above pattern.

The basic scheme is that for each image under 7 of a propeller at level n, the entry curve along each of its
notches is a curve at level n + 1. The U;-flow of this curve yields a family of propellers at level n + 1. The
resulting propellers at level n + 1 are contained in the region r > 2, so they are finite. We consider the case
of M3 in some detail, to illustrate the general construction of MY for n > 2.

Consider the case b < £ < 0 and let y(1,¢) = o7 *(v/(1,£)) C L. All the points on the curve (1, ¢) have
radius greater than 2. Thus by Proposition the KC-orbit of any point = € 7(v(1,¢)) contains the point
T € 51 such that © =7. Let t; > 0 be such that &, (x) =7, then

(53) Sy = {(®e(2) |2 € 7(1(1,0)), 0 < t < 1},

is a compact surface embedded in K. Similarly, we obtain compact surfaces Sx(1,¢), S+ (2,¢) and Sy(2,¢) embedded
in K, for b < £ <0.

The surface S, (1 ¢) has points of level 2 and might have points at higher levels, but the level is uniformly
bounded above by Proposition It contributes to 93 with a compact set, a bubble, that we describe
in detail in Section To simplify the exposition, we assume for the rest of this section that b = 0 and

thus that the propellers (at any level) do not have internal notches. We discuss the modifications needed to
accommodate these internal notches later.

Consider the curve v(1,¢) = o7 ' (v/(1,£)) C L where £ > 0. It goes from the outer boundary of L7 C 9, W
to the point p(1;1,£¢) with r(p(1;1,£)) > 2, and all points on the curve (1, ¢) have radius greater than 2.
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Thus, the W-flow of the entire curve (1, ) traverses W in finite time, defining a finite propeller P, 4 as in
Section By , the propeller P, sy intersects £ at most max,c.(1,¢) A(r(z)) times, for each curve in

the collection {y(1,¢)},2,. In the same manner, we also obtain finite propellers Pyx1,0), Py(2,ey and Py(g ) for
> 0.

Consider the corresponding four collections of “notched” finite propellers

/ o0 / o0 / o / o
(54) {P"Y(M))}e:o ’ {P/\(M)}ezo ’ {P”f(“)}e:o ’ {P’\(z’f)}ezo

defined by taking the intersection of the corresponding propellers with W’. Glue these notched propellers to
9N using o7 and o2, where the points added with this gluing are level 2 points, hence are contained in 93.

Each propeller in each of the four infinite collections in yields a family of curves in £; and another
family of curves in £;. Since all the propellers we are considering are finite, the number of curves in the
intersection of each propeller with £; and £; is finite. Note that the number of notches in a given propeller
at level n > 2 may be zero. Moreover, for i,j = 1,2 and ¢ > 0, each base point p(i; 7, ¢) of the corresponding
generating curve has radius greater than 2, so the W-orbit of the labeling points traces out the full boundary
of the propeller it defines. This is in contrast to the case with the level 1 propellers, where both forward and
backward orbits were required to reach all of the notches. We continue to use the same labeling scheme in
levels larger than 1 for the base points of notches corresponding to the intersections with the faces of £; and
L.

Following the previous scheme, each entry region of a notch of P; (i,01) and P;\(il, o) defines a curve de-
noted by (i1, ¢1;i2,¢2) and A(i1,1;i2,l2) for i1,i2 = 1,2, where ¢1,¢5 > 0 and ¢3 is bounded above by
MaXyeq(iy,0) A(r(z)) +1 < 00 or maxgex,,e,) A(r(x)) + 1 < 0o, accordingly. The index iy indicates that the
curve is in £;_, while the indices (i1, ¢1) indicate in which notched propeller of level 2 they are contained. Hence,
for example, the curve v(i1,41;2,¢2) is in £ and belongs to P’;(ih‘gl)- Some level 2 curves are represented in
Figures [26] and 27} The details of these pictures are considered further in Section [T3]

Corresponding to each curve defined by the intersection with an entry face, is the facing curve defined
by the intersection with an exit face, denoted by (i1, f1;i2,f2) and A(i1, £1;i2,¢2). Then 93 is obtained by
attaching these exit curves to 9}, along with the level 2 finite propellers in .

The previous steps are now repeated recursively. Given 2 for n > 2, we introduce families of curves
defined by the entry curves in the notches of the propellers at level n,

(55) Y(ir, basig, bo; - yin, €n)  Ain, lrsdg, €2+ 3in, £n)

and their corresponding facing curves defined by the exit curves, for i1,4s,...,4, = 1,2 and ¢; > 0 which are
bounded, except for £1. The base points of these curves are

p(1;d1, 01502, 00; - 5in, by) and p(2;41, 01502, 00; -+ ;in, Ly), Tespectively.

As before, i, indicates that the curve (or point) is in L, and the previous indices (i1, 01502, 02; -+ jin—1,ln—1)
indicate the propeller that contains the curve.

The curves in generate finite propellers and the notched finite propellers associated to them. These
are hence at level n+ 1. Then 9316”‘1 is obtained from 9017 by attaching the infinite families of finite propellers
at level n 4+ 1 to each of the previously attached propellers in I, along with the exit curves at level n + 1 in
these attached propellers. Thus, we obtain the nested compact sets

(56) My CMy - My CMpTH - CMy €My =M

Observe that in the construction of M2% we added 4 countable families of finite propellers, the images
under 7 of those in . In general, in stage n of the construction, we add 2" countable families of fi-
nite propellers, where each propeller is indexed by its base point p(io;ii, f1;i2, 25+ ;in—1,fn—1) and each
family has the indices ig, 41,92, ...,%,—1 in common. However, for (ig;iy,f1;i2,¥02; -+ ;in—1) fixed, the num-
ber of £,_; for which there exists propellers with base curve ~(i1,¢1;i2,00; - ;in—1,€n—1) if ig = 1 or
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A(i1, 8109, 805+« 3ip—1,€n—1) if ig = 2, is bounded above by A(r) where r is the maximum radius of the
points in the curve (i1, 1542, lo; -« ;in—2,ln—2) or A(i1,01;12,02; -+ ;ip_2,ln_2), accordingly.

As observed above, the set 7(R’) is a cylinder, minus two rectangles, embedded as a “folded figure eight” as
in Figure One then adds two infinite propellers that wrap around 7(R’) to obtain 9t}. The following steps
in the construction add finite propellers to the infinite ones in 9. The boundary of these finite propellers
contain all of the finite chou-fleurs of Siebenmann, introduced in [I7]. The term “chou-fleur” comes from the
diagram of flattened propellers. In fact, if we draw R’ as a rectangle, then we can add the flattened propellers
as in Figure The boundary represents K-orbits of the special points p; and p; , and any finite part lying
between two facing transition points is a chou-fleur.

7(R')

(%) ()

T
T \?;ﬂr—%

F1GURE 28. Flattened part of 9

We comment on the details of Figure The higher horizontal band in Figure [28| represents the notched
Reeb cylinder R’ to which the two infinite propellers in 90t} are attached. Part of the infinite propeller T(P)
is the main vertical branch and only the base of the infinite propeller 7(P5) is pictured in this diagram. The
propeller T(PA;) generates by its intersections with the insertions, the finite propellers in 9%, and so on. In
K, the width of the infinite propellers is the same as the width of R’. The finite propellers are roughly the
same width as the infinite ones, at least for a certain period of time. Hypothesis implies that the finite
propellers attached to 7(P) become longer as we move downwards and also that the branching structure gets
more and more complicated.

13. DOUBLE PROPELLERS AND PSEUDOGROUP DYNAMICS

In this section, we begin our analysis of the dynamics of the Kuperberg flow on 2y and the dynamics of
the pseudogroup Gx acting on Rg. A key technique introduced in this section is the the concept of double
propellers, which are obtained from the KC-orbit of special “parabolic” curves in 0, W. The double propellers
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define families of nested topological circles in Ry which play a fundamental role in the study of the dynamics
of the pseudogroup Gx acting on Ryg.

We first introduce the general notion of double propellers in W, then discuss their properties. We then define
a labeling system for the double propellers generated by the flow ®;, which is based on the labeling system for
propellers introduced in the last section. Finally, we consider the intersections of the double propellers with
the rectangle R, which generates families of nested “ellipses”, and introduce a modified labeling system for
these curves which corresponds to the action of the generators of the pseudoxgroup Gj, on Ry.

In the following, we assume that the constant b = 0, for b as introduced in Section [I2] to index the internal
notches in the propeller and postpone the discussion of the case b < 0 to Section

Consider a smooth curve I' C L; parametrized by u: [0,2] — 0, W, where u, = u(s), such that:

(1) r(us) >2forall0 < s <2
(2) r(up) = r(uz) = 3, so that both endpoints lie in the boundary 9, W N 9, W;
(3) T is topologically transverse to the cylinders C(r) for 2 < r < 3, except at the midpoint us.

It then follows that r(us) > r(u1) =2+ € for all 0 < s < 2, and some € > 0. See Figure 29 for an illustration
in the case when ¢ = 0.

Assume that € > 0, so that r(us) > 2 for all 0 < s < 2, then the W-orbit of each us traverses W. Define
T, as the exit time for the W-orbit of u,. The W-orbits of the points in I" form a surface embedded in W,
whose boundary is contained in the boundary of W, and thus the surface separates W into two connected
components. This surface is denoted Pr and called the double propeller defined by the ¥i-flow of I'.

Consider the curves v, x C 9, W obtained by dividing the curve I' into two segments at the midpoint s = 1.
Parametrize these curves as follows:
vy=T11[0,1] , wu(s)for0<s<1
k=T11[1,2] , wu@2-s) for0<s<1
The orbit {W;(u1) | 0 <t < Ty} forms the long boundary of the propellers P, and P, generated by the ¥;-flow
of these curves. Then Pr is viewed as the gluing of P, and P, along the long boundary, which forms a “zipper”

joining the two surfaces together, hence the notation “double propeller” for Pr. Note that the length of the
zipper tends to infinity as r(u;) — 2.

r=3
Ll
r=2
p(1)
r=1

FIGURE 29. The curves ' = yUx and A = AU x in 9, W

We comment on the details of Figure Comparing Figure with Figure the v and A curves are
the first half arcs in I' and A (first in the S! direction), while x and x are the second half arcs in I and A,
respectively.

If € = 0, define two infinite propellers P, and P, as in Definition [TT.T} and then define Pr = P, U P, where
the Ws-orbit Z, of the midpoint u;, defined as in , is again common to both P, and P, and Pr is viewed
as the gluing of the two propellers along an “infinite zipper”.
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DEFINITION 13.1. Let T be as above with r(uy) = 2. Let v¢ and k¢ for 0 < e < 1 be the curves as defined
n . The infinite double propeller is the union:

(57) Pr= 2, U | {PrUP}
e>0

Observe that Pr = Pr UR as in Proposition m

We next apply these ideas to the study of the invariant set 9. Recall the curves v and A defined by
were obtained from the intersection of the Reeb cylinder R in W with the entry faces £; and £;. Now
consider the intersections of the full cylinder C = {r = 2} with the entry faces £ and £, which yields the
curves:

(58) I'=CcnLy cW , T=oYI")C Ly
(59) N=CnLy CcW , A=o, (N)CLy

Hypothesis implies that the curves I and A are topologically transverse to the cylinders {r = const.},
except at their middle points, where they are tangent to the cylinder C, as in Figure The endpoints of
each of the curves I' and A have r-coordinates equal to 3. For the curves v/ and )\ as defined in Section
note that v =TV NR and X' = A’ NR. Also, set
(60) k=0 (I"N{z<-1}) , x=o0, (A'n{z>1}).

The graphs of the curves I', v and x near the special point 7=1(py ) € L7 are illustrated in Figure as well
as the graphs of A, X\ and y near the special point 77(p; ) € L5 .

Let Pr and Pp be the infinite double propellers associated to these curves by . The curves I and A are
disjoint in 9, W, thus the infinite double propellers Pr and Pp are disjoint in W. Consider then the notched
infinite double propellers,

(61) PlL=PrNnW and Py=PynW.

LEMMA 13.2. The notched propellers Pl and Py are tangent to C' = CNW' along the W-orbit of the special
points 7 (pf) € LT and 7= (pg) € LF, respectively.

Proof. The curves I', I', A and A are tangent to the cylinder C’ at their middle points that are the points
71 (pE) and 771 (pi), respectively. Hence Pf. and Pj are tangent to C’ along the orbits of these points. [

The bases of the propellers Pl and Pj are then “glued” to the notched cylinder C’ using the maps o7 and
09, respectively. This adds to the notched cylinder C’ two infinitely long “tubes with notched holes” that wrap
around C’, accumulating on the notched Reeb cylinder R’. Moreover, the tubes are tangent to C’ along the
Wh-arcs of the special orbits that are in ' — R'.

Consider the ®;-flow of the image 7(C’') C K:
(62) My = {®(7(C")) | —00 < t < o0}
The level function ng introduced in Proposition extends to a well-defined function on ﬁo, using the same
method of proof, where 7(C’) has level 0 by definition. Thus, 9y can be decomposed into its level sets:
(63) Mr = {z €M |no(x) <n}, n=0,1,2,...

Then ﬁg = 7(C' UT UA) as defined above. The set ﬁé is obtained by attaching to the notches of 7(C’) the
double infinite propellers 7(P}) and 7(Pj), as well as part of the boundaries of their notches. In complete
analogy with the construction of 9y, repeat this process recursively for each family of notches, to obtain an
embedded surface E/D\?o C K. Note that 91y C 53\10.

Next, we use the labeling system for 9ty to describe the intersection of ﬁo with F4 and E5. For this
section, we keep the assumption b = 0 that will be dropped in Section Recall the notation convention
of Remark The infinite sequence of points p’(ig;i1,¢1) for £; > 0 introduced in Section all lie on
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the W-orbits of the points T’l(pi) which are contained in the open “half-cylinders”, either C N {z < —1} or
cn{z>1}.

The K-orbits of the points 7(p(ig; i1, £¢1)) for ig,i3 = 1,2 and ¢; > 0, yield the families of points labeled
as p(io;i1,€1;12,02; -+ ;in, {n), which are the basepoints for the curves introduced in Section The double
propellers also share these same basepoints, the basepoint of a double propeller is the “middle” point in the
curve generating it. We adopt the same notation system.

For i = 1,2, apply 0;1 to the intersections of Pr and Pp with the faces £; to obtain, in Ly UL, C 0, W,

four countable collections of curves, labeled in a manner corresponding to that used for the curves ~(i,¢) and
A(,€) in (54)). For ¢ > 0, we set:

o I'(1,£) =~(1,£) Uk(1,£) C L7 , based at p(1;1,¢) and corresponding to Pr;
o I'(2,0) =~(2,£) UK(2,£) C Ly , based at p(1;2,¢) and corresponding to Pr;
o A(1,0) =X(1,0)Ux(1,¢) C Ly ,based at p(2;1,¢) and corresponding to Py;
o A(2,0) = A(2,0)Ux(2,¢) C L; ,based at p(2;2,¢) and corresponding to Py.

The endpoints of each of the curves I'(7,¢) and A(j,¢) are contained in the boundary of 9, W, while the
midpoints are endpoints for (¢, £) and (4, £), or A(4,¢) and x(j, £), accordingly.

Note that the curves I"(4,£) and A’(7,¢) in the faces £; are the result of applying the ¥;-flow to the curves
I' and A. We thus obtain four countable collections of double propellers Pr; ¢y and Pyj ), for i,j = 1,2, and

notched double propellers PIQ(M) and P/’\(j 0"

As in Section [I2] this creation and labeling of double propellers proceeds recursively, though for levels
n > 2, the propellers obtained are finite as the base curves are contained in the region r > 2. There is
a nuance that arises with the construction of the corresponding double propellers, however. The curves
w(i1, L1y i, bas -+ sin, £n) C Ly and (i, l1592, ;- -+ 3in, £n) C L; do not satisfy the radial monotonicity
hypothesis. In particular, their intersection point, the “midpoint” w; will not be the point where r(us) is
minimal. However, the x and v curves are endpoint isotopic to a curve satisfying the transversality condition,
hence the conclusion that the corresponding curve I' separates the region L; will remain true, so that the
double propeller Pr;, ¢,;....i, ¢,) i isotopic to a standard double propeller, hence will separate W into two
connected components as well. Similar remarks also hold for the double propeller Py, ¢,;..

¢,), and we
label the base curves resulting from the ®;-flow:

“iln,

o (i1, l1yiz, bas - in, bn) C T(in, basiz, bo;- - yin, o) C L
which is based at p(1;i1, €112, lo; -+ 3in, €n);

o k(i1 l1sig, bos - sin, bn) C T(ir, i;in, lo;- -+ jin, bn) C Ly
which is based at p(1;i1, 1542, lo; <+ 5in, €n);

L )\(i17£1;i27£2;"' ,Zn,gn) C A(ilagl;i27£2;"' 717’7/7[774) - L;l 3
which is based at p(2;i1, £1; 02,025« in, ln);

o x(i1, b1z, la; -+ jin, bn) C Alir, 1;in, lo;- -+ jin, o) C Ly
which is based at p(2;i1, 1512, lo; -+ 3in, In).

The shape of &, v, x and A curves will be important in latter sections, and analyzed in Section

There is a tangency relation between double propellers with consecutive levels. Consider the curve I' C Li
and the curves I'(1,¢) C L] . The base point p'(1;1,¢) of I'(1,¢) C £] has radius equal to 2 and thus belongs
to CN Ly . Then p(1;1,¢) is a point in x and every I'(1, ¢) curve is tangent to x at p(1;1,¢). Analogously,
,0);
0);
,0).

e A(1,0) is tangent to k at p(2;1
e I'(2,/) is tangent to x at p(1;2
e A(2,0) is tangent to x at p(2;2

b

Thus the level 2 propellers Pr;, ¢,y and P, ¢,) are tangent along the W-orbit of p(1;i1, /1) and p(2;i1,41),
respectively, to the level 1 propeller Pr if i1 = 1 and P, if i; = 2. This is illustrated in Figure [30| below.
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FI1GURE 30. Tangencies of level 2 curves with level 1 curves in £7 .

In general, a I' or A curve at level n is tangent to a k or y curve at level n — 1, more precisely:

D(1, lys5dg, las - -+ 3in, £n) C Ly is tangent to s(iz, £2;- -+ jin, o) at p(1;1, 01502, 025 -+ in, £n);
(2, 01542, o; - -+ 5in, £y) C Ly is tangent to x (g, fo;- -+ 5in, ln) at p(152,€1542, lo; -+ 5in, £n);
AL, byyin, bo;- -+ 5in, o) C Ly is tangent to k(ig, lo;- -+ jin, £n) at p(2;1, L1542, lo; -+ 5in, £n);
A(2,ly50g, 025+ -+ 3in, €n) C Ly is tangent to x(iz, l2; -+ ;in,€n) at p(2;2, b1z, 5+ - 3in, ln)

iz
n

Recall that the points p(ig;i1,¢1) converge as £1 — oo to p(i1) as described in Section This type of
convergence is repeated at any level. The level n points p(ig; i1, 41542, l2; -+ ;in,{n) that belong to the curve
K(ig, lo; -+« 3in,lpn) if 44 = 1 and to the curve x(ig, la;- -+ jin, ly) if 41 = 2, converge to p(iy;ia, Loy ;in, ln)
as 1 — oco. Observe that the last point is the base point of the s or x curve.

We next consider the intersections of the double propeller surfaces with the rectangle Ry. Note that the
U,-flow of a parabolic curve I' C {r > 2} N0, W with endpoints in {r = 3} forms a compact surface in W with
boundary contained in OW, and the vector field W is tangent to this surface. Thus, its intersections with the
rectangle Ry are always transverse, so must be a finite union of closed curves. Moreover, the z-symmetry of
the vector field W implies these intersections are symmetric with respect to the horizontal line {z = 0} N Ry.
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In the case of the parabolic curves I' = yUx C L] and A = AU x C L3, the intersections of the propellers
generated by the curves v and xk with the set Ry yields a family of arcs, as illustrated in Figure Thus, the
intersections with Ry of the double propeller formed from their ¥;-flows yields a family of “thin circles”, as
illustrated by Figure We call these curves “ellipses” for short.

M

w9 IOZRﬂRo w1

FIGURE 31. Trace of an infinite double propeller in Ry (viewed sideways)

We next develop a labeling system for the collection of ellipses in PrNRy of the form illustrated in Figure
First, introduce the following line segments contained in the intersection Co = C N Ry:

(64) In={@2,mz)|-1<z<1},Jo={(2,m,2)| -2<z< -1}, Ko ={(2,m,2) |1 <z<2}.
No=JoUl, , My=1IoUK,

The endpoints of the interval Iy are the two special points, w; = O; N Ry, for i = 1,2. The arcs Ny and M
are connected curves in Ry which contain these special points as midpoints.

Proposition implies that the ®4-flow of Iy contains the “notched” Reeb cylinder 7(R’), thus the ®;-flow
of Iy equals 9ty. The ®;-flow of Cy contains the double propellers.

The forward ®;-flow of Ny intersects E; in 7(I") and generates the embedded double propeller 7(P) C K.
The intersection 7(Pf) MRy is a countable family of closed curves labeled as I'g(¢) that are tangent to Jy along
the forward ®;-orbit of wy and to Ky along the backward ®;-orbit of w;.

The forward ®;-flow of My intersects Ey in 7(A) and generates the embedded double propeller 7(P}) C K.
The intersection 7(P}y) N Ry is a countable family of closed curves Ag(¢) C Ry that are tangent to Jy along
the forward ®;-orbit of ws and to K along the backward ®;-orbit of ws.

Note that in the above and later, the subscript “0” indicates by convention that a curve is in Ry, and so
may be considered as belonging to W or K, according to the context.

The indexing ¢ of the closed curves I'y(¢) and Ag(¢) and their images under the ®;-flow, involves a subtlety
which is analogous to that arising in the proof of Proposition [9.15 It is possible that some of the resulting
curves from this flow will intersect in forward time E; and FEs, before returning to Rg. Thus, the labeling for
curves in these faces as constructed in Section and above, may include some which do not intersect £ U Eo
before returning to Rg. This is the motivation for the following labeling convention.

Let Ty(a), for a < 0, denote the first such curve T'g(¢) that intersects Rg, whose intersection with the
vertical line {r = 2} C Ry is composed of the two vertex points po(1;1,a) and po(1;2,a).

Let T'o(0) be the first such curve for which the K-orbit of its lower vertex point pg(1;1,0) intersects Fy
before intersecting Ry again. We assume, without loss of generality, that the IC-orbit of pg(1;2,0) intersects
E5 before intersecting Ry again. This symmetry assumption simplifies the labeling system.

REMARK 13.3. The indexing of the curves starts with a value of £ = a, possibly negative, such that for
a < £ <0, the K-orbit of the vertices of the curves T'o(¢) do not intercept E1 U Es in forward time, before
returning to Rg. The number of such non-positive indices ¢ is finite, or might be zero. In the latter case, the
indexing starts at £ = 0, and it signifies that the forward ®;-flow of the vertices of T'o(€) intersects the entry
regions By or Eq in curves T'(1,£) or T'(2,£), respectively, before intersecting Ro again. Similar comments
apply for the indexing of the Ay curves.

Observe that a < b < 0 for b as introduced in Section[I2] As we assume that b = 0, then for a < ¢ < 0, the
®,-orbit segment starting at any point of I'g(¢) and ending at the corresponding point of I'g(¢ 4+ 1) will not
contain transition points.
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Next consider the embedded propellers 7'(P1i(1 fl)) which are the image under 7 of compact surfaces travers-

ing W from the bottom face 9, W to the top face B}J[W. They intersect £, and L5 in finite families of closed
curves, denoted by I"(1, ¢1;1, ¢3) and I'(1, ¢1; 2, £2), and whose inverse image in L; is denoted by I'(1, ¢1; 1, {2),
fori =1,2 and ¢5 > 0. We form the corresponding finite families of closed curves in Ry denoted by I'g(1, ¢1; ¢2),
whose positive ®;-flows intersect E; in the curves 7(I'(1,¢1;1,¢2)) for i = 1,2. The index ¢ signifies whether
we follow the ®;-flow of the curve T'g(1, £1; £2) in the region {z < 0} to the surface Ey, or we follow the ®;-flow
into the region {z > 0} to the surface Fj.

Similarly, the embedded propellers 7'(P1i(2 21)) intersect Ry in finite families of closed curves I'g(2, ¢1; £2), as
illustrated in Figure The positive ®;-flows of these curves in Ry intersects £ and E5 in curves denoted

by 7(T'(2,¢1;1,42)) and 7(I'(2, ¢1;2, £2)) for ¢5 > 0, respectively. These curves define in turn, propellers that
intersect Ry along closed curves, which are recursively defined as:

(1) To(ir,01;02,82; - 5in—1,€n—1;¢n) C Ry containing the “vertex points”
po(L;iq, b1sio, bos -+ 5in, £y) for i, = 1,2 and with level n;
(2) Ao(i1,41509,02;+ ;in—1,%n—1;€n) C Rg containing the “vertex points”
Po(2;541, 41509, la; -+ 3in, bn) for i, = 1,2 and with level n.
The points pg(io; i1, £1; 42,025 - ;in, £y) correspond to the points p(ig; i1, £1; 42,025 -+ ;in, Ly) in the same
manner as the curves Ty (i1, £1; 42, o; - -+ ;£,) correspond to both

F(i1>£1;7;27€2;"' 717£n) and F(i17£1;7;27€2;"' a27£n)

We also introduce the curves in Rg:

(1) ’Yo(ihfl; 7:2,62; e ;in—la Kn_l; gn) and Ho(il, 61; iQ,EQ; cee ;in—lagn—l; gn) contained in
Lo(i1, 1y, lo; -+ 3in—1,ln-1;n) C Ro, with po(1;41, €152, a5+ -+ ;ip, £y) as common boundary points
for i,, = 1,2;
(2) Xo(i1, lasio, bo; -+ sin—1,ln—1;€n) and xo(i1, l1; 92, €2; -+ ;in—1,ln—1;¢n) contained in
Ao(in, l1yia,loy - 3in—1,ln-1;¢n) C Ro, with po(2; i1, €152, l2; -+ ;in, Ly) as common boundary points
for i, = 1,2.
REMARK 13.4. For points of level at least 2, the number of positive indices £,, such that
poltosi, 1y -+ 3in, bn) exists is greater or equal to the number of indices such that the point
p(i0;1,01; - 3in, bn) exists, since the curves in the the intersection of propellers at level at least 2 get shorter

as we approach the tip of the propeller and might not intersect the insertions.

The 7p-curves and Ap-curves are in the ®;-flow of Iy, while the k¢ and y( curves are in the ®;-flow of Jy
and K, respectively. Each T'y(¢) is tangent to Jy at po(1;1,¢) and to Ky at po(1;2,£). Then, we obtain that
the I'y curves at level n are tangent to a kg or a xg curve of level n — 1. Likewise, each Ay curve at level n is
tangent to a kg and a xo curve of level n — 1, as for curves in L; .

Observe that this tangency relation implies that the curves I'o(1,£1;¢3) and Ag(1,¢1;¢2) are tangent to
ko(£2) at their vertex points. Hence I'g(1, ¢1;¢2) and Ag(1, ¢1;¢3) are inside the region bounded by I'g(¢2), for
any {1 > a. Likewise, I'g(2, £1; ¢2) and Ag(2,¢1;¥¢2) are tangent to xo(¢2) at their vertex points and lie inside
the region bounded by Ag(¢3) for any ¢; > a. Iterating this relation we have that:

e the curves T'g(1, 41549, 02; -+ ;£,) and Ag(1,£y1;40,02;--- ;£,) are tangent at their vertex points to
ko(ia,fa;- -+ ;£y,) and lie inside the region bounded by Tg(ig, fo; - -+ ; £n);
e the curves I'o(2,01;i0,00; -+ ;4,) and Ag(2, 01509, 02;- -+ ;¢,) are tangent at their vertex points to

Xo(i2, lo; - -+ ; £,) and lie inside the region bounded by Ag(ig, l2;- -+ ; €y).

Thus the I'g and Ag curves form families of nested ellipses. By construction, inside the region bounded by
Lo(4,,) are all the 'y and Ay curves whose first i-index is equal to 1 and whose last ¢-index is equal to ¢,,. This
relation, up to level 3, is illustrated in Figure
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po(1;1,£42;2,43)

po(1;1,42;1, £3)

. ’7 ® K
po(1;2,43) w2 Ii=RNRy, w1 po(1;1,43)
FIGURE 32. Curves in Ry (viewed sideways). The ko and xo curves of levels 1 and 2 are
represented by dotted lines, while the dashed line is a level 3 kg-curve.

Thus, the intersection ﬁo N Ry contains collections of “ellipses” in Ry, indexed as above by their vertex
points. We next examine the action of G on these collections of ellipses in Rgy. The generators {qﬁli, ¢2i, ¥}
of G} have domains which are subsets of Ry that do not contain all of the ellipses themselves, so we define
their actions on the ellipses in terms of the actions on the vertex points of these curves. Observe that all these
curves are contained in Ro N {r > 2}. A corollary of the proof of Proposition is the following;:

LEMMA 13.5. For each family of curves defined by a member of {0, 0, Ko, Ao, Ao, Xo}, and for each ¢ € G,
the action of p maps the family of curves to a subset of itself.

For n > 1, recall that the last index ¢, for a curve Tg(i1, £1;- - ;in—1,€n—1;¥n) is bounded above, with the
bound depending on the previous indices, and by abuse of notation, let ¢}, = ¢ (i1,€1;-+ ;ip—1,€n—1) denote
its maximum value. Recall that there is no restriction on the first index, so ¢; = oco.

Proposition implies that each of the sets of points {po(1;---)} and {po(2;---)} is invariant, thus the
action on these points determines which curve in each of these families is mapped to which curve, and corre-
spondingly, the action on the curves determines the action on these vertices.

We first analyze the action of the map 1. Recall from Section [J] that the map 1 is obtained from the
return map of the Wilson flow to Ry, hence 1 preserves the level function ng. The intervals Iy, Jy and Ky are
mapped to themselves, with fixed-points w;, for ¢ = 1,2. Consider the open sets in the domain of 1 defined
by U CRoN{r>2,2>0}and U_ C RoN{r > 2,z < 0}. The set U_ further decomposes into open sets
defined by the range of 1,

(65) V:U- -U- , ¢¥:Uf -5 Ron{r=>22>0},

as illustrated in Figure

The following is a direct consequence of our labeling system:
LEMMA 13.6. The action v on the I'y curves is as follows:

(1) The map ¢ : U- — U_, sends a subset of the curve To(i1,l1; -+ ;in—1,ln—1;€n) to a subset of
To(i1, b5 3in—1,ln-1;ln + 1), for 0 < £, <L . Forn =1, this operation is always allowed.

(2) The map v : UT — RoN{z >0}, sends a subset of the curve To(iy,£1;- -+ 19n_1,ln_1;4n) to a subset
of itself.
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F1GURE 33. Domains of continuity for 1

(8) The map ¢ : Uy — RoN{z > 0}, sends a subset of the curve To(i1, 015 ;in—1,ln_1;n) to a subset
of To(i1, 015+ 3in—1,ln-1;¢n — 1). For every n > 1, the index £, is bounded below, hence the map
can only be applied to such a curve a finite number of times.

The action on the other families of curves is analogous, but it is slightly different on the base points. The
difference is made explicit in Lemma (b).

Next, we analyze the action of the maps qﬁj: Uw — Ry for i« = 1,2. The domain U o+ consists of points
x € Ry whose forward /C-orbit intercepts the face E; and then continues on to intercept fio again, hence the
level is increased by one under these maps. Hypothesis (K3) on the embeddings o; implies that their domains
U(ﬁ C Ry satisfy

(66) U¢TcR0ﬂ{z<0} ) U¢gcRom{z>0}

and that their ranges satisfy

(67) ¢IL(U¢T):V¢-1+ CRoN{z<0} |, ¢;(U¢;):V¢; Cc Ron{z <0},
as represented in Figure Then and the definition of the indexing system yields:

LEMMA 13.7. Fori= 1,2, the map ¢ sends a subset of To(i1, 015+ jin—1,€n—1;n) for £, > 0 to a subset
of To(i1, €15+ yin—1,n-1;%,ln;a) where a <0 is the first index such that the curve I'g(a) exists.

Note that c;S;" sends any point in U ot N {r > 2} to a point that is contained in the closed region bounded
by the curve I'g(a) if i = 1 and by Ag(a) if i = 2.

We comment on Figure [34] it is useful to compare it to Figure 28 The horizontal upper band represents
the Reeb cylinder 7(R’). The transverse lines to the cylinder and propellers represent their intersections with
the rectangle Rg. Since only T(P,/Y) and its ramifications are illustrated, these lines correspond to ~yy-curves.

The generator ¢ preserves level, hence it moves points along propellers. The points in 7(R’) N Ry are
1-invariant. For points in the left side boundary of T(P,;), the action of 1 pushes them downwards to the
following ~yg-curve, while for points in the right side boundary T(P;) it moves points upwards. The maps ¢;
add 1 to the level, so they correspond to jumping to the first curve at higher level. For example, for the curve
70(0), ¢ moves points to yo(1,0;0) and ¢3 moves points to yo(2,0;0). Observe that the meaning of “first”
curve is in the direction of the flow, that runs in opposite directions near the boundaries of T(P,{/). The actions
of ¢; are also illustrated.
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FIGURE 34. Intersection of flattened 9ty with Ry with the action of the generators of Gj,

The action of a general element ¢ € G} on a curve in one of the families {T'g, Yo, K0, Ao, Ao, X0}, can be quite
complicated and will be considered further in Section For now, consider the simplest case of iterations of
the map gbf. The image (bf (NoNU ¢T) C Ry is a parabolic curve, twisting upwards as illustrated on the right

side of Figure If the image curve (;Sf (NoN U(ﬁ) is again (partially) contained in the domain of qﬁf, then

we can consider its (restricted) image under ¢f and repeat this process inductively as long as it is defined.
This yields a family of parabolic curves, as illustrated on the right side of Figure which shows the image
¢ (IyNU. ¢1+) on the left-hand-side and three iterations of this map applied to Ny on the right-hand-side.

r=2 r=2

b= —1 \!\ P v\

w1 w1
1 é1
Jo

po(1;1,a) (o) po(1;1,0)

Lo(a)

pO(iO; 1,[1; la a)

Ficure 35. The image under (;ST of Iy and Ny = Iy U Jy
The iterates of ¢ map To(i1, €15+ ;in—1,fn_1;0a) to any To(i1,€1; - ;in—1,€n—1;¢n). That is, the action
of ¢ generates the family To(i1, €15+ ;in—1,ln—1;0n) from To(i1, l1;- -+ ;in—1,ln—1;0a).

Finally, we analyze the action of the maps ¢; : Uy~ — Rq for i = 1,2, which are defined using the ®;-flow.
The domain Ujy- consists of points € Ry whose forward C-orbit intercepts the face S; and then continues
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on to intercept Ry again. Hence, the level is decreased by 1 under these maps, and U o C RoN{z > 0} for
1=1,2.

LEMMA 13.8. Fori=1,2 and n > 2, (¢; )~ maps a subset of To(i1,01; -+ ;in—1,fn—1;¢n) to a subset of
Do(i1, b15 -+ sin—1,fn-1;%,4n — 1;a), where a is defined as in Lemma m Hence, ¢; 1is only defined on the
curves To(i1, 015+ 34, ln—1;a).

We now comment on the behavior of the points po(ig;i1,€1;- - ;in, £s). The points p’(ig; 1, £) are in L] for
¢ >0, with 7(p/(i0; 1,€)) = 2 and z(p'(io; 1,¢)) < —1. Thus, p(ip;1,¢) € k CT' C L] and po(ip; 1,¢) € Jp.
Since po(ip; 1,£) — wy as £ — oo, for £ large enough, the points belong to U¢1+.

If po(ip; 1,41) € U¢1+, Lemma implies that ¢7 (po(io; 1,41)) = po(io; 1,41 1,a) that belongs to the curve
ko(a) N {z < 0}. Thus the points pg(ig;1,¢1;1,a) accumulate on po(1;1,a) = ¢ (wy) as £; — oo. Observe
that po(1;1,a) is the vertex point of the curve kg(a).

Analogously, the points po(ig; 1,£1;2, a) belong to the curve kg(a) and accumulate on pg(1;2,a), the other

vertex point of kg(a), as £ — oco. The points po(ig; 2, £1;42,a) belong to the curve yp(a) and accumulate on
po(2;ia,a) as £1 — 0.

Lemmas [T3.6] and are interpreted in terms of points in the following way.
LEMMA 13.9. The maps 9, d)i" and qb;' act on po points as follow:

(1) For the map b we have the three following possibilities:
(a) For1 < £, </l ¢ :U- — U_ maps po(io;i1, l1;- - ;1,6n) to po(io,i1,01;-- 31,6, +1). For
n =1, this operation is always allowed.

(b) U = RoN{z >0} maps polioit, b3 31, 6n) to po(iosin, €15 52,45).

(¢c) ¥ : U = RoN{z > 0} maps po(io;i1, 15+ ;2,€n) to polio;ir, f1;-+- 32,4, — 1). For every
n > 1, the index £, is bounded below by a, hence the map ¥ can only be applied to such a curve
a finite number of times.
(2) ¢f maps a point po(io;ir, l1;--- ;1,4,) in its domain to po(io;ir, €13+ ;1,0n; 1, a).
(3) ¢3 maps a point po(io;ir, l1;- -+ ;2,4y) in its domain to po(io;ir, £1;- - ;2,0n; 1, a).

We have the following consequences of the above results.

LEMMA 13.10. Ewvery point po(io;i1,£€1;- -+ ;in,€n) is an accumulation point of the set of po points.

Proof. The points po(io;1,¢1;+ -+ ;in,¥n) lie in the curve kg(ia, l2; -+ ;in—-1,%n—1;%¢n), and as £; — oo they
accumulate on the point po(1;ig, €05+ ;in—1,ln—1;%n,ln)-

Also, the points po(io; 2, €15+ -+ ;in, Ly) lie in the curve xo(i2,l2; - ;in-1,%n—1;%n), and as £; — oo they
accumulate on the point pg(2;iz, fo; -+ 91, ln—1;in,n)- O

14. NORMAL FORMS AND TREE STRUCTURE OF 9,

A major theme of this work is to use the pseudogroup Gx generated by the map ® acting on X = Ry,
as defined in Definition to study the dynamics of the flow ®;. The results of Section interpret the
local action of Gy in terms of the propellers introduced in Section The application of these two concepts
associated to ®; will be made throughout the remaining sections, and many of the results we establish often
rely on highly technical arguments, with various nuances. In this section, we pause to give a broader overview
of how these concepts, of pseudogroups and propellers, are related. To this end, we introduce a “tree structure”
on the space M as defined in and illustrated in Figure Then in Propositionwe give an algebraic
“normal form” for elements of the pseudoxgroup Gj.. These two results are closely related, as we explain
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below. Finally, in Proposition [I4.5] we estimate the number of normal forms as a function of the word length,
and show that this function has subexponential growth. This is an intrinsic property of the flow ®,.

We first construct the tree T C 9y. Recall that the level decomposition of 9%y in expresses the space
as a union of propellers, and each propeller is defined by the W;-flow of a curve segment in the face 9, W'.
Each propeller then intersects the center annulus {z = 0} = 7(.A). There is a nuance in this picture, as each
propeller in the decomposition of 9y may give rise to “bubbles” which correspond to double propellers of
uniformly bounded complexity attached on the interior of the given propeller, as in . This will be discussed
in Section and is illustrated in Figure As they do not influence the dynamics of the flow ®;, they do
not appear in Figure [36]

In the surface My, the intersection of each propeller with the annulus {z = 0} forms an embedded “center
line segment”. Define T}, = AN My which consists of the union of these embedded line segments. Let
T} C T} consist of the line segments in simple propellers. The connected tree Tg is formed by adding
continuous curve segments in My joining the line segments in T, as is illustrated in Figure

Define the center line 7 = {z = 0} N Ry, and set € = T N My and ¢ = M NT. We will show in
Proposition that @ is a Cantor set, and observe there that it has a decomposition into two disjoint
Cantor sets, ¢ = € U €!. The points in the dense subset €} = My N €} of €! correspond to the intersections
of the double propellers in bubbles with 7, while the points in the dense subset €y = My N € of € correspond
to the intersections of 7y or Ao curves with 7. The “fat dots” in Figure[306] correspond to the points contained
in the set €y, and the lines through the dots represent the intersection with Ry,

The basepoint wy = T N7(R’) is contained in the core annulus R = 7(R’) C My, illustrated in the picture
as the top horizontal strip, which lies at level 0. There is one edge containing wy, the top horizontal line in
Figure which corresponds to 7(R’' N.A) and defines a loop containing wg. Thus, strictly speaking, T4 is a
tree provided the loop containing wq is erased.

Recall that the pseudoxgroup Gj; denotes the collection of all maps formed by compositions of the maps
{Id, ¢1+7 o1, ¢2+7 ¢4 .1} and their restrictions to open subsets in their domains. The action of these generators
on the endpoints of the vy and Ay curves in Ry formed by the intersection 9tgNRy were discussed in Section
Note that each such curve intersects the line 7" in a point of €y, and the actions of the generators {1, ], ¢3 }
and their inverses have simple interpretations as actions on the vertices of Tg. We introduce the notation
{1, é,, @, } for the induced action on vertices. Later, in Section we consider the pseudoxgroup Gon generated
by these actions in detail.

First, the action of 1 fixes the basepoint wp, and can be thought of as flowing in a loop around the horizontal
line in the core annulus R’'. The action of ¥ on points in &y, corresponding to vy curves in Ry, is determined
by the action of ¥: U~ — U_ as described in Lemma We have:

(68) ¥t yo0(in, brs e yine1, bn—130n) NT = Yolin, €1 sin—1,ln1;n + 1) N T.

”

Since v does not change the level, we conclude that ¢ moves a point in €y to the “next point” along the line
segment in T containing it. Here, “next” means moving in the positive 6 direction along the propeller, hence
making one turn around the circle S = {r =2 & z = 0} in K. Thus for £ € € in the domain of the mapping
9, we have r(1(€)) < r(€) if € # wp. The action of the map ¥ on the points ¢ € €, defined by \g curves is
analogous.

We next show that the paths connecting different level points, which were added to the segments in T} to

form T4g, correspond to the actions of the elements ¢, for k = 1,2, analogous to the action of (;52_. Then by
Lemma [[3.7 we have that:

(69) Gr  volin, b5 sin—1, b 15ln) VT = yo(in, €1+ sin—1,bn15 K, bnsa) VT

where £,, > 0 as the curve must intersect the surface Fj in a boundary notch, and a < 0 is the first index such
that the corresponding curve in Ry exists, as explained in Remark A similar result holds for the action
of ¢, on Mg curves. Note that both maps ¢; and ¢, increase the level function by 1.
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The map ¢, acts on wy via the insertion ;" acting on the point w; = (2,7, —1) to yield po(1;1,a) = ¢} (w1)
which corresponds to the first vertex ¢, (wo) at level 1. Graphically, the action of ¢, is to “turn the corner” to
the right. This results in adding a curved segment to T’ between wy and the point ¢, (wp) in the downward
propeller.

The map ¢, acts on wy via the insertion ¢3 acting on the point we = (2, 7,1) to yield po(2;1,a) = ¢5 (w2)
which corresponds to the first vertex ¢,(wp) at level 1. Graphically, the action of ¢, is to “turn the corner”
to the left. This results in adding a curved segment to T’ between wy and the point ¢, (wp) in the upward
propeller.

Note that the remaining vertices in Tg at level 1 which descend the vertical main propeller 7(Py) in
Figurecorrespond to the points 1) o ¢ (wp). The points ¥ ody(wp) , also at level 1, ascend on the propeller
7(Py) above the core annulus, and are not pictured in Figure

The remaining vertices of the tree Tq are at level at least 2. The actions of the maps {1, ¢;, @5} on these
vertices follows the rules above as defined by and . The action of ¢ is translation along the line
in T} containing it, while the actions of the maps ¢, and ¢, turn the corner into the propeller at the next
higher level, to the right or left accordingly. Accordingly, as mentioned in the definition of T above, we add
a curved segment to T between the vertex & and ¢, (£), whenever ¢, () is defined.

We next consider the structure of the pseudoxgroup Gj. The analog results for the pseudogroup generated
by {1, ¢1, d5} are studied in Section The collection

(70) G = {Id, ()=, (61)FL, (67) 5L (03)*, (7)F1)

is a symmetric generating set for the pseudoxgroup Gj.. Let gﬁ? C Gy be the collection of maps defined by

the restrictions of compositions of at most n elements of g}?. The “word metric” on Gj, is defined by setting
ol < mif € G5,
Recall that M is invariant under the flow ®; and so each x € My has infinite orbit. Set Mg, = M N Ry.

We use the level function defined in Section [10|to show that the words for the restricted action G |9Mg, have
a normal form. First, we define:

DEFINITION 14.1. A word in G}, is said to be monotone (increasing) if it has the form

(71) p = Pimogl ooy ogl oy ogf oyt

where each iy = 1,2, each £, > 0. Let M(n) be the set of monotone words of length at most n, with
M(0) = {Id}. Then let M(o0) be the union of all collections M(n) for n > 0.

Observe that for ¢ € M(o0) as in (71)), its length satisfies ||| =m + o+ €1 + -+ + L.

Also, note that the collection of maps M(oo) C G5 forms a monoid, as composition of maps of the form
(71) is again of that form, assuming that the composition has non-empty domain.

REMARK 14.2. Observe that if the level along the action of a word in G} is monotone increasing, the word
is written as a composition of the maps ¢, (¢; )~! and v, fori=1,2. By Lemma the action of (¢; )~*
can be replaced by ¢ o gbj' o~ for some k > 0. The word obtained by this substitution is still monotone
increasing in level.

Even if the substitution made the expression of an element in G longer, the counting method below does
not consider this nuance and the estimation on the number of monotone words is thus an estimation of words
along which the level is monotone increasing.

PROPOSITION 14.3. Let p € G5 with ||¢|| < n and Dom(p)NMgr, # 0. Then there exists a factorization
o =@t op™, where ot € M(n') and (p=)~1 € M(n") for integers n',n" with n’ +n" < n. Moreover, we
have Dom(p) C Dom(p* op™). The factorization ¢ = @t o™ is said to be the normal form for the word .
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Proof. By hypothesis we have that ¢ = ¢ o--- 0 for some k < n and ¢y € gg) for every 1 < ¢ < k. Since
M is the closure of My, and we assume that Dom () NMgr,, # 0, there exists a point & € Dom(p) "My NRy.
Set £ = g o0 p1(o)

The idea behind the proof is best described in terms of the tree T illustrated in Figure 36} Given
& € Mo N Ry there exist a unique point z € R’ N Ry such that ®;(x) = & for some ¢ > 0. The K-orbit
segment [z, &)k is a path in My so can be deformed into a path in the tree Tg from wy to the closest endpoint
of the 79 or Ag curve containing &y. This tree path define a unique monotone word ¢¢, € G such that
we, () = &. Analogously, there exist a unique monotone word ¢¢, € Gj. and a unique point y € R’ NRy such
that ¢¢, (y) = &. The expression we are looking for is then the simplified word obtained from ¢, o (¢g,) ™',
that is a product of a monotone word with the inverse of another monotone word.

Let us start the proof. By Proposition the level function ng : My — N is well defined. Let n.(p, &) =
min{ng(&) | 0 < £ <k} and n* (¢, &) = max{ny(&;) | 0 < £ < k}. We consider the following cases:

(1) no(&0) < no(&k) and no(§o) = nu (e o)-

(2) no(&0) < mno(&k) and ng(&o) > nu (e o)-

(3) no(&o) > no(&k) and no(&k) = ns (e, o)-

(4) no(&o) > no(&k) and no(&k) > ns(p, o)-
Consider case (1), for which the plot of the function appears as in Figure Let ¢; > 0 be the least
index such that there exists o > ¢1 with ng(&,) = no(&e,) and ne(&e) > no(&e,) for all 44 < ¢ < fy. By

Proposition [5.5) combined with Lemma we can replace the subword ¢, o ¢g,_1 00y, by the map
1, thus changing a non-monotone subword of the expression of ¢ by 1. The new word has length less than
n and, since the domain of 1 contains the domain of the other generators in g}é’, its domain contains the
domain of . Repeating this process a finite number of times we obtain a monotone word ¢™, and putting
@~ = Id we obtain the conclusion of Proposition m

no(&e)

M
1 3 14 n

FiGure 38. Plot of the level function ng (&)

The subword substitution operations in the proof of case (1) above have alternate interpretations. In terms
of the sample graph of the level function in Figure [38] we are replacing any parts of the graph which are not
increasing with a horizontal line, which corresponds to substituting in some power of the generator ¥* for the
subword. In terms of the tree T4 in Figure we are following a path that takes a short-cut across the base
of each propeller, so that the resulting path follows a curve whose distance from the root is monotonically
increasing.

For case (2), let £, be the first index for which ng(&,) = n.(p,&). We can apply the method of the first
case from &y to &, to change ¢ for a word of the form ¢y o - -0, 110 @, with (¢.)~* monotone. The word
YK 00y, 41 satisfies the hypothesis of the first case and hence can be expressed as a monotone word. This
concludes the second case.

In terms of the tree Tg, the point &, corresponds to a vertex point in the tree which is the closest to the
root vertex in the path in 9%y between & and &k.

We are left with the cases where ng(&o) > no(€r). In case (3), let £, < k be the first index for which
no(&e.) = n.(p,&). As in case (2), we can change the expression of ¢ for ¢ o -0 @, 11 0 @, With (p,)~?
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monotone. Since n. (@, &) = no(&x), Proposition [5.5] implies that the word ¢ o--- 0@y, 11 can be replaced by
a certain number of consecutive ¥-maps, the number being less or equal to k — £,. Thus ¢ can be expressed
as the inverse of a monotone word and the conclusion follows.

The proof for case (4) is analogous to that of case (2). O

We next develop an estimate for the cardinality of the set M(n) as a function of n. This will be used in
later sections when we consider various entropy invariants of the flow ®;.

For ¢ € M(n) with [|¢|| = n, assume that ¢ has the normal form (7I). Let & € 9 N Dom(yp), then
let & for 0 < ¢ < n denote the images of & under the partial products of the factors in . Note that
r(&e11) > (&), with equality if &1 = (&), and with strict inequality if £41 = qﬁj‘(@) and & # w; for
ji=1,2.

Observe that in the case where £p41 = ¢;‘(§g), the point & must lie in the domain of qu. Since (&) > 2,
if j = 2 and & = ¢*(&_;), then i > 0 must be sufficiently large so that the orbit transverses bottom half of
the rectangle Ry in order to enter the domain of ¢3. By definition (37)), the integer A(r) = [O(r)/27] is the

number of intersections for the Wilson flow to reach the line {z = 0} N Rg, where A(r) — oo as r — 2. Thus,
i > A(r) where r = 7(&r—i).

LEMMA 14.4. For each b > 1, there exists integers Ny > 0 and Ly > 0 such that for ¢ € M(n) of the
normal form with bg = 0, {1 < b and sub-index m equaling the number of insertion maps in @, then
m < Ny and each lx < Ly for 1 <k <b. Moreover, N, — 0o as b — oo.

Proof. The assumption that no factor in is a map ¢; for j = 1,2 implies that the action of ¢ on Rg can
be described in terms of the action of the generators {1, ¢7, #5 } on the families of nested ellipses in Ry given
by the intersection of ﬁo NRy. This is described in Lemmas |13.5|, |13.6L |13.7| and |13.9l The assumption £g = 0
implies that ¢ begins with the action of (/5: and thus the special point w;, € Dom(yp).

Recall that the function N(r) for r > 2 was defined in Lemma and is the maximum increase in the level
function along the orbit of K starting at an entry point £ with r(§) = r. As shown in Section @ the function
N(r) — co as r — 2. We are given b > 1, so set

(72) pp = min{r(¢;, o Yoo o1 (€)) | € € Dom(p) and 0 < ¢ < b} > 2.

Then N(pp) is the maximal increase in the level function starting from the point gbl'.'; o't o gb;’; (£), and thus
m < N(pp) + 2. Set N = N(pp) + 2. Note that N, — 0o as b — oo.

Let T, > 0 be such that for all 2 € 9, W with p, < r(z) < 3, then the Wilson flow W, (x) exits 5‘2‘W with
t <T,. Then L; can be taken to be the greatest integer less than Tj /4. O

We use Lemma to obtain an estimate on the growth of the function #M(n).

PROPOSITION 14.5. For each b > 1, there is a polynomial function Py(n) of n such that the cardinality
of the set M(n) satisfies

(73) #M(n) < Py(n) - 2079,

Proof. For ¢ € M(n) with ||¢|| = n, assume that ¢ has the normal form (7I)).

For the given value of b, let i(,b) > 1 be the index such that ¢; > b for all 1 <14 < i(p,b), and ¢; < b for
i =1i(p,b). Factor ¢ = p® . ©(p) Where ©® starts with the map ¢ and ¢y starts with the map plo.

ti(e,b)

Let k(p,b) denote the number of factors in ¢® of the form gbj'. By Lemma [14.4] 0 < k(p,b) < N,. We
have ||| < n, so the indices of the factors of the form ¢ appearing in ¢(®) gives a choice of k(¢p, b) indices
out of the maximum of n possibilities, and for each choice of index, let ¢ = 1,2. Thus, the number of such
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words has an upper bound (}) - 2* for k = k(¢,b). Then set

(74) B'(n,b) = <7g> .20 4 <71L> ol g (ﬁ) 9Ny

Observe that B’(n,b) is a polynomial function of n of degree at most N,. It follows that B’(n,b) is an upper
bound on the number of possible words ¢(*) which can arise for ¢ € M(n) and the given value of b.

Next, consider the number of possible choices for the words ¢y which can arise. For p = i(p,b) — 1, we
then can write

(75) Py = Vo gt ol ooyt o g oyl
where each index ¢; > b for 1 <i < p, and so p < n/(b+ 1) < n/b. Observe that for 1 < k < p, there are at
most 27 possible choices of iy, so the number of such choices is bounded above by 2(7/?),

The placement of the terms (bjk, or equally the choices of the values £; > b, is given by a more complicated
choice function. Observe that b < £y < n,and b < /¢y <n—4¥y—1<n-—>b—1. Thus, there are at most n — 2b
possible values for ¢1. Next, we have b < fo <n—¥{y—¥{1 —2 < n—2b—2, so that there are at most n —3b—1
possible values for £5. We continue in this way up to the choice of £,. The number of possible choices of the

indices (€o, {1, ..., ¥,) is then bounded above by the products of the maximal number of values for each ¢; for
0 < i < p, so is a polynomial in n of degree at most p 4+ 1, which we denote by B”(n,b). Set
(76) Py(n) = B'(n,b) - B"(n,b)
The estimate follows. O
COROLLARY 14.6. The function n — #M(n) has subexponential growth. That is, we have
1

(77) lim In(#M(n)) _ 0.

n— o0 n

Proof. For each b > 1, the estimate implies that the limit in is bounded above by In(2)/b hence
equals 0. 0

15. INTERNAL NOTCHES AND BUBBLES

In this section, we analyze the properties of the “bubbles” that arise when the interior of a propeller
intersects an insertion region, resulting in an internal notch, as discussed in Section [I2] and illustrated in
Figure Recall that an internal notch in a propeller P, is a rectangular hole whose boundary is disjoint
from the boundary of P,. The ®;-flow of an internal notch generates a compact surface, as defined by
and called a “bubble”. A key result of this section is that the bubbles obtained from internal notches all admit
a uniform bound on their complexity: the difference of level between any two points in a bubble is uniformly
bounded. This is shown in Proposition [15.4]

Assume that the construction of the plug K and the flow K satisfies Hypotheses and

In Sections |12 and the orbits of the special points pli and péﬁ were used to label the boundary notches
of the propellers P, Py, P} and P,, that are bounded by W-arcs spaced along the edges of the propellers. A
propeller formed from any of these four families and at any level n > 1, might also have internal notches as
described in Section In this section, we give an analogous labeling for the internal notches and bubbles of
the propellers P and Py, which then also applies to the double propellers P}, and Py.

First, recall the data that is given. The curve v/ = R N L] denotes the intersection of the face £ with
the Reeb cylinder R, as in and 7 = RN L] is its facing curve. Define v = o, *(7/) € Ly C 9, W with
facing curve 7 = o (') € Ly C 8 W. The curve & C L is the intersection of the ¥;-flow of the interval
Jo with £7 and & = o7 '(k) C L7, as illustrated in Figure
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The curve N = R N L5, denotes the intersection of the face £; with the Reeb cylinder R, as in and
N = RNLY is its facing curve. Define A = o, ' (\') C Ly C 9, W with facing curve \ = a;l(xl) C L Cofw.
The curve x’ C £ is the intersection of the W;-flow of the interval Ko with £5 and x = o7 *(X’) C Ly, again
as illustrated in Figure

Consider first the propeller P, C W generated by the ®;-flow of v, and let P'Iy = P, N'W be the notched
propeller. The intersection of P’ly with Ry consists of an infinite family of arcs with lower endpoints in the
vertical line segment Jy that accumulate on w; and upper endpoints that accumulate on ws, as in Figure
This implies, as observed in Section that P; has an infinite number of (boundary) notches and a finite
number |[b] > 0 of internal notches. We assume for the rest of this section that b < 0 and investigate the
properties of the bubbles which result from their ®;-flows.

Let /(i,£) C L; for b < £ < 0 denote the intersection of the boundaries of the internal notches of P/
with £;. Observe that both endpoints of such a curve are contained in the boundary 0L; , as for the curve
v'(1,—1) in Figure [26| and the the curve +/(2, —1) in Figure The ¥;-flow of each +'(4,£), from L to L],

defines a rectangular region in the interior of P,.
Set v(i,¢) = o; ' (v'(i,£)) C L; and parametrize (i, £) by Y, ¢ 10,2] = L; in such a way that:

o 2 <7(v3u,0(1) < (v, (s)) for every s € [0,2];
® 7(73i,0(0)) = (v, (2)) = 3, so both endpoints lie in the boundary 9, W N9, W.

Analogously define A(i,¢) C L; for b < ¢ < 0. Since the v and X curves are interlaced the number of internal
notches in P is equal to +1 the number of internal notches in P{. To simplify the notation, we assume that
there is the same number of internal notches in P and P.

PROPOSITION 15.1. There exists ry, > 2 such that for any b < £ <0 and i = 1,2, then r(z') > ry for all
x' € v(i,£) and all 2’ € \(i,0).

Proof. For a curve ¢: [0,1] = W, set 7({) = min {r({(s)) | 0 < s < 1}. Then set
(78) rp = min{r(x(1,0)), 7(x(2,0)),7(x(1,0)),7(x(2,0))} > 2.

Consider first the case v(1,¢) for b < ¢ < 0. Recall that p(1;1,0) € & is the endpoint of the curve
~v(1,0) C L7 and satisfies 7(p(1;1,0)) > 2. Define a curve Y(x,1) C L] with endpoints in {r = 3} which
first follows the path x(1,0) from its endpoint in {r = 3} to its endpoint p(1;1,0), then follows the curve x
back to its boundary point in {r = 3}. This is illustrated in Figure Note that Y(x,1) divides L] into
two topological discs and consider the closure D(k,1) of the disk contained in the region r > 2. The radius
function restricted to D(k, 1) has a minimum value greater or equal to 7.

Note that for b < £ < 0, we have y(1,¢) C D(k,1) and hence r(v(1,£)) > ry.

The radius estimate for the cases v(2,£), A(1,¢) and \(2,¢) follow in the similar manner, using the corre-
sponding curves Y(k,2), T(x,1) or T(x,2). O

In what follows, we restrict our attention to the surfaces derived from the W;-flow of the curves (1, ¥¢) for
b < < 0, which form the “bubbles” in the propeller P,. An analogous discussion applies to the curves (2, ¢),
A(1,£) and A(2,4).

The endpoints of v(1,¢;) are contained in 9,W and thus their W-orbits escape through 9} W without
intersecting Ro. Thus, the intersection P, 4,) N R is a finite family of circles contained in the region
7 > 7(7(1,6,)(1)) > 7. The number of circles is bounded by A(r(v(1,6,)(1))) + 1, where A is defined by (37).
The number of circles thus admits the uniform upper bound A(ry) + 1.

Since (1, ¢1) is contained in the region of L7 bounded by the curve Y(k,1) introduced in the proof of
Proposition thus is in the region of L;” bounded by I'. The circles formed by the intersection P, ¢,)NRo
lie in the discs bounded by a certain I'g(¢2), for £2 > a. Assuming that P ¢,y N Re is non-empty, the first
curve in the intersection is in the region of Ry bounded by I'g(a), with a as in Remark and the following
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F1GURE 39. The curve Y(v,1) and the disc D(x,1) in LT

curves are obtained by applying the Wilson map ¢ € G . Thus if the intersection is formed by n curves, the
first one is in the region bounded by T'g(a), the second one in the region bounded by T'g(a + 1) and the kth
curve is in the region bounded by T'y(a + k), for 0 < k < n.

We extend the labeling to P, ) N Ro by naming the curves in the intersection vo(1,41;¢2), for a < £3 <
a + n, in such a way that ~o(1, ¢1; ¢2) is contained in the disc bounded by I'g(¢3). Observe that ¢; is negative
and that the connected component of P, 1 4,y NRyg closer to the boundary r = 3 of Rg is denoted by vo(1, £1; a).
This convention agrees with the labeling system introduced in the previous sections. Analogously we have:

e The curves in the intersection P14,y N Ro are labeled \o(1,¢1;¢2) and are contained in regions
bounded by T'g curves. Thus A\g(1,¢1;¢2) lies inside the region bounded by I'(¢2).

e The curves in the intersection P, s,y Rg are labeled vy (2, £1; 2) and are contained in regions bounded
by Ag curves. Thus (2, ¢1;¢3) lies inside the region bounded by Ag(¢2).

e The curves in the intersection P2,y N Ro are labeled \g(2,¢1;/2) and are contained in regions
bounded by Ag curves. Thus \o(2,¢1;¢2) lies inside the region bounded by Ag(¢2).

For the notched propellers Pv’(i o) and P/((Z. 0y for i = 1,2 and b < £; < 0, obtained by intersecting the
corresponding propeller with W', their images T(P,;(i él)) and T(P//\(i Zl)) form part of 9Miy.

We now describe the compact surfaces Sy (1 ¢,) C K for b < £; < 0 introduced in . Consider the notched
propellers Pv/(l,él) = Py, "W for b < £y < 0. If Py 4,y N L] is non-empty, let 7/(1, £1; 1, £2) be the curves
in the intersection. Observe that 5 admits finitely many possible values, at most A(ry) +1 < co. In the same
way if Py1,¢,) N Ly is non-empty, let 4/(1,£1;2,¢2) be the curves in the intersection. Observe that (5 admits
finitely many possible values, at most A(r) + 1 < oo. Since (1, 41;1,b — 1) C Ry is the region bounded by
To(b—1) = v0(b — 1) U ko(b — 1), the K-orbits of points in vo(1,£¢1;1,b — 1) come back to Rg before hitting
the insertions. Hence the first curve in P,y ¢,) N L] is either v(1,£1;1,b) or y(1,41;1,b+ 1).

Consider now the curves y(1,£1;1,03) = o7 ' (7'(1,£1;1,£3)) € L] with b < ¢; < 0 and b < 5. Two possible

situations arise, as illustrated in Figure [0}

e 7'(1,£1;1,43) contains a point of the W-orbit of v(,4,(1). In this case the curve is an arc with
endpoints in L] . Thus (1, 41;1,/3) generates a finite double propeller Py ,:1,0,) C W. The Radius
Inequality implies that the minimum radius along (1, £1; 1, £2) is strictly bigger than r(y(1,¢,)(1)) > 7,
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and thus the number of circles in P, (1 4,.1,¢,) N Ryo is less or equal that the number of circles in the
intersection P,(1,0,) N Ro.

e 7/(1,41;1,£3) does not contains points in the W-orbit of (1 s,)(1) and thus it is formed by the union
of two connected components, each being an arc with endpoints in d£; . In this case we obtain from
v(1,£1;1, £2) two double finite propellers whose union we denote by Py 1 ¢,;1,¢,) C W. Observe that the
Radius Inequality implies that the minimum radius along any component of v(1,¢;;1,¢5) is strictly
bigger than r(v(1,¢,)(1)) > 73, and thus the number of circles in P ¢,;1,¢,) N Ry is less or equal that
twice the number of circles in the intersection P, ¢,y N Ro.

The construction terminates if Py ¢,;1.0,) NL; = (0 for i = 1,2; otherwise, it continues in a recursive manner.

[—

FIGURE 40. Possible intersections of Py with £ for b </¢; <0

We comment on the details of Figure There are two I” curves, with the corresponding ' in dotted
lines, and one A’ curve, with the corresponding x’ in dotted lines. These are level 1 curves. At level two,
two curves in the intersection P, 4,y N L] are illustrated: +'(1,£1;1,0) with one connected component, and
v'(1,£1;1,—1) formed of the union of two connected components. These curves are contained in the regions
of L] bounded by I''(1,0) and I''(1, —1), respectively.

Analogous considerations apply to the curves y(1,¢1;2, £3) thus we obtain two families of level 3 propellers
Po1,015i5,0) for iz = 1,2 and b < ¢ < 0 that are part of S, (1,4, Let P’;(l,fl;iz,fz) = Py(1,0,1i5,0) "W, Observe
that T(Pv/(l,él;irz,ez)) C Sy(1,6,)- Thus for b < 41 <0,

(79) U UrPlaeie) € S,
i2=1,2

where the union is taken over all the possible values of /5, once i5 is given.
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LEMMA 15.2. There exists N > 0 such that for any x € Sy 4,y with x ¢ 5(1, 1), then 2 < ng(z) < N + 1.

Proof. The boundary of S, ¢,y is composed by 7(v(1,¢1)) C E1, the facing curve 7(3(1,¢1)) C Si and the
two K-orbit segments going from the endpoints of the entry curve to the endpoints of the facing exit curve.
Since 7(y(1,4,)(1)) > 2 and y(1, /1) is a level 2 curve, then for any x € S,(1,¢,) we know that ng(z) > 2.

Consider now 7(1,0). Since r(y(1,0)(1)) > 7 > 2, the K-orbit of every point in 7(v(1,0)) passes through

the facing point, and thus attains a maximum level N 4+ 1. Thus no(z) < N + 1. O
This implies that the construction process above terminates after at most N steps. Thus S, is the
union of
U T(P’;(ly€1§i27e2;"';in7£n))7
1<n<N+1
for any combinations of indices, (iz,%2;+* ;in,¥n), where b < £1 < 0.

In a similar way we obtain the compact surfaces S, (2,¢), Sx(1,¢) and Sy(2,¢). We call these surfaces the level
2 bubbles in My, since they are associated to a level 2 curve.

Recall that in the set M} was described for any value of b. The construction of 9§+ from MY, for
n > 1, follows the lines of the construction of MMy from MY = 7(R'). To obtain M3 we have to add the
level 2 points in the K-orbits of points in (4, £) and A(¢,£) for i = 1,2 and b < £ and unbounded. The case
¢ > 0 was described in Section [I2] here we consider the case b < ¢ < 0 and ¢ = 1,2, thus the level 2 points
in the bubbles S, (; ¢, Sxi,r)- If b # 0, we add to the set 9N} described in Section [12| the notched propellers
T(P i 0yy) and 7(Py(; ,)) for i = 1,2 and b < ¢, < 0 and the finite collection of exit curves 7((i1, {15 i2,/(2))

and T(X(il,gl; i2,£2)).

REMARK 15.3. The propeller P, ¢,y with £y > 0 might also have internal notches, that is the intersection
Py e N Ly, for ia = 1,2, might have curves that are arcs having both endpoints in OL; . In this case we
denote these curves by (i1, ¢1;12,l2) with la < 0 and ¢1 > 0. Again, such a curve generates a level 3 bubble

Sy (i1, 015i0,05) that is part of M.

In general a propeller Py, ¢;...i. 0,y forms part of a bubble if at least one of the indices is negative.
Assuming that £y is the first negative index, then Py, o,:... i, .0,) C Sy(ir s sin,00), that is a level k+1 bubble.

The following result generalizes the above discussion to higher level bubbles.

PROPOSITION 15.4. Let v'(i1, €15+ 5in,€n) C L; be any curve in the construction of Mo with at least
one negative index. Let £y, < 0 be the first negative index. Then

(1) v(i1, €15+ 5in, bn) = a;ﬂl(’y’(il,ﬂl; <+ in,n)) generates a finite double propeller or a pair of finite
double propellers. Each propeller intersects Ry along at most K closed curves, for a fized number K ;
(2) for every x € Sy, 4. 5i,.0,) we have that n+1 < ng(xz) < N +mn, for N as in Lemma ,

Proof. For the first conclusion, observe that ~(iy,¢1;---;1,£,) lies in the region D(k,1) U D(x,1) C L7
described in the proof of Proposition and v(i1,£1;- - ;2,4,) lies in the analogous region D(k, 2)UD(x,2) C
Ly . Thus the number of circles in the intersection of Py, ¢,.... i, ¢,,) With Ryg is uniformly bounded by A(ry)+1.

The second conclusion follows from the arguments above and the proof of Lemma [15.2 ]

Observe that if b # 0 the double propellers Pr and P, will also have internal notches, that is notches that
are not intersecting the orbits of w; or wo, accordingly. Thus they will generate bubbles in the same manner
as the simple propellers P, and Pj did.

We consider the case of Pr in some detail. The intersection Pr N L] consists of the curves I'(1,¢;) for
b < ¢; and unbounded. For b < ¢; < 0 the curve I'(1, ¢1) consists of two connected components each having
its two endpoints in L7, one that corresponds to (1, ¢;) and the other one (1, ¢1) that belongs to P, N L7 .
Thus I'(1,¢1) is the disjoint union of (1,¢1) and x(1,¢1), when b < ¢; < 0. The curves (1,¢1) generate
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T(';Q')

= / bubble at level 2
[::::D Sy2,-2) = T(Pya,-2))
bubble at level 2
8,01,-2) = T(Pya,-2)) Gﬁ]

Sy(2,-1)

simple propeller

7(Py2,0))
simple propeller

T(PZ,(LO))

FIGURE 41. Flattened part of 91y with bubbles

the bubbles S, (1,,) that form part of 5)\?0 as defined in . Analogously, the curves x(1,¢;) generate the
bubbles Sy (1 ¢,) that form part of 9Mg. The results above apply without any changes to the bubbles S (1 ¢,)-
Let SF(L[l) = SV(L&) U Sm(l,él) C M.

16. WANDERING POINTS AND PROPELLERS

The open set of wandering points 20 C 91 for the flow ®; was defined by in Section (8] as a union of
the four classes:
W = WuWruWw uWw>
where 20° consist of all finite orbits, 20 is contained in the set of forward trapped orbits, 20~ is contained
in the set of backward trapped orbits, and 20°° is contained in the infinite orbits.

For example, 20 contains the orbits of all points in the region {r < 2} by Proposition The orbits of
points in 2> exhibit the most subtle dynamical properties of the four classes. Here is the main result of the
section:

THEOREM 16.1. Let x ¢ M, then z € 2.

The proof of this result requires the introduction of new classes of double propellers which are used to
describe the orbits of points z € Ry which satisfy r(x) > 2. Recall that a key point in the proofs of
Propositions and was to analyze the orbits which intersect an entry region FE; in the sets T(E{*), as
illustrated in Figure [14] which consist of points that are mapped from the region {r > 2} to the region {r < 2}
by the insertion maps ;. The corresponding regions o; '(£;°") € L; for i = 1,2 are bounded by what we
call “G — L” curves. We construct the propellers generated by these curves and consider their intersections
with the rectangle Ry, generating families of “Goy — Ly” curves. These curves divide the region Ry N {r > 2}
according to their dynamical behavior, and the regions thus defined are used to encode the trapped wandering
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orbits for ®;. One important application of this method is Proposition [I6.10} which implies that there are no
trapped wandering orbits which are strictly contained in the region {r > 2}.

We introduce the curves G C L] and L C L;, starting with the curve G. Recall from Section [3| that
the boundary of L; is composed of two arcs, a; and o, as illustrated in Figure |5, with «; contained in the
boundary of 9, W. The curve G starts at one of the points in the intersection a; N o}, following an arc in
o to the first point with r-coordinate equal to 2, then follows the arc LT N {r = 2}, and finally follows the
curve o to the other point in ay N ). Thus, the curve G, as illustrated in Figure is composed of three
smooth arcs, where the first and last are contained in o and satisfy the radial monotonicity assumption in
Section [L1} and the middle arc lies on a segment of the circle {r = 2}, so is tangent in its interior to the curve
I at o7 " (py ) as illustrated in Figure Note that G bounds a region in L] that contains the pre-image of
the set & " under the insertion map o;. We define the curve L C L, using the curve o in the analogous
manner, with details omitted.

FIGURE 42. The curve G in L

Next, we form two infinite propellers by considering the flow under W of the curves G and L, as for the curves
I and A in Section[II] The ¥;-flow of the middle arc in G is an infinite strip which spirals around the cylinder
C = {r = 2} in the region {-2 < z < —1}, and contains the spiraling curve 2= = {Ui (o7 (py)) | t > 0} in
the interior of the strip. Let G C Lf be the facing curve to G, then similar observations apply to the reverse
Uy-flow of G and the spiraling curve Z = {U, (o7 (p7)) | t < 0}. The ¥;-flow of the two arcs of G which are
contained in o) generate two infinite propellers. Form the infinite double propeller P C W from the union
of these two propellers and the two infinite strips. Then Pg contains Z, = Z° U Zj defined in .

Let Pj, be the infinite double propeller corresponding to L defined in the same way, which then contains
Zy=Z, U Z;\r. As the curves G and L are disjoint, the propellers Pg and Pp, are also disjoint. We then have
the analogous result to Proposition [11.2

PROPOSITION 16.2. The closures Pg and Py of the infinite propellers Pg and Py contain the Reeb
cylinder R, and we have

(80) ?G:PGUR,?L:PLUR.

Proof. Let {z, € Pg |n=1,2,...} converge to a point x,. If r(z.) > 2, then we can assume that r(x,) > 2
and as the Wilson flow preserves the radius coordinate r, there is a corresponding sequence of points {y, €
oy NG C Ly |n=1,2,...}, with r(y,) = r(z,) and y,, x, in the same W-orbit. Then r(y,) — r(z.) > 2, so
z, € Pg. In the case that r(x.) = 2, then the sequence {y,} converges is either in G or in G. Assuming it
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belongs to G, it converges to a point in G N {r = 2}. The forward Wilson flow of these points converge to the
periodic orbit O;. Then the points x, converge to a point in the cylinder R, so z. € R. A similar argument
holds for the backward Wilson flow of the facing curve «, for which the inner endpoints limit on the periodic
orbit 0.

The analysis of the closure of the propeller P;, proceeds similarly. O

Observe that G divides 9, W into two open regions. Let I/ denote the region in the complement of G' which
is contained in L, so that points in U have r-coordinate bigger than 2. Let U denote the open region in
W obtained from the W;-flow of & from L to Li. It follows that Pg is contained in the closure of U, and
so Pg C U. Since T is contained in the closure of & and T'\ {07 *(py )} is contained in U, we conclude that
Pr—Z, CU as well. We say that the double propeller Pz envelops the double propeller Pr.

Similarly, let V denote the region in the complement of L which is contained in L, , so that points in V
have r-coordinate bigger than 2. Let V' denote the open region in W obtained from the W;-flow of V from L,
to L3 . Then Py, is contained in the closure of V, and Py, C V. Correspondingly, we say that P;, envelops Pj.

Next, consider the notched double propellers
Pl =PcnW and P, =P, NW.

Since Z, C Pg, the propeller PJ, intersects £ infinitely many times, once for each intersection of the W-orbit
of the special point o7 !(p;) with £7. In the same way, Py intersects £5 infinitely many times.

For each ¢ = 1, 2, the intersections P; N L, and Py, N L, form two infinite collections of curves G'(4,¢) and
L'(i,20), respectively, for b < ¢ and unbounded. Apply oi_l to these curves, to obtain in L; UL, C 9, W, four
countable collections of curves labeled, for £ > b, as illustrated in Figure

G(1,¢) tangent at p(1;1,¢) to I'(1,¢) in L7 ;
L(1,¢) tangent at p(2;1,¢) to A(1,£) in L7;
G(2,¢) tangent at p(1;2,£) to I'(2,¢) in Ly ;
L(2,0) tangent at p(2;2,£) to A(2,¢) in Ly .

For b < ¢ < 0 as introduced in Section [12|and illustrated in Figure 40} the curves G'(4, ¢) and L’(i,¢) have two
connected components, which follows from the discussion in Section As in Proposition [15.4]1 the bubbles
generated by these curves have uniformly bounded level difference, and thus do not change the discussion
below. Thus, without loss of generality we assume for the rest of the section that b = 0.

Observe that since the U;-flow of the middle arc in G spirals around the cylinder CN{z < —1}, it intersects
the interval Jy defined in in a sequence of closed intervals. Hence each curve G(1,£) contains a closed arc
contained in K C T', for k as defined in . In the same way, each curve L(1,¢) has an arc in . Similarly,
each of the curves G(2,¢) and L(2, /) intersects xy C A along a closed arc.

The endpoints of each one of the G(4, ) and L(i, £) curves are contained in the boundary of 9, W, while the
middle arcs are in k or Y, accordingly. By flowing these curves in W, we obtain four countable collections of
finite double propellers, denoted by Pg ;¢ and Pr; ¢). The curves G(i,£) and L(i, ) do not satisfy the radial
monotonicity assumption in Section However, the two arcs that are not contained in k or y, are endpoint
isotopic to a curve satisfying the transversality condition, hence the conclusion that each of the curves G(i, )
and L(i,!) separates the region L; into two open regions remains true. The finite double propellers Pg; ¢
and Pp; ) are isotopic to a standard finite double propeller and separate W into two connected components.

Continue the above process recursively, to obtain collections of curves

o Gi1,ly;i9,02; -+ ;in,ly) C L; C 0, W, tangent to I'(i1, 1342, 025+ ;in,{y) at
p(Lyix, layin, bo - 5in, £n);

o L(il,gl;ig,gg; s ;in,gn) C L;n - 8,:W tangent to A(il,gl;i27£2; s ;in,gn)
at p(2;in, bisiz, Lo -+ 3in, bn).
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Py

?'(1;1,0)

9'(2;1,0)

(A) T'(1,0) C G'(1,0) and A’(1,0) C L/(1,0)  (B) I'(1,0) C G(1,0) and A(1,0) C L(1,0)

FIGURE 43. G and L curves at level 1 in the regions £; and L

Let PGy tysintnisinn) C W and Prg gy C W be the corresponding notched propellers.
We next discuss topological properties of the families of propellers formed from the G and L curves. Recall
that the points p(1;41, €1;ia,la; -+ ;in, ) divide the parabolic I-curves in two arcs,
D(ix, byyin, bo; - 5in, bn) = (iv, bryin, bo; - 5in, o) U K(i1, bryd2, lo; -+ 5in, £n).
The level n curve I'(iq, €1; 42, lo; - -+ ;in, bp) is tangent at p(1;iq, €152, lo; - ;in, fy) to alevel n—1 curve. For
i1 = 1, it is tangent to the curve I'(ia, fo; - - - ;in, ) and

p(1;d1, 01502, 0a; -+ 5in, £y) belongs to k(ia, oy - 3in, In).
For i1 = 2 the curve I'(iy, ¢1;i2,02; - ;in, £,) is tangent to the curve A(ig, fo; -+ ;ip,£,) and
p(1;d1, 01502, 80; -+ ;in, L,) belongs to x(iz, a5+ jipn, Ln).
Thus:
o p(1;1, 01500, l0; -+ 3in, ) and p(2;1, 81500, o5 -+ 5ip, Ly) lie in k(ig, lo; -+ - ;in, L) for any £1;
o p(1;2, 01500, la; -+ in, ) and p(2;2, 01502, la; -+ 5in, Ly) lie in x(ig, la; - ;in, £,) for any ;.
LEMMA 16.3. Any two distinct G and L curves of the collection above, contained in L7 U Ly , are disjoint.

Proof. The curve I' divides L] in two regions, one of which is contained in ¢/ and its closure contains all the
G(1,¢) and L(1,¢) curves. The closure of this region intersects G' only at the special point o7 *(p; ). Hence, G
is disjoint from all G(1,¢) and L(1,¢). In the same way, L is disjoint from all G(2,¢) and L(2, £). Then proceed
inductively, to obtain that any two different curves in the collection of G and L curves are disjoint. ]

We now consider the intersection of the notched propellers

/ /
PG(il,fl;i2,£2;"' jinsln) 0 PL(ihZuiQ,b;“' yinsln)

with the rectangle Ry. Following the notation convention developed in Section the intersections P5 N Ry
and P; N Ry yield countable collections of closed curves, labeled Go(¢) and Lo (), as illustrated in Figure
Observe that for each ¢ > a, where a < 0 was defined in Remark the curve Go(¢) contains a segment of
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Jo, a segment of Ky, and is tangent at the two points po(1;4,£) to the curve T'g(¢) for i = 1,2. In the same
way, each Lo(¢) contains a segment of Jy, a segment of Ky and is tangent at the two points po(2;1,£) to the
curve Ag(¢) for i =1,2.

Each Gy(¢) curve divides Rg in two open connected regions, one of which contains I'g(¢) and is contained
in U N Ry. We call this region the interior of Go(¢) and we denote it by Uy(¢). Analogously, the interior of
each Lo(€) curve is denoted by Vo (£).

As in the previous section, we define families of Gy and Ly curves in Ro N {r > 2} recursively.

Recall that U denotes the interior region of P C W, so that U/ as defined previously satisfies i/ = UNJ, W C
L. Also, V denotes the interior region of P, C W, so that V' as defined previously satisfies V = VN9, W C L, .

In a corresponding manner, for the families of G and L curves, let U(i1, 1, - ,in,¢n) denote the interior
region of P, 0y, in,en) € W, and V (i, £y, ,in,£,) denote the interior region of Pr¢, ¢, ... i, .0,) C W.
Then we define open regions in 9, W as follows:

(81) Uir, lys - yin, b)) = Ulin, b1 5in, 0y) N0, W
(82) V(il,gl;"' ,Zn,gn) = V(Zl,gl, Zn, )ﬂa W
The intersection of the regions U (i1, £1;- - ;in,ln) and V(iy, €1+ ;in, £y) with Ry form two finite collec-
tions of connected open regions, which are indexed as follows:
(83) Up(ir, b1y sin i lnyr) C T(U(i1, 015 5in, bn) NRo) 5 g1 > a
(84) Vo(ir, €15+ i, bnslng1) C 7(V(ig, bys- -+ yin, bn) NRo) , Loy > a,

which extends the notation convention introduced above for Uy(¢) and Vy(¢). Observe that the index £,,41
admits finitely many values since the boundary propellers Pg(;, ¢, si,.0,,) and Pri, ¢,5... 53, 0,) are finite.

Tny
The forward W;-flow of the region in to L yields the region o1 (U (i1, 01; -+ ;9n,n; 1,€ny1)) C L7, and
its forward U;-flow to £5 yields the region oo (U (i1, 415+ ;n, ln; 2, €ny1)) C L5 . Similar comments apply to
the regions in .
Recall from Lemma |16.3| that the collection of all G and L curves in d;, W are disjoint. This implies a
containment property between their interior regions:

LEMMA 16.4. Suppose that either

L4 Uo(il,gh e azn7£n7€n+1) mZ/{O(Zglﬁglla g fln/a n's n +1) # 0;
L Z/{O(ilagl; o 7Zn7£n7€n+1) N Vo(llhg/h g n/vanéf/nq»l) 7é ®7
i VO(ilaeﬂ T ;imgn;&ﬂrl) N VO(i/lagll; s /n’7 n'? n —0—1) #0,

then n#n' and y11 =€), ;.

Ifn' >mn, let ' =n+m. Then Uo(iy, 04 50,05 lnyr) is contained in

o Up(ir, l1;+ 5iny lnilnt1) if in—n =1 and for any 1 <k <n

(85) 'Lk = Z;c_;’_m = i/(n'—n)—‘rk and Ek = g;c—i-m = gl(n'—n)-‘rk .
o Vo(i1, 015 3ins bnilns1) if in—n =2 and for any 1 <k <n

The same conclusions hold for Vo(iy, €15 540,005 bnyr).

Proof. The boundaries of the Uy and V, regions are disjoint by Lemma [I6.3] so the inclusion of one into the
other follows, if the regions are not disjoint. The identities and involving the indices follow from the
construction of the curves. ]
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We describe two cases to illustrate the conclusion of Lemma [16.4]
e For iy = ip = 1, the region Up(1, £1; 1,425+ - ;£,) is contained in Uy (1, la;- -+ ;£,) and Up(is, ls; -+ 54n).
e For iy = 2,i5 = 1, the region Uy (2, l1;1,la;- -+ ;£,) is contained in Vo(1,la;- -+ ;£,,) and Up(is, l3;- - 3 4n).

Observe that each propeller Pg(;, ¢;:... i, .¢,) envelops the propeller Pr, ¢,;....i, ¢,)- This yields a nested
relation between the regions bounded by the Gy and Ly curves, and the I'y and Ay curves in Ry . This is
illustrated in Figure [#4] and we describe the relation in two special cases.

e The region Uy(i1,¢1;12,la;- - ;¢,) contains the curve Tg(iq, £1;42, €25 -+ ;£y) in its interior, and the inter-
section of the two associated curves consists of the points

Golir, b1y, by 50n) NTo(in, £15d, lo; -+ 5 4n) = po(15d1, €1 i, bas -+ 5in, bn) 5 in = 1,2.
For i1 = 1, the curve Go(1, ly1;ia,0o;- - ; £,) intersects ko(iz, €25+ -+ ;¢5) in two closed arcs, one containing
po(1;1,41549,09;- -+ ;1,4,) and the other containing po(1; 1,15z, lo; -+ 52, £p).
For i1 = 2, the curve Go(2, l1;i2,02;- - ;£y,) intersects xo(iz,2;- - ;£,) in two closed arcs, one containing
po(1;2,£815i9,09;- -+ ;1,£,) and the other containing po(1;2,€1;4a,lo; -+ ;2,0p).
e The region Vy(iq, l1;ia,lo; -+ ;£,) contains the curve Ag (i1, l1;ia,lo;- -+ ;£,) in its interior, and the inter-
section of the two associated curves consists of the points
Lo (i1, b15ig, bo; -+ 5 0n) N Ao (in, brs i, bos -+ 5 0n) = po(25 i1, basda, bos e v+ 3, bn) 5 dn = 1,2
For i1 = 1, the curve Lo(1,¢1;i9,02; -+ ; £,) intersects ko(ig, fo; -+ ;£,) in two closed arcs, one containing
po(2;1,£41;5i9,00; -+ ;1,£,) and the other containing po(2; 1, £1; 42, lo; -+ ;2,6p).

For iy = 2, the curve Lo(2,¢1; 12, lo;- -+ ;¢5) intersects xo(ia, f2;- -+ ;£,) in two closed arcs, one containing
po(2;2, 01519, 02;- -+ ;1,£,) and the other containing pg(2;2, £1;ig, lo; -+ ;2,£,).

Lo(1)
G )
% = %
@- -
w2 In=RNRo w1

FIGURE 44. Endparts of 'y and Ag curves inside Gy and Ly curves in Ry (viewed sideways)

With these preparations, we can make the following definition for the points in Ry with r(z) > 2, which
extends the notion of “level” for those points not contained in 9. Recall that Mg, = PV N Ry.

DEFINITION 16.5. Let x € Ry with r(z) > 2, and x ¢ Mg,. Say that x has level at least n, and write
L(x) > n, if either there exists an open region Uy or Vo of level n such that x is contained in the closure of
either such regions:

v € Uo(ir, lrs- sin—1,ln-150n) or o€ Volir,1;+ sin—1,n—1;4n)-
The level of x is the greatest n > 1 such that L(x) > n. If L(x) > n for all n, then x is said to have infinite
level, and otherwise has finite level. If x is not contained in any such region, set L(z) = 0.

The following is a key property of the level.
PROPOSITION 16.6. Let x € Ro with r(x) > 2, and x € Mr,,. Then x has finite level.
Proof. Let &y denote the union of the Gy-curves in Ry, and £y the union of the Ly-curves. Recall that 9 is
the closure of 9y which is the union of all vy and Ay curves in Ry.

Set Y = Mg, U By U £y. The set Q) is bounded in Ry so its closure is compact, but more is true.
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LEMMA 16.7. The set %) is closed, hence is compact.

Proof. By Proposition the limit of curves Go(¢) and Lo(¢) as £ — oo is contained in ). Thus, for a fixed
index (i1, *; 42, f2; - - - ; £,), the limit of curves Go(i1, 4112, lo;- - ;€n) or Lo(iy, £1;d0, 025+ ;£€,) as €1 — oo is
contained in 9).

Given a sequence of points in 2) which are contained in G or Lo curves with indices (i1, 152,25+ ;4p)
where the degree n tends to infinity, we observe that the sequence must be nested by Lemma [16.4) and each
interior region Uy (i1, £1;42, 025+ ;£,) or Vo(i1, €142, 0a;- - ;£,) contains a corresponding 7y or Ag arc which
is contained in 91y hence in Q). It follows that any convergent sequence of points in & or £y of this form
must have limit in the set 1. |

Let € > 0 be chosen small enough, so that e < dgr,(z,Mg,) for the metric dr, defined in Section [9] That
is, the distance from every point of Mg, to x is greater than e. Let
Uy(M, €) = {y € Ro | dr,(y, MR, ) < €}

Recall that the Gy and Ly curves in Ry are disjoint closed curves by Lemma [16.3] so for each index there
exists an €, > 0 (where we abuse notation and do not indicate the precise index on €, ) so that each of the sets

(87) Uo(ir, l1ziz, los -+ i lnsex) = {y € Ro | dry(y, Go(in, liziz, bo;- -+ 34n)) < €x}
(88) Volir, lisiz, la; -+ slnsex) = {y € Ro | dr, (Y, Lo(i1, €152, 2+ 54n)) < €4}
contains exactly one Gg or Ly curve. We comment on these definitions.

Observe that the curve Go(i1, £1; 42, fo; - - - ;{5 ) contains the points po(1;41, €1; 2, lo; - - ;in, L) for i, = 1,2.
Since the curves Go(1,¢;41,01;42,02;- - ;€,) limit as £ — oo to Yo(i1, 159,025+ ;£y), for £ big enough the
open set Uy(i1,1;12,02; - ;€n,€s) intersects these curves, but it does not contains them, as illustrated in

Figure (5]

Go(L,fo;i1,41;- ;4n)
po(l;41, 8a5in, f2;- -+ 5 1,4n)

/
/

FIGURE 45. Lower part of T'g(i1,£1;42,%2; - ;£y,) inside region bounded by Go(i1, l1;i2,lo; - ;4n)

Form an open covering of ) which consists of the open neighborhood Uy (91, €) of Mg, , and all open sets
of the form and (88). Then by Lemma there is a finite subcovering, which must consist of Uy (9, €)
and a finite collection of open sets of the form and . It follows that for all but a finite number of
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exceptions, the G and Lo curves are contained in Uy(9M, €), and thus the closures of their interiors are also
contained in Uy (M, €). As = & Uo(IM, €), there are only a finite number of Gy or Ly curves whose interior
closures contain z. If L(z) # 0, then L(x) is the maximum value of the level for all such interior regions which
contain x, which is finite. O

We next use the constructions and results above to describe the dynamical properties of the ®;-orbits of
points € Rg with r(z) > 2 and « ¢ Mp,. First, recall that the map 7: W' — K identifies the surfaces
L; and £; via the map o;, to yield the entry region E;, for ¢ = 1,2. The map o; sends o} to the arc
B; C 0, W\ (L] ULy). The points in ¢1(G N «}) and o2(L N of) are technically secondary entry points of
K as defined in Section [4] but can also be considered as primary entry points as they lie in the closure of the
primary entry points. The two arcs o1(G N {r = 2}) and oa(L N {r = 2}) are exactly the secondary entry
points in Fy and Fs, respectively, whose r-coordinate is equal to 2. The forward orbit of these points has

r-coordinate bigger or equal to 2 by Corollary [7-3]

PROPOSITION 16.8. Suppose that x € Ry is not in the K-orbit of wy or ws, and is contained in a Ly or
Go curve, so that for some index {i1,01;--- ;£,} we have

T e Go(’h,(l;'-' ,En) or xr € Lo(il,gl;“- 7£n) .

(1) If © & kolia, Loy - ;€n) Uxo(ia, lo; - 54,) U Jg U Ky, then there exists t,t' € R such that :(z) €
7(85 x {2}) and @y (z) € 7(B x {—2}), for j =1 or 2. Hence the orbit of x escapes K in positive and
negative time.

(2) If x € kolia, lo; -+ ;L) Uxolia, la;- -+ ;n) U Jo UKy, then there exists t € R such that y = ®(z) is a
transition point with p,(t) = 2. If y is a secondary entry point, its forward orbit limits to w1, while if
y s a secondary exit point its backward orbit limits to ws.

Proof. We consider the case where x € Gg(i1,¢1;+ -+ ; £n), with the case x € Lo(iy, £1;- - ;¢5) being analogous.

If n = 1, then x is contained in one of the curves Go(¢1), as illustrated in Figure Let 2/ = 771(z) €
Go(¢1) C Ry, then flow backwards in W, to obtain a point 2’ ; € G, where G is illustrated in Figure As
x does not lie on the flow of the special points, the point z’ ; lies either on the curve G N} with r(z”;) > 2
or in G N {r = 2}. The first case corresponds to (1) and we have that a’ ; is a secondary entry point on the
boundary of the primary entry points. It follows that the backward ®-orbit of x_; = 7(2’_;) escapes K in
finite time. By Proposition the forward ®;-orbit of z_; passes through the facing point T_7 € 7(8] x {2})
and thus the forward orbit exits K as claimed. The second case corresponds to (2) and x_; is the secondary
entry point y, whose forward orbit limits to wy by Proposition

Next, assume that n > 2, then r(z) > 2. Since z € Go(i1,¥l1;--- ;¢,) it belongs to the propeller
T(Pé(il G i En_l))' Then 2/ = 77!(x) is in the propeller Paiy ;- Flow z’ backwards in
W, to obtain a point 2’ € L; _ that belongs to the curve G(i1,41; -+ ;in—1,€n—1). By Proposition
x_1 = 7(2’) is a secondary entry point in the K-orbit of x.

Siin—1,€n—1)*

The point z_; can be identified with a point 2°; € Go(i1,f1;- -+ ;€,—1): consider x_; and flow it backwards
from E; _, to Rg. Then r(z;) > 2, and repeat the process inductively to obtain 2’y € Glir,01) € Ly

n—1

and x(i(nq) € Go(fy). We have two possible situations:
(1) 1f r(xof(nfl)) > 2, we have that xg(nfl) € Go(6) \ (Jo U Kp) and
x € Go(ir, l1;--- ;4n) \ [Ko(i2, L2 - -+ 5 €0) U xo(i2, ;- -+ 54n) U Jo U Ko] .

Then the W-orbit of Tfl(x(i(n_l)) is finite and intersects 0, W in a point 2’ contained in G N aj. Thus

o1(x’_,,) is in the boundary of the primary entry points of K, implying that the orbit of x escapes in negative
time. Since r(o1(z’,,)) > 2, the orbit of x escapes in forward time.
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(2) If r(x(i(n_l)) = 2, then either z(a:(i(n_l)) < —lor z(x(i(n_l)) > 1 and
x € Go(ir, b1+ 3€n) N [Ko(i2, €os - -+ 50n) U Xo(d2, L2; -+ 5 €n) U Jo U Ko .

Assume first that z(:z:o_(n_l)) < —1, or equivalently that :r[l(n_l) € Jo. Consider the point T’l(x[l(n_l)) and
flow it backwards in W. We obtain an entry point z’_,, in GN{r = 2} and o1(z"_,,) is a secondary entry point
with r-coordinate equal to 2 in the K-orbit of z. By Proposition [7.1] its forward K-orbit accumulates on w;.

If on the contrary z(mg(nfl)) > 1, or equivalently that xg(nfl) € Ky, consider the point T‘l(xg(nfl)) and

flow it forward in W. We obtain an exit point 2’_,, in GN {r = 2} and o1 (2"_,,)) is a secondary exit point with
r-coordinate equal to 2 in the K-orbit of x. By Proposition [7.1] its backward K-orbit accumulates on wy. O

We next investigate the behavior of the K-orbit of points in Ry with r-coordinate bigger than 2 that do
not belong to ).

PROPOSITION 16.9. Let x € Ry with r(z) > 2, assume that © ¢ ). Let 0 < L(x) < oo be the level of x,
as in Definition[16.5, Then we have the following possibilities:

(1) Let L(z) =0, so that x is outside every Go and every Lo curve, then py(t) > 2 for all t, and the orbit
of x escapes K in positive and negative time.

(2) Let L(x) =n > 0, so that x is contained in an open Uy or Vo region of level n, and assume that x
is also in the interior of the corresponding T'g or Ay curve whose vertex lies on the boundary of the
region. Then p,(t) > 2 for all t, and the orbit of x escapes K in positive and negative time.

(3) Let L(z) =n > 0, and assume that x lies in the interior of Uy (i1, 1;12, lo; - -+ ;€n) and in the exterior
of To (i1, l1; 2, Loy -+ ;€n), then there exist s < 0 such that ®s(x) is a secondary entry point, and for
€ > 0 sufficiently small we have p;(s —€) < 2.

(4) Let L(x) =n > 0, and assume that x lies in the interior of Vo (i1, 1;42,¢2;- -+ ;€,) and in the exterior
of No(i1, ly5ia, Lo+ 5 4y,), then there exist s < 0 such that ®4(z) is a secondary entry point, and for
€ > 0 sufficiently small we have p;(s —€) < 2.

Proof. Let ' € Ry C W such that x = 7(2’). By assumption, r(z’) > 2 thus its Wilson orbit contains an
entry point z’_; € 9, W with r(2’_;) = r(x) > 2. Then Proposition implies that 7(z’_;) = z_1 is in the
K-orbit of z. If z_; is a secondary entry point, we find 2°; € Ry by flowing z_; backwards. If r(z°,) > 2
we can repeat this process for as long as these conditions are satisfied. This reverse flow process stops when
either z_,, is a primary entry point, or r(z°,) < 2.

We now analyze the four cases in the theorem:

(1) Since x is outside every Go and every Lo curve, o', € 0, W\ (L7 U L; ) and hence x_, is a primary
entry point in the K-orbit of z with r(x_1) = r(x) > 2. Then Proposition implies that p,(t) > 2 for all ¢,
and that the orbit of x escapes K in positive and negative time.

(2) We discuss the case where x is contained in a Uy region. The alternate case where z is contained
in a V) region follows similarly. The assumption that L(z) = n, and that = does not belong to any Gy
or Lo curve, implies there is a unique region with « € Uy(i1, l1;i0,02; - ;€,). It follows that x is con-
tained in the interior of the curve I'g(i1, ¢1;42,02;+ -+ ;¢5), which is a connected component of the intersec-
tion of T(Pl/“(il,él;iz,eg;m;in_l,én_l)) N Ry. It then follows that the point ' ; constructed above lies inside

the region bounded by the curve T'(i1,¢1;i2,lo; - jin—1,fn—1) C L; . Thus, 2%, is in the interior of
To(iy, by;542, 025 ;€,_1), and we have that r(2%,) > 2.
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We repeat the process recursively n — 1 times, to obtain zg(n_l) € Ry with r(a:(i(n_l)) > 2 and contained
in the interior of I'g(¢1). The assumption that L(z) = n implies that x(i(nq) lies in the exterior of each
Go(1,k;£1) and Lo(1, k; ¢1) curve, for any a < k < oo.

The backward W-orbit of xof(nfl) yields the entry point 2’ € 9, W. Observe that r(z’_,) > 2 since the
Wilson flow preserves the radius, and 2’ ,, is in the region inside I'. Hence 7(z’_,,) € Eq N {r > 2} and the
backward K-orbit of this point to Rg yields the point 2%,. Then r(z%,) > 2 and 2%, is outside every Gg
and Lg curve, so by case (1) we conclude that p,(t) > 2 for all ¢, and the orbit of  escapes K in positive and
negative time.

(3) Since Go(i1, l1;42,02;- - ;€,) is in the intersection of 7(P[
' € L;

) and Ry, the point

(i1,€1592,€2; 3in—1,€n—1)

| is in the region between the curves

G (i1, s ig, s+ sin—1,0n—1) and  T(iy,€1;i9, 09+ jin—1,0n—1).
Thus, 2%, is in the region between the curves
Golir, l1;iz, lo;- -+ ;1) and  Do(i1, 1542, la5 -+ 5 4n-1),
from which it follows that 7(z%,) > 2.
We repeat the process recursively n — 1 times to obtain J:(l(nfl) € Ry in the region between the curves
Go(f1) and To(¢1). Then r(2?, /) > 2 and the entry point z’

Moreover, since Go(¢1) is in the intersection of the propeller 7(P/;) and Ry, we conclude that 2’ , € i C Ly .

Analogously, 2’ is outside the curve I' C Ly . Hence z_,, is a secondary entry point with r(z_,) > 2. Then
by the definition of the curve T, for € > 0 small ®_.(z_,,) has r-coordinate less than 2. Since z_,, is in the

backward /C-orbit of z, there exists s < 0 be such that ®,(x) = z_,, and the conclusion follows.

of its W-orbit has radius bigger than 2.

n

(4) The proof of this case proceeds exactly as for case (3). O

We next give applications of the properties of G — L curves as developed in this section, to the study of the
trapped orbits of points € K in the complement of the compact subspace 9.

PROPOSITION 16.10. Let x € K such that x € MM and p,(t) > 2 for all t. Then the orbit of x escapes K
in positive and negative time.

Proof. Let © € K with « ¢ 9 and r(x) > 2. If the forward K-orbit of = exits K through an exit point z,
by hypothesis r(z) > 2. Hence the KC-orbit of x escapes K in positive and negative time by Proposition
Thus, we need to consider the case where the forward KC-orbit of x is trapped.

Now assume that the forward K-orbit of z is trapped, then Proposition [7.9] implies that there exists a
subsequence {zy, | i = 1,2,...} C Rp such that lim r(2} ) = 2. Hence we can assume that the forward
i—00 K

K-orbit of z intersects Ry in a point 21 with r(x;) > 2 and arbitrarily close to 2.

By hypothesis, z ¢ 9t which implies that z; ¢ 9Mg,, so there exists e > 0 such that the open ball
Br,(21,€) C Ry about x; is disjoint from Mg, , and hence is disjoint from every vy and Ay curve. Moreover,
since p,(t) > 2 for all ¢, then we can choose € such that Bgr,(z1,€) is disjoint from every I'y and Ag curve.

Then z; satisfies either the hypothesis of Proposition [I6.81, the hypothesis of Proposition [I6.9}1, or the
hypothesis of Proposition 2. In any case, the K-orbit of x; escapes K in positive and negative time,
contradicting the assumption that the forward KC-orbit of x is trapped. ]

Recall that the Matsumoto region for a Matsumoto constant dp; > 0, as defined in Definition[7.4] is the set
UOnm) =7{y e W |2 —0n <7(y) < 2}) C K. We use the above results to describe the intersection of the
®,-flow of the Matsumoto region U(dps) with the rectangle Ry, in terms of the Gy and Ly curves introduced
above.
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PROPOSITION 16.11. Suppose that x € U(0prr) C K is a secondary entry point, with y' € (L7 ULy) and
' € (L7 ULy ) such that 7(y') = 7(a’) = . Assume that 2 — 5y < r(y') < 2 and r(z') > 2.

(1) If z(y') < —1, then the forward orbit of x is trapped, and the points in the the intersection of its
forward orbit and RoN{r > 2} are in the regions between Go(i1,¢1;- - ;£n) and ko(i1, €15+ ;Lpn), for
any collection of indices.

(2) If z(y') > 1, then the backward orbit of x is trapped and the points in the the intersection of its
backward orbit and Ro N {r > 2} are in the regions between Lo(i1,l1; -+ ;4n) and xo(i1, 415+ ;4n),
for any collection of indices.

(38) If =1 < z(y') < 1, then the orbit of x is an infinite orbit and the points in the the intersection of its
orbit and Ro N {r > 2} are in the regions between Lo(i1, €15+ ;€n) and No(i1,41;- -+ ;€n), or in the
regions between Go(i1,01;- -+ ;€n) and Yo(i1, €15+ ;4n), for any collection of indices.

Proof. The first conclusion in each item above, that the orbit of z is trapped, follows from the corresponding
case of Proposition [7.5] For the other claims, we analyze cases as follows.

(1) If 2(y") < —1, then 2’ is in the open region of L bounded by G and k. The conclusion then follows by
Proposition [16.9]3.

(2) If z(y') > 1, then 2’ is in the open region of Ly bounded by L and x. The conclusion then follows by
Proposition [16.9]4.

(3) The case z(y') = 0 is impossible for a secondary entry point, by the assumptions on the insertion maps.
If —1 < 2(y') <0, then 2’ is in the open region of L] bounded by G and v. If 0 < 2(y’) < 1, then 2’ € L; in
the open region bounded by L and A. The conclusion then follows by Propositions 3 and 4. g

We conclude this section with the proof of Theorem Recall that we assume = & 9.

First, if z is a primary entry or exit point, then z € 20 by Lemma In particular, z € 2J for every z
whose K-orbit is finite. Thus, we need only consider the case for x such that its C-orbit is infinite. We analyze
cases, based on the behavior of the radius function p,(t) = (P (x)).

If x satisfies p,(t) > 2 for all t € R, then z has finite orbit by Proposition [16.10} so = € 20.
If p,(t) < 2 for some t € R, then x is wandering by Proposition and hence x € 2.

The final case to consider is when z is an infinite orbit with p,(¢) > 2 for all ¢. Then there is a point y € Rg
on the orbit of x, with r(y) = 2. As y € 9, it must lie in the interior of one of the segments Jy or Ky in .
Choose an open neighborhood U(y, ¢€) for € > 0 sufficiently small, which is disjoint from 1.

If y does not lie in one of the Gy or Ly curves, as illustrated in Figure then we can assume that U(y, €) is
disjoint from these curves. Consider the cases for the orbit of z € U(y,e) NRyg. If r(z) < 2 then z is wandering
by Proposition For r(z) > 2, then the point z is outside any Gy or Ly curve. Proposition 1 implies
that the KC-orbit of z is finite. Thus, y € 2J and hence = € 20.

If y is contained in one of the G or Ly curves, it is in a level 1 curve. For z € U(y, e) N Ry we need only
consider the case when r(z) > 2. If r(z) = 2 then Proposition 2 implies its W-orbit is asymptotic to a
special point w;. If r(z) > 2, then either z is in Uy (¢) and outside I'g(¢) for some ¢, or z is in Vy(¢) and outside
Ag(¢) for some ¢, thus Proposition [16.9]3 or [16.9}4 applies. Then the orbit of z has points with r-coordinate
less than 2 and thus is a wandering point by Proposition 8.7

This covers the possible cases, showing that K — 9t C 20, which is the assertion of Theorem [16.1

In the next section, we give a condition that implies no points of 9 are wandering, hence K — 9t = 0.
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17. THE MINIMAL SET FOR GENERIC FLOWS

The construction of the flow ®; on the Kuperberg plug K involves various choices, in particular the choice
of the vector field W on W satisfying the hypotheses in Section[2] and the choice of the insertions o; satisfying
the hypotheses in Section [3] For any such choice, the ®;-flow preserves the compact set 9 defined by the
closure of the orbits of the Reeb cylinder R. In this section, we consider an additional regularity hypothesis
on the insertion maps o;, which is a uniform version of Hypothesis and is used to estimate the behavior
of the flow ®; near the special orbits of ®;.

We say that ®; is generic if it satisfies the hypotheses in Definition [17.3] The main result of this section is
then:

THEOREM 17.1. If the flow @, is generic, then ¥ = 9.

The proof of Theorem [I7.1] will occupy the remainder of this section, and requires a detailed metric analysis
of the orbit structure of the ¥;-flow near the Reeb cylinder R, which is used to obtain estimates on the ®;-flow
near the special orbits.

The equality ¥ = 91 has been previously observed in special cases. Ghys gave an argument in [I7, Théoréme,
p. 302] that this conclusion holds for certain generic classes of insertions. The Kuperbergs constructed in [27],
an example using polynomial vector fields for which they sketch the proof of that ¥ = 9. Our result, which
is motivated by these examples, yields this conclusion in more generality. The proof makes full use of the
body of techniques developed in this paper, and especially of the properties of the system of double propellers
constructed in Section For the more general case of the construction of flows on K which do not satisfy the
generic regularity hypotheses, it seems possible that the inclusion ¥ C 9t may be proper, as was discussed in
[27], in which case, the minimal set ¥ will be a “Denjoy-type” invariant set for a flow on a surface lamination.

The additional hypotheses is formulated using the notation of Hypothesis [I2:1] on the insertion maps o;
for i = 1,2. The projection along the z-coordinate in W is denoted by =, (r,0,2) = (r,6,—2), and we assume
that o; restricted to the face, o;: L; — W, has image transverse to the vertical fibers of 7,. This condition
is implicit in the illustrations Figures [6] [§ and 0] Given this assumption, there is a well-defined inverse map
¥ = (7, 0 ai)*lz D; — L; with domain ®; C 9,y W, which we recall was given in coordinates in by
(89) 9i(r', 0, —2) = (R; 1 (0),0;,(0"),—2) = (r(9;(+', 0", -2)),0(9;(+', 60, —2)), —2) .

Also, recall that Hypothesis assumes that R; 2(0') = r(¥;(2, ', —2)) has non-vanishing derivative, except
at 0, defined by 9;(2,0,,—2) = (2,6;,—2), and that €y > 0 is the constant defined after the property .

For i = 1,2, consider the curves ~; ,(6) = ¥;(r, 6, —2), defined for 1 < r < 3 and 6 such that (r,6,—2) € D;.
The transversality assumption on o; implies that each curve +; , is non-singular; that is, %71-77(9) # 0. We
impose a hypothesis on the shape of these curves for values of the coordinate r near 2, which implies that they
have parabolic shape, up to second order.

HYPOTHESIS 17.2. Fori=1,2,2<ryg<2+4¢ and 0; —eqg < 0 < 0; + €9, assume that
d d? d ,
(90) @@MO @)>0 , WRMO @)>0 , @Rwo 0;)=0

where 0] satisfies 9;(2, 0}, —2) = (2,0;,—2). Thus for 2 < ro < 2+ €, the graph of R; ,(0") is parabolic with
vertex 0’ = 0.

Note that is a consequence of Hypothesis when rg = 2.

DEFINITION 17.3. A Kuperberg flow ®; is generic if the construction of K and K satisfies Hypotheses[12.1],
[12:3 and[I73 That is, the singularities for the vanishing of the vertical vector field W are of quadratic type,
and the insertion yields a quadratic-type radius function near the special points.

Recall from Propositionthat for each point x € R with —1 < z(z) < 1, its W-orbit is forward asymptotic
to the periodic orbit Oy and backward asymptotic to the periodic orbit O;. The periodic orbits intersect Rg
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in the points w; = O; N Ry for i = 1,2. Also, recall from that In = RN Ry = {(2,m,2) | -1 <2< 1}
is the line segment in R between w; and wy. Recall that the action of the generator ¢ € G} defined by the
Wilson flow preserves Iy, and for £ € Iy with —1 < 2(§) < 1 we have z(§) < z(¥(£)). Then set

(91) Ie ={(2,m2) | 2(§) <z < 2(¥(£)}-
LEMMA 17.4. Let § € Iy with —1 < z(€) < 2((§)) < 0 and suppose that I C X, then ¥ = M.

Proof. The hypotheses imply that I, is a fundamental domain for the ¥;-flow on the interior of R. That is,
the W-orbit of each interior point € R intersects the interval I¢. If I C ¥ then R’ C X, and hence 9y C X.
As My is dense in M, the conclusion follows. O

The strategy of the proof of Theorem [17.1] is to show that for some £ € I sufficiently close to w;, the
K-orbit of wy contains I¢ in its closure. To this end, we establish some estimates on the orbit under Gj of
£ € Ry with 2 < r(£) < 2+ § where § > 0 is sufficiently small.

We first obtain estimates for the metric behavior of the orbits of the Wilson generator ¢ € Gj-. Recall the

functions f and g chosen in Section [2] which are constant in the coordinate 6, with
0 0

92 W=g(r,0,z)— ,0,2) = .
(92) 90,0, 2) 5=+ [(r,6,2) o
Hypothesis and condition imply there exists constants Ay, By, Cy such that the quadratic form
Qg(u,v) = Ay -u? + 2B, -uv + C, - v? defined by the Hessian of g at w; is positive definite. As a consequence,
for Qo(r,2) = (r — 2)? + (2 + 1), there exists D, > 0 such that
(93) 9(r,0,2) = Qg(r = 2,2+ 1)| < Dy-(Ir =2 +[z+1F) for Qo(r,2) < €§
where ¢ is the constant defined in (44). The condition implies that for (r, z) sufficiently close to (2, —1),

the error term on the right-hand-side can be made arbitrarily small relative to the distance squared Qo(r, 2)
from the special point (2, —1). We also observe that implies there exists constants 0 < A; < Ay such that

(94) Al : QO(T’ Z) < g(?“, 9a Z) < )‘2 : QO(T7 Z) for QO(Ta Z) < E(2)-

Next, consider the action of the maps 1 for £ > 0. Let £ € Ro with 2 < r(§) <2+ ¢ and —7/4 < 2(€) <
—1/4, such that (&) is defined and z((£)) < 0. Let T'(§) > 0 be defined by ¥(§) = ¥y (§). Then the
z-coordinate of ¢(§) is given by

T(¢)
(95) 4wm—«>=£ g(,(€)) ds > 0.

If £ # wy then g(¥4(£)) is positive along the orbit segment for 0 < s < T'(€), hence z(¥(€)) — z(&) > 0.

Note that if the orbit of x € W avoids the ep-tube around the periodic orbits O; then g = 1 along the orbit,
so the z-coordinate along the orbit increases at constant rate 1. As the cylinder C has height 4, this means
that such an orbit traverses an angle of at most 4, hence it does not complete a full turn around the cylinder
C. In particular, for £ € Ry with 7(§) > 2+ g and z(§) < 0 with ¢ defined at &, this implies the W-orbit
crosses the annulus A where z = 0, then returns to intercept Ry with z(1(£)) > 0. On the other hand, for
e Ry with 2 < r(§) <240 for § < ¢ and z(§) < —1, the W-orbit traverses a region near O; where the
slope is close to 0, and hence repeatedly traverses the rectangle, with the number of revolutions increasing as
§ — 0. In particular, for such &, the powers 1)*(£) form a sequence of points in the vertical line r = r(¢) with
increasing z-coordinates, as has been noted previously, especially in the proofs of Propositions and

We next combine (93]) with to obtain metric estimates on the orbit of w; under the action of GJ.
Recall that the first transition point for the forward orbit of wy is the special entry point p; = 7(£; N Oy)
with 7(p7 ) = 2, as illustrated in Figure Section introduced the alternate notation p’(1) = p; € E; and
p(1) = 771(p'(1)) € Ly, where r(p(1)) = 2 by the Radius Inequality.

The forward W-orbit of p(1) is trapped in the region C N {z < —1}, and thus intercepts £, N C in an
infinite sequence of points with increasing z-coordinates between —2 and —1. For all £ > b, these points
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are labeled p'(1;1,¢) € L7, where r(p'(1;1,¢)) = 2 and 2(p'(1;1,¢)) < 2(p'(1;1, + 1)) < —1. Moreover,
z2(p'(1;1,0)) - —1 as £ — oc.

For each £ > 0, set p(1;1,¢) = o7 *(p'(1;1,£)) € L] then r(p(1;1,£)) > 2. Note that r(p(1;1,£)) — 2 as
¢ — o0, and the sequence p(1;1,¢) accumulates on p(1) in L] .

Recall from Section that corresponding to the sequence {p'(1;1,¢) | ¢ > 0} C L] is a sequence
{po(1;1,€) | £ > 0} C Ry where po(1;1,¢) is the point in Ry whose forward W-orbit has p'(1;1, ) as its first
transition point. Thus, r(po(1;1,¢)) = 2, and po(1;1,£ + 1) = 1(po(1;1,£)) for £ > 1, with z(py(1;1,¢)) — —1
(see Figure [46). Define 0 < t; <ty < --- such that ¥, (po(1;1,0)) = po(1;1,£).

r =2
Iy
z=—1
Wil
Jo
pﬂ(l;]-’a)
pO(iO;lagl;lsa)

FIGURE 46. Iterations of I'yg and Ay in Ry under Gj;

LEMMA 17.5. There exists constants Co,C3 > 0 such that for all £ > £y, where €y > 0 is such that
z(po(1;1,4p)) > —(1 + €g), then we have:

—1 -1
_— 1;1,/0+1 1< —
7w A e R P W W
Moreover, for the constants A1 < Ay introduced in , there exists constants Cy, Cs,Cg > 0 such that for all
¢ Z 607

(96)

Cy Cy

(97) (TSN < z2(po(1;1,€+ 1)) — 2(po(1;1,€)) < (4mral)? + Cg’

Proof. Note that z(po(1;1,4y)) > —(1 + €o) implies the W-orbit of po(1;1, £y) satisfies
—(1+e€0) < 2(Ve(po(1;1,49))) < —1 for all t > 0,
and thus f(P:(po(1;1,4))) = 1. Tt then follows from that t, = tg, + 47 (€ — £p) for all £ > 4.
Set z(t) = z(V(po(1;1,4p))) for t > 0, so that —(1 4 €9) < zo = 2(po(1;1, 4y)) < —1. Then we have

d
(98) M-+ € < hee(142(0)
As z(0) = zp set C4 = —1/(z0 + 1) > 0 then we have
-1 -1
- < t 1 < — .
(99) NG warirg)

Substitute ty = tg, + 4w (¢ — £p) into and collect constants to obtain (96]).
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The estimate follows by subtracting terms in for £ and £+ 1, and gathering constants. Alternately,
one can use the formula and the estimate to obtain (@ O

The estimates in Lemma have counterparts for £ € Iy with —1 < z(€) < 0 for which z(¢(§)) < —1+€o.
In particular, the length of the interval I defined in has quadratic upper and lower bound estimates as
a function of |z(§) + 1.

We next obtain a more precise estimate than for the restriction of ¢(2, 6o, 2) to the line Ij.

Note that for some A1 < Ay < Ay, the Taylor expansion for ¢(2, 6y, z) gives the approximation g(2, 6, z) =
Ag(z + 1) + O(]z + 1|*). Next, choose a scale 0 < €3 < ¢y/2 sufficiently small so that this approximation is
strong enough to control the dynamics of the ¥;-flow near the cylinder C.

DEFINITION 17.6. Let 0 < e3 < min {eo/2,1/100,1/(300),)} be such that

Ag(2 +1)?

(100) 19(2,80.2) = Mgz + 1% < 225

for [z + 1| <es .

As a consequence, we have

(101) 99 Xg(z+1)2 < g(2,0p,2) <1.01-Ag(z+1)* for [z +1] <e3 .

A key point is that we can now choose a d3 > 0 so that a weaker form of the estimate (101} holds for
some neighborhood of a fundamental domain I in Iy as defined by (91). Let 0 < 83 < €o/2 be such that the
following two estimates hold:

(102) |r—2[<dgand [z+1]<e3 = 0 < g(r,0p,2) < 1.02- N, (e3)?
(103)  |r—2/<ézandez/d<z+1<es = .98 -N\(2+1)* <g(r,0p,2) <1.02-\,(2+1)?

Note that the assumption that g is non-degenerate in Hypothesis and the estimate implies that for
€3 sufficiently small, there exists a constant Cy > 0 such that d3 = e3/Cy.

We next introduce the “target box”, which is key to the proof of Theorem [17.1
(104) Ro(ds,e3) ={(r,2) eRo | |r—2] < I35, e3/4 <z+1<e3} .
DEFINITION 17.7. We say that £ € Rg and ¢ > 0 satisfy Condition R(d3,€3,¢) if
(105) z(§) < -1, 2<r(€) <2403

(106) e3/3 < z(YH() +1 < 2((E)) +1<es/2.

We then have an analog for r > 2 of Proposition 7.5
LEMMA 17.8. For 03, €3 as above and £ € Ryg satisfying (L05)), there exists £ > 0 such that (L06]) is satisfied.
Proof. As z(§) < —1 is assumed, there is a unique ¢; > 0 so that z(U, (§)) = —1 + €3/4, and let ¢t > ¢ be

the first subsequent time for which ¥, (¢) € Rg. Note that to — t; < 27 7(§) < 67, and so by and (102)
and Definition we obtain

(107) 2(W4, (€)) — 2(Wy, (€)) < 6m-1.02- A\ (€3)® < €3-20/300 = e3/15 < €3/12
so that z(¥y,(£)) + 1 < €3/3. The same estimates as in (107)) show that

2@ (01, () — 2(U° (01, (6))) < €3/15 < €3/12
for all £ > 0 for which z(¢%(U,(€))) + 1 < €3/2. The estimate then follows. O



100 STEVEN HURDER AND ANA RECHTMAN

The last metric estimate required for the action of 1, and a key point in the proof of Theorem [I7.1] is to
obtain estimates on the dependence of z(1)*(€)) for small changes of ¢ € Ry. We first estimate z(¢ (£ +Az)) —
z(¢4(€)) for £ > 0, where Az represents a small vertical increment.

Recall that the Wilson flow ¥, is rotationally invariant, and for x; = (71,61, 21) we adopt the notation
Ry/(x1) =x1+ 6 = (r1,01 + 0, 21), so that the rotation invariance becomes W;(xy + 0') = Uy (x1) + 6.

LEMMA 17.9. Let 1 = (r1,601,21) with =7/4 < z; < =5/4 and |r; — 2| < €, so that f(x) = g(x) =1
for x sufficiently close to x1. For Az sufficiently small, set x} = x1 + Az = (r1,01,21 + Az). Fort >0, set
y1 = Uy(x1), then

(108) 2(Wi(21)) — 2(We(21)) = gly) - Az

Proof. Let s1 be defined by z(Us, (2})) = z(x1). As the slope of the vector field W near x4 is g(z1)/f(z1) = 1,

we have s; = —Az, and hence 0(¥, (2})) = 01 — Az. Thus, x; = R, (¥, (2})) and so

(109) 2 (W) = 2 (Ve(V s, (Rsy (21)))) = 2 (Rsy (Vs (Wi (21)))) = 2 (Vs (31))

The slope of W at y1 is g(y1) as f(y1) = 1, so that 2z (V_g, (y1)) = 2(y1) + g(y1) - Az, which yields (108). O
In the case where z; = £ € Ry and VU, is the map defining ¢¢, then the estimate (108) can be made precise.

For £ > 0, set & = 9*(£). Define T'(&,£) > 0 by ¢*(&) = Urpe ) (£).

COROLLARY 17.10. Let & € Ry with —=7/4 < z(&§) < =1 — €9 and £ > 0 satisfy Condition R(d3,€3,7).
Then for Az sufficiently small so that &) = & + Az again satisfies Condition R(ds, €3,¢), we have

(110) 2(¥(&5)) — 2(¥"(£0))| < 1.02- Ag(es)? - Az
Proof. The point & satisfies the conditions of Lemma and then use (103]) in the proof. O

We next develop an estimate for z(¢f(€))) — 2(1*(&)), where & = & + Ar-.

Assume that £ € Rg with —7/4 < 2(&) < —1 — ¢g and £ > 0 satisfy condition R(d3,€3,£). Also assume
that Ar is sufficiently small so that £ = & + Ar again satisfies condition R(Js, €3, £).

Then the z-coordinate z(¥:(&p)) increases at constant rate 1 in the region {z < —1 — €y}, and subsequently
increases at a possibly slower rate in the region {—1—¢€y < z < —1+€¢p}. The W-orbit segment {¥;(&) | 0 <
t <T(&,¢)} is geometrically a “coiled spring” in W which wraps ¢-times around the cylinder {r = r(£)}, with
the coils most “tightly spaced” near the periodic orbit O;. If Ar > 0 then the orbit {¥(&y) | 0 <t < T(&},0)}
is slightly less tightly spaced, so the ends of the orbit segment are spaced further apart. More precisely, we
have

T(&0,L)
(111) W () = =(60) + / 9(U,(€0) ds

Obtaining a sharp estimate for z(1*(&))) — 2(¥*(&)) requires estimating this integral as Ar varies in the
expression r(&)) = r(&) + Ar, and this requires more detailed estimates of the integrand g(¥;(&p)) than is
given. However, a sufficient estimate can be obtained by noting that z(¢(&)) is a smooth function with
bounded derivatives on any compact set X C Ry contained in the domain of ¢*. For 0 < §4 < 43, define:

(112) K(e3,03,04) = {(r2)| 2<z<—-1—¢czand 2404 <7 <2+ 03}

which is a compact set contained in the domain of /¢. Then for the function g chosen, define:

M | (r,2) € K(63,53754)}

(113) M(g7£7€3,53,64) = max{ )
r

Then by the Mean Value Theorem, we have:
LEMMA 17.11. Let & € Ry and Ar be such that &y, &} € K(es,d3,04), where & = & + Ar. Then
(114) |2(¥(€0)) — 2(¥"(&0))| < M(g,L,€5,03,04) - Ar
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The idea of the proof of Theorem [I7.]] is to show that for e5 > 0 as in Definition [I7.6] and for any d;
satisfying and (103)), the orbits of wy under Gj; yields a set of points which have dense z-coordinates in
a rectangle defined b. As 63 can be chosen arbitrarily small, this implies that the closure of the orbit
of wi contains a fundamental domain for the ¥;-flow on R as in , so the claim that ¥ = 9t follows from
Lemma [I7.4] The derivations of the estimates used in the proof of these statements depend fundamentally on
Hypothesis

The K-orbit of wy € Ry defines the sequence of points {p'(1;1,¢) | £ > 0} C L for £ > 0, and corresponding
points {po(1;1,¢) | £ > 0} C Ry with r(po(1;1,¢)) = 2 and z(po(1;1,¢)) — —1, where the convergence of
z(po(1;1,0)) is estimated by Lemma [17.5]

Assume that a = b = 0 for a and b as defined in Sections [L3| and respectively. For each ¢ > 0, we then
have the curve kq(f) C Ry with lower endpoint po(1;1,¢). For £ = 0, the lower part of the curve ko(0) is the
image of the segment Jy C Ro under the map ¢ € Gj, and xg(¢) is the image of £((0) under the map 1 for
£>0.

The curve ko(0) is “parabolic” by Hypothesis That is, the r-coordinate of the graph is approximated
by a quadratic function of the z-coordinate, for z near po(1;1,0). In particular, the r-value of points on
k0(0) increases as —(1 + z) increases for z < —1. As the map 1) preserves the radius coordinate, the same
monotonicity property is true for each of the curves ko(¢), as illustrated in the graphs in Figure

Note that the image under the map ¢ of the points {po(1;1,€) | £ > 0} yields a sequence of points
po(1;1,4;1,0) C ko(0) for which r(po(1;1,4;1,0)) > 2 and po(1;1,¢;1,0) — po(1;1,0) as £ — oo. Thus
r(po(1;1,4;1,0)) — 2 as £ — oo.

Choose my > 0 such that r(po(1;1,m1;1,0)) < 24 d3. By Lemma there exists £; > 0 such that
(115) €3/3 < z(po(L;1,m1;1,61)) +1 < z(po(L;1,m1; 1,6 + 1)) +1 < e3/2,
since po(1; 1,m13 1, 61) = ¢ (po(1;1,m1; 1, 0)).

Choose ny > mq such that 7(pg(1;1,n1;1,0)) < r(po(1;1,m1;1,¢1)), and set o4 = r(po(1;1,n1;1,0)) — 2.

Observe that the r-coordinate along the curve ko(0) between po(1;1,n1;1,0) and po(1;1,m4;1,0) is mono-
tone increasing by Hypothesis hence have r values ranging between 2 + d4 and 2 + d3. We next select a
collection of sequences of points in the G} -orbit of w; which are sufficiently closely spaced, and which “shadow”
this curve segment. Applying the map ¢‘* will then yield a collection of points in the region Ry(d3, €3) which
have arbitrarily dense z-coordinates.

Introduce the constant
(116) p=2-max {M(g,l,€s,63,04), 1.02- Ag(e3)*}

where M (g, {1, €3,083,04) is defined by and the second term is introduced in m Then @ > 2, and for
N > 2, set

_ 2(po(1;1,my; 1,4y + 1)) — 2(po(1;1,m151, £1))

(117) N 5

<1/8 R (;NZGN/‘LL.

The image under ¢f of the lower part of the parabolic curve ko (n1) with lower endpoint p(1; 1,71 ) is part of the
curve £o(1,n1;0) with lower endpoint pg(1;1,n1;1,0). Thus, the lower part of ko(1,n1;0) is the image of the
interval Jy under the composition ¢ 09" 0¢. Applying this map to the sequence po(1;1,£) = ¥¢(po(1;1,0))
yields a collection of points on the curve k(1,7n1;0) which converge to po(1;1,n1;1,0), as in Figure By
Lemma [I7.5] there exists ny > 0 so that for the collection

(118) O(6n;m,n2) = {¢f 0™ 0 09 (po(1;1,0)) | £ > na} C ko(1,n130),

the differences of both the z and r-values of successive points for £, + 1 > ns are bounded above by dy.
By making no bigger, we can assume that the point pg(1;1,n9;1,n1;1,0) has the largest r-coordinate for all
points in O(dn;n1,ne).
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Wi e
ko(1,71;0) ko(0)

po(1;114;1,m151,0)

po(l; 1,n1; 17 0)

po(1;1,0)¢

Ro

FIGURE 47. The points po(1;1,¢;1,n1;1,0) in the curve ko(1,n1;0) in Rg

We now proceed inductively. Assume that the integers {ni,na,...nx} have been chosen, with associated
sets O(On;n1,na,...,n;) C G (wr) for i <k, so that po(1;1,m;;1,m-1;...;1,n1;1,0) satisfies that

’]"(po(]., ].,’I”Ll'; 1,7’Li,1; ey 1,’[7,1; 1, 0))
is the maximum of the r-values for all points in O(dn;n1,n9,...,N;).

Suppose that r(po(1;1,ng; 1, ng—1;...51,1n1;1,0)) < 7(po(1;1,m1;1,0)), then the previous points cho-
sen lie inside the region defined by the region bounded by the parabola T'g(1,n;0) and the region {r <
r(po(1;1,m1;1,0))} which lies inside the ep-ball in Ry about wy. Thus, we can continue the above process, and

choose ng1 as follows. The curve ko(1,ng; 1, nk—1;...;1,n1;0) with lower endpoint po(1; 1, ng; 1, ng—15--+ 51,0)
is the image of Jy under the composition of maps
(119) 67 0 Y™ 0 g 0™ 0 gy o- 0™ o

Thus, applying the map in (119) to the sequence {py(1;1,¢) | £ > 0} yields a collection of points on the
curve ko(1,ng; ... ;1,n1;0) which converge to po(1;1, ng; 1, ng—1;- -+ ;1,0). Then by Lemma there exists
ng4+1 > 0 so that for the collection

(120) O(5N;n1,n2,...,nk+1)

= {of o™ ooy opio- 0™ 0¢f (po(151,0)) [ € > npsr }
which is contained in the curve ko(1,nk;...;1,n1;0), the differences of both the z and r-values of successive
points for ¢,¢ + 1 > ng41 are bounded above by dy. We can assume that 7(po(1; 1, ng41; 1, ng; - -+ ;1,11;0))
is the maximum of the r-values for all points in O(dn;n1, M9, ..., NEkg1)-

The collections of points defined by (120)) are contained in the region bounded by the parabola I'g(1,n1;0).
Hypothesis implies the composite functions in (119)) have non-zero derivatives which are bounded away

from zero for points in the region d4 < r(£) < d3 and 2(§) < —1 — €. If r(po(1; 1, nk41; 1, ng; -+ 51,m150) <
r(po(1;1,m1;1,0)) then the kg curve with lower endpoint at po(1;1, ngr1; 1, ng; - -+ ;1,n1;0) is defined, and so
we can repeat the process to increase r(pg(1;1, ng41;1,ng; - -+ ;1,n1;0)), unless

r(po(1; 1, k4131, nes -+ 31,n130)) > r(po(1;1,ma;1,0)),
in which case the inductive selection of points terminates.

Now apply the map 1‘* to each of the sets O(6x;n1,n2,...,n%) to obtain points in the region R (3, €3).
Then Corollary[17.10|and Lemma [17.11]imply the difference of the z-values of successive points in the sequence
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are bounded above by -6y = ey. Finally, by construction the upper r-value of points in O(dx;n1, na, ..., ng)
is approached by the descending r-values of points in O(dn;n1,n2, ..., NEy1)-

Thus, the image of G} (w1) contains points which are in the strip 2 < r < 2+ §3 and whose z-values increase
from z(po(1;1,m1;1,£1)) to 2(po(1;1,my;1,4; + 1)) in increments at most ex. As d3 > 0 and N > 0 were
arbitrary, this implies the closure of G}, (w1) contains R, as was to be shown to establish Theorem m g

We conclude with a remark on the proof of Theorem The quadratic assumption in Hypothesis
was not used in any essential way, except to obtain precise estimates on the spacing of the orbits of W. It
seems like that a much weaker assumption than this hypothesis should suffice for the proof.

18. GEOMETRY OF CURVES IN Ry

The aim of this section is to investigate the geometry of the collection of curves formed by the intersection
Mo N Ry, thus of 79 and Ag curves. Up to now, we have only used their topology and the fact that the I'y and
Ag curves form families of nested ellipses in Rg. For a generic Kuperberg flow, as defined by Definition [17.3
we obtain estimates on the geometry of these curves, including the following result which has applications in
Sections [19 and P2

THEOREM 18.1. Let ®; be a generic Kuperberg flow on K. Then there exists L > 0 such that each
connected component of My N Ry is a curve with length bounded above by L.

For vy and Ay curves of level 1, the r-coordinate along the lower half of the curve is monotone increasing.
If such condition was true for any curve in 9y N Ry, the theorem will be trivial. As we explain below this
monotonicity condition does not holds for curves at level 2 or higher. To describe how ~y and Ay curves fold,
we introduce a new set of curves, the Ag-curves.

For simplicity, we will restrict our discussion to 7y curves. Recall that the union of vy and kg curves gives
Ty curves, that at high levels are very thin (as a consequence of the nesting property). Hence the shape of a
T’y curve, that is a closed curve, can be seen as the shape of a simple curve. These are the Ag-curves described
below.

As mentioned above, the lower half of a vy curve of level at least 2 has no monotone radius. Then, the
curve in F; generating the corresponding propeller has no monotone radius which implies that the propeller
can have internal notches that do not correspond to the ones introduced in Section These new internal
notches generate also compact surfaces, to which we refer as bubbles of second type (the bubbles of first type
being the ones introduced in Section . This phenomena is discussed at the end of this section.

The two aspects we are interested in are the following. First, we show that the lengths of 79 and Ag curves
having one endpoint in the domain of d)f and the other endpoint in the domain of d);“ has an upper bound.
Observe that such curves admit 2 — 2¢p as a trivial lower bound. Second, these curves are “nice flat” arcs
away from their endpoints, in the sense that if we consider a propeller generated by a ~-curve truncated near
its tip, the trace that we obtain on the annulus A = {z = 0} will be a spiral that is never tangent to the lines
{6 = const}.

To prove T heorem let us start by analyzing level 1 curves. Recall that the curves I'y(¢) for ¢ > a and
unbounded, form the trace of the propeller 7(P/) on Rg. Hypothesis implies that I' C L] is a parabolic
curve with vertex at p(1) = o7 *(py) as illustrated in Figure Thus the curves T'g(¢) are tangent to the
vertical line r = 2 at two points, their vertices, with parabolic shape near these points, as in Figure

The points in I'y(¢) C W belong to Wilson orbits that intersect at least a + £ times Ryg, thus orbits that
turn at least a + ¢ — 1 times around the cylinder C before hitting A. It follows that the radius coordinate
along these curves, for ¢ > a, is bounded above by 2 + ¢y. Thus the curves are contained in the rectangle
[2,2 4 eg] x [—2,2]. Moreover, outside the €y tube around the periodic orbits O;, for i = 1,2, we have that
g = 1 and thus a Wilson orbit intersects at most twice Rg in this region, once in each direction. Hence the
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curves I'g(¢) are almost vertical outside the eg-neighborhood of the points w;. These considerations apply to
higher level I'g-curves.

The problem of describing higher level I'y curves comes from the fact that the curves I'(¢,£) C L; for
i = 1,2 do not have monotone radius along (i, ) and the same might apply to the curves (i, £). To illustrate
this situation, let us consider the curve T'g(¢) for £ > 0. The hypothesis £ > 0 implies that the positive orbit
of its points hit E; along 7(I'(1,£)), that is tangent to the vertical line » = 2. Thus I'(1,¢) € L] is tangent
to T" at p(1;1,¢) and is composed of the union of v(1,¢) and x(1,¢). The circle with radius r = r(p(1;1,¢)) is
transverse to v at two points, one being p(1;1,¢). Thus v(1,¢) can not have monotone radius, as illustrated
in Figure (48]

FIGURE 48. Intersection of I'(1,¢) with the circle r = r(p(1;1,¢)) in L

Observe that Hypothesis implies that a curve in £] crossing the line z = —1 is bended by the inverse
of the insertion map oy 1 at the point with z-coordinate equal to —1. If the original curve is vertical, we obtain
a parabolic curve in L] . For example, IV C L] is the vertical straight line and becomes the parabolic curve
[ € L] with axis o, ' ({z = —1}).

Let A’ = {z = —1} C L], then the curve A = o] '(A’) C L is a straight line connecting the boundary of
0, W to the point p(1) with radius 2. Observe that A is inside the region of L that is bounded by I'.

The propeller Py is an infinite propeller as in Definition Consider the notched propeller P = P4NW’
and its image 7(P%) in K. The trace of this propeller on the rectangle Rg is an infinite family of arcs Ag(¢),
each one of them being in the region of Ry that is bounded by I'g(¢), for the same index ¢. Since A intersects
I at the special point p(1) € Ly, for each ¢ the curve Ay(¥¢) intersects I'g(¢) at the two points po(1;1,¢) and
po(1;2,¢). Recall that these are the points where I'g(¢) is tangent to the vertical line r = 2.

From the curve A C L] we can construct the infinite family of A-curves and the corresponding Aj-curves
in Ry. Observe that a level n curve in the later family is contained in the region of Ry bounded by a
Tg-curve at the same level, in fact, by the I'g-curve having exactly the same label. We will say that the
Do-curve envelops the Ag-curve. To be more precise T'g(i1, £1;- - ;€,) envelops Ag(i1, f1;--- ;¢,) and these
two curves intersect at the points po(1;41,%1;- - ;1,€,) and po(1;i1,41;- - ;2,4,). Finally, observe that at the
intersection points the curves are transverse to each other and locally T'g(i1, f1;- - ;¢,) has parabolic shape
with axis Ag(i1,01; - ;4n).

As we comment at the beginning of the section we are interested in finding upper bounds to the length
of vp-curves and describing the end parts of these curves. The length of such curves is approximated by the
length of Ag-curves, thus it is enough to find a uniform upper bound to the length of Agy-curves.
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We consider next A-curves in detail. Let A’(7,£) C £ be the entry curves of the notches of the propeller P
and A(i,¢) = ai_l(A’(z', 0))cL;, fori=1,2. Hypothesis on the Wilson flow, implies that for r > 2+ ¢
the vertical component of the vector field is equal to 1 and thus the lines Ay(¢) are steep in this region. Then
there exists some positive number B such that for ¢ > B the curve A’(1, /) intersects transversally A’. Let
q'(1;1,£) be the intersection point. The points in the curve A’(1,£) belong to W-orbits that intersect at least
(a + 0)-times the rectangle Ry before intersecting the annulus A and for ¢ > 0 the endpoint p/(1;1,¢) € L] .
The genericity assumptions imply thus that the value of B is small. Assume, without loss of generality, that
B = b for b as defined in Section [[2

Thus, for ¢ > 0, A(1,¢) C Ly is a curve going from the point p(1;1,¢) € k to a point in the boundary of
0, W and crossing A at ¢(1;1,¢) = o7 H(¢'(1;1,0)), then A(1,¢) is folded at the point ¢(1;1,¢), as illustrated
in Figure Observe that ¢(1;1,£) is not necessarily the point of A(1,¢) with minimum radius, the point
with minimum radius of A(1,¢) is in the arc between ¢(1;1,¢) and p(1;1,¢).

2
4

1

g = _
P'(1;1,8)

FIGURE 49. Curves A’ and A'(1,¢) in £] and the corresponding curves in L

Since A and A(1, £) intersect, the propellers P4 and Py(; ¢y intersect along the W-orbit of the point ¢(1;1, £).
Observe that Py, is a finite propeller.

We consider now the intersection of Py ) with £, for £1 > b. Since Py(14,) is a finite propeller the
intersection consists of finitely many curves A’(1,¢y; 1, ¢5) for ¢; fixed and ¢5 > b and bounded. For ¢; > 0 and
¢y > 0, these curves have one endpoint at p’(1;1,¢1;1,¢3) C £'(1, ¢2) and its other endpoint on the boundary of
L. Moreover A’(1,41;1,{3) is in the region bounded by I(1, ¢1;1, £3), the later being in the region bounded by
I(1, £3), by the results of the previous sections. For ¢; big enough and ¢5 > 0 the curve A’(1, ¢1;1, £2) intersects
A’ and at the intersection the curves are transverse to each other. Let ¢'(2; 1, £1; 1, £5) be the intersection point.
Observe that A’(1,£;1;1, ) also intersects transversally A’(1,¢5) at the point ¢'(1;1,¢1;1,£5) that is in the
Wh-orbit of ¢(1;1,¢1). The points ¢’(1;1,¢5) = A’(1,45) N A’ and ¢'(2;1,¢1;1,¢3) are on A’ and in the region
bounded by I (¢2), as illustrated in Figure

We comment on the assumption ¢; big enough. The curve A’(1,¢1;1,¢5) intersects A’ if its endpoint
p'(1;1,41;1,45) has z-coordinate smaller than —1, condition that is satisfied for ¢; big enough since the
sequence p'(1;1,¢1;1, f2) converges to p’(1;1,45) as £1 — oo and z(p'(1;1,43)) < —1 for any 5 > a. Observe
that since we want to describe curves at high levels, we just care for curves with £; big. This assumption will
be used several times in what follows.

REMARK 18.2. Ag-curves at level 1 have their lower endpoint below the line z = —1, since the lower
endpoint belongs to a W-orbit with radius coordinate equal to 2. At higher levels this is not true. However,
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we will only consider Ag-curves whose lower endpoint is below z = —1. The reason for this is that a higher
level Ag-curve with lower endpoint above z = —1 intersects the domain of the map v ~'. Hence the trace of
the propeller containing this Ag-curve has curves whose lower endpoint is below z = —1. The latter curve is

longer, thus an upper bound to the length of the longer curve suffices.

LEMMA 18.3. For a generic K plug, (¢’ (2;1,41;1,42)) < r(¢'(1;1,43)).

Proof. Observe that
T(q/(la 1761; 1a£2)) = T(q(lv lagl)) S T(p(lv lagl)) = T(p/(lv 1a€1; 17£2)a
where the two equalities follow since the points are in the same W-orbits and the inequality in the middle
follows from Hypothesis m Thus Hypothesis implies that the W-orbit of p(1;1, ¢;) climbs faster than
the W-orbit of ¢(1;1,¢;) and thus
Z(ql(:[? 1, 617 1762)) < Z(pl(17 17£1; 1, 62))

For ¢, big enough and ¢ bounded, these two z-coordinates are less than —1. Thus the intersection point of
A'(1,4151,05) and A'(1, £2) has z-coordinate less than —1, implying that r(¢'(2; 1, 41;1,42)) < r(¢'(1;1,42)). O

Recall that A’(1,¢1;1,¢5) intersects transversally «’'(1,¢2) C I(1,43) at the point p'(1;1,£1;1,£5). Since
the intersection of A’(1,¢1;1,£5) with A’(1,¢5) is also transverse, A’(1, ¢1; 1, £2) bends at the intersection point
q'(1;1,¢1;1,¢3). This implies that the curve I"(1,¢1;1,¥¢5), that envelops A’(1,¢1;1,¢5) and is tangent at
p'(1;1,01;1,49) to k’'(1,43), bends at its intersection with A’(1,¢3). The intersection between I”(1,/¢1;1,¢5)
and A’(1,¢5) is transverse and consists of one or two points: +'(1,¢1;1,¢2) always intersects A’(1,¢3) and
k'(1,41;1,¢5) might intersect it to.

Observe that if we fix the index ¢5 and we let ¢ — oo, both sequences ¢'(1;1,¢1;1,¢2) and p'(1;1,¢1;1, £2)
converge to the point p'(1; 1, 4s).

q'(1;1,4) s = —1
7/
q'(2;1,02;1,45)

X

q'(3;1,41;1, €51, £3)

q'(1;1, €23 1, 6s),
q'(2;1,61;1, b; 11 43)

p'(1;1,61;1, 8251, £3)

P’(l; 1,£2;1,43)

p'(1;1,45) q(151, 0151, a3 1, £3)

FIGURE 50. Three levels of A’-curves inside the region bounded by I"(1,¢3) in £
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We now iterate the process above, considering only the first insertion for simplicity. The idea is that a level
n curve in £], with ¢;1-index big enough, intersects a A’-curve at each of the previous levels, and these points
are the bending points of the curve.

LEMMA 18.4. For {1 sufficiently large, the curve A’(1,01;1,09;---;1,¢,) intersects A" and the curves
A (1 ly—p;- - 51, 4,) for alll <k <n.

For 1 < k < n, the intersection point of A’(1,¢1;1,¥02;---;1,£,) with A'(1,€,_g;---;1,£,) is denoted by
q (k; 1,015+ ;1,4,), and the intersection with A’ is denoted by ¢'(n;1,¢1;---;1,£,). Observe that the first
index in the label of g-points is the difference of levels between the A’-curves that pass through it.

Proof. For {1 big enough we can assume that the endpoint p'(1;1,¢1;---;1,£,) of A'(1,41;1,€49;---51,£,) is
in £; and has z-coordinate smaller than —1, thus the curve intersects A’.

We now proceed by induction on n. For n = 1 the conclusion is straight forward. Assume that the
lemma holds up to n — 1 and consider the case n. For k = 1 observe that A’(1,£1;1,¢s;---;1,¢,) intersects
K (1,095 51,4,) at p'(1;1,41;--- ;1,4,). Following the proof of Lemma we have that

r(q (n; 1,015+ 51,0,)) <7(q'(n— 131, bos - 51, 4).
Thus at the line z = —1 the curve A’(1,41;1,42;--- ;1,£,) is on the left of the curve A'(1,4s;--- ;1,£,), while
near its endpoint it is on the right. These curves intersect.

By hypothesis, the level n — 1 curve A’(1,4s;--- ;1,¢,) intersects all the curves of smaller levels. The same
holds for the curve I"V(1,£s;---;1,£,); that is, IV(1,£4e;--- ;1,£,) intersects the curves A’ (1,6, ;- ;1,4n)
for all 2 < k < n. Since A'(1,41;1,€2;--- ;1,£,) is in the region bounded by I'(1, f;- - ;1,¢,), we obtain that
it must intersect all the curves A'(1,€,—g; - ;1,4,). |

Now we consider the level 3 case in some detail. For ¢ big enough and ¢s bounded, the curve A(1, ¢;;1,4s) =
o7 H(A'(1, 0131, 65)) C L] intersects transversally:
e A(1,45) at the point ¢(1;1,¢1;1,¢5).
e A at the point ¢(2;1,/41;1,63).
Thus the finite propeller P4y ¢,.1,¢,) intersects:

® Py(1,0,) along the W-orbit of q(1;1,£1;1,43).
e P, along the W-orbit of ¢(2;1,¢1;1,/¢5).

Consider the trace of Py(1,¢,;1,¢,) on L7, that forms a finite collection of curves A’(1,41;1,€o;1,£3) with £3 > b
and bounded. For #3 > 0 we have that:

o A'(1,01;1,09;1,43) is contained in the region bounded by T'(1,¢1;1,€2;1,¢3), which is
contained in the region bounded by I(1,%s;1,¢3), that is in the region bounded by I”(1,/3), by
the nesting property.

o A'(1,01;1,05;1,03) intersects  A’(1,42;1,43) at q (1;1,01;1, 0951, 43); A'(1,43) at
q'(2;1,01;1,05;1,43) and A" at ¢'(3;1,¢1;1,02;1,¢3). Applying the proof of Lemma we have
that

T(q/(?); 1,61; 1,62; 1,63)) < T(q/(Q; 1,62; 1,63)) < T(ql(]., 1,63))

Thus the curve A'(1,41;1,05;1,43) folds twice: once at ¢'(1;1,61;1,05;1,¢3) and once at
q'(2;1,01;1,42;1,¢3). We deduce that the corresponding Ag-curve in Rg, Ao(1,£1;1,¢2;¢3), folds twice near
each of its endpoints due to the symmetry condition on the Wilson flow. Recall that Ag(1,¢1;1,¥¢2;¢3) C Ry
is the curve containing points whose forward orbits intersect E; along 7(A(1, ¢1;1,49;1,43)).

TIterating this analysis we get that each A’-curve at level n folds (n — 1)-times, and thus the lower end part
of the corresponding Ag-curve coils in a “small” spiral turning in the counter-clockwise direction.

We can now start the proof of Theorem that is a direct consequence of the following proposition.



108 STEVEN HURDER AND ANA RECHTMAN

PROPOSITION 18.5. The length of an Ag-curve is upper bounded by the length of Ag(a) + D for some
uniform constant D.

Proof. As explained in Remark we can restrict to curves whose lower endpoint is below z = —1. We start
by comparing the length of Ag(1,¢1;¢) with the length of Ag(¢2). The idea is to prove first that

length(Ao(1,41;02)) < length(Ao(¢2)) + D,
that is clearly upper bounded by the length of Ag(a) + D.

The curve A’(1,41;1,43) in L] can be decomposed into two parts: the one between p’(1;1,41;1,¢2) and
q'(1;1,£€1;1,£5) and the rest. Observe that the later part has approximately the same length as the segment of
A’(1,45) that lies above (in the z-direction) the point ¢'(1;1, ¢1;1,¢2). The reason for this is that both curves
are in the region bounded by I''(1,43) and have no bending points above ¢’(1;1,¢1; 1, ¢5).

We can thus bound the length of A’(1,¢1;1,¢2) by the sum of the length of A’(1,¢5) plus the distance
between the points p’(1;1,/41;1,43) and ¢'(1;1,¢1;1,¢2). We compare the distances in Ry. Translating the
discussion above to Ry, we can bound the length of Ag(1,¢;;¥2) by the sum of the length of Ag(¢2) plus twice
the distance between po(1;1,¢1;1,%5) and ¢o(1;1,¢1;1,¢5). The multiplication by two is due to the symmetry
of these curves with respect to the line {z = 0}. Let ¢y, = ¢+ o (/)f € Gk, then using Lemmas
and [[3.9] we obtain

(121) dRo (pO(l; 1,01;1, 62)7 QO(l; 1,4151, 62)) = dRo(spfz (p()(l; 1, gl))a Peo (QO(l; 1, Zl)))
The next lemma is the key ingredient in the proof. Recall that U ot is the domain of the map (bf. Let
D'(1,¢) be the points in the region bounded by I'o(¢) that belong to Uys N {#z < —1}. Define
D(1,0) = {z € D'(1,4) | pe(x) € D'(1,0)},
for @, = e+ o ¢
LEMMA 18.6. For a generic Kuperberg plug K, the norm of the differential of @; = 1@+t o o7 is less than
1 for points in D(1,£).
Proof. Observe that 1~ (@9 (D(1,£)) is contained in the region of Ry bounded by I'g(a). The map 1) preserves
the r-coordinate. The map ¢ maps D(1,¢) to the interior of the region bounded by T'g(a), and thus
Image(¢7 (D(1,4))) C Image(y~ T (D(1,0))).
For every ¢/ > £ such that the region D(1,¢') # (), we have that
Image(¢7 (D(1, ) C Image(yy~ T (D(1,0))).
Thus for points in D(1,¢) the map c;Sf contracts distances more than ¥~ (9. Hence, the norm of the
differential of ¢ is smaller than the norm of the differential of ¢~ (@) for any ¢ such that D(1,¢') is
non-empty. Hence, for £ € D(1,¢) we have that
IDee(©)ll < 1DY (o ()] x 1Dy ()]
< DTG () x DY~ HO (v 0 ¢ (€)))]
= Dy @) x D= @ ()| = 1.

where n = gi)f(ﬁ). The last equality uses the fact that v preserves the r-coordinate. O

Observe that for £ € D(1,¢) and ¢’ > ¢ we have also that || Dy (§)|| < 1, provided z(pe (§)) < —1.
We come back to bounding the length of the level 2 curve Ag(1, ¢1;¢3). From (121) and the previous lemma,
we obtain a constant C' < 1 such that

dRO(pU(17 1761; 1762)»(10(13 1u€1; 1762)) S CdRO (p0(17 1,(1),%}(1; 1a€1))
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Let a; = HlaX[lZ(){dRo (po(l; 17fl)a (Jo(1; 17 61»} then?
length(Ao(l, 61; 62)) S length(Ao (52)) + 200,1,
concluding the proof of Proposition for level 2 curves for any D > 2Ca;.

We know consider the level 3 case. Again the curve A’(1,¢1;1,402;1,¢3) C L] can be decomposed into
two parts: the one between p'(1;1,¢1;1,02;1,¢3) and ¢'(1;1,¢1;1,£5;1,¢3) and the rest. The later part has
approximately the same length as the part of A’(1,/2;1,¢3) that lies above the point ¢'(1;1,¢1;1,£9;1,¢3).
Thus the length of A’(1,41;1,¢9;1,¢3) is upper bounded by the length of A’(1,/;1,¢3) plus the distance
between the points p’(1;1,£1;1,62;1,¢3) and ¢'(1; 1,411, 65;1,43).

In Ry, the length of Ag(1, 4151, ¢2; ¢3) is bounded above by the length of Ag(1, £3; ¢3) plus twice the distance
between the points po(1;1,£41;1,£2;1,03) and qo(1;1, 6151, 49;1,£3). Observe that for ¢p, = ¥(@*) o ¢ we
have that po(1;1, 0151, £2;1,£3) = e, (po(151, 415 1;42)) and qo(151, 4151, 6231, €3) = e, (qo(151, 415 1;42)). By
construction the point po(1;1,41;1,¢3) belongs to the curve ko(¢2) C To(¢2) and qo(1;1,41;1,£2) belongs to
Ao (¢3). Thus these two points are in D(1,¢2). By Lemma and C' < 1 as above, we obtain

dRO (p0(1717£1717£2a1763)7(]0(1717€1717£2717€3)) é CdRO(pU(]';1761;1762)7(]0(1;1761;1762))
< C?dr,(po(1;1,41),qo(1;1,41))
S C’Qal.

Thus,

length(Ag(1,01;1,02;¢3)) < length(Ag(1,4s;43)) +
+2dRr, (po(1;1, €151, €25 1,03),q0(1; 1, €151, £2; 1, £3))
< length(A(¢3)) + 2Ca; + 2C%ay
= length(A(¢3)) +2Ca1(1+ C).
The first inequality follows just by decomposing the lower half of Ag(1,¢1;1, ¢2;¢3) it two parts and using the

symmetry of this curve with respect to {z = 0}. The second inequality follows from the estimation of the
length of level 2 curves and the computation above.

Iterating this argument for level 4 curves we have that
length(Ag(1, 0151, 02;1,03;04)) < length(Ag(1,¥a;1,03;04)) +
+2dgr, (p()(l; 1,01;1,05;1,03; 1764), qO(l; 1,01;1,09;1, ¢3; 1,£4))
< length(Ao(44)) +2Ca1(1+C) +
+2Cdr, (po(1; 1,015 1, €231, €3), qo (15 1,413 1, £2; 1, £3))
length(Ao(44)) +2Ca; (1 + C) +2C3ay
length(Ag(¢4)) + 2Ca; (1 + C + C?).

Generalizing to a level n curve, we get
(122) length(Ag(1,41;---;1,4,)) < length(Ag(€,)) +2Ca;(1+C +---+C"2)

= length(Ao(¢n)) + 2a1 (Cl_g ) '

The last amount is upper bounded by &, and thus taking D = maz{2a; (%) ,2a1} we obtain the
desired bound. 0

This finishes the proof of Theorem [I8.I] We can now describe a more accurate picture of the trace on Ry
of a level n > 2 propeller in 9y and thus of the trace of M. In Figure 20] we had made the assumption that
the curve generating a finite propeller has monotone radius and thus that the longest W-orbit in the propeller
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is the orbit of the endpoint of the curve. As described above, the propellers in 9ty of level at least 2 are not
generated by curves with monotone radius.

Consider a curve (i1, 415 ;in, €n) C L; withn > 2,4, =1,2for 1 <k < n and non monotone radius.
Once more, we restrict the discussion to y-curves for simplicity, but it applies also to A-curves.

Let g7 (n; 41,415+« ;in, £,) be the point in (i1, £1; - - - ;in, £,) with smaller radius. The trace of the propeller
Py eriesin e,y C W on Ry consists of at most

A(r(q"(nyir, b1y 5in, bn))) +1

curves, one for each intersection of the W-orbit of ¢V (n;i1,41; - ;in, £,) with RoN{z < 0}. Call this number
n(q”(n;i1, €15+ in, fn)). Recall that the W-orbit of p(1;41,01; -+ ;in,¥n) intersects Ro N {z < 0} in at
most A(r(p(1;41,£41;- - ;in,4n))) + 1 points. Call this number n(p(1;i1,£€1;- -+ ;in,£,)). Hence the trace of

Pyiy 0155 ,0,,) 00 Ry are the curves Yo(i1, €15 3in, Ln; bnt1) wWith a < Lyy1 < n(q¥ (i1, 015+ 3in, n))-
If n(q¥(n;it, la;- - 5in, bn)) — n(p(1;i1, €15 - yin, £y)) = 0, all the curves in Py, ¢y, 14, ,0,) N Ro are arcs
as in Figure except that near the endpoints the arcs coil as explained earlier in this section.

If n(q"(n;i1, 15+ 3in, ln)) — n(p(L;i1, b1;- - 5in,€n)) > 0, then for
n(p(Lyiz, €3+ yin, €n)) < lngr < n(q7 (nyin, 015 5in, £n))
the curves vo(i1, €15+ ;in, €n; €nt1) are closed, as in Figure The closed curves are contained in the region
{r(@"(nydn, bas - sin, £n)) <7 <r(p(Lyir, a5+ 5in, €n))} N Ro.
In conclusion, the trace of Py, ¢,:...i.0,) o0 Ro can have a non-zero but finite number of closed curves.

We now turn our attention once more to the intersection of Py, ¢,;...., ¢,) With £;. As explained in
Section the intersection consists of a number of internal notches, followed by boundary notches. After
the description in this section two new possibilities arise. First, since the radius is non monotone along the
curves in Py, ¢,:... i, ¢,,) N Ro, some of these curves might create internal notches when flowed to £;". Second,
the fact that the trace of Py, ¢,;... 5, ,¢,) o0 Ro can have closed curves adds the possibility of having internal
notches near the tip of the propeller, as illustrated in Figure 52

—

® ®
w2 I[] :RmRo W]_
FIGURE 51. Trace of the finite propeller Py, 40,0, 0 R with

(@Y (nyin, las - 5in, o)) — n(p(Lyin, b1 5in, £n)) = 1

The two level 1 propellers 7(P;) and 7(Py) in 9 are generated by curves with monotone radius. Thus they
have a finite number |b| > 0, maybe zero, of internal notches and an infinite number of (boundary) notches,
as described in Section [I2] If any, the internal notches generate bubbles as in Section [T5}

Consider the case of propellers of level at least 2. Let Py, ¢,;....i,,,¢,) be a propeller of level n +1 > 2.
Let o'(i1, 015+ 3in, fn; 1,€ny1) C L] be the curves in the intersection of Py, ¢:...5i,.0,) With £ and
Yo (81,415 3 in, n; €ny1) the corresponding curve in Rg. Internal notches arise when v/ (i1, €1; -+ 5 n, €n; 1, €ny1)
has its two endpoints in L] .

“iln,
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boundary

notch interior

notch

Py (1,015 i n)

=55 interior
interior boundary notch
notch notch

FIGURE 52. Notches with n(q”(n;i1,01; - 5in, b)) — n(p(1;d1, 015+ 5in,ln)) =1

Assume that this is the case. If the corresponding curve (i1, €15+ ;%n, ln; lnr1) C Rop is not a closed
curve, then the forward orbit of its lower endpoint po(1;i1,€1; -+ ;in,fn; 1, nt1) misses £7 . Thus the radius
coordinate along the curve (i1, 015+ ;in,ln; 1,€nt1) C L7 is big, meaning that it is uniformly bounded
below. The arguments in Section [15| apply to this case and thus the surface generated by the K-orbits of the
points in 7(y(i1,41; -+ ;in,n; 1, €ne1)) is compact and admits a uniform upper bound to the difference of level
between points in it. We leave the details to the reader.

For the second case, assume that v/'(i1,01; -+ ;in,n; 1, €n+1) has its two endpoints in L] and that the
corresponding curve Yo(i1,£1; -« ;in, ln;lnt1) C Ro is a closed curve. This means that

n(q’Y(n’ ilaél; o ;in7£7L)) - n(p(:l’ ilaél; U ;in7£n)) > 0
and n(p(Liit, 15+ 1in, £n)) < o1 < (@7 (31, 15 5in, ).
LEMMA 18.7. There exists rg > 2 such that if n(q”(n;i1, 15+ ;in, €n)) —n(p(L;i1, l1;- -+ 5in, €n)) > 0 the
radius coordinate on the curves (i1, €15+ 3in,ln; 1, lnp1) € LT with
n(p(Lyi1, €15 3in, o)) < log1 < n(q"(nyir, €15+ yin, £n))

is bounded below by rp.

Proof. Observe that the closed curve ~yy(i1,£41; -+ ;in, ln;ntr1) € Ro is contained in the region bounded
by To(ia, la; -+ ;€ny1) if i3 = 1 and in the region bounded by Ag(ig,la; - ;€ny1) if i1 = 2. Also, it is
far from Tg (i, la; -+ ;€ny1) or Ag(ia, lo; - ;€n41) since the point pg(i1;ia, ;- -+ ;1,€n41) is in the closure
of the endpoints of the curves vo(i1,m; - ;in, ln;lnt1) that are arcs, for m > ¢; and unbounded. That is
Yo(i1, €15+ -+ ;€ny1) is separated from Do (iz, €2;- - - 5 €n11) or Ag(ig, £2; - -+ 5 €py1) Dy the curves yo (i1, m; - -+ 5 €ny1)
and Ag(i1,m;- -+ ;€p41) for all m > £, 44

Assume the conclusion in the lemma is false, then for every € > 0 there exists a curve
’Y(ilaél; e ;iYL;gTL; 17€n+1) S Ll_ Wlth
n(p(yit, €15 yin, o)) < log1 < n(q"(nyir, €15 3in, €n))
intersecting the ball centered at p(1) of radius e. Equivalently, for every ¢ > 0 there exists a closed curve
’yo(il,gl; .o ;inagn;‘gnqu) S RO with
n(p(Lyin, brs - 3in, £n)) < lugpr <n(q7 (nyin, bas- - 5in, o))
intersecting the ball centered at w; of radius e. Thus there is a sequence of closed curves accumulating on wy

that belong to the trace of the propellers. This is the contradiction that we needed. O

REMARK 18.8. An immediate consequence of Lemma[18.7 is that the surfaces given by the K-orbits of the
points in T(Y(i1,1; jin, bn; 1, bay1)), with €n41 satisfying the hypotheses of the lemma, are compact and
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the difference of level between points in them is uniformly bounded as in Proposition[I5.] We refer to these
surfaces as bubbles of the second type.

19. ZIPPERED LAMINATIONS

The notion of an n-dimensional lamination is well-known, and can be summarized as an n-dimensional
foliated space which is transversally modeled on a totally disconnected space. In this section, we introduce
the notion of zippered laminations, which are a type of “stratified” laminations with possibly pathological
behavior for the strata. After introducing this and some other preliminary notions, we prove the main result
of this section:

THEOREM 19.1. If ®; is a generic Kuperberg flow on K, then 9 is a zippered lamination.

We begin by recalling the notion of a foliated space [7,[37]. A continuum is a non-empty, compact, connected
metric space.

DEFINITION 19.2. A foliated space of dimension n is a continuum 3 with a foliated structure. That is,
there exists:

(1) a separable metric space X, and a collection of compact subsets T; C X for 1 <i <k;

(2) a finite collection of homeomorphisms (the charts) {p;: T x [-1,1]" = U; C 3|1 <i<k};
(3) the “interiors” {U; = v;i(T; x (=1,1)") | 1 <i < k} form an covering for 3;

(4) the charts {¢; | 1 < i <k} satisfy the compatibility condition (123).

Let m;: U; — T, denote the composition of ©; ! with projection onto the first factor.

For ¢ € T, the set P;(€) = @i({€} x [-1,1]") C U, is called a plaque for the coordinate chart ¢;. For
z € U;, we adopt the notation P;(z) = P;(m;(2)), so that z € P;(2).

For £ € ¥; the plaque P;(§) is given the topology so that the restriction ¢;: {£} x [—1,1]" — P;(&) is a
homeomorphism, hence int(P;(§)) = p;({¢} x (—=1,1)"). Then we require, in addition,

(123) for all z € U; NU; , int(P;(2)) Nint(P;(2)) is an open subset of both P;(z) and P;(z) .

The collection of sets V = {@;({{} x V) |1<i<k, £€%,;, V C(-1,1)" open} forms the basis for the
fine topology of 3. The connected components of the fine topology are called leaves, and define the foliation
F of 3. For z € 3, let L, C 9 denote the leaf of F containing x. The subsets ¥; of X are called the local
transverse models.

Many of the techniques of foliation theory extend to foliated spaces, including the existence of holonomy
transformations defined by “parallel transport” along paths in the leaves, which generate a pseudogroup model
for the dynamics of the foliated space. Foliated spaces are considered in greater detail in [37, Chapter 2] and
[7, Chapter 11].

An n-dimensional lamination is a foliated space 3 of dimension n, such that the transverse model space X
is totally disconnected. The leaves of F are then the path components of 3.

The definition of a lamination with boundary is obtained by modifying the above definition, to allow foliation
charts of the form ;: T; x ([0,1) x (=1,1)""1) — U;. The boundary 93 then consists of the points which are
images under a chart of the chart boundary T; x ({0} x (—=1,1)"1).

The notion of a “zippered lamination” is motivated by our study of the space 91, which is the closure of
the non-compact manifold with boundary 9;. The unusual property of 9t is that the boundary curves of 9t
are also dense in 9, which is impossible for a usual lamination with boundary. The definition of a zippered
lamination below is similar to that of a lamination with boundary, in that each of its leaves is a manifold with
boundary, but the boundaries of the leaves do not have to align themselves in a way that they are regularly
covered by foliation charts. In place of the covering of 991 by standard foliation coordinate charts as in
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Definition [19.2] the definition below covers 9 by foliation coordinate charts whose plaques have varying sizes,
and cannot be “standardized” in a continuous manner, though their overlaps do define continuous holonomy
transformations.

DEFINITION 19.3. An n-dimensional zippered lamination 3 is a continuum whose path components are
n-dimensional manifolds with boundary. Denote the union of the boundaries of the leaves by 0r3, and the
complement by int(3) = 3 — dx3. Then we require that int(3) is dense in 3, and the following data are given,
which satisfies the accompanying conditions: there is given a compact metric space X, and for 1 <i <k,

(1) a subset T; C X whose closure in X is totally disconnected;

(2) a Borel subset B; C ¥; x [—-1,1]", where for each §& € T; the slice B; N {£} x [—1,1]" is a compact
subset whose interior contains {£} x {0}, and is homeomorphic to [—1,1]";

(3) a homeomorphism @;: B; — U; C 3 onto its image U; with the induced topology from 3;

(4) the interiors {U; = int(U;) | 1 <i < k} form a covering for int(3);

(5) the collection of charts {¢; | 1 <i <k} satisfy the compatibility condition (123).

The interior int(Ui) for the Borel set U, is geﬁned as the union over the points £ € ¥; of the interiors of
the plaques P;(§) = w;(B; N {&} x [-1,1]™) in U;.

Note that the Borel property in 2 allows the plaques P;(&) C 3 to degenerate in size for a sequence
& € T; which converge to a point &, € X with &, ¢ ;. In fact, the limit of such a sequence must then be
contained in dr3.

The first step in showing that 9t satisfies the conditions of Definition [19.3]is to construct the model spaces
%;. Recall that 7 = {z = 0} N Ry, and set:

(124) o=TnMy , <=TnNnMm.

The points in € are classified according to the properties of the curves in 9% N Ry which define them. The
intersection of 7 with the Reeb cylinder 7(R’) defines the point wy € My N Ry with r(wy) = 2. The remaining
points in the intersection correspond to the intersections with vg or A\g curves, and these can be of two types:

(1) The vy or A\g curve is an arc. In the case where the forward orbit of points in such a curve hit the
entry regions, the curve corresponds to boundary notches in the propeller, one for each entry region.

(2) The o or Ag curve is a closed curve, hence there are two points in €y corresponding to the same
curve. In the case where the forward orbit of points in such a curve hit the entry regions, the curve
corresponds to interior notches in the propeller, either one or two for each entry region. These closed
curves correspond either to notches generating “bubbles” or to intersections of “bubbles” with Ry as
described in Sections [I5] and [I8l

Let €} C €[ be the intersection points corresponding to closed curves in 9y N Rg. Define:
(125) Co=¢y—¢ , €¢=¢.
PROPOSITION 19.4. The set € is a perfect and totally disconnected subset of €.

Proof. Each point in € is the intersection of 7 with a certain vy or Ay curve, and thus is defined by the
labeling of the endpoints of this curve as in Section Moreover, the symmetry of the Wilson flow implies
that each such vy and A\g curve in 90y N Ry intersects 7. Thus, a sequence of curves whose intersections with
T defines points in €, which converge, also defines a sequence of converging endpoints, whose corresponding
limit curve defines a point in M N 7. Thus, € =€, C MNT = ¢’. Lemma implies that each point of
&y is a limit point of the set, hence the closure € is a perfect set. It is totally disconnected by the results of
Section O

REMARK 19.5. It can also be proved that € is a Cantor set, since any ¢ or ¢ point is the accumulation
point of a sequence of ¢7 and ¢ points of lower level.
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The strategy for constructing foliation charts for 9t using the Cantor set € is simple in outline, and we next
develop. But there is a nuance that arises near points of € corresponding to tips of propellers, that requires
covering these “singular points” by a separate construction.

Consider £ € € — €, then there exists {zy | k > 1} C €y with z;, — £. By the results of Section each
x lies on a propeller curve ~yq (i1, £1; 42, lo; -+ ;£y) or Ao(i1,f1;02, 025+ -+ ;¢,) where the multi-index depends
on k. By passing to a subsequence, we can assume that they are all of the same type, either all 7y curves, or
all \g curves. Each such curve is then defined by the labeling of its endpoints, denoted simply by pf)” (zk) to
shorten the notation introduced in Section That is, pé" (xk) = po(to; i1, l1; 02, o; +* 5in—1,Ln—1;in,Ln) for
in = 1,2, where ig = 1 for a 7y curve, and ig = 2 for a Ay curve.

We consider the case where we have a sequence of 7y curves. The case for a sequence of \g curves is
analogous. As Ry is compact, we can pass to a subsequence, and assume that the lower endpoints pj(zy)
converge to a point p§(£) where z(ph(€)) < 0, and similarly pg(zx) — p3(€) where z(p3(€)) > 0.

The sequence of endpoints p} () all lie on the K-orbit of the special point wy, so each has a well-defined
level by Proposition If there is a uniform bound on this level, then the limit must be contained in 9%
contrary to the choice of £. Thus, passing to a subsequence yet again, we can assume that the level ng(zy) is
monotone increasing.

It then follows that the number n of indices of the sequence (i1, 1; 2, f2;- - - ;in, £y) must tend to infinity,
and by the results of Section the sequence {z;} defines a nested sequence of ellipses in Ry, each ellipse
bounded by the union of the associated 7y and ko curves. Moreover, the width of these ellipses must tend to
zero. It follows that the intersections of the interiors of these nested ellipses define an arc in Ry, denoted by

[p5(€). p3(€)] where the point & = [p5(€), p§(€)] N {z = 0}.

The arc [p§(£),pg(€)] is the limit of the boundary vy curves of the nested ellipses, as a point set. Each of
these boundary 7o curves is an embedded curve with uniformly bounded length by Theorem[I8.1] Thus, these
curves converge to an immersed curve of finite length. That is, in a generic Kuperberg plug, for ¢ € € the
curve [p§(€), p3(€)] has uniformly bounded arclength.

We next repeat these arguments for each of four rectangular sections to 9%, defined as follows, and the
associated Cantor transversals. Introduce the rectangles
(126) T, ={{=(ri7n/2,2)] 1<r<3, -2<z<2},1<i<4
so that Ry = T3. We add a fifth rectangle
Ts={{=(r,3r/8,z)| 1<r<3, -2<z<2}.

Each of these rectangles is disjoint from both the regions D; and their insertions D; for i = 1,2 by the choices
made in Section It is helpful to review the illustrations in Figures [5| and Figure The key property of
these sections that we require, is that for any K orbit segment [z, y|c with z,y € T;, then either the interior
segment (z,y)x intersects the annulus A, or it must intersect one of the other sections T, for j # i.

For each of 1 <14 < 5, introduce the set &y ; C T; N AN My consisting of the points that do not belong to
a bubble of any type, and correspond to arcs in T; N 9y. Note that €y o = €y. Define €; to be the closure of
€p,i. We again conclude that each & € €; defines an immersed arc [p}(£),p?(€)], each of whose length admits
a uniform upper bound.

For each 1 <4 < 5, define functions Sii: ¢; — [0,00) such that for £ € ¢;

e S;(€) is the length of the arc [¢,p?(€)] C [p(€),p2(€)] containing ¢ as the lower endpoint, where
[ pi(§)] C {z >0}
o 1 (&) is the length of the arc [p}(€),€] C [pH(€),p?(€)] containing & as the upper endpoint, where

pi ().l c {z <0}

Since 771 (p2(¢)) and 771 (p}(€)) belong to the same W-orbit, the symmetry of the W,-flow implies that
SH(€) = S;(£). Let S;(€) = S;(€). Then by the above, for each i, the function & — S;(£) admits a uniform
upper bound for all € € €;. Let L; = sup{S;(&§) | £ € €;} denote the upper bound of these lengths for £ € €;.
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The function S;(£) is not continuous, but we note that the proof of shows that for € > 0, there exists
N, which is independent of £, such that there exists x € My N €; for which the curve o, containing = has
length |S;(z) — S;(€)| < € and moreover, the endpoint p}(z) has level n < N,. It follows that the arclength
function S;: €; — [0, L;] is the uniform limit of step-functions on €; so is a Borel function of &.

Define € = {¢€ € €; | S (£) > 0}. For ¢ € €, let v¢(s) denote the parametrization of [p}(£),p?(£)] by
arclength, with v¢(0) = &.

Fix 1 <i <5 and consider a point £ € €;. The proof of Proposition [9.9] carries over to each of the surfaces
T;, so there exists a constant v, such that the set S; ¢ = {s | ®5(£) € MNT;} is syndetic for the constant v,.
Moreover, the constant v, can be chosen independent of ¢ and . There is a nuance in the estimation of the
return time, v, which bounds the return time of a point in T; to the same transversal. The return point is
contained in €, = M N'T; but not necessarily in the subset ¢;. However, Lemma Proposition and
the discussion in Section [18]imply that there exists a uniform constant which is an upper bound on the length
of time any orbit spends in a bubble. That is, the time required to flow across each of the internal notches as
illustrated in Figures and has a uniform bound. Thus, replacing v, with a fixed multiple of itself, we
may assume that v, is a syndetic constant for S; ¢ = {s | ®,(§) € €;} for each 1 < i <5.

Consider the annulus A C W and its image 7(A) in K. For each 6 € S consider the sets
Ry = {r(r,0,2)|(r,0,2) e W, 2<r<3 -2<2<2}
Ty {r(r,6,0) ]2 <r <3}
with Ty C Ry. Observe that for those values of 6 for which all the points (7,0, z) are not in D; for i = 1,2, Ry
is a rectangle in K. On 7y consider the set of points €}, = 7o M. This set contains two types of points: those
that belong to a closed curve in Ry N MMy that we denote by €} and those that belong to an arc in Ry N My .

Consider the set €y 9 = € — €} and its closure €y. Observe that €o,x/2 = €. Let A¢ be the union over 6 of
these Cantor sets €g. Observe that A¢ contains the intersection of 7(.A) with all the simple propellers in 9.

Let Mg, C M N T; be the path components that contain a point in €; for 1 < ¢ < 5, and define W =
Me, U---UNMe, UAe be the union of these closed sets in K. For each i and for z € My, , define Tii(x), which
is the forward and backwards “return time” to W for the flow ®;:

(127) T (z) =inf{s > 0| ®5(z) e W} , T, (z)=sup{s<0|Ps(x) € W}.

K2

For ¢ € € we have that |T¥(y¢(s))| < v. uniformly. The values of these functions are not necessarily
continuous in the variables £ and s. The discontinuities may arise, for example, when the endpoint of the flow
segment starting at v¢(s) jumps from a section T; to the annulus A.

For each 1 <1 < 5, define the subsets of C;r X [=Li, L] X [—vs, vi),
Din = A{(&st)|Ee€h, =5i(&) <s<0, Ty (ye(s)) <t <
Din = {(&st)|€e€) , 0<s<8i(8), T; (e(s) <t <T,

K3

T (ve(s)}
i (e ()} -

Let e, > 0 be sufficiently small so that the e, neighborhood of W in K is disjoint from the surfaces E; and S;
for 1 <1i4,j < 2 as defined in @[) Then for each 1 <7 <5, also define

Dfy = {(&st)|Eee, =Si(6) <s<0, Ty (ve(s) — e <t < T (7e(5)) + e}
Dy, = {(&st)][€e€,0<s<8(6), T (ve(s) — e St ST (e(s)) + e}
Introduce the continuous maps:
win: Dy =M (€, s,t) = Pu(e(s))
@it Dig =M pia(§,s,1) = Pi(1e(s))
PROPOSITION 19.6. For each 1 <i <5 and j = 1,2, the map ¢; j: D} ; — 9N is one-to-one. Moreover,
we have
Mm = U {@i1(D 1) Uia(Dfy)}.

1<i<4
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Proof. Suppose that (¢, s,t) # (§',5,) € Dy ; satisty @i (&, s,t) = i ;(§,s',') for some i,j. Let x = y¢(s)
and ¢’ = g/ (s') then o’ = ®_y (95 ;(€,5,1)) = Py (Dy(x)) = Py—p (). Assume without loss of generality that
t —t' > 0. Then there is a K-orbit segment o from = € T; to 2’ € T; whose interior intersects at most once
W. Let z1,x9,... be the transition points in the forward /C-orbit of x. Observe that ¢ must contain at least
one transition point.

Assume first that o N Ag is empty. By the choices of T;, we have that if:

(1) x € Ty N{z < 0} then [z, z1]x intersects T2 N {z < 0}.

(2) x € TaN{z < 0} then either [z, x| intersects T3 N {z < 0} or z; is in E;.

(3) z € T3N{z <0} then [z, 1]k intersects T4 N {z < 0}.

(4) x € T4N{z < 0} then [z, z1]x intersects T5 N {z < 0}.

(5) = € Ts N{z < 0} then [z,x1]x intersects T1 N {z < 0}.

(6) z € T1N{z> 0} then [z,z1]x intersects T5 N {z > 0}.

(7) x € TaN{z > 0} then either [z, x| intersects T1 N {z > 0} or z; is in Es.

(8) x € T3N{z > 0} then [z, z1]k intersects T2 N {z > 0}.

(9) x € T4 N {z > 0} then either [z, x|k intersects T3 N {z > 0} or z; is in Ss.
0) z € Ts N{z > 0} then either [z, 1] intersects T4 N {z > 0} or z; is in Sy.

(1

If o intersects W only at its endpoints, in cases (1), (3), (4), (5), (6) and (8) we obtain a contradiction. We
next analyze the other four possible cases.

(2) Assume that z € To N {z < 0}, then z; € Fy. From z;, the orbit segment o either continues to
a point y; € Ty or it flows to x5 € S; before intersecting W, with 1 = 5. In the first case, if
y1 € Mg, we obtain a contradiction. If not, 7(x1) > 2 and o contains the point Z; € S; such that
x1 = T (this is the case when o contains a segment of K-orbit in a bubble). Thus there exists k > 2
such that zp € S; with 1 = x;. From x; the segment o continues and hits 9Me, C Ta, giving us a
contradiction. Observe that in the second case we obtain the same contradiction with k = 2.

(7) If x € ToN{z > 0} then x; € E>. From z1, the orbit segment o either continues to a point y; € T4
or it flows to xy € S before intersecting W, with x1 = x4. In the first case, either y; € Mg, and we
obtain a contradiction, or there exists k¥ > 2 such that zj € S with x1 =z and [z1, 2] N W = 0.
From z; the segment o continues and hits Mg, C Ty, giving us a contradiction. Observe that in the
second case we obtain the same contradiction.

(9) If x € T4 N {z > 0} then x; € Sy. From z1, the orbit segment o continues to a point y; € Ty. Since
x1 is a secondary exit point, y; € Mg, , a contradiction.

(10) If x € T5 N {z > 0} then x; € S;. From 1, the orbit segment o continues to a point y; € T3. Since
x1 is a secondary exit point, y; € Me,, a contradiction.

We are left with the case where the interior of o intersects W, that we separate in two situations, first
when the intersection point is in W — A¢ and second when it is in A¢. In the first situation, concatenating
the cases above, we conclude that there is no [C-orbit segment with both endpoints in one of transversals and
intersecting W — Ag.

In the case where o N Ag # (), the only possibility for such a segment is to flow from z to a transition point
x1. If [x1,22]xc does not intersects W, then 21 = x5 and we can replace it with a short cut. Then, z € Ty
and, by (2) and (7) above, the arc [z, 3] intersects W — A¢. Thus the first intersection point of o with W
is either in T; or Ts. A contradiction.

Hence, [1, x2]x must intersect Ag. Let y be the intersection point. If 2 is a secondary entry point, then
x1 = x9, x € Tg and 2’ is either in Ty or T3. If 21 is a secondary exit point, then z € T4 N {z > 0} or
x € Ts N{z > 0}. In the first case, z1 € Sz and thus has z-coordinate positive. Case (9) above implies that
its orbit intersects W — A¢ before intersecting Ag. In the second case, x1 € S1 and by assumption its forward
orbit intersects A¢ before intersecting the transversal Ts. Then it flows in the negative f-direction to the
transversal Ty, and since x; is a secondary exit point, the last intersection point belongs to MMg,. The last
contradiction we needed.
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Thus, the maps ¢; ; are homeomorphisms. By definition they cover 9. O

20. ENTROPY OF THE FLOW

A celebrated theorem of Katok [23] on the entropy for C?-flows on compact 3-manifolds implies that the
topological entropy of the Kuperberg flow ®; is zero. In this section, we give a geometric proof of this
conclusion, based on an analysis of the dynamics of the flow ®; restricted to the closed invariant set 9.
The key idea is to relate the flow entropy to another type of entropy invariant, which is derived from the
pseudogroup dynamics for Gi acting on the rectangle Ry.

We first prove, in Proposition [20.9} that the entropy of the flow vanishes if the entropy of the return map
® vanishes. Then in Proposition we relate the entropy of d to the entropy of the pseudoxgroup Gj,
proving that they are proportional. Finally, in Theorem we show that the entropy harw (G |Mr,) of
Gy vanishes. The study of the various pseudoxgroup entropies associated to the flow @, reveals the geometrical
principles behind the vanishing of its entropy, and provides further insights into the dynamics of this flow.

We define the entropy of the flow ®; using a variation of the Bowen formulation of topological entropy
[0, [49] for a flow on a compact metric space (X, dx). The definition we adopt is symmetric in the role of the
time variable ¢t. Two points p,q € X are said to be (¢¢, T, €)-separated if

dx(pi(p),0i(q)) > € forsome —T<t<T.

A set E C X is (¢, T, €)-separated if all pairs of distinct points in E are (¢q, T, €)-separated. Let s(o, T €)
be the maximal cardinality of a (¢, T, €)-separated set in X. Then the topological entropy is defined by

1 1
(128) bunlir) = -l {imsup L 10g(s(0. 7.0 .

2 e—0 T—00
Moreover, for a compact space X, the entropy htop(¢:) is independent of the choice of metric dx.

A relative form of the topological entropy for a flow ¢, can be defined for any subset Y C X, by requiring
that the collection of distinct (¢, T, €)-separated points used in the definition (128) be contained in Y. The
restricted topological entropy hiop(¢:|Y") is bounded above by hyop(¢1)-

Katok proved in [23, Corollary 4.4] that for a C2-diffeomorphism of a compact surface, or for a C?-flow on
a compact 3-manifold, its topological entropy is bounded above by the exponent of the rate of growth of its
periodic orbits. In particular, Katok’s result implies:

THEOREM 20.1 (Katok 1980). Let ¢;: M — M be a C?*-flow on a compact 3-manifold. Suppose that ¢y
has no periodic orbits, then hiop(pr) = 0.

Suppose that ¢, is an aperiodic flow obtained by inserting the Kuperberg flow ®; on K into a flow box for
some flow on a compact 3-manifold. Then hyp(¢¢) = 0 by Theorem and thus we have hyop([9) = 0
for the flow ; restricted to the invariant set 9. By construction, the flows ¢; and ®; agree on 91, so that
hiop(@|9M) = hiop(pe|M) = 0. That is, the topological entropy vanishes for the restriction of the flow &,
to the space 9 with the induced metric. In this section, we give a proof that hop(®¢|9t) = 0 based on the
dynamics of the restricted flow ®;: 9t — 9 and the geometry of the invariant set 9.

The idea of our approach to the calculation of hiop (P4 |9M), is to consider the return map ® on the rectangle
Ry, and relate the entropy of the flow ®; restricted to 9 with the entropy htop((f>|9ﬁRO) for @ restricted
to its invariant set Mg, = M N Ry. It is standard to relate the entropy of the flow with the entropy of
an induced return map to a section to the flow, assuming that the flow is everywhere transverse to the
section. However, the flow ®; is not everywhere transverse to Ry as it is tangent to Rg along its center line
T ={z=0}NRy. As discussed below, these tangencies result in discontinuities for the induced map </IS, which
make the relationship between hyp,(P¢|901) and the entropy hwp(&\DDﬁRo) more subtle. We subsequently relate
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the entropy htop@\i)ﬁRo) with the entropy harw (G5 | MR, ) for the pseudoxgroup Gy defined in Deﬁnition
and then show that hgrw (G5 |Mr,) = 0.

We first recall the definition of entropy for pseudoxgroups as introduced by Ghys, Langevin and Walzcak
n [I6, Section 2]. Let (X,dx) be a compact metric space, and g§§) = {po = Id,cpl,gal_l,...,gak,gagl} be
a set of local homeomorphisms of X, with their inverses. That is, for each 1 < i < k there are open sets
U;,V; C X such that ¢;: U; — V; is a homeomorphism. We require that each map ¢; admits an extension
to a homeomorphism ®; of an open neighborhood of the closure U; of the domain in X. Let Gx denote
the pseudogroup generated by the collection of maps g , so that the axioms of Deﬁnition are satisfied.
Let G% C Gx denote the pseudoxgroup generated by the compositions of maps 1n g , so that Gx satisfies
conditions (1) to (4) of Deﬁmtlon 3 but not necessarily the condition (5). Let gl X ) c g % be the collection

of maps defined by the restrictions of compositions of at most n elements of gg(”.

For € > 0, say that z,y € X are (G%, n, €)-separated if there exists ¢ € ggg” such that x,y are in the domain
of p and dx (p(x), p(y)) > €. In particular, if the identity map is the only element of Q&") which contains both
x and y in its domain, then they are (G%,n, €)-separated if and only if dx (z,y) > €

A finite set E C X is said to be (G%,n,€)-separated if each distinct pair z,y € E is (G%, n, €)-separated.
Let s(G%,n,€) be the maximal cardinality of a (G%,n, €)-separated subset of X.

Define the entropy of G% by:

1
(129) herw(Gx) = lim {limsup — In(s(G%,n, e))} .
e—0 n—oo T
The property 0 < hgrw(G%) < oo is independent of the choice of metric on X. Note that the denominator in
the expression (129) is the word length n. Thus, hqarw (G%) differs from other definitions of entropy for group
actions which scale by volume growth, rather than length.

A key observation in [16] is that if the generators g§§> are the restrictions of C'-diffeomorphisms defined
on the compact closures of open subsets of a manifold M, then hgrw (G%) < co. A discussion of some of the
dynamical implications of hgrw (G%) > 0 for C'-pseudogroups is given in [7, 16, 20} 48].

Given a subset Y C X, we can restrict consideration to subsets E C Y which are (G%,n, €)-separated. Let
s(G%,Y,n,€) be the maximal cardinality of such an (G%,n,€)-separated subset of Y. Define the restricted
entropy by

(130) e (@x1Y) = tim {limsup LG5 Yon o) | < haw(GR)

n—oo

Before considering the entropy invariants associated to the return map <I> we consider the points of dzscon—
tinuity for its powers <I>” and use this to give a description of the domains of continuity of the maps dn. We
restrict to the region Ro N {r > 2} which contains the set 9Mg,. In Section |§|, the continuity properties for
the induced return map U of the Wilson flow were analyzed, which resulted in the description of its domains
of continuity in . The analysis of the powers of the map ® extends this analysis.

Recall that by Condition (K3) in Section [3} the compact annular region A(2) = {(r,6,0) | r > 2} C A is
disjoint from the images of the insertions o; for ¢ = 1,2, thus the vector fields W and K agree on an open
neighborhood of A(2) and so the flows ¥, and ®; agree near A(2) for ¢ near to 0.

Consider a point & € Dom(®) N {r > 2} with & = ®(&). Then there exists a K-orbit segment [£o, &1]x
which intersects Ry only in its endpoints. If the K-flow ®;({p) intersects Ry transversally at &1, then there is
an open neighborhood in Ry of & consisting of points whose flow is also transverse to Ry near &;, and thus
® is continuous at £o. On the other hand, if the K-flow ®;(&y) intersects Ry tangentially at &;, then in every
open neighborhood of & there is some point whose flow does not intersects Rg near &1, and the map d will
be discontinuous at &y. Thus, & is a point of discontinuity for o precisely when it is contained in the inverse
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image under @ of the center line 7 = {x € Ry | z(z) = 0}. That is, the set of discontinuities for ® is the set
®~1(T). Similarly, the set of discontinuities for the inverse map ®~! is the set ®(T).

These remarks for ® generalize to its powers as follows. Let n > 1 and &y € Dom(EI;”)7 then set & = 65(&))
for 1 < ¢ < n. If the K-orbit segment [y, &, intersects Ry transversally at each point & then there is an open
neighborhood of &, in Ry consisting of points whose flow is also transverse to Ry, and thus d" is continuous
at &. On the other hand, if the IC-orbit segment [£o, &,k intersects Ry tangentially at some point &, that is
& € T C Ry, then in every open neighborhood of &y there is some point whose flow does not intersects Ryg
near &, and thus &; is a point of discontinuity for ®". For each integer ¢, introduce the subset of Dom(@e),

(131) Lo=3YT) =T NDom(dY)) .

The above discussion implies that forn > 1, £ € Dom(‘i)”) is a point of discontinuity for P precisely when

there exists 1 < ¢ < n such that & € £y. The analogous statement also holds for & € Dom(®~™) with n > 0
and —n < ¢ < 0. For n > 1, define

(132) DM@ = N {Dom(iﬂ)—cg} n{r>2}.
—n<t<n

Let U C D(")(:IS) be a connected component, then Pt |U is continuous for all —n < ¢ < n. Thus, we are
interested in the finite collection of domains of continuity,

(133) Di(,;)((f) ={U C D(")(:I;) | U is a connected component of D(”)((f) such that U N Mg, # 0}.
Corollary 9.14| implies that Mg, C Dom(®") N Dom(®~") for all n. For U € DL (D), let U C Ry denote its
closure, then we have:

LEMMA 20.2. For eachn > 1, Mg, C U {U|UEe DE(,;)(@))}

The collection Dé;)(C/IS) thus gives a decomposition of d into sets on which the function has nice regularity
properties. The number of sets in these partitions is an important property of the flow ®,.

DEFINITION 20.3. The complexity function of ® is defined by Co(n) = #Dg)(&)). That is, forn > 1,
Cy(n) is the number of connected components of D™ (®).

We develop a geometric interpretation of the sets £, and U € DS;)(?{S), in terms of the flow ®; restricted
to the space M. We use this to relate the function Cg(n) to the function #M(n), where the collection

M(n) C QE?) was defined in Proposition

We require some preliminary observations. We first obtain an estimate relating the exponent ¢ and the
time T, for the maps ® and the flow ®r restricted to M. It is straightforward to obtain such an estimate
for a complete transversal to the flow ®; with return times bounded away from zero, but the estimate is more
subtle for the return map d.

LEMMA 20.4. There exist Lg > 0 so that for x € Mgr,, and T > 0 such that &r(x) € Mr,, and ny > 0
for which ®*"=(x) = ®p(x), then 0 < Len, <T.

Proof. We use the properties of the return map d established in Section @

~

Let x € Mg, with r(z) > 2, z(x) < 0 and z(P(z)) < 0. If the K-orbit of z does not intersect an insertion
region £; it must complete a revolution around the core cylinder C before returning to Ry, hence the segment
[z, ®(x)]c has length bounded below by Ly = 4w, If the K-orbit of z does intersect an insertion region L£;
then the segment [z, ®(x)]x has length at least LY for some LY > 0. Let L = min{L}, L} }.

In the case where z € Mg, with z(z) > 0 and z(®(z)) > 0, then the segment [z, ®(x)]xc traverses K in the
clockwise direction, but is otherwise analogous to the case above. We assume that the estimates L}, and L7
also apply in this case.
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In the case where x € Mgy, with z(x) < 0 and 2(®(z)) > 0, then the flow ®;(z) crosses the annulus {z = 0}.
In particular, ‘5(9:) = 1)(z) for the map 1 of the pseudogroup G . Recall that the action of ¥ was described in
Lemma and we observe that the length of the segment [z, ®(z)]x need not have a positive lower bound.
But this segment must be preceded and followed by a segment of the above two types. It follows that the
composition dod applied to x € Mg, is realized by a KL-orbit segment of length at least Lg, for any z € Mg, .

It follows that [z, ®2"= (2)]x has length at least Lq - 1. O

Recall that by Propositions and the constant r, > 2, introduced in Definition , provides a
lower bound for the radius of points in bubbles of the first type. Also, Lemma [I8.7] provides a constant rg > 2
for which bubbles of the second type do not arise. Finally, r. is the exceptional radius defined in (33). Let
ry, = min{ry, v, r.}, so that 2 < r,, < r.. Observe that the techniques in the proof of Proposition apply
for any value of the radius upper bound which is less than r.. In particular, we conclude the following:

PROPOSITION 20.5. Let & € Ry have infinite orbit for the flow ®, with r(§) < r,, and pe(t) > 2 for all t.
Then the set S*(§,1,) = {s | Ps(€) € G (&) C Ry, m(Ds(&)) < 7y} is syndetic in R for a constant v which
is independent of &.

COROLLARY 20.6. Let £ € Mr, = MNRy. Then S*(&,74) = {s| Ps(§) € G (&) CRo, m(Ps(§)) < ru}

s syndetic in R for the constant v;.

Proof. Theorem [8.2]implies that the ®;-orbit of  contains points arbitrarily close to the special point w; € Ry,
and thus there exists ¢ such that with 2 < r(®4(£)) < r,. The claim then follows from Proposition O

COROLLARY 20.7. Let M, > 0 be the greatest integer with M, < 2v). For each x € Mg, there exists
0 < 0,0 < M, such that r(®% () < r, and r(®% (z)) < 7.

T —

Proof. This follows from Lemma and Corollary 0

We next characterize the discontinuities of ®" on U, for U € DS;L)(EI\)) We first reduce this problem to
a “standard form”. Recall from that the interval Ip = R N Ry is the closed vertical segment whose
®,-flow generates My, and the intersection of My with Ry yields the connected components of Mg,. Also,
the ®;-flows of the closed vertical segments Ng = Jy U Iy C Ry and My = Iy U Ky C Ry generate the double
propellers discussed in Section [I3] The ®;-flows of Ny and Jy generate families of nested double propellers,
whose intersections with Ry are the topological circles illustrated in Figures and By the nesting
properties of the double propellers, the discontinuities for d" restricted to Mg, are determined by those for
3" restricted to 1.

Suppose that z € Ij is a point of continuity for " with n > 1, so the restriction " to I is continuous in an
open neighborhood of z. Let 2/, 2" € I be such that the open connected segment (2’, 2”") C I is the maximal
open subset of I containing x such that the restriction ®"|(z/,2") is continuous. Set 7 (x,0) = (z’,2”). Then
for each z € J(x,0) and w = </I\>”(z), the K-orbit segment [z, w|x intersects Rg transversally, while for the
endpoints {2/, 2"}, the K-orbit segments [/, ®" ()] and [z, ®"(2")]x must each contain a point of tangency
with 7. The collection of such points of tangency for the flow ®; partition Iy into maximal subintervals on
which the restriction of ®" is continuous.

We develop an estimate on the number of intervals of continuity for " in Iy, where we consider the case
n > 0 first. Let z € Iy be a point of continuity. As r(z) = 2, by Corollary there exists an infinite
sequence {0 < f1 < fy < ---} with (¢;11 —¢;) < M, for all i > 1, such that for z; = ®* () we have r(x;) < 7.
Set Z(x,0) = Iy, and for i > 0 let Z(x,i) C My N Ry denote the maximal connected component containing ;.
Then Z(z,4) is a simple arc by the choice of r,. In particular, the endpoints of Z(x,i) are contained in the
boundary of My. Let p}(Z(z,i)) denote the endpoint of Z(z,i) in the region {z < 0}, and pg(Z(z,i)) denote
the endpoint of Z(z,i) in the region {z > 0}. In particular, p{(Z(z,0)) = w; and p3(Z(x,0)) = wy are the
special points defined in .
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For i > 0, denote J(z,i) = ®%(J(x,0)) C Z(z,i). Then J(z,i) is an open subinterval, disjoint from the
center line 7. For each i > 0, if J(z,i) lies below the line T, let ¢; = p{(Z(x,4)) € Rg denote the lower
endpoint of the interval Z(z,4). If J(x,i) lies above the line T, then ¢; = p3(Z(x,i)) € Ro denotes the upper
endpoint of the interval Z(z,¢). Then Proposition implies that for each ¢ > 1 and n; = ¢; — ¢;_1 the
restriction

(134) " J(x,i—1) = J(x,i)

corresponds to a map ¢(z,1) € g%”) which maps ¢;_1 to {;. Let Y(x,i) = o(x,1)0---0op(z,2)op(z,1) € gﬁf’i).

We next give a geometric interpretation to the maps in Gj, defined by the actions (134), in terms of the
action of G5 on T¢ defined in Section

The intersection My N Ry consists of simple arcs arising from the intersections with propellers, as discussed
in Section and double arcs or ellipses which arise from the intersection of Rgy with bubbles in 97, as
discussed in Section [I5] The simple arcs in the intersection of 9y N Ry correspond to transverse line segments
to the propellers, as illustrated in Figure [36] The double arcs resulting from the intersections with bubbles
are illustrated in Figure but for simplicity are not pictured in Figure In particular, each arc Z(z,7) C
Mo N Ry is an arc transverse to the flow ®; in M.

For each (simple) propeller P, or Py attached in the level decomposition of My, as described in Section
the intersections P, N A and Py N A form the center line segments of the propeller, as illustrated in Figure @
The union of all these lines form the subset T C T4 = My N A, as defined in Section The intersections
of T} with 7 = R N A are the vertices in the set T, as illustrated in Figure

For each ¢ > 1, the map ¢(x,7) induces a map ¢(z,i) from the vertex of Ty defined by Z(z,i — 1) NT to
the vertex defined by Z(z,7) N T. Thus the map Y(z,7): J(x,0) — J(x,7) maps an open set in the simple
arc Ip to an open set in the simple arc Z(x,4). We have ¢; =ny + -+ + n; hence Y(x,i) = Pl J (z,0), so that
J(x,0) is contained in the domain of ®%|I.

We return to the problem of estimating the number of domains of continuity for </IS"|IO. Let x € Iy be a
point of continuity, let the indices ¢; be defined as above, then let 4,, > 0 be the least index ¢ such that ¢; > n.
Note that i, < n, and Corollary implies that ¢; < n+ M,.

By Propositionm, Y(z,iy,) can be written in normal form Y (z,i,) = pTop™ € Q%j”l), where appropriate
subwords in Y(z,4,) are replaced by shortcuts, or powers of the generator ¥. The interval Z(z,4,) is thus
defined by the word ¢ op~. Proposition implies the number of normal forms possible for word length ¢;
is bounded by #M(¢; ) < #M(n + M,). By Corollary the function #M(n + M,) has subexponential
growth as a function of n. It follows that the total number of simple arcs in 9ty N Ry which are in the images
of the map &5”|IO is bounded above by #M(n + M,,).

Let x € Iy be a point of continuity, and continuing the notation as above, for y = (/15"(95), the KC-orbit
segment [x,y] is transverse to Rg at every point of intersection, and the orbit contains a point in each of the
sequence of simple arcs {Z(x,7) | 0 < i < iy}.

By the choice of the sequence {¢;}, for each 1 < i < i, the forward K-flow in 9, of the points in the
interval J(z,7 — 1) to the interval J(x,7) has length at most v}. Therefore, there is a uniform upper bound
M, on the number of points & € J(z,i — 1) for which the orbit segment [£, ®™i (¢)]x is tangent to 7.

Recall that {z/,2"} € Z(x,0) are the boundary points of the interval J(z,0) C Z(z,0), and the K-orbit
segments [2/, ®"(2')]x and [z, ®"(2")]x each contains a point of tangency with 7, which must be one of the
points of tangency for the ®;-flow between J(z,i — 1) and J(z,%) for some 1 < ¢ < i,,. Thus, the number of
possible points of tangency with Ry which can define the lower boundary point z’ for J(x,0) has an upper
bound estimate i, - M}, <n- M/, and similarly for the upper boundary z”.

Thus, if J C Iy is a maximal domain of continuity for ff>"|lo, then there exists a connected component
Z(U,n) C Mo N Ry for which ®"(J) C Z(U,n). The number of possible such domains is bounded above
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by #M(n + M,). Then the number of maximal connected intervals J C Iy for which ®"(7) C Z(U,n) is
bounded above by the number of possible endpoints for the domains 7, which is bounded above by (n - M!)2.
It follows that the number of domains of continuity for ®" restricted to Iy has subexponential growth.

Similar considerations apply to the analysis of &)_”Ho, so that the number of domains of continuity for the

collection of maps {®¢|Iy | —n < £ < n} is a function of subexponential growth in n. We thus obtain:

PROPOSITION 20.8. The function Ce(n) has subexponential growth for a generic Kuperberg flow ®y.

We now return to the definition and calculation of the entropy invariants associated with ®. Recall from
Section |§| that Gx is the pseudogroup generated by ® acting on X = Ry.

Let Vi = {z € Dom(®) | z(z) > 0}, let V_ be the region of Dom(®) which lies below the curve £1 and let
Vo be the region between V_ and V. Then set
EI\)— = EI\)H/— s (/I\)O = EI\)H/E) ) (/I;-i- = (/I\)|V+ .

Let gé C Gk be the pseudoxgroup defined as in Definition by the maps {6,,60@4} C Gg. Also,
introduce the symmetric generating set for Q%,

(135) G = {Id, (B_)*1, (Bg)*!, (B4)*1} .

Then a map ¢ € g:(;) is a composition of at most n maps in the collection Qg), which by definition of these
generating maps is just a composition of <f>, or its inverse, restricted to a connected domain of continuity. In
particular, for each open set U € D(Em")(@), and —n < £ < n, the restriction ¢ = ®*|U € gg‘).

Recall that dr, denotes the metric on Ry defined in 7 and the metric dg on K was defined in Section
so that I has unit length, and thus ®; is a unit speed flow.

We restrict the action of Q% to the invariant set Mg, C Ry. Let s( %, MR, , N, €) be the maximal cardinality
of a (Q(Ii>7 n, €)-separated subset of Mg, . Define the restricted entropy by

. . 1 .
(136) haiw (G5 Mr,) = ggr(l) {hmsupnln(s(g@mRO,n,e))} )

n— oo
Here is the first result.

PROPOSITION 20.9. herw (G%|Mg,) = 0 if and only if hgy(,]20) = 0.

Proof. We require some preliminary remarks. As Rg is compact submanifold of K, there exists a constant
Ay > 1 so that for z,y € Ry we have

(137) AT d(z,y) < dry(2,y) < Avdx(@,y).

The submanifold Ry was chosen to be disjoint from the embedded regions D; C W for ¢ = 1,2, so there
exists some €3 > 0 so that the es-closed neighborhood of Ry is disjoint from these surfaces. That is, for
i =1,2, we have

CK(R(),EQ) = {x eK | d]K(IL‘,Ro) < 62} s CK(R(],GQ) ND; = 0.
Then the flows ®; and ¥, agree on the set Ckx(Rq, €2).

Define a function A(e) > 0 for e > 0 as follows. For y € Mg, let s; < 0 < s be the minimum and
maximum values such that {®:(y) | s, < t < sy} C Cx(Rog,e2). Then for x € Mg, with = # y let

A(z,y, e2) = min {dx(z, P+(y)) | s, <t < sy}. Then 0 < A(z,y, €2) < dg(z,y), and we set
(138) A(e) = min {A(z,y,€2) | z,y € Mg, and dr,(z,y) > €}

Observe that A(x,y, €2) is a continuous function of x # y, and the set {(z,y) | z,y € Mg, and dr,(z,y) > €}
is compact, so 0 < A(e) <e.
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Recall that vk is the constant introduced in Proposition[0.9] As the flow @, is smooth, there exists Ay > 1
such that for z,y € 9 and —v <t < i,

(139) AV dg(z,y) < dx(Pi(x), Pi(y)) < Az dx(z,y).

Now, assume that hGLW(Q%DﬁRO) = A > 0. Then for 0 < €3 < €5 sufficiently small, and for n sufficiently

large, there is a (gé,n,eg)—separated subset E, C Mg, with cardinality #En > exp(nA/2). Fix n large
enough so that this estimate holds.

We have by definition ([132)) and Lemma that for each 0 < ¢ < n,
Dom(®*) N Mg, € DO () N Mg, C || {ﬁ U e DQQ@)} .

Recall that Cg(n) is the number of connected domains in D(mn) (E)), so by the Pigeonhole principle, there exists
some connected component U € Dg?(@) such that #(E, NT) > exp(n\/2)/Cq(n). For n sufficiently large,
we can assume that Cg(n) < exp(n A/4) by Proposition Then for such n, set E/, = E, NU, and we have
that #E’ > exp(nA/4). Let y # x in E/,, then z and y are (n, e3)-separated implies there exists —n < loy<n
such that dgr, (D (), Dw (y)) > es.

It may happen that the restricted set £/, satisfies £/ N (U — U) # 0. That is, there exists @ € £y for some
—n < £ < n. For such z, there exists ' € U which is sufficiently close so that the (n, e3)-separated condition is
again satisfied. Thus, by taking a sufficiently small perturbation of each point in E;L, we can assume without
loss of generality that £/, C U. Recall the definition of 4; in (137)), then for each distinct pair =,y € E!, there
exists —n < £, , < n such that

(140) dic (@ (z), D% (y)) > e3/As.

By Proposition 0.9} the forward and backward return time to Ro for the K-orbit of any point € Mg, is
bounded by vi. Consequently, for any x € 9t there exists a least 0 < t,, < v such that &, (z) € Mg, .

Set T,, = nvk. For a distinct pair x,y € E,’l let —n < 4,4 < n be as above, and let ¢, be the value such
that 2/ = @, (z) = ®* v (x), and t, such that y' = & (y) = ®*v(y). Then 0 < |t5|,|ty| < lyyvic < Tn.

Set €4 = e3/A1, and €5 = A(eq) < €4 for the function A(e) defined by (138]).

We claim that the set Eﬁb C M is (P4, Ty, €5)-separated. If not, then there exists a distinct pair x,y € E;L
such that dg(®:(z), ®:(y)) < €5 for all —T,, < ¢t < T,,, and this holds for ¢ = ¢, and ¢ = ¢, in particular.
It is given that dx(z’,y’) > e4, so by the definition of €5 and the function A(e), we have A(z,y,e2) > e4.
That is, for all ¢ with s, < t < s) we have that dx (2, ®:(y')) > es. If 5) < t1 —ta < s then this
implies that di (P, (), P4, (y)) > €4 > €5 contrary to assumption. If s) < ¢; — 1ty < s} is not satisfied, then

Dy, (y) € Cx(Ro, €2), so that dg(Py, (z), Py, (y)) > €2 > €5, again contrary to assumption.

It follows that s(®¢|9M, Ty, €5) > exp(n A/4).

As T, is a linear function of n, this implies that hyop(P¢|9) > 0, as was to be shown.

The reverse implication of Propositionfollows by showing that hgpw (g% |MRr,) = 0implies hyop (P4 |IM) =
0. For this purpose, we use an alternate interpretation of the topological entropy hiop,(®:|90), in terms of the

minimum cardinality of a (@4, T, €)-spanning set for 9. The properties of spanning sets used to define the
entropy of a map are discussed in greater detail in [49], Chapter 7.2].

For T' > 0, introduce the metric dﬂz on M where for x,y € M,
di (z,y) = max {dx(®4(z), Ps(y)) | -T <t < T} .
A subset F C 9 is said to be (@M, T, ¢)-spanning if for all y € M there exists x € F such that

dX(x,y) < e. Note that for 7" > T the metric d7 is finer than dr, so a (®;|9M, T", €)-spanning set F is also a
(D49, T, €)-spanning set. Let r(P;|M, T, €) be the minimal cardinality of a (®.|9M, T, €)-spanning set in M.
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Then (@M, T,¢) < oo as M is compact, and we have the inequalities r(P I, T",€) > r(P,|M, T, ¢) for
T > T, and r(D¢|9N, T,€') > r(P:|IM, T,¢€) for 0 < € < e. Then we have

(141) hiop(P:|9N) = liH(l) {lim sup % log(r(®:|9M, T, e))} .
e—

T—o0

As an application, we have:

LEMMA 20.10. Suppose that for all A > 0, we have that: for € > 0 sufficiently small and all T > 0
sufficiently large, there exists a (P9, T, ¢)-spanning set F(T,e) C M with # F(T,e) < exp(T'A\). Then
htop(CI)tDﬁ) == 0

Now, assume that harw (G5|MR,) = 0, and let A > 0. Then we construct (®,91, 7', )-spanning sets which
have growth rate less than exp(T'\). As X can be chosen arbitrarily small, then Lemma implies that
hiop(®¢|9) = 0, which completes the proof of Proposition m

Fix A > 0 and 0 < € < dx then set e = ¢/8. Then there exists ng > 0 such that for n > ny we have
(G5 |Mr,, 1, €6) < exp(nA/2). Thus, for each n > ng there exists a (G%, n, €s)-separated subset F, C Mg,
with maximal cardinality which satisfies #ﬁn < exp(nA/2). Then for each pair x # y € F,, there exists
—n <l < nsuch that z,y € Dom(®%v) and dRO(<T>Zw (z), D9 (y)) > .

For each n > ng, the set ﬁn was chosen to have maximal cardinality. Thus, for each y € Mg, there exists
x € F,, such that dgr, (®‘(z), ®(y)) < € for all —n < £ < n. That is, F, is (®|Mg,,n, €5)-spanning.

We consider the restricted set ﬁn NU. The set ﬁn C Mg, is ( %,n,eg)—separated for Mgr,, hence is
(®|MR,, n, €6)-spanning for Mg, , but this need not imply that F, NU is (Q%, n, €g)-spanning for Mgy, NU. If
so, then set ﬁff = ﬁn NU. Otherwise, if ﬁnﬂU is not (Qé, n, €¢)-spanning for Mg, NU, then we define ﬁfl] cU
by addinAg to the set F}, NU sufficiently many points, obtained from eg-perturbations of Eoints Ain F,—(F,N0),
so that FY is (Qé, n, €¢)-spanning for Mg, N U. This is done as follows. A point z € F,, — (F,, NU) is said to
be in the (G%,n, €g)-shadow of U, if there exists y, € U such that dRO(ZI;Z(m), (y,)) < €6 for all —n < £ < n.
Then define ﬁ}j as follows:

FY = (F,NU)U{ys |z € F, — (F, NU), a is a shadow point for U}.
Set €7 = 2e6 = €/4, so that the e; ball centered at a point € Ry contains the eg-ball centered at ¢, for any

point ¢ in the eg-ball centered at x. Then by construction, F\TIL] is (%DﬁRO, n, €7)-spanning for Mg, NU. Note
that #FY < #F,.

The next step in the proof is to use the flow ®; of the sets ﬁg, for U € Dg;)(:l;), to obtain a (@49, T,,, €)-
spanning set in 9, for appropriate T,,. There is a technical difficulty that arises in this procedure, due to the
fact that the return time for the flow to the space Ry is not constant. We require the following observation,
that there is a “modulus of continuity” for the time-change along an orbit, with respect to variations of the
initial points for flow segments of ®; with bounded lengths.

LEMMA 20.11. There exists M > 0 and dx > 0 so that for all 0 < € < 0x:

Let € Mg, and |T| > 1 be such that & = ®p(z) € Mr,. Let ny be such that & = d"=(z). For
Y,z € Bry(x,€) NMR,, assume that dr, (®*(x), ®(n)) < € for all 0 < £ < ny, for bothn =y and n = z. Let
T’ be such that @1/ (y) = "= (y), and T" be such that Dr(z) = ®"=(z). Then if dr,(y,2) < € /(Mx |T|), we

have

(142) di (P:(y), @4(2)) < € forall |t] <|T] .

Proof. The curves {®.(§) | 0 <t < T} for € € {z,y, 2z} are integral curves for the vector field K. The idea of
the proof is that for appropriately chosen dx the K-orbits segments for y and z are contained in a suitably
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small neighborhood of the K-orbit segment for z, chosen so that the length of the vector K along these curves
are uniformly close. It then follows that the return times for y and z are also uniformly close. The details of
the proof use standard methods of differential equations, and are left to the reader. O

We use Lemma |20.11| to construct a set ﬁ’l whose points are sufficiently close together, so that the ®; flow
of F yields a (®;|9M, T, €)-spanning set, for a sequence of values T, which tend to infinity.

Let T, = Lo - n, and set es = €7/(2M T,,) = €7/(2n Lg My ) for Lg as defined in Lemma and My
as defined in Lemma Note that there exists a constant Ay > 0, which depends only on the geometry
of Ry, such that the number of points required for an eg-spanning set of the disk Dg,(z,e7) C Ro, for the
metric dr,, is bounded above by A7 (e7/es)? = A7 (2n Lg M)

For each U ¢ D(fmn)(@) and each z € F\flj, choose an eg-spanning set for Mg, N Dr, (z,€7) N U,
S(U,z,eg) = {x(U,x,1) | i € Z(U,z,e3)} C Mr, N Dr,(x,e7)NU
where the index set Z(U, z, €g) has cardinality # Z(U,x,es) < A7 (2n Lo Mx)?. Then set
(143) = U U SW.ae).
UeD{ () weFY
Observe that # F/ < Co(n) - exp(nA/2) - A7 (2n Lo Mic)2.

We next construct a set I}, which is contained in the ®;-flow of the set 13,’” for a sequence of sufficiently

small increments of the time parameter. Let M, be the greatest integer with M, < T, /e7, and for each
0</¢< M, set ty =1 €e7. Then define

(144) Fo= |J @uF) cm.
0<E<M,,
Observe that R
#F, = M, - #F, < Ly -n/er - Co(n) - exp(n \/2) - A7 (2n L Mx)?.
Thus, for njy > ng sufficiently large, we have that n > n( implies that # E, < exp(n). Set T, =T,, — vk.

LEMMA 20.12. F, is (9:|9M, T, €)-spanning.

Proof. Let n € 9, then we must show that there exists £ € Fj, such that
dg (P:(n), P:(§)) <e forall —T, <t<T,.

First, there exists 0 < ¢, < vk such that y = ®_; (n) € MR,. Then there exists U D(mn)(:f) with y € U,
and z € FY for which dr, (®(z),®(y)) < €7 for all —n < £ < n. By the choice of the set N(U,z), there
exists z € N(U, x) for which dg,(y, z) < eg. Note that z € F..

We may assume that T;, > vi+1, as we consider 7,, — oo. Then observe that the hypotheses of Lemmal20.11
are satisfied for ¢/ = €7, T = T,,, x € F,, and the pair of points {y, z} as above, and so the estimate (142)) holds
for these points. Thus we have:

(145) dg (Pe(y), Pi(2)) < ez =¢€/4 forall |¢t| <T, .
Choose 0 < £ < M, so that [t,, —ts| < e7. Then dg(®y,(2), Ps,(2)) < €7 as the flow ®; has unit speed.
Then for -7}, <t < T}, note that |t +t,| < |T,, — vk| + |vk| < Ty, so we have the estimates:
di (P:(n), ©:(£)) dg (P10 Dy, (y), e o Py, (2))

di (Piit,(Y), Peye, (2) + dr(Prys, (2), Prit, (2))
er+er=¢€/2.

IA A

as was to be shown. O
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Finally, to complete the proof of Proposition 20.9] note that T}, = Lg - n is a linear function of n, so the
growth rate of the sets F, has an exponential bound exp(n A) = exp(T,, \/Lg). As the choice of A > 0 was
arbitrary, by Lemma [20.10| we conclude that hiop(P4|9T) = 0. O

There is another entropy invariant associated to ®;, which is defined in terms of the action of the pseudoxgroup
Gj on Ry introduced in Definition and equipped with the symmetric generating set

(146) G = {Id, ()L, (61T, (67)F, (63)F, (65)F1 )

Let harw (G |Mr,) denote the pseudogroup entropy associated to the generating set g}? acting on Mg, .

Recall that the map ¢ € gﬁ(” represents the return map for the Wilson flow, and corresponds to the
“short-cuts” introduced in Lemma 5.1} This additional generator raises the possibility that the growth rate of
(G5, n, €)-separated points may be greater the growth rate of (gg, n, €)-separated points. On the other hand,

the pseudoxgroup gé is the “full pseudogroup” generated by the return map @, while the generators for Gy,
form just a subset of these. We use Proposition [0.16] to compare these growth rates, and prove the following:

PROPOSITION 20.13. hgrw (G;|Mr,) > 0 implies that harw (G |Mr,) > 0.

Proof. Assume that herw (G5|MRr,) = A > 0. For € > 0 sufficiently small, and n sufficiently large, let
Ey(n,e) C Mg, be a (Q%, n, €)-separated set with cardinality #Eq(n,€) > exp(n A/2). Then for each distinct
pair ,y € Ey(n, €), there exists —n < £, , < n such that dg, (DL (), Plew (y)) > e

By Corollary for each x € Mg, the orbit Gj(z) C Mg, is syndetic for the constant v;. Recall
that M, > 0 is the greatest integer with M, < 2u then by Corollary 20.7] there exists 0 < m, < M,
such that ®~™=(z) € Gy (x). Also by the proof of Proposition there exists 0 < ¢, < M, /2 such that
(@4 + =y (2)) < re. Thus, module changing ¢, for £, + 1, we can further assume that |z(®% v (z))| > § for
some ¢ > 0 independent of the choice of x and 0 < £, < M,,.

For each z € Ey(n,€) we have associated two indices, 0 < ¢, < M,, and 0 < m, < M,. The total number
of pairs {£;, m,} is at most M2, so there exists values 0 < ¢ < M,, and 0 < m’ < M, such that the set

Eo(n,e)(¢',m’) = {x € Eo(n,€) | £, = ¢ and m, = m'}
has cardinality at least #Eq(n,¢)/M?2. Fix such £',m’ and set Ej(n,e) = Eo(n,e)(¢’,m’'). Set & (n,e) =
d="'(E})(n,€)) C Mg, which is then (G%,m' + n, e)-separated.

Proposition [9.9shows that for each £ € My, and n = &)(5), the K-orbit segment [¢, 7]k has length bounded
above by vi. Then there is a uniform norm on the derivative D¢®;: T:K — T,K, so there is a uniform

upper bound Mg > 1 on the norm of the derivative matrix of Dg@ and on its inverse (Dg@)’l. Thus, for
£,& € Mg, N Dom(®'), we have

(147) (Mg) ™" - dro(€,€") < dro(27(6),2°(¢)) < (M) - dry (&)
For x #y € E{(n,¢€), set & = &' (z) € Ey(n,e) and &' = e (y) € Ey(n,e).

Let £} , = lyy + ¢ +m' < n+ 2M,, then by the choice of £’ and m’, Corollary implies the map
= QEQHM“). Also, we have the estimate

(148) dr, (D% v (€), Bv(€))) = dry (B Tl (2), B Hoow (y)) > Myp™ - dry (Bl (z), 8w (y)) > Mg ¢ .

Set ¢ = Mgz™M* - e. Then &)(n,¢) is (2(n + 2M,,) - vk, €')-separated for the action of Gi on Mg, .

These estimates hold for a sequence of integers n — oo, so it follows that hgrw (G| Mr,) > A/2 > 0, as
was to be shown. 0
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The rest of this section is devoted to the study of the entropy invariant hgrw (G5 |Mr,). One approach to
the study of the restricted entropy hiop(®:|9M) is to calculate the invariant measures for the flow, then estimate
the Lyapunov spectrum for the flow on 91 and apply the Margulis-Ruelle Inequality [29] [42] to estimate it
from above. To show the entropy hiop(®:|9) = 0 it then suffices to show that the Lyapunov spectrum must
be trivial for any invariant measure, which is done by analyzing the asymptotic properties of the derivative
along the flow. In essence, the idea behind the proof of the following result is analogous, in that we obtain
uniform estimates for the expansive properties of the dynamics of the pseudoxgroup Gj .

THEOREM 20.14. hgow (Gk|Mg,) = 0.

Proof. Assume that hgrw (G5 |Mr,) = A > 0. Let € > 0 and ne > 0 be such that
(149) $(Gr, MRr,, n,€) > exp(nA/2) for all n > n..

Let E, C Mg, be a sequence of (G%,n,e)-separated sets such that #E, > exp(nA/2). Actually, it may
be necessary to pass to a subsequence {n; | i = 1,2,...} to obtain the estimate , but for simplicity of
notation, without loss of generality we assume there exists sets F, for all n > n. with this property. Then
for each pair £ # n € E,, either dr,(§,n) > €, or else there exists a word ¢ € gﬁ?’ with £,7 € Dom(p), and
dr, (p(&),v(n)) > e. We show this leads to a contradiction.

Recall that the metric dr, on Ry is the usual euclidean flat metric, where its sides have lengths 2 x 4.
Choose m so that
1 1

—-exp(nA/4) <m < —-exp(nA/4),

T B A) < m < - exp(n A4
and divide Ry into 2m x 4m uniform squares with sides of length 6 = 1/m and diameter v/2/m?. The number
of squares is thus bounded above by % -exp(n A/2), so by the Pigeonhole principle, for some square region must
contain two distinct points of E,,. Hence, for each n there exists @,,, yn, € Ey, with dr, (Tn,yn) < %-exp(—n A/4),
and “n € M(TL) with dRo (@n(xn)a ‘Pn(yn)) > €.

For € € Dom(y,,), let D¢(¢p,) denote the 2 x 2 Jacobian matrix of first derivatives of ¢, at the point &,
and let ||D¢(pn)|| denote its matrix norm. Then by the Mean Value Theorem, there exist w, € Dom(¢,) in
this same square region containing x,,, y, such that ||D.,, (¢n)|| > €/3 - exp(n A/4). It follows that the norms
| D, (@n)|| grow exponentially as a function of n.

We next show that the uniform norms ||D¢(p)|| of the derivative matrices of ¢ € QE?) admit arbitrarily
small exponential bounds as functions of n, which yields a contradiction. We remark that this calculation
implies the Lyapunov spectrum of the flow ®, for any invariant measure supported on 9 is trivial.

For an invertible matrix A, introduce the “symmetric norm” ||| Al|| = max{||A]|, ||A=!||}, where || A]| is the
usual sup-norm on the linear transformation defined by A.

Let D¢(¢;) denote the 2 x 2 Jacobian matrix of first derivatives of ¢; at the point & € Dom(¢;). Define

(150) C (@) =sup {|[IDe(@)| |1 =1,2 & £ € Dom(¢)} -
For b > 1, introduce the upper bound
(151) C(,5) = sup {|IDe@)I[0<L<b and €€ Dom(s)}.
As the matrix D, (v) is the identity at the fixed points w; for i = 1,2, for £ € Rg with r(£) = 2, we have
that Ziirinoo ln|D|2|(M = 0. Thus, for every pu > 1, there exists n(¢, u) > 0 such that
(152) L< [P < for £ (9, p), & € Dom(v").

Recall from Sectio the notion of monotone words M(n) of length at most n in Definition and

that by Proposition |14.3| every ¢ € QE?) admits a factorization ¢ = ¢ o ¢, where T € M(n’) and
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(™)t € M(n") for integers n’,n” with n’ +n” < n. For ¢ € M(n) we use this factorization and the
estimates ((150)), (151)), and (152]) to obtain a uniform estimate for the norm ||| D(¢)||| as a function of n.

For p1 = exp()\/32), choose b > max{n (i, i), (32/)) - In(C(¢))}, so that C(¢)'/® < exp(\/32). Also, for
£>b>n(i, ), we have 1 < ||| De(¥%)]|| < exp(£\/32) for all &€ € Dom(*).

Given ¢ € M(n) recall the product representation in (71]). For the b chosen above, there exists i(p,b) > 1
such that ¢; > b for all 1 < i < i(p,b), and £; < b for i = i(¢,b). Write p = ) - ¢,y where (®) starts with
the map (ﬁzsa b and @) starts with Yt. Assume that n > max{n.,n(, u)}, where n. was introduced in the

paragraph after ((149)).

The factor ¢® contains at most N generators of the form (;5;', and between each such map is a term %,
so there are at most N, + 1 such factors with exponents either £; < b or ¢; > b. Then

(153) DIl < C(@)M - O, b) M) - exp(n 2/32) .
+

70

The factor o) contains at most n/b generators of the form ¢
Y% where £; > b by the definition of ©(v)- Then

(154) (1Dl < C(@)""-exp((nA/32) < exp(nA/32) - exp(nA/32) = exp(nA/16) .
Combining these estimates, we have:

LEMMA 20.15. For A >0, let b > max{n(y, u), (32/X) - In(C(¢))}. For all n > max{n.,n(y, pn)}, we have

(155) max{[[D(@)[|. | D(p) I} D) - 11D ()l
exp(n A/32) - exp(n A\/16) < exp(n A\/8) .

and between each such generator is a term

<
<

Now recall that with the assumption that hgrw (Gk|PMMr,) = A > 0, then for each n > n., there exists
¢n € M(n) and w, € Dom(py,) such that | Dy, (¢,)|| > € exp(n A/4). Proposition [14.3|implies that each such
word ¢,, admits a factorization into a monotone decreasing factor and an increasing factor, each of length at
most n. Apply the estimate to both factors to obtain that for n sufficiently large,

[ Dw, ()|l < exp(nA/8)-exp(nA/8) =exp(nA/4) .
For n sufficiently large this yields a contradiction, which completes the proof of Theorem [20.14] O

21. LAMINATION ENTROPY

The minimal set for a flow is an invariant of topological conjugacy, so represents an “invariant” for the flow.
Properties of the minimal set can be used to study and classify the flow as a dynamical system. In the case
of a generic Kuperberg flow ®; the space 91 is the unique minimal set, and is fundamental for the study of
the dynamics of the flow as has been seen in previous sections. In this section, we use the zippered lamination
structure of 9 to define invariants for the lamination itself, derived from the holonomy pseudogroup for 9.
The invariants studied in this section are “entropy-like”. In the next section, we study growth-type invariants
for the leaves, and both types of invariants reveal the beautiful subtleties of the class of generic Kuperberg
flows.

We first give precise definitions of the maps {1, ¢, ¢, } introduced in Section and of the pseudoxgroup
Gy they generate. We then study how this pseudoxgroup is associated to the holonomy of the zippered
lamination, and compare it with the pseudoxgroup Gj introduced in Section @ These two pseudoxgroups
are naturally closely related, as the action of G}, on Ry studied in previous sections induces an action on the
families of curves in the intersection 9t N R and thus induce maps in G3; acting on the transverse Cantor set
¢ which parametrizes these curves.

A key difference is that G, contains maps defined by the holonomy along all paths in the leaves of 9, and
not just those paths following a KC-orbit. In particular, the short-cut maps, which play a role in the study of
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the entropy for the Gj, action, arise naturally from the geometry of the leaves of 9. The dynamics of the
Gan action on the transverse Cantor set € defined in (125) provides an alternate source of invariants for the
dynamics of the flow ®; on 9.

The first invariant studied is the entropy hqrw (Gi;) of the action of Gj. on the transverse Cantor set
€ C T. We relate this entropy to the entropy for the action of the pseudoxgroup Gj, on Mg, as studied in
the previous section, and prove that harw (Gyy) = 0 as is naturally expected.

The main result of this section is that there is a non-zero entropy invariant for the pseudoxgroup G3,; which
is obtained by considering “lamination slow entropy” hgyu (Gay) for 0 < a < 1. We show in Theorem
that if the insertion maps o; used in the construction of K have “slow growth”, as defined in Definition [21.11
then hg/fw(ggﬁ) > 0 for growth constant ov = 1/2. Thus, even though the flow entropy Ao, (®¢|9%) = 0, there
is enough “chaos” in the orbits of ®; and hence in the holonomy action of G, to imply that it has positive
slow entropy. We also note, at the end of the section, how one can obtain hqrw (G;) > 0 for the usual entropy
by modifying properties of the insertions maps o;, which gives a new insight into the results of the Kuperbergs

in [27, Section 8].

Recall that 7 = {z = 0} N Ry is the line segment in Ry transverse to the interiors of most of the leaves
of M, and € C T as defined in (125) is a Cantor set by Proposition Let Mg C Mg, = MN Ry be the
union of the path components of Mg, that contain a point in €.

The holonomy pseudogroup Gon for the zippered lamination 991 can be defined using a covering of 971 by
foliation charts. The proof of Theorem introduced the sections T; and their associated Cantor sets €;
which form the model spaces for the foliation charts constructed there, and so the holonomy defined using this
covering produces a pseudogroup. On the other hand, Corollary implies that each leaf in 9 intersects
the section Ry so we can alternately define Goy using the induced holonomy maps on the space M associated
to the transverse Cantor set €. This reduction yields a pseudogroup Gsy which is most closely related to our
previous constructions, so we assume that Gy is defined using the space €. Also, recall that 97, is dense in
M and the intersection My N Ry is dense in Mg, so the holonomy maps of Gop can be defined by paths in the
leaf M1y with endpoints in the transversal €.

Recall the symmetric generating set for the pseudoxgroup Gy,

Gi = {1d. () (0D)* (61)* (63)* (63)7")

which act on the endpoints of the arcs in 3¢ and so induce actions of the tree T as discussed in Section
The vertices of the tree T¢ are points in €y so we get an induced action on €3. We formalize the definitions of
the local homeomorphisms defined on subsets of ¢ induced by these maps. We first note that Mg “fibers”
over € in the following sense:

LEMMA 21.1. There ezists a continuous map mon: Me — €, such that for £ € €,

(1) mom(§) =&;
(2) mom(p§(§)) =€ for k=1,2,

where p§ for k = 1,2 are the maps introduced in Section , The fibers of the map mon: Me — € are compact
intervals my, (€) C Ro whose lengths are bounded above.

Proof. For each ¢ € € there exists a maximal connected closed arc in Mg intersecting T at £. Let p{(€) be
the lower endpoint of this arc contained in {z < 0}, and p3(¢) the upper endpoint of this arc contained in
{2z > 0}. For n € M¢ there is a unique arc with 7 € [p}(£), p3(€)], and we set mon(n) = £. Then properties (1)
and (2) follow by definition.

The continuity of the map moy follows from the proof of Theorem [19.1] The bound on the lengths of the
fibers is a consequence of Theorem [18.1 O
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For points in the dense subset €3 C €, the definition of mgy is based on the intersections with 7 of the
families of 79 and A\g curves in Rgy. That is, each & € €y has the form

(156) E=v01,0 i1, lp—13n) NT or &= Xo(i1, 015 3in—1,ln-1;0n) NT.

Each such curve is defined by the labeling of its endpoints denoted by p}(¢) for the lower endpoint and p3(€)
for the upper endpoint. Then for n € 9y N Ry in a vy or Ay curve which is an arc, the application moy takes
the point 7 to the intersection with 7 of the vy or Ay curve which contains it.

The map ¢; for k = 1,2 induces maps ¢, with domains defined by
(157) Dom(¢),) = {& € €| p5(€) € Dom(gy)} -
The maps are then formally defined by:
61(&) = (o7 (pp(€))) for € € Dom(ey)
$(6) = mo(¢3 (0(€))) for & € Dom(e,) .
The map ¢, has inverse 5,;1 defined on the image of ¢,. The action of the maps d); on the 7 curves in
My are illustrated in Figure and the action of the induced maps 5,3 on the vertices of the tree Tg are

illustrated in Figure as discussed in Section Note that each map ¢, increases the level of the curve in
My defining a point £ € € by 1, for k =1, 2.

Next, we define the map 1) € Goy induced by the map 1. Recall from the discussion in Section |§| that the
Wilson flow reverses direction at the annulus A = {z = 0} C W, and is anti-symmetric with respect to A.
Define the domain of 4 by

(158) Dom(y) = {€€€|z(py(€)) <0 & 2(v—(pp(€)))leq0}
for ¢_ as defined in . The map v is then formally defined by:
P(E) = mm(-(pp(€))) for £ € Dom(y)) .

The map ¥ has inverse E% defined on the image of 1. The action of ¢ and its inverse on the v curves in
My, is illustrated in Figure 34 as the vertical maps. The action of the induced map 1) on the vertices of the
tree Tg is given by translation along the center lines in T, as discussed in Section Note that the map v
preserves the level.

DEFINITION 21.2. Let Gon be the pseudogroup generated by the collection of maps
—_— —1 = -1 — ——1
(159) gg§311) E{Id,’l)[},’l)[} 7¢17¢1 7¢2a¢2 } .
Let G5, be the pseudoxgroup formed by the compositions of maps in gg(j? and the restrictions of these compo-

sitions to open subsets of their domains in €.

REMARK 21.3. We do not need to consider the maps ¢; , since for & € € such that pjy(€) € Dom((¢;)™1)
we have that p (&) € Dom(¢; oyp~1) and

mo((6;) 71 () = mon (8] 0™ (pp(€))-

The action of Gogy on € has a geometric model. Identify the points of €y with the vertices of Tg. Then the
discussion in Section [14] gives the actions of the generators in (159) on the tree Tg. This remark is the basis
for the proof of the following;:

PROPOSITION 21.4. The holonomy pseudogroup Gox of M is the pseudogroup acting on € defined by the
holonomy maps associated to leafwise paths in 9.

Proof. The leaf M is dense in M, so it suffices to consider the holonomy associated to a path o: [0,1] — My
with ¢(0),0(1) € €. As each £ € €; corresponds to a vertex of Tg, we can assume that the path o: [0,1] —
Ts. Recall from Section [14]that Ty C T4 = AN consists of the line segments in MM N .A which are formed
by the intersection of A with the simple propellers in the construction of 9y. Then T4 is formed by adding
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continuous curve segments in My joining the line segments in T%, as is illustrated in Figure Thus, the
edges of the tree T consists of two types, those which belong to T} and the added connecting paths.

If the path o traverses a connecting segment, then the holonomy map this induces corresponds to the action

— —1 = —1
of one of the maps {¢1,¢; , Ps, o }. If the path o traverses a segment in T7, then the holonomy map this
— —1

induces corresponds to the action of one of the maps {t),%) ~}. Thus, the holonomy maps defined by such o
are contained in Goy.

Conversely, given a word in Gop we can associate a path o: [0,1] — T¢ with 0(0),0(1) € € using the same

correspondence of the generators in Qg(jll) with segments in T4, so that every word in Ggy is associated with
the holonomy along a leafwise path. |

As noted in Section [I4] T is a tree except for the loop based at the basepoint vertex wy. Thus, a path
0:[0,1] = Tg is homotopic with endpoints fixed, to a path which is monotone in level. We derive from this
remark the existence of normal forms for words in G3; exactly as in Proposition m

The word length on Gj; is defined as before, where ||@|| < n if P can be expressed as a composition of at

most n maps in Qé;,ll). Also, define monotone words in Gy, in analogy with Definition

DEFINITION 21.5. A word ¢ € Ggy is said to be monotone increasing if it is written in the form

_ —tm —lm—1 - 2
(160) p=1 O(bjmoqﬁ o-~-o¢jzoz/) o¢j1
where each ji = 1,2 and £}, > 0. Set Mgy (0) = {Id}, and define
(161) Man(n) = {7 € G | @ monotone & |[5] <n} ; Ma(o0) = | Mo(n) .

The proof of the upper bound estimate on the function #Myy(n) in Proposition applies verbatim to
the function #Man(n), and we have:

PROPOSITION 21.6. For each b > 1, there is a polynomial function Py(n) of n such that the cardinality
of the set Mon(n) satisfies

(162) #Mon(n) < Py(n) - 20070,

The following result is analogous to Corollary and the proof follows in the same way.

COROLLARY 21.7. The cardinality of the set Mon(n) of monotone words of length at most n in Gop
satisfies

(163) i 2#Mo(n))

n— 00 n

=0.

We then have the following result, which is analogous to Proposition[14.3] and follows from Proposition [21.4
and the comments afterwards.

PROPOSITION 21.8. Let § € Gy with |p|| < n. Then there exists a factorization g = @ o @,
where ot € Mon(n’) and (p7)~1 € Mon(n”) for integers n',n” with n’ +n” < n. Moreover, we have
Dom(p) C Dom(pT op™).

The factorization » = T 0%~ is said to be the normal form for the word .

We conclude this discussion of the structure of Gg,, with some remarks concerning the relation between the

~

actions of G}, and GJ,. First, recall that the domain D(¥)Z of the the induced action of the Wilson map _
contains the segment Jy C Rg as defined in , and ¥ _ defines a strict contraction of Jy to the fixed point wy
which is the upper endpoint of Jy. For the 79 and A curves in R with lower endpoint in Jo, the action of ¢

on these curves induces the map ¥ which is a strict contraction to wy € €. Thus, the holonomy pseudogroup
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Gon contains a contracting fixed point, which is just the holonomy along the loop in T¢ containing the point
wo.

The second remark concerns the action of ¢ on the endpoints of curves in ¢ and the action of 1) on
Te. Let £ € € be defined by a vy or A\g curve in Mg with endpoints z = p}(€) and T = p3(&) where
r(x) = r(Z) = ro > 2. Let k, > 0 be the exponent such that T = ¢*=(x). Then x, = ¥’(x) for 0 < ¢ < k,
is a sequence of points with r(z,) = ro and z(ze+1) > z(x¢) for 0 < £ < k. Let m, be the greatest integer
with m, < k,/2. By the anti-symmetry of the Wilson flow, we have z(z,,,) < 0 and z(z,,+1) > 0. That is,
the action of ¢ on the curves with lower endpoints {z, | 0 < ¢ < m,} produces a sequence of curves whose
intersections with 7 have decreasing radius. For k, even, the closest curve to Iy in the sequence, the innermost
curve, corresponds to the endpoint z,,,. When k, is odd, the closest curve degenerates to the single point
T, +1 With z(2m,41) = 0. The action of ¢ on the endpoints {x¢ | my < ¢ < k;} then reverses this process,
where the endpoints zy and zj, correspond to the same curve in ¢ and thus the same point in €.

For the induced map ¢ € Gy acting on Ty, its action on the vertex £ € €y corresponding to the g or Ag

curve chosen, defines a sequence of vertices El (&) = mam(z¢) in T tending to the tip of the propeller containing
¢, as in Figure However, if k, is even, the point &,,, is then the furthest point along this sequence, which
is closest to the tip of the propeller. If k, is odd, &, +1 is the furthest point along the sequence. In terms of
the normal forms for words in G}, defined in Proposition and the normal forms for words in G, defined
in Proposition this implies that a power ¢* appearing in can collapse to a power @m appearing in
with m < £. We will say that the action of Gg; has “leaf short-cuts”, which correspond to the holonomy
of a path which goes from a point on one side of a propeller, to a point on the opposite side, avoiding the trip
that the action of G} must follow to the extremal end of the propeller, to get to the point on the opposite
side.

_Finally, note that Hypothesis and the structure of the propellers imply that for £ € Dom(1)) we have
r((€)) < 7€), as (Y- (py(€))) = r(p5(£))-

We next discuss the entropy associated to the action of the pseudoxgroup Ggy, on €. Let T = AN Ry have
the metric defined by the radial coordinate r, and endow € C T with the restricted metric, denoted by dg.

For € > 0, say that &1,& € € are (n, €)-separated if there exists @ € Qg(;) such that &, & are in the domain of
2, and de(P(£1),2(£2)) > e. A finite set S C € is said to be (n, €)-separated if each distinct pair &1,& € S
is (n, €)-separated. Let s(Ggy, n, €) be the maximal cardinality of an (n, €)-separated subset of €.

Then as in (129)), define the entropy of G, by:

(164) haow (Gap) = liII(l) {hm sup 1 In(s(Gas 1, e))} .

- n—oo T

The entropy harw (Gay) is closely related to the entropy harw (G |9Me), as the action of G} on Ry and
G on € are “almost intertwined” by the projection map mop: Me — € defined in Lemma The relation
between the entropy for a group action under a factor map suggests that hqrw (Gy;) should be bounded above
by harw (G5 |Me), which vanishes by Theorem

The standard argument for factor maps used to prove this result does not actually suffice in the situation
we consider, as the “leaf short-cuts” in G, (discussed above) imply there are actions in G}, which are collapsed
by the map moy. We will use instead a more straightforward approach to the estimation of hgrw (Gay) based

on the fact that the space € is contained in an interval, and the function #Qg(g) has subexponential growth.

THEOREM 21.9. Let K be a generic Kuperberg plug, then hgrw (Gay) = 0.

Proof. Suppose that hgrw (Gay) = A > 0, then there exists e > 0 and a subsequence of sets En C € which are
e-separated by elements of gz(nrzli) and #Eni > exp(n; A\/2). We show this yields a contradiction. Fix a choice
of n = n; such that the set En satisfies #En > exp(n A/2) and is e-separated by elements of Qg?.
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Then for each pair & # ¢ € E, there exists § € QD(;) such that dg(p(€),p(£')) > e. We may assume that
the word @ has the normal form @ = " 0%~ where each of 7 and (7 )~! is a monotone word as in (T60).

Proposition and Corollary imply that the function #gé};) has subexponential growth. It follows
that for n sufficiently large, there exists @ € Qg;) and a subset E¢ C E, N Dom(p) with #E¢ > exp(n\/4)
and for each £ # ¢’ € 1:35 we have de(@(€),2(¢)) > e

~

Thus we conclude that the set $(Ep) C € C T is e-separated. This is clearly impossible for n sufficiently
large, as the length of 7 is finite. a

The above proof that hqrw (Gy;) = 0 depends fundamentally on the estimate of the growth rate of the

reduced word function #gg}?. This estimation follows from Proposition which implies that this function
has exponential growth of arbitrarily small exponent, hence must have subexponential growth. This suggests
considering a more sensitive entropy-type invariant, which detects growth rates that are subexponential, yet
faster than any polynomial function, in order to obtain non-vanishing dynamical invariants of the action of
G on €. It turns out that such invariants exists in the literature.

The slow entropy of a map was introduced in the works of Katok and Thouvenot [24] and Cheng and Li
[8], and we adapt this idea for the action of G};,. For 0 < o < 1, define the a-entropy of G}, or just the slow
entropy, by

(165) crw (Gom) = ll_r)r(l) {limsuplln(s(ggn,n,e))}

n—oo N
where 0 < by (Gin) < 00. Tf g 1 (Gip) > 0 and 0 < B < o, then hl,;, (Gy) = oo.

Note that for 0 < « < 1, the function exp(n®) grows faster than any polynomial function, but is slower than
any exponential function, so the invariant h&; 1, (Gy) has the right character for measuring the complexity of
the dynamics of Ggy,

The entropy dimension for a continuous transformation 7: X — X of a compact metric space X was
introduced by de Carvalho [10], and studied further by Cheng and Li [8]. We define an analogous invariant
for the pseudoxgroup action of G}, on €, given by the number 0 < D(G};) < 1 defined by

(166) D(Gyy) =inf{a |0 < a <1 and hg,u, (Gh) =0} .

The proof of Theorem suggests that to show hg;y (Gay) # 0 for some «, it suffices to estimate the
growth rate of the function #Qg(;%) more precisely. This, in turn, requires a more precise accounting for what
monotone words of the form actually exist in gg{). This is an extremely difficult question to answer
in general, but we next describe further hypotheses on the construction of K, the notion of “slow growth” in
Definition and “fast growth” in Definition below, which makes a lower bound estimate possible.
We obtain three results, Theorems [21.10] P1.17] and 21.18] below. Due to the highly technical nature of the
proofs and the estimates required, we present in detail only the proof of the following;:

THEOREM 21.10. Let ®, be a generic Kuperberg flow. If the insertion maps o; have “slow growth” in the
sense of Definition|21.11) then hé/iw(ggm) > 0, and thus 1/2 < D(Gy) < 1.

The strategy of the proof of Theorem [21.10] is to develop an “admissibility criterion” for strings I =
(¢1,...,4m) and J = (j1,...,jm) such that for each admissible pair (/,.J), we obtain a point {; ) € &y by
the expression

(167) §a,0) = D1,y (wo) = o @ © T oo @, © v o @, (wo).

Then observe that the images of the maps aj on their domains in ¢ are contained in the disjoint compact
regions bounded by the parabolic curves I'g(a) or Ag(a), according to whether j = 1 or 2. The parabolic
curves I'g(a) and Ag(a) define disjoint compact subsets I(I'g), I(Ag) C €, where I(I'g) consists of the points
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& € ¢ whose corresponding path component in 2ig, is contained in the closure of the region bounded by I'g,
and similarly for I(Ag). Then choose €9 > 0 such that

(168) go < lnf{dg‘(ﬂm(g),ﬂgﬁ(f/)) | f S I(F()) s 5/ S I(A())} .

Two points € = 31 5)(wo),§’ = P, yy(wo) € € where J and J’ have £,, = ¢;, = 0, and terminate with
distinct indices j,, # j,,, will then be gg-separated in €. The strategy is then to construct collections of points
via formula (167)) which are (Ggy,, €0, n)-separated. The key technical problem is to estimate the number of
admissible strings which give rise to (Ggy, €0, n)-separated points in this way, using words in Gj.

Recall that the difference between Gg, and G is that in the former we allow the leaf short-cuts which
replace terms 1’ in with terms Em in (160) where m < £. The leaf short-cuts only arise when applying
the map 1 repeatedly to a point £ € Rg with 2(£) < 0, such that we eventually have z(x*(¢)) > 0. In
particular, they do not arise for the orbits pg(j;1,¢) = z//(gbj (wj)) for j =1,2.

Introduce the involution ¢: Ry — Rg defined by ¢(r, 7, 2) = (r,m,—z). For a point £ € €, the action of ¢
switches the endpoints p§(¢) and p2(€) of the yg or A\g arc in Ry through ¢, as in the proof of Lemma In
particular, ¢ induces the identity map on €.

Extend the symmetric generating set in (146) for the pseudoxgroup Gy by adding the element ¢ restricted
to Mg, to obtain

(169) Gy = {Id, 0, (W), ()5 (61, (65)*, (03)F1) -

Let é}} denote the augmented pseudoxgroup generated by this set. Then the problem is to obtain criteria for
the existence for sufficient numbers of words in QA}*< that generate (G, €0, n)-separated sets in € with sufficient
growth rates.

The proof that the composition @(; ;) in is defined at wg requires technical estimates analogous to
those used in the proof of Theorem The existence of a point {7, y) is interpreted as a statement about
the composition of generators of the pseudogroup é}}, which requires a careful analysis of the dynamics of
é}} near the special points w; € Rg. This leads to estimates which give sufficient conditions for (I, J) to be
admissible, so that the point §( 1,0y is well-defined.

For simplicity we assume that a = 0, for a as in Remark

7Z —

Observe that for a word @(; ;) as in (167)), the initial composition ¢ "o ¢;, (wo) corresponds to a yp or Ao
curve whose lower endpoint is the point po(ji;1,¢1) € Jo. Then mon( ;; (po(j1; J2, £1))) must lie in the domain
.. _ _ _ - —£ - op - o .
of the remaining factor @y, ;. defined by P(; ;) =P )y 0 @5, 0¥ "o ¢;,. However, if jo = 2, it is necessary

to apply the involution ¢ to the point pg(j1;1,¢1) to obtain a point in the domain of qu, as will be seen in the
subsequent construction of separated sets.

Recall the integer valued function N(r) for 2 < r < 3 introduced in Section [6] which is defined using the
function 6(r) in (I9). The function N(r) is an upper bound on the number of insertion maps that can be
applied to a point £ € Ry with 7(§) = r, and N(r) is unbounded as r decreases to r = 2. In particular, N(r)
forr = r(qu; (po(j1; J2,£1))) provides an upper bound on the number of subsequent maps ajk which can appear
in the remaining term ©;/ ;) for an admissible word @(; ;). Thus, a more precise estimate on the growth rate
of the function N(r) for » > 2 will yield estimates on the growth rates of sets of (e, n)-separated points for
Gan-

The growth rate of the function N(r) for r > 2 is closely related to the geometry of the embedding maps d);r
for i = 1, 2 near the special points w; € Rg as defined in , which we next consider. We use the assumptions
in Hypotheses and to analyze the properties of the maps (bj‘ on sufficiently small neighborhoods of
the points w;.

Recall that the first transition point for the forward K-orbit of w; is the special entry point p; € F; and
its backward /C-orbit is the special exit point pj € S; as illustrated in Figure For € > 0, define the closed
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squares in Ry centered on the special points w; for ¢ = 1,2,
Sr, (wiye) = {(r,m 2) | |r —2| < eand |z — (=1)"| < €},

and let D, (w;,€) C Ry be the closed ball centered at w; with radius e. Then Sy, (w;, €/ \/5) C Dgr,(wi,€).

We next choose €, > 0 so that the various generic hypotheses apply to the points in Sgr,(w;,€)). Recall
that the constant ¢y > 0 was chosen in Hypothesis so that the estimate holds for the Wilson vector
field K on the disk Dg, (w1, €0). Recall that for the same ey, we assumed that Hypothesis on the insertion
maps o; for : = 1,2, holds for 2 < ryg <2+ ¢y and 0; — g < 0 < 0; + €.

Choose 0 < €} < en/+/2 sufficiently small so that Sgr, (wi, €)) C Dom(¢]) for i = 1,2.

Moreover, require that the forward ®;-flow of Sg, (w;, €)) to the surface F; is contained in the rectangular
domain for Hypothesis This automatically holds for the r coordinate, as the flow ®; preserves the radius

coordinate along these trajectories, but the condition 8; — ¢y < 6 < 6; + €9 on the image in E; imposes a
restraint on the choice €.

Thus, Hypothesis applies for the Wilson return map @ near w; and Hypothesis applies for the
radial coordinates of the return map (;51-+ near w.

Consider first the map ¢;. By Hypothesis the “parabolic function” z — 7(¢7 (2,7, 2)) has a minimum
value 2 at z = —1. Then

(170) 2 =r(¢] (w1)) < (¢ (r,7,2))) for all (r,m,z) # wy with r > 2.

Moreover, Hypothesis implies that the images of the vertical lines r = ¢ for 2 < ¢ < 2 + ¢}, in the
neighborhood of w; are mapped by ¢} to parabolic curves, so that z — (¢ (¢, 7, 2)) has a minimum value
at a unique value z = (;(¢). Thus the forward orbit of (¢, ¢, (1(c)) intersects F in a point with z-coordinate
equal to —1. Set p1(c) = r(¢] (¢, 7, (1(c))) > 2.

For each 2 < ¢ < 2 + ¢ the function z +— 7(¢] (c,7,2)) has vertex point ((1(c),p1(c)). The graph of
this function near the point ((1(c), p1(c)) has upward parabolic shape, where (;(c) gives the “offset” of the
parabolic vertex along the z-axis.

Hypothesis implies that the function ¢ — (;1(¢) is a smooth function of ¢ with {;(2) = —1 and
—1—¢€, < (1(e) < —1+¢€p. We also have that the function ¢ — p1(c) is smooth, with p1(2) =2 and ¢ — p1(c)
is strictly increasing for ¢ > 2. Moreover, there exists 0 < @y < 1 such that for 2 < ¢ < 2 4 ¢, we have the
quadratic bounds

(171) pr(e) + a1+ (2 = C(e)* < (¢ (e,m,2)) < prle) + Br- (2 = Cule)? .

The map ¢5 near we admits a similar analysis, yielding functions ¢ + (a(c) and ¢ + pa(c) with the
properties 1 — e, < (a(c) < 1+4¢ for 2 < ¢ < 2+ ¢}, and constants 0 < ay < [ for which there is the quadratic
estimate

(172) pa(r) +az- (2= G(0))* < (3 (r,m,2)) < palr) + B2 (2= Ga(r))

Set ap = min{ay, s} and Be = max{f1, f2}.
We also have that the function ¢ — ¢;(c) is smooth with (;(2) = (—1)¢, for i = 1,2, so there exists a constant
¢ > 0 so that

(173) Gi(e) = (=1))| < C-le—2| for2<c<2+e¢.
That is, the vertical offset of each parabolic curve z +— (¢} (¢, 7, 2)) has a linear bound as a function of (c—2),
for2<c<2+¢).

Recall that we require an estimate on the function N(r) introduced in Section |6, for r near 2, and this
is defined in terms of the function §(r) defined in (19). Using the normal forms (L71)) and (I72), observe
that 6(r) = min{p1(r), p2(r)} for 2 < r < 2+ €. We introduce two classes for the functions p; which are
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determinant in the behavior of the function N (7). Note that each function p; is smooth and strictly increasing,
so its derivative pi(r) > 1 for all 2 <r <2+ €.

DEFINITION 21.11. The insertions o; are said to have slow growth if the derivatives p;(2) =1 fori =1, 2.
In this case, there exists C, > 0 and uniform estimates on p;(r),

(174) r<pi(r) < r+C,(r—2)* for2<r<2+e.

DEFINITION 21.12. The insertions o; are said to have fast growth if there exists A > 1 such that deriva-
tives pi(r) > X for 2 <r < 24| with i =1,2. In this case, we have the uniform estimate,

(175) pi(r) >24+X(r—2) for2<r<2+g¢,.

These two properties of the insertion maps are sufficient to obtain the required estimates on the domains
for the maps @(1,7) as discussed above. We also require some preliminary estimates which describe the
quantitative behavior of the map 1 near the special point wy. The derivation of these estimates is similar to
those in Section so the arguments are only briefly sketched.

Let £ = (r,m,2) € Rg. Define times 0 = Ty(£) < T1(§) < T2(€) < -+ where ¢(§) = U, (g)(€) for £>0
such that ¥¢(¢) is defined. Then r(3*(€)) = r(¢), and by we have

Tev1(8)
(176) AWHI(E)) — 2(4(6)) = /T o)

The return time for the flow U, at £ is 27 - r(&), so for £ with 2 < r(§) < 2 + €y, the domain of the integral
in (176) satisfies 47 < Typy1(€) — Tp(§) < (4 + 2¢)m. Moreover, Hypothesis implies that g(r,6,z2) is a
non-decreasing function of r > 2, hence (176)) yields
(177) 2 (r' 7w, 2)) > 2(W8(r,m, 2)) for 1 > > 2.

Recall that g(&) = 1 if r(§) > 2 4 €, so for £ € Ry with 7(§) > 2 + €, the orbit W,(£) escapes the plug W at
a time t = 4 — z(§) < 6, hence does not complete a full revolution. Moreover, if £ € Rg satisfies (§) = 2 and
—2 <z < —1— ¢, then () is defined and satisfies —(1 + €g) < z(¥(§)) < —1.

In particular, let & = ¢ (w;) for j = 1,2, so that r(&) = 2, then we have

J

2(po(451,0)) = 2(¥(&)) > —(1 + €0).
We can thus take fo = 1 in Lemma so that for £ > 1, the estimates and hold for ¥*(&) =
po(d; 1, 0).
LEMMA 21.13. There exists constants 0 < p; = 4wA; < 4dwdgy < po and by > 0 such that for ¢ > by, for
j=1,2, the point po(j; 1, £) satisfies
(178) 11l < 2ol 0) < —1—1/(u0) .

Proof. Following the notation as in Lemma [L7.5] set p3 = 4wA; and choose 4w < ps < 87Az. Then for
by > C3/ (o — 4mA2), (178) follows from of Lemma O

Consider next the case where £ € Ry with —2 < z(§) < —1 and 2 < 7(§) < 2+ ¢),. Then the W-orbit ¥,(¢)
escapes from W in finite time, and thus 1¢(¢) is only defined for a finite range of ¢, where £ — oo as 7(£)
approaches 2. The next two results give an estimate for the range of ¢ for which z(¥(¢)) < —1 + €}, using
methods analogous to those used in the proofs of Lemmas [17.8] [17.9] and [17.11]

LEMMA 21.14. There exists constants U, > 0 and 0 < €1 < €, such that for all 0 < € < €1 and { € Ry with
z2(§) < —(1+¢€) and 2 < 1r(€) < 2+¢, then there exists £¢ > 0 so that

(179) —1—e < 2(0%€)) < —1+4e forall fe<l<le+U,fe.
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Proof. Recall from Section [12] that Hypothesis and condition imply there exists constants Ay, By, C,
such that the quadratic form Q4(u,v) = A, u? + 2Bjuv +C,y v? defined by the Hessian of ¢ at w, is positive
definite. The remainder term for the quadratic Taylor approximation to g(r, 0, z) is dominated by a scalar

multiple of dy (&, 01)%, where dyw (€, 01) = \/(r — 2)2 4 (2 + 1)2 denotes the distance from & = (r,6, z) to the
periodic orbit O1. As Q4(u,v) is positive definite, there exists 0 < ez < ¢ so that for { = (r,6, 2)

(180) 19(6) = Qu(r = 2,2+ 1) < Qu(r—2,2+1)/4 for dw( O1) < e

Let Ay denote the maximum eigenvalue of the quadratic form Q4. Then for 0 < € < €3/ V2 we have by
(180))

(181) max {g(¢) | €= (r,0,2), |z+ 1| <eand |r —2| < e} < 4hgé?.

Let €; = min{ea/v/2,1/(247 \2)}.
Given 0 < € < €7 and £ € Ry with z(§) < —(1+¢€) and 2 < r(§) < 2 + ¢, we show (179) holds.

First, note there exist t; > 0 so that z2(¥y,(£)) = —(1 +¢€). Let to > t1 be the first subsequent time for
which ¥y, (€) € Rg. Then there exists £¢ > 0 so that ¥y, (€) = ¢’ (€). Set & = Wy, (€).

Note that z(£.) > —(1 +¢) and t2 — t1 < 27 7r(§) < 67, so by (176)) and (181) we have

(182) 0 < 2(U,(€)) — 2(Vy, (€)) < dhge? - 6m = 24m)ye? .
As z(¥y,(£)) = —(1 + €) this yields
—(14+¢€ < 2(&) < —(1+e) +24mhe® < —(1+e)+e = —1
The same reasoning yields, for ¢ > 0 such that z(1)*(&,)) < —1 + €, then
(183) 2(P8(E)) — 2(F 1)) < 24mha€e® < €.
Set Uy = 1/(247\2). Tt then follows by applying (183]) recursively, that for £ < U, /e we have
(184) 0 < 2(¥'(&) — 2(&) < L-24mha ® < (Uyfe) - (24mh2€%) = €.

It follows that for 0 < ¢ < Uy /e we have
—(I+e€) < 2(&) < 2(0%(&) < 2(&)+e < —1+¢

which was to be shown. O

Next, we give a form of density estimate for the flow ®;. Recall that for j = 1,2, the function (;(c) is the
“offset” of the vertex of the parabolic graph z — (/ﬁ;' (¢,m,z). The function satisfies (;(2) = (—1)7 and there is

Z> 0 so that the bounds (173]) hold for j =1, 2.

LEMMA 21.15. Let 0 < €1 < ¢ be the constant of Lemma|21.14} Then there exists Ly > 0 so that for all
0<e<e and & € Ry with —(1+¢€) < 2(§) < —(1+¢€/2) and 2 < r(§) < 2+ min{l,1/C} - €/2, then there
exists 0 < ¢, < Lg/e so that

(185) 0 < [2(™ (&) = (=1 G(r(€)] < e.

Proof. If (1(r(§) < —1 or {2(r(&) > 1, then there is nothing to show. In fact, we need only consider the case
where ro = 7(§) is such that 2 < rg <¢/2-min{1,1/¢} and —1+€ < (1(r9) < =14+ - (ro—2) < —14¢/2. It
then suffices to estimate the least value of £, > 0 such that 1* () > —1 — €/2.

Let A denote the minimum eigenvalue of the quadratic form Q4. By (180]) there is a lower bound
(186) min {g(&) | €= (r,0,2), ¢/2<|z+1|<eand |r —2| < e} > A\ e2/(4-1.01) > N\ €2/5.

By (176) and (186), and using that the flow ®, has return time at least 4w for ro > 2, if —1 —¢ < 2(¢) <
2(1(€)) < =1 — ¢/2, then we have

(187) 0 < 2(6(€) = 2(6) = 4r A5
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Thus, the least /. satisfies the estimate £, - 47 A\ €2/5 < €/2, so for L, = 5/(87 A1) there exists £, < L, /e such

that (185)) holds. O

After these preliminary considerations, we return to the proof of Theorem [21.10, We consider monotone
words in Ggy of the form (160)), and their lifts to monotone words in Gj,.

We assume that the insertion maps o; satisfy Definition[21.11} with C), the constant so that (174)) is satisfied.

Also, recall B = max{S3i, 32} for the constants 3; as defined by (171)), (172, and ZZ 0 was defined so that
the estimate (173) holds. Then define Cy = max{1,C,, Bs}.

Let 0 < € < min{e;,1/Cs} for €1 as defined in Lemma [21.14

By Lemma [21.13] there exists an integer by > 1 such that for ¢ > by, for &k = 1,2, the point po(k;1,¥)
satisfies the estimates in (178). For m > 1, let b,, = mby. Then 1/(u1 by) < €/m < 1/(mCs).

Now consider strings I = (¢1,...,4y,) and J = (j1,...,Jm). We develop a criteria for when the point
§.0) = P(1,0)(wo) as in is defined. Take po(j1;1,0) = qut (wj,) for j1 = 1,2. Assume that ¢; > by,
and set (r1,7,21) = ¥ (po(j1;1,0)) = po(j1;1,¢1). Then r; = 2 and 2 < —1. Set v; = |2; + 1| so that
0 < v; < €/m by the choice of ;.

For j = 1, we have ¢ (po(j1;1,41)) = po(j1; 1, £1;1,0), while for jo = 2, we use the involution ¢ to obtain
3 (t(po(j1:1,41))) = 63 (po(413 2, 1)) = po(jr1; 2,413 1, 0).
These points are well-defined by the choice of ¢;.

Set ro = 7(po(ji; j2, €15 1,0)), then by the quadratic estimates (171) or (172) for r1 =2 and so pj, (r1) = 2,
we have

(188) 2+ agp-vi < ro <24 Bp-vi <2+ B (¢/m)? <2+ e/m?
since Bp € < Cp e < 1. Thus, ry < 2+ ¢/m.

Now set bl,, = by, +m Ly /e for Ly = 5/(87 A1) as defined in Lemma [21.15] so b, < m{1/pu1 +5/(8m A1)}/e.
Then by Lemmas [21.14] and |21.15| applied for e/m we can choose ¢ < b/, so that

(ro,m, 22) = po(j; ja, 0151, £2) = ¥ (po(jr: j2, £1: 1, 0))
is defined with |zo + 1| < ¢/m, and the vertical “offset” along the line r = ry is given by
(189) vy = |22 — (j,(r2)] < €e/m .
For js = 1,2, we get
po(jrs j2, 151,423 1,0) = ¢ (polji; o, b3 1, £2))
po(j1; j2, 0152, €2;1,0) = @3 (¢(po(fn; J2, €151, £2)))

Let r5 = 7(po(j1;j2, €15 j3, 2;1,0)), then by the quadratic estimates (171) or (172), the “slow estimate”
(174), and the inductive estimates (188]) and (189), we have

rs < pj,(ra) + Be V3
< [r2+Cpo (12— 2)% + [Bo - (¢/m)?]
< 24 Ba - (¢/m)*] +[C, - (Ba - (¢/m)*)?] + [Ba - (¢/m)’]
= 2428p-E/m*+C, B3 t/m?
< 242¢/m*+C,-/m* <2+ 3¢/m?

where the last inequality follows from C, - €2/m?* < Cg - €2/m* < ¢/m* < e/m?.
Then by Lemma [21.14] applied for €/m, we can choose ¢35 < b/, so that

(rs,,23) = po(j1; jos €15 33» L2; 1, £3) = ¥ (po (s g €15 43, £2; 1,0))
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is defined with |z3 + 1| < ¢/m, and the vertical “offset” along the line r = r3 is given by
v3 = |23 = Gy (r3)| < e/m .

We continue recursively, assuming the definitions as above for 1 < ¢ < k, and that the following inductive
assumptions hold for 1 < i < k:

(190) G<b, , Jatll<e/m , 2<r, < 24+ (14+2i)e/m* | v;<e/m
Also assume that r; < min{l, l/z} - €/2. Then for jri1 = 1,2, we get
po(jrs ja, Las s o+ 5 1,05 1,0) = &7 (po(jns iz, £ sy ;- -+ 5 1, 4x)
po(di;da, 015 Gz b -+ 52,0151,0) = &3 (u(po (v o, L1 G, Lo -+ 51, 0k)))

and set 741 = 7(po(j; g2, 13 J3, Co5 -+ 3 Jikt1, €k 1,0)).

We require one additional assumption and a small calculation to complete the inductive step of the construc-
tion. Suppose that (14-2k) < m, then C, ¢ < 1 by choice of €, so (1+2k) < m/+/C, €. Thus (142k)? < m?/eC,
and so (14 2k)?(e/m?) < 1/C, which yields C,((1 + 2k)e/m?)? < ¢/m?.

Finally, use the quadratic estimates or , the “slow estimate” , the inductive estimates (|188)|)
and , and the small calculation above to obtain

rer < P (rk) + Ba - 03
< et G (e — 2]+ [Be - (e/m)?)
< 24 (L4 2k) e/m? + ¢/m? + C,((1 + 2k)e/m?)?

N

2(1 + 2k) e/m?* + ¢/m? + ¢/m?
2(1+2(k+ 1)) ¢/m?
Then by Lemma [21.14] applied for e/m, we can choose )1 < b/, so that

(P15 7, 21) = Po(d1; d2s €3 G Las -+ 5 it O 1y Gien) = 054 (o (s 2, £15 3, €23+ 3 Gt k3 1,0))
is defined with |zx+1 + 1| < €¢/m, and the vertical “offset” along the line r = ri; is given by
Ukt = 241 = Giyr (Te41)| < €/m
which completes the recursive step.

We use the constructions above to obtain lower bound estimates on the number s(Gop,n,e) of (n,e)-
separated words for the action of Gg; on €.

For 0 < € < min{e;,1/Cs} as before and § = min{1, 1/6} - €/2, we construct orbits in the rectangular
regions in Ry centered on the special orbits w; for j = 1,2,

(191) {(r,m2)€Ry ||z — (-1)| <€, 2<r <4}

As the value of € > 0 tends to 0, the density of such points increases as well, so that one observes the slow
entropy of G3; is concentrated in these regions around the special orbits.

Let by > 1/(u1€) be such that for all £ > by, for j = 1,2, the point po(j; 1, £) satisfies the estimates in (178)).
Choose m > 1, and set b,, = mby. As in Lemma [21.15] let b/, be the greatest integer satisfying
b, < by +mLg/e < {1/u1 +5/(8r A1)} -m/e.
Let k,,, be the greatest integer for which k+1 < m/4, then we have the bound 2(1+2(k,, +1)) ¢/m? < ¢/m.
So by the recursive procedure above, for k < k,,, we can realize the point &7, ;) = (s, ;)(wo) defined by (167),

where there are 2% choices of the string J = (j1, ..., jx), for a fixed strong I = (¢1,...,¢) satisfying ¢; < b,,
and ¢; < b/ for 1 <i < k. Note that such a word has the length estimate

1Bl <k-by, <b k2, /4 .
Recall that ¢ was defined in (168).
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LEMMA 21.16. For n < by k*/4 we have s(Gjy,n,e0) > 2k,

Proof. Let J = (j1,...,jk) and J = (j1,...,7;), and let I = I" = (¢1,..., ;). Suppose that J # J' then let
1 < v < k be the greatest integer such that j, # j/. Set

_ e —ly1 = —,
(192) ¢(I’J,D):¢ko¢jkoq/)k o¢jkilo~~~ow +lo¢jy+1ow
where |57 ;[ < o0l Assume that &1 ) = @15y (wo) and (1 )y = @(1,77)(wo) are defined, then
= - -t -
@) Euan) = b, 00 o0 0 (wo)
_ _ -t —t -
(SD(I,J,V)) 1(€(I,J')) = (;5],,101/) ! O"'Ow 1O Ji(wo)

As j, # j, we have doy ((@I’Jy,j))*l(5(1”7))7 (E(I).]’V))71(5(17J/))) > go. Thus the collection of points & )
constructed above corresponding to the initial choices of € and b; yields a collection of at least 2* points which
are (n,eg)-separated for n < by k? /4. O

Then by Lemma [21.16| we have for all £k > 0 and n < by k2/4 the estimate

In(s(Ggy,n,€0)) S In(2¥)  21In(2)
vn = VhRaA - Vb
from which we conclude that hgfw(ggﬁ) > 0, completing the proof of Theorem [21.10, |

We conclude this section with two further results concerning the lamination entropy for Kuperberg flows.
We only sketch the proofs, which follow the same approach as the proof of Theorem 21.10] above.

THEOREM 21.17. Let ®, be a generic Kuperberg flow. If the insertion maps o; have “fast growth” in the
sense of Definition then the number s(Ggy,n,e0) of (Gay, n,€0)-separated points for the Gy, action on
¢ is asymptotically proportional to n.

Proof. Suppose we are given a finite set S,, C € of (G, n, €0)—separated points, and the corresponding subset
En = pp(Sy) C Me which is (G, 2n, ))-separated, as in the proof of Theorem [21.10

Let & # & € Sy, and suppose that @ € gg{) satisfies don(9(&1), P(€2)) > €. Then set n; = p§(&;) and let
¢ € Gy be the lifted word which satisfies dr, (¢(n1), ©(n2)) > €. For the purposes of the estimates below, we
can assume that ¢ € M(n), for M(n) as in Definition and 71,12 € Dom(p).

For an analysis of ¢ as in the proof of Theorem [21.10, we set the offset distances vy = 0 for all £ > 2, so
the lower bound estimates on the values 7y, of the k — th image of the special point wy are given by a recursive

estimate using the estimates (175) in Definition [21.12] Start with Lemma[21.13|for some point py(j; 1, £) where
({175

£ > by. Then apply the fast growth estimate (175]) to obtain a recursive estimate for r411 in terms of rg, which
for k > 3 yields

(193) e—2 > N2 (g —2) > M08/ (2 bh)%

Apply the estimate (193) to ¢ which is a monotone word ending in d);:n. Assume that r(p(n;)) > 2+ 8,
then 2 < r(n;) <24 (6’/A™). Use that 0 < 6’ < 1, then the power ¢; of the initial term ¢ of ¢ satisfies
(194) 6 > \/)\m*Q ag/p3d > \/)\m*Q as/p3

so the power ¢; grows exponentially with m, at the rate approximately A™/2. Thus, to obtain 2 words in
M(n) the length of the first segment ¢* must be approximately A"/2and we obtain the asymptotic estimate
on the word length

nem+14+VI+AFAZ 4o A1~ A2
That is, the word length required to obtain an (n, ep)—separated collection of points grows exponentially if the
set of points is assumed to grow exponentially. O
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The work [27, Section 8] of Greg and Krystyna Kuperberg introduces piecewise linear (PL) versions of
her flows, and studies properties of their minimal sets. Our last result contributes another insight to the
dynamical properties of the piecewise-smooth flows. It is based on a simple observation that if the Wilson flow
is allowed to have a discontinuity in its defining vector field W along the periodic orbits, then we can obtain
the opposite conclusion to that of Theorem The assumption that the Wilson flow is smooth forces the
holonomy of W, along the periodic orbits to be unipotent, and the generic Hypothesis yields the estimates
in Lemma [2T.13| which play a fundamental role above. However, for a piecewise-smooth flow W the derivative
of the transverse holonomy of ¥; along the periodic orbits need not equal 1, and in fact can be constructed
so that the points w; are hyperbolic attracting for the map . It is then a long exercise in the methods of the
this section to show:

THEOREM 21.18. Let ®; be a Kuperberg flow constructed from a piecewise-smooth Wilson flow ¥, whose
holonomy along the periodic orbits is hyperbolic, then harw (Gy) > 0.

Proof. The proof of Theorem constructs collections of (g, 2n)-separated points for the action of the
augmented pseudogroup QA}‘{ on Me. If the map ¢ € G has hyperbolic attracting points w; for ¢ = 1,2, then
the estimate becomes exponential, which implies that the number of insertions ¢;r that can be realized
grows exponentially fast with the length of the initial word % . |

The discussion and results of this section suggest two problems to consider.

QUESTION 21.19. Suppose that ®; is a Kuperberg flow with a hyperbolic singularity at the special orbits,
as discussed above, so that harw (Ggp) > 0. Is it also true that hiop(®:) > 0 for these flows?

It seems likely that a careful consideration of the methods of this section will provide an affirmative answer
to the above question. The second problem is in regards to the calculations used in the proof of Theorem 21.10]

QUESTION 21.20. Let ®; be a generic Kuperberg flow. If the insertion maps o have “slow growth” in the
sense of Definition |21.11), does the flow ®; have slow entropy h1/2(<I>t) >07?

top

22. GROWTH OF LEAVES

In this section, we study the growth type of the surface 9y considered as a leaf in 9. The growth type is
a natural invariant of the flow ®; and we will show is closely related to the slow entropy of the pseudoxgroup
Gy introduced in the previous section. This provides a result analogous to Manning’s Theorem in [30], that
the volume growth rate of the universal cover for a compact manifold M with negative sectional curvature is
related to the entropy of the geodesic flow for M.

The idea is to use the construction of the tree T4 in Section the action of G3,; on €y and the geometry
of My as discussed previously in Sections [14] [I§ and [21] to calculate the volume growth function of 9ty which
is defined as follows.

The smoothly embedded zippered lamination 9t C K inherits a Riemannian metric from K, and we let doy
denote the induced distance function on the leaves of 9. The submanifold My C K with boundary is given
this distance function, and we let By, (s) = {x € My | dom(wo, z) < s} be the closed ball of radius s about the
basepoint wy = (2,7,0) = R'NT. Let Area(X) denote the Riemannian area of a Borel subset X C 9ty. Then
Gr(My, s) = Area(B,,,(s)) is called the growth function of M.

Given functions f, fa: [0,00) — [0,00) say that f1 < fy if there exists constants A, B,C > 0 such that for

all s > 0, we have that fo(s) < A- f1(B-s)+ C. Say that f1 ~ fa if both f1 < fo and fo < f1 hold. This
defines equivalence relation on functions, which defines their growth type.

The growth function Gr(9My, s) for My depends upon the choice of Riemannian metric on K and basepoint
wo € My, however the growth type [Gr(My, s)] is independent of these choices, as observed by Milnor [36] for
coverings of compact manifolds and Plante [40] for leaves of foliations.
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We say that 9y has exponential growth type if Gr(9Mg, s) ~ exp(s). Note that exp(As) ~ exp(s) for any
A > 0, so there is only one growth class of “exponential type”. We say that 91y has nonezponential growth
type if Gr(My, s) < exp(s) but exp(s) L Gr(My, s). We also have the subclass of nonexponential growth type,
where My has quasi-polynomial growth type if there exists d > 0 such that Gr(Mp, s) < s?. The growth type
of a leaf of a foliation or lamination is an entropy-type invariant of its dynamics, as discussed in [20].

Here is the main result of this section:

THEOREM 22.1. Let ®; be a generic Kuperberg flow. If the insertion maps o; have “slow growth” in the
sense of Definition |21.11), then the growth type of My is nonexponential, and satisfies

(195) exp(v/5) S Gr(Mg, s) S exp(s)

In particular, My does not have quasi-polynomial growth type.

Proof. The proof of this result occupies the rest of this section. The first step is to elaborate on the relation
between the geometry of the tree T and action of Gg;.

Consider the monoid May(c0) of monotone words in G, as defined in Definition m The Cayley graph
of Moy (00), denoted by | Mo/, is the graph with:

(1) vertices given by the set {H(wp) | € Man(o0)}, and

(2) edges given by the actions of the maps {1, ¢;,®,} on the vertices.

To be more precise, for i = 1,2, there is an edge (¢;,wo) joining wy to the vertex ¢;(wo). For 3 € Man(n)
suppose that ¢ 0@ € Mon(n+1) then we have an edge (¢, B(wo)) joining B(wo) to Y op(wp). For B € Man(n)
and ¢ = 1,2 suppose that ¢, o € Maon(n + 1) then we have an edge (¢,, B(wp)) joining B(wy) to ¢, o P(wp).
All edges of |[Myy| are assigned length 1 with the standard metric on each, so | Mgy| becomes a complete
metric space. Moreover, each vertex @(wg) has valence equal to one plus the number of words in {¢) 0 g, ¢, o

@, b, 0 @} which are well-defined at wp.

We compare the geometry of the graph |Magy| with that of the tree T introduced in Section [14] and that
of the manifold 9y, using the following standard notion:

DEFINITION 22.2. A map f: X — Y between metric spaces (X,dx) and (Y,dy) is a quasi-isometry is
there exists constants Cy > 0 and Ay > 1 so that for all z,x' € X we have

AL dy (f(x), f(a) = Cp < dx(z,2) < Ap-dy(f(z), (@) +Cy .
Moreover, for ally € Y there exists x € X such that dy (y, f(z)) < Cy.

The first comparison is a consequence of our previous observations.

PROPOSITION 22.3. There is an embedding B: |[Mon| — T which is a quasi-isometry.

Proof. Define ® as follows. The special vertex point wy is sent to basepoint wy € T which is pictured in
Figure 36| as the point in the upper horizontal strip. The other vertices are mapped to the points of T¢ defined
by the intersection with 7 of the curve in Ry defined by the action of % on wy. For @’ a generator of Ggy,
the edge (@', @(wo)) of | Man| is mapped by a constant speed curve to the corresponding branch of Tg C My
connecting the points p(wg) and @’ o P(wp) that belong to €;. We give a uniform estimate on the lengths of
these branches of Tg.

LEMMA 22.4. There exists 0 < Ly < Lg such that for each £,§' € €y which are related by the action of
a generator {1, ¢y, 05} of Gom, the segment [€,&'] of the tree Te C My joining them has length satisfying
Ly < L([§,¢']) < L.

Proof. For the case when ¢’ = P(€), it was observed that 47 < L[¢,€'] < 6m. Thus, we need consider the
case when ¢ = ¢, (€) for k = 1,2. Each point ¢ € € is joined to the endpoints {p§(€),p2(£)} of the g or
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Ao corresponding to it. The segment of K-orbit between pf (&) and ¢ (pj(€)), for i = 1,2, is contained in the
concatenation of two W-arcs and thus it is upper and lower bounded as a consequence of Corollary Let
L > 0 be the upper bound and L’ > 0 be the lower bound.

Taking Ly = min{L, 47} and Ly = max{L’, 67}, the claim follows. O

To complete the proof of Proposition 22.3] note that Lemma[22.4]shows the edges of T have lengths which
are uniformly bounded above and below, which implies that ® is a quasi-isometry. O

The proof of Theorem shows that every point of 9 is a uniformly bounded distance from a point of
Ts. Thus, & is a net in My, which implies:

COROLLARY 22.5. For a generic Kuperberg Plug, the map > |Mon| — Mg obtained from the composition

0f<T> with the inclusion Te C My, is a quasi-isometry. That is, the graph Tg is a “tree model” for the space
M.

Since, by Corollary | Mon| is quasi-isometric to My we have reduced the study of the growth properties
of the leaf MMy to those of the monoid Myy(c0), so by Corollary we have:

PROPOSITION 22.6. Both Tg and My have subexponential growth rates.

We now return to the proof of Theorem [22.1] By Proposition we have Gr(Mo, s) < exp(s).

To establish the lower bound exp(y/s) < Gr(9My, s), we assume that ®; is a generic Kuperberg flow whose
insertion maps o; have “slow growth”. Then the proof of Theorem constructs a subset of words in
Moy (0o) whose action on the basepoint wy € Tg yields a set of images which grow at the rate exp(y/s). In
particular, the number of words in Mgy (c0) must grow at least this rate, which establishes . O

23. SHAPE OF THE MINIMAL SET

In this section, we consider the topological properties of the minimal set ¥ for a generic Kuperberg flow ®;.
The space ¥ is compact and connected, so is a continuum, but its definition in terms of the closure of orbits
reveals little about its topological nature. The natural framework for the study of topological properties of
spaces such as 3 is using shape theory. For example, Krystyna Kuperberg posed the question whether 3 has
stable shape? Stable shape is discussed below, and is about the nicest property one can expect for a minimal
set that is not a compact submanifold. Theorem [23.4] below shows that ¥ does not have stable shape. This
result follows from the equality ¥ = 991 for a generic flow, and the structure theory for 9 developed in the
previous sections of this work.

Shape theory studies the topological properties of a topological space 3 using a form of Cech homotopy
theory. The definition of shape for a space 3 embedded in the Hilbert cube was introduced by Borsuk [3] [5].
Later developments and results of shape theory are discussed in the texts [12] [31] and the historical essay [32].
We give a brief definition of the shape of a compactum 3 embedded in a metric space X, following the works
of Fox [15], Morita [38] Mardesi¢ [31], and the suggestions of the referee.

DEFINITION 23.1. A sequence = {U; | { =1,2,...} is called a shape approximation of 3 C X if:

(1) each U, is an open neighborhood of 3 in X which is homotopy equivalent to a compact polyhedron;

(2) Upp1 C Uyg for £ > 1, and their closures satisfy ﬂ Uy=3.
>1

Suppose that X, X’ are connected manifolds, that 4 is a shape approximation for the compact subset
3 C X, and il is a shape approximation for the compact subset 3’ C X’. The compacta 3,3’ are said to have
the same shape if the following conditions are satisfied:
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(1) There are an order-preserving map ¢: Z — Z, and for each n > 1, a continuous map f,,: Ug(,) — U},
such that for any pair n < m, the restriction f,,|Ug () is homotopic to f,, as maps from U, to Uy,.

(2) There are an order-preserving map ¢: Z — Z, and for each n > 1, a continuous map g, : U 1/b(n) - U,

such that for any pair n < m, the restriction gn\Uq’b ) is homotopic to g,, as maps from U{b(m) to U,.

(m

(3) For each n > 1, there exists m > max{n, ¢ o+(n)} such that the restriction of g, o fyn) to Uy, is
homotopic to the inclusion as maps from U, to U,.

(4) For each n > 1, there exists m > max{n, ) o ¢(n)} such that the restriction of f, o gy, to U}, is
homotopic to the inclusion as maps from U], to U},.

DEFINITION 23.2. Let 3 C X be a compact subset of a connected manifold X. Then the shape of 3 is
defined to be the equivalence class of a shape approximation of 3 as above.

It is a basic fact of shape theory that this definition does not depend upon the choice of shape approxima-
tions, and that two homotopic compacta have the same shape. The references [12, [B1] give complete details
and alternate approaches to defining the shape of a space. A concise overview of some of the key aspects of
shape theory for continua embedded in Riemannian manifolds is given in [9], Section 2].

For the purposes of this work, we consider the case where X is a connected compact Riemannian manifold,
and 3 C X is an embedded continuum with the induced metric from that on X. The shape of 3 can then
be defined using a shape approximation { defined by a descending chain of open e-neighborhoods of 3 in X
given by Uy = {x € X | dx(z,3) < €/} where we have 0 < €/11 < ¢, for all £> 1, and zlirglo e, = 0.

DEFINITION 23.3. A compactum 3 has stable shape if it is shape equivalent to a finite polyhedron. That
18, there exists a shape approximation L such that each inclusion v: Upy1 — Uy induces a homotopy equivalence,
and Uy has the homotopy type of a finite polyhedron.

Some examples of spaces with stable shape are compact manifolds, and more generally finite CTW/-complexes.
A less obvious example is the minimal set for a Denjoy flow on T? whose shape is equivalent to the wedge
of two circles. In particular, the minimal set of an aperiodic C'-flow on plugs as constructed by Schweitzer
in [43] has stable shape. A result of Krasinkiewicz shows that a continuum embedded in a closed orientable
surface is either shape equivalent to a finite wedge of circles, or has the shape of a “Hawaiian earring” [25] 35].
In higher dimensions, Clark and Hunton show in [9] that for an n-dimensional lamination 3 embedded in an
(n + 1)-dimensional manifold M such that 3 is an attractor for a smooth diffeomorphism f: M — M, and for
which the restriction f: 3 — 3 is an expanding map on the leaves of 3, then 3 has stable shape. In contrast,
the results of the previous sections are used to show that the shape properties of the minimal set for a generic
Kuperberg flow are not so simple. The first result is the following.

THEOREM 23.4. The minimal set 3 of a generic Kuperberg flow does not have stable shape.

We begin the proof of this result after some further discussions of the shape properties of 9.

DEFINITION 23.5. A compactum 3 C X is said to be movable in X if for every neighborhood U of 3,
there exists a neighborhood Uy C U of 3 such that, for every neighborhood W C Uy of 3, there is a continuous
map ¢: Uy x [0,1] = U satisfying the condition p(x,0) = x and p(x,1) € W for every point x € Up.

The notion of a movable compactum was introduced by Borsuk [4], as a generalization of spaces having
the shape of an absolute neighborhood retract (ANR’s), and is an invariant of the shape of 3. See [9, 12 [31]
for further discussions concerning movability. It is a standard result that a compactum 3 with stable shape is
movable. The movable property distinguishes between the shape of a Hawaiian earring and a Vietoris solenoid,;
the former is movable and the latter is not. It is a more subtle problem to construct compacta which are
invariant sets for dynamical systems, which are movable but do not have stable shape, such as given in [46].
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Showing the movable property for a space requires the construction of a homotopy retract ¢ with the
properties stated in the definition, whose existence can be difficult to achieve in practice. There is an alternate
condition on homology groups, weaker than the movable condition, which is much easier to check.

PROPOSITION 23.6. Let 3 be a movable compacta with shape approximation Y. Then the homology groups
satisfy the Mittag-Leffler Condition: For all £ > 1, there exists p > £ such that for any q > p, the maps on
homology groups for m > 1 induced by the inclusion maps satisfy

(196) Image{H,(Up; Z) — Hy,(Up; Z)} = Image{H,,(Uy; Z) — H,,(Ug; Z)} .

This result is a special case of a more general Mittag-Leffler condition, as discussed in detail in [9]. For
example, the above form of the Mittag-Leffler condition can be used to show that the Vietoris solenoid formed
from the inverse limit of coverings of the circle is not movable.

We can now state an additional shape property for the minimal set of a generic Kuperberg flow.

THEOREM 23.7. Let X be the minimal set for a generic Kuperberg flow. Then the Mittag-Leffler condition
for homology groups is satisfied. That is, given a shape approzimation 8 = {U,} for X, then for any £ > 1
there exists p > £ such that for any q > p

(197) Image{H,(Uy; Z) — (Ui 2)} = Image{ Hy(Uy; Z) - Hy(Us; Z)).

The proof of Theorem follows by exhibiting a generating set of homology classes in H;(Up;Z) which
are represented by closed loops in U, and it is shown that the images of these loops in the space U, become
homologous to classes in a fixed 3-dimensional subspace Gy, C Hy(Uy; Z), for p > k sufficiently large. Moreover,
the space Gy is the image of the map on homology induced by the inclusion map. The proof of Theorem [23-]
then follows from the following result.

PROPOSITION 23.8. Let U={U, | £=1,2,...} be a shape approzimation of 3 C X, such that for k >0

o the rank of Hy(Uy;Z) > 2F,
o for all ¢ > k the rank of the image Hy(Uy;Z) — H1(Uy; Z) is 3.

Assume that for any shape approzimation of B = {Vy | £ =1,2,...} the rank of the homology groups Hy(Vi; Z)
is strictly greater than 3, then 3 does not have stable shape.

Proof. Suppose that 3 has stable shape, so that there exists a shape approximation ¥ = {V; | { = 1,2,...}
such that each inclusion ¢: Vi1 < Vp induces a homotopy equivalence, and thus the inclusion Vp < Vj is a
homotopy equivalence for all £ > k. Let 3 < ng = rank(H;(V1;Z)), then ng = rank(H;(Vy;Z)) for all £ > 0.
Also, ng is the rank of the image of the map Hy(Vy; Z) — H1(Vi; Z) for all £ > k.

Then, as both 4 and U are shape approximations of 3, there exists ko, k, ¢y and ¢ such that Vi, C Uy C
Vi, C Up. Thus we obtain the sequence of maps on homology induced by the inclusions:

(198) Hy(Vio; Z) — H1(Ug; Z) — H1(Viy; Z) — Hy(Ug; Z).
Then the rank of the image of Hy(Vi,;Z) — Hy1(Uy;Z) must be equal to ng, and the same holds for the

map H1(Vi,;Z) — H1(Ug; Z). Hence the rank of the image of Hy(Uy;Z) — H1(Uy; Z) is equal to ng > 3 a
contradiction. 0

The strategy for the proof of Theorem [234] is to construct a shape approximation 4 for ¥ so that the
conditions of Proposition [23.8| are satisfied. This uses the properties of the level function as developed in
Sections and We then show in Proposition that there is no shape approximation such that
the rank of the homology groups is bounded above by 3.

Theorem [T7.1] implies that ¥ = 9 for a generic flow, and thus we analyze the shape properties of M. As
M is the closure of My, we have U (M, €) C Ux(My, €’) for all 0 < e < €. Thus, it suffices to consider shape
approximations of 9.
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The space My retracts to the embedded tree To C My defined in Section [I4] and illustrated in Figure [36]
In the following, the shape approximation {Uy | k > 0} for 9y is given by sets Uy for k > 0, where each Uy
is an open neighborhood in K of a compact set 91, which is homotopy equivalent to a 1-dimensional complex
formed by taking quotients of T¢. Each open neighborhood Uy of My thus “fuses together” sets of points of
the tree T4, so that the shape approximations to 9ty are homotopy equivalent to a bouquet of circles formed
from paths in T¢ that travel out a branch of T¢ and then are “closed up” via paths in 91;. The systematic
description of the classes in first homology that arise in this way invokes the labeling system for the double
propellers developed in Section [13] and the corresponding labels for the vertices of Teg.

First, to fix notation, for X C K and € > 0, set:

o Ux(X,e) ={z € K|dx(z,X) < €} is the open e-neighborhood of X in K;
o Cx(X,e) ={z € K|dg(z,X) < €} is the closed e-neighborhood of X in K.

We now begin the recursive construction of a sequence of compact subsets 9, C K for k£ > 0, which will be
constructed to satisfy the conditions:

(1) M C Ny, and N1 C Ny, for all k > 0;
(2) 7% is homotopy equivalent to a finite wedge of circles;
(3) For all € > 0, there exists k > 0 such that 9, C Ug(9My, €).

It then follows that sufficiently small open neighborhoods of the sets in the collection {0y | & > 0} yield a
shape approximation for 9. Moreover, each 9 is constructed so that the branches of T4 above level k£ are
collapsed in the set 9 to branches at level k. This critical property is achieved by introducing the notion
of “filled double propellers” at level k, which are compact regions in K which contain all the branches of T
with level at least k. This containment property follows from the nesting properties of double propellers, as
described in Section[I3] Colloquially, these filled propellers can be thought of as a collection of “gloves” which
envelop collections of branches of T¢ at level greater than k, grouping them together at the end of a branch
at level k. The recursive construction of the sets 91 is made precise in the following. We first define 9, I
and My, and establish their properties in detail. For the sets 9, with k& > 2, we provide fewer details, as the
proofs follow the same outline as for the cases of 9, with k < 2, except as noted. Begin by setting:

(199) Ny = {zeK|r(x)>2} C K
LEMMA 23.9. 9, is compact.

Proof. The discontinuities of the radius function r: K — [1,3] are contained in the closed subset Tx C K
defined by . By the formulation @ of the Radius Inequality, the radius value increases at a point of
discontinuity, hence My is closed in K, and thus is compact. O

LEMMA 23.10. The inclusion Ny C K is a homotopy equivalence, and hence My is homotopy equivalent to
a bouquet of three circles.

Proof. The inclusion {x € W | r(z) > 2} C W is a homotopy equivalence, with both spaces retracting to the
circle {z = (2,6,0) | 0 < § < 27}. The identification map 7: W — K creates a cross-arc between the circle and
itself for each of the insertion maps o;, as illustrated in Figure|8] Thus, both spaces are homotopy equivalent
to the curve in Figure and so are homotopy equivalent to a bouquet of three circles. O

We fix notation for the generators of Hy(My;Z) as identified above. Let [R] be the class defined by the loop
starting at wg and following the Reeb cylinder around in a counterclockwise direction back to wgy. For ¢ = 1,2,
let [b;] be the class defined by the straight path from wg to w;, then following the cross-arc created by the
insertion o; and then returning to wg. Then Hp(9g;Z) is the group generated by {[R], [b1],[b2]}. Note that
the choice of the generators [b1] and [bs] have an ambiguity in terms of how the end of the cross-arc is joined
to the basepoint wy to close the path. Differing choices of closing paths result in the addition of an integer
multiple of [R]. We make a choice of these connecting paths, and consider the choice fixed in the following.
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FI1GURE 53. Homotopy type of K and 9,

Next, we consider the construction of 91; which introduces the notion of filled double propellers, and also
reveals the mechanisms for the change in the topology of the spaces 91 as k increases.

Recall the definitions and from Section
I'=CNL CcW,T=0;'T)CL] , N=CNnL;CW,A=0,'(N)CL;.

The filled double propellers at level 1 are defined as follows. Let L™ (1) C Ly denote the closure of the interior
region bounded by T, and L™ (2) C L; the closure of interior region bounded by A. Analogously, define L™ (4)
in the exit region Lf for i = 1,2. The Wilson flow of the curves I and A generate the infinite double propellers
Pr, Py C W. Let D(1) C W denote the forward ¥;-flow of L™ (1). We call D(1) the filled double propeller
associated to I'. Analogously, let D(2) C W denote the forward ¥,-flow of L™ (2), then D(2) is the filled
double propeller associated to A. Note that D(1) and D(2) are disjoint subsets of W.

Consider the notched Reeb cylinder R’, as illustrated in Figure The filled double propellers in W do
not intersect R’, but they do intersect every neighborhood of it, as the closures of both D(1) and D(2) contain
the cylinder R, as discussed in the proof of Proposition Also, recall that 7(R’) C K is the embedded
Reeb cylinder, illustrated in Figure

For ¢ > 0, define the subset of K,
(200) CE(T(R),8) = Cx(T(R"),6) NNy = {z €K |dk(z,7(R")) <6} NN .

Then Cy (7(R'),) is a closed d-neighborhood of 7(R’), contained in the compact subset 9y C K, hence is
compact. Choose §; small enough so that the set Cif (7(R'), d1) retracts to 7(R’). In terms of the illustration
Figure we choose ¢; less than the distance between the insertions and the edges of the gaps, so that
Ci (1(R'),81) has no “self-intersections”.

For i =1,2, set D(i) = 7(D(7) QW) C K, where W is the closure of W’ as defined in Section Then define:
(201) M = CE(r(R'),61) U D(1) U D(2).
Thus, 9% is obtained by attaching two infinite filled double propellers to Cjf (7(R’), 61).
LEMMA 23.11. 9, is compact.
Proof. Consider 7=(Cy (7(R'), 1)) which is a thickened cylinder. For each i = 1,2, the region D(i) is a
connected solid spiral turning around C an infinite number of times, where after a finite number of turns, with
the number of times determined by dy, the end of the solid region is contained in 7=(Ci (7(R’),d1)). Thus,

D(i) — (D(i) N7~ Y(C{ (T(R'), 1)) has compact closure in W. It follows that 91; is the union of the compact
set Cif (T(R'), 1) with the images under 7 of compact subsets of D(1) and D(2), hence is compact. O

LEMMA 23.12. 9 c 0, C N,.
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Proof. It was shown in Section [T2]that 9 is the ascending union of the sets 9y for n > 0, where 9 consists
of propellers at level at most n. By construction, M contains the set 9}. It was observed in Section |13 that
all of the I" and A curves at level at least 2 in the face 9, W are contained in the interiors L~ (i) of the parabolic
arcs I', A C 0,y W. Thus, the double propellers with level at least 2 are contained in the filled propellers D(1)
and D(2), hence My C MN;. As Ny is closed, it also contains M. O

LEMMA 23.13. For e > 0 sufficiently small, U(Iy,€) retracts to M.

Proof. The proof of Lemma [23.11] shows that 91; is the union of three compact submanifolds with boundary
with corners. Hence, 9; is a submanifold with boundary with corners, from which the conclusion follows. [

LEMMA 23.14. Ny has the homotopy type of a finite wedge of circles.

Proof. For each i = 1,2, attaching D(i) to 7= 1(Ci (7(R’),d1)) is homotopy equivalent to attaching one
endpoint of a line segment to the core circle of the cylinder R. For the image D(i) C K the other endpoint of
the segment is attached to Cif (7(R'), d1), resulting in a space with the same homotopy type as 9%y. However,
there are additional “handles” formed in the image which are not as immediate to visualize. These result from
the intersections of the images D(i) for i« = 1,2 with themselves. That is, while the filled double propellers
D(1),D(2) ¢ W are disjoint from each other, their images D(1) and D(2) in K under the quotient map
7: W — K are not disjoint, and this gives rise to additional 1-cycles in 91;. The loops created by these self
intersections are called exceptional cycles. While the number of intersections in K of the filled propellers with
themselves will generate an infinite number of homotopy classes of loops, there are at most finitely many
homotopy classes of exceptional cycles outside of Cf (7(R),81). It follows that 9M; has the homotopy type of
a finite wedge of circles. a

Note that the inclusion 91; C 91y induces a map between homology groups
v Hi(My; Z) — Hi(No; Z) = ([R], [ba], [b2])-

We claim that this map is surjective. Since 91y contains a neighborhood of 7(R’), it contains a loop representing
the class [R] € H1(Mo;Z). Consider in 915 a loop that starts at wy then goes through the face E; for i = 1,2,
to the first propeller, and after a certain number of turns depending on the value of §1, the propeller intersects
Cy (1(R'),81). Thus the loop can be closed by passing back to the Reeb cylinder. The image of this loop is
m;[R] + [b;], for some m; > 0. Hence [b1] and [b3] are in the image and ¢; is surjective.

We next describe in more detail the classes in H;(911;Z) generated by intersections and self-intersections of
the regions D(1) and D(2). We use the labeling of the double propellers from Sections 12 and [13|to index the
intersections of these filled propellers. Recall that D(1) is the interior region of the infinite double propeller
7(PL), and the propeller Pr C W intersects £; along the curves I"(¢,£) for ¢ = 1,2 and ¢ > b, with |b| the
number of internal notches in the propellers, as defined in Section Analogous observations apply for D(2)
and the infinite double propeller 7(P}). The curves IV and A" at levels 1 and 2 are illustrated in Figure

Let L~ (1;4,¢) C L; be the compact region bounded by T'(i,¢) = o; '(I"(i,¢)). For the exit regions, we
have the analogous compact regions L*(1;4,/) C L;r. For A-curves, we have the analogous entry and exit
compact regions L*(2;i,0) C LE .

Consider their images under the map 7: W — K which identifies Lii and Eli with the secondary entry
and secondary exit regions. We now analyze the intersections and self-intersections that are created. For
10,91 = 1,2, the regions 7(L~ (ip;i1,¢)) C D(ip) are the components of the set D(ip) N E;,, so by the nesting
property of I and A curves, we have that:

e 7(L*(1;1,¢)) C 7(L*(1)) and thus is contained in D(1);
e 7(L*(1;2,¢)) C 7(L*(2)) and thus is contained in D(2).

Analogously, we have:

e 7(L*(2;1,¢)) C 7(L*(1)) and thus is contained in D(1);



THE DYNAMICS OF GENERIC KUPERBERG FLOWS 149

o 7(L*(2;2,0)) C 7(L*(2)) and thus is contained in D(2).
Thus, D(1) ND(2) consists of the regions:

o 7(L*(1;2,0)) C E3U S, for £ > b and unbounded;
o 7(L*(2;1,¢)) C E; U S, for £ > b and unbounded.

REMARK 23.15. There exists an index £(01), which tends to infinity as §1 tends to zero, such that
7(L* (ig;41,£)) deforms into Cf (7(R'),61) in My for £ > £(61). It follows that the number of such inter-
sections which are not deformable in My to the core Cif (7(R'),61) is finite, and bounded above by |b| + £(d1).

We complete our description of the topology of 91; by giving a set of generators for Hq(M1;7Z). There are
three types of generators: the generator at level 0; the generators that cover the branching of the tree T from
level 0 to level 1; and the generators that make one turn around the Reeb cylinder along a level 1 propeller.
The branches of T¢ at higher levels are contained in the filled propellers at level 1 and thus do not contribute
to the homology of M;.

DEFINITION 23.16. Consider the following generators of H1(My;Z):

(1) The loop [R] corresponding to the fundamental class of the Reeb cylinder.

(2) The exceptional loops E'(ig,i1) at level 1, which are formed as follows. Consider the point 7(p(ig)) €
E;,, which we recall is the intersection of the image of the periodic orbit O;, of the Wilson plug with
the entry face of the corresponding insertion. Recall that 7(y(i1, b)) is the first curve in the intersection
of 7(Py) with E;, and 7(A(i1,b)) is the first curve in the intersection of 7(Py) with E; . These curves
are illustrated in Figures 26 and 27]

Connect 7(p(ip)) to a point 7(p(ip;i1,b)) € E;, by a path tangent to the propeller 7(P,) if
io = 1, and tangent to 7(Py) if i9 = 2. Note that 7(p(ip;i1,b)) was not defined before, but for
homology purposes we just need a point in 7(v(i1,b)) if 49 = 1, or in 7(A(i1,b)) if i9 = 2. Then
7(p(io;i1,b)) € (L™ (i1)) C E;,, thus can be connected inside DMy to 7(p(iy1)). If i1 = ip we obtain a
loop, and otherwise close the loop using a path from 7(p(i1)) to 7(p(ig)) contained in 7(R’) (the two
possible choices differ by [R]). These loops are illustrated in Figure Observe that El(ig,i1) does
not depend on the choice of §; and that there are 22 = 4 such loops.

(3) The loops T*(ig,i1,i9;¢) of type (2) at level 1, for b < ¢ < £(6;). Consider a loop which starts
by connecting 7(p(i1)) to 7(p(io;i1,¢)) by a path contained in E;,, then goes from 7(p(ig;i1,¥)) to
T(p(io; iz, + 1)) € E;, by a path tangent to the corresponding level one propeller (that is, to 7(P)
if ip = 1 and to 7(Py) if i = 2). This segment makes a full turn around the Reeb cylinder and is
contained in a level 1 propeller. Observe that is is not necessarily equal to ¢;. Then connect by a path
in E;, the points 7(p(ig;ie, £ + 1)) and 7(p(iz)). If ia = i1 we obtain a loop; otherwise close the loop
by a path from 7(p(i2)) to 7(p(i1)) contained in 7(R’). These loops are illustrated in Figure

Observe that for £ = £(§1)—1, the point 7(p(io; iz, £41)) = 7(p(io; iz, £(61)) belongs to Cg (1(R'), 61)
and hence the loop can be closed by a path segment in Cif (7(R'), 1) but outside 9} — 7(R’), from
the corresponding level one propeller to the Reeb cylinder. Observe that there are 8(]b| + £(d1)) such
loops T (ig, i1,12;£) that are not homologically trivial or equivalent to [R].

The loops E*(ig,i1) and T (ig, 41, i2;¢) constructed in items (2) and (3) above are based at 7(p(ig)), and
they can be connected to the basepoint wg by a short path in 7(R’) to obtain pointed loops. We consider the
image of these loops in H;(Mp; Z), and express the homology classes they determine in terms of the generators
{[R], [b1], [b2]}. As the resulting homology classes do not depend on the basepoint chosen, we do not mention
the addition of the basepoint paths again.

We now specify the classes in Hy(9g;7Z) determined by the above classes. For E!(ig,i1), the image is
la—b]|-[R]+[bj,], for a as introduced in Section[13} For T (ig, 1, 2;¢) with b < € < £(51)—1, the image is simply
[R] or 2[R] depending on the choice of closing path from 7(p(i2)) to 7(p(i1)). All other classes in Hy (9, Z)
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FIGURE 54. The exceptional loop E'(ig, i) at level k = 1.
Solid lines represent paths in the set 9t} and dotted lines represent paths in the intersection
of My with the entry regions F; and FE5. Here, ig = 1 and i; = 2.

r
T(p(1;1,b+2))

FIGURE 55. The type (2) loop T (ig,i1,i2;¢) at level k = 1.
Solid lines represent paths in the set 9t} and dotted lines represent paths in the intersection
of My with the entry regions F; and FEs5. Here, ig =1,41 =2,io=1and {1 =b+ 1.
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are combinations of these classes, as can be seen from geometric considerations. For example, consider the
loop generated as in case (2), given by a path starting at 7(p(ip)) and going to a point 7(p(ip;i1,41)) € E;,
for £, > b, by a path tangent to the propeller 7(P,) if ig = 1, , and tangent to 7(Py) if ¢y = 2. This will be
homologous to a class El(ig,41) plus a sum of classes T (i, i1,i2; ) for b < £ < £1.

The construction of the space 9 for k > 1 is analogous to that of 911, and follows an inductive procedure.
Assume that the space 95! has been constructed. Then 9, is defined as a union of a closed 1-sided
neighborhood of the space sm’g—l with the filled double propellers at level k. Note that the filled double
propellers at level kK — 1 in ;_; will no longer be contained in Ny, as they are replaced by filled double
propellers at level k. Though it is simple to state the recursive construction of 91 in outline, the actual
construction becomes increasingly complicated to describe, as it is based on the labeling for components of
the filled double propellers given in Section We discuss this process in further detail for level £ = 2 below.

Recall that the double propellers at level 2 in W are labeled by their generating curves I'(i1, £) and A(i1, £) in
L; fori; =1,2 and ¢ > b. For each such curve, we define the filled region L~ (ip;%1,¢) and the corresponding
filled double propeller D(ig;i1,£) at level 2 is given by the Wy-flow of L~ (ip;1,¢). Regarding this notation, if
1o = 1, then the boundary of D(ig;i1,£) is T'(i1,£). If ig = 2, then the boundary of D(ig;i1,¥) is A(i1,£). As
all T" and A curves which generate these double propellers are contained in the region {r > 2} C 9, W, each
filled double propeller D(ig;i1,£) is a compact region in W.

Choose 0y < 6;/2 sufficiently small, so that the one-sided closed dy-neighborhood of 95 given by

(202) Ckf(f)ﬁé,ég) = CK(m(1)762) NNy
does not contains all the level 2 propellers. Set D(ip;i1,¢) = 7(D(ip;i1,£) N W) and define
(203) My = CF (ML, 5) U {U{D(io;il,ﬁ) lig,i1 = 1,2 and £ > b}} .

Thus, My is obtained by attaching to the set Cif (7(R'),d2) a closed 1-sided dz-neighborhood of the level 1
propellers to obtain C’H‘(f (MY, 62), and then attaching the filled double propellers at level 2.

We next state versions of Lemmas [23.12] and [23.13| for 912 whose proofs follow in the same way.
LEMMA 23.17. 9t C Ny C M.
LEMMA 23.18. For e > 0 sufficiently small, U(MNq, €) retracts to Na.

The description of the homology of 95 is analogous to the description of 91; above, and again uses the
labeling of the double propellers from Sections [I2] and [I3] However, in addition to the exceptional cycles in
M, that arise from the intersections and self-intersections of the filled double propellers at level 2, there is
an added subtlety in the existence cycles of type (2) at different levels, which occur for the spaces 91, when
k > 2, since in these cases the added propellers are no longer infinite.

We begin with some observations, before enumerating a set a generators of H;(My;Z). For ¢ large enough,
D(ip;i1,£) intersects the entry region E;, for i = 1,2. The intersection D(ig;i1,£) N E;, is along the regions
bounded by the curves 7(T'(41,4;i2,¢)) if ig = 1, and 7(A(i1, ¥;i2,£)) if ig = 2, where £/ > b and is bounded
above. As before, the regions D(ig;i1,¢) are disjoint and contractible in W, but their images D(ig;41, )
may have multiple intersections between them, and also with the neighborhood Cﬁ‘g (MY, 82), so they are not
necessarily contractible.

First define ¢(d2) as in Remark [23.15, so that the curves 7(v(i1,£)) and 7(A(i1,¢)) are contained in
CE (T(R'), 82) if £ > £(65).

Let #(io;41) > b be the greatest number such that D(ig; i1, ) for £ = t(ip; i1) does not intersect Ey, nor Fs.
Observe that this phenomena is independent of the choice of ds.

We now consider the possible intersections of the filled double propellers at level 2 with Cﬂz (M4, d2). The
filled double propellers D(ip;i1,¢) get longer as ¢ increases, thus there exist constants

(204) 0825405 11) > 8(02540511) > b
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such that, for ig,i; = 1,2:

(1) Forb < ¢ < s(d2;1i0;11), the filled double propellers D(ig;i1,£) C W and the pre-image 7= (Cy (M3, 62))
are disjoint. If £ < t(ig;41) then D(ig;i1,¥¢) is homotopically trivial and the attachment of D(ig; i1, £)
to Cif (9}, 62) does not change the homotopy type.

(2) For s(d25i0;41) < € < l(d2;i0;i1), the filled double propellers D(ig;i1,¢) C W intersect the set
T H(CF (M, 62)) and D(ig; i1, ¢) does not retract in Ny to Cif (MY, J2). In this case,

D(ig;i1,£) — (Dlio;i1,£) N C (Mg, 62))

is a non-empty submanifold with compact closure, and the finite filled double propeller D(ip;i1,¥) is
such that its base and tip are in Cgf (MY, d2). The attachment of D(ig;iy,£) to Cif (INY, d2) adds a
handle.

(3) For £ > {(82;i0;i1), the filled double propellers D(ig;i1,£) retract in My to Cif (IMY, d2), and thus
adding these propellers does not change the homotopy type of C’H‘(f (MY, 52).

The proof of the following result is analogous to that of Lemmas [23.11] and 23.14}

LEMMA 23.19. N is compact and has the homotopy type of a finite wedge of circles.

The trace of Cif (MY, d2) on Ry contains the 1-sided dr-neighborhood of 7(R') N Ry. From we get
that this trace contains also the dy-neighborhood of the curves vo(¢1), Ao(¢1) for £ > a and unbounded. For
01 > b, the trace of D(ip;i1,¢1) is the region bounded by the curves T'g(i1,¢1;¢2) if ig = 1, and by the curves
Ao(i1, €13 42) if ig = 2, for €5 > a and bounded.

Recall from Section that for iy and ¢ fixed, the curves 7o(i1,¢1;¢2) accumulate on a level 1 curve as
01 — 00, on Y(la) if iy = 1, and on Ag(¢2) if 44 = 2. Analogously, the curves Ao(i1, ¢1;¢3) accumulate as
1 — 00, on Y(f2) if i1 = 1 and on Ag(¢3) if i = 2. Thus, there exists ¢'(d2;4p;41) such that for every
0y > 0'(2;10;11), for ig = 1 the curve T'g(iy1, ¢1;a), and for ig = 2 the curve Ag(i1, £1; a), intersects the 1-sided
do-neighborhood of yp(a) U Ag(a).

The index £(d2;40;41) may be required to be chosen larger than ¢'(d2;4;41) in order that the conditions of
case (3) are satisfied: that is, the filled double propeller D(ig;i1,¢1) C W intersects 7~ 1(Cy (M}, d2)) along
all its length, and thus D(ig;i1, (1) retracts in My to Cyf (MY, 52).

We estimate the value of s(d2;40;41) in above. To simplify the discussion, consider the case ig = 1. For
0y < 0'(82;1541) < £(2;1;41) and d9 small, the curve T'y(i1,¢1;a) is disjoint from the 1-sided dy-neighborhood
of vo(a) U Xo(a). Take €3 = £'(da;i0;41) — 1, then there exists fo > a such that T'g(i1,¢1;¢2) intersects the
1-sided d2-neighborhood of ~y(¢2) U A\g(¢2). Thus the filled double propeller D(1; 41, ¢1) satisfies case (2).

As ¢y decreases, the filled double propellers D(1;i1, £1) get shorter, and thus there exists s'(do;1;41) such
that if /1 < s'(82;1;41), the curves T'g(i1, £1; ¢2) are disjoint from Cif (MG, §2) for any ¢ > a. In the same way
we obtain s'(d2;2;41), and hence s(d2;70;41) < §'(d2;40;41) such that case (1) is satisfied.

The addition of the propellers D(ig;i1,¢) in case (2) creates new handles: each propeller retracts to its
intersection with the annulus A, thus is an arc whose endpoints are in Cjf (M, d2) that is not contained in
the previous set. As for 911, we obtain exceptional cycles in 9 that arise from the intersections of the filled
propellers at level 2. Thus, the inclusion 91 C 91; is not a homotopy equivalence for - sufficiently small.

Before giving the descriptions of the classes of generators for Hq(M9,Z), we make an observation. Consider
point 7(p(ip;i1,£)) € CF (T(R'),61) N E;, at level 1, for iy = 1,2, where ¢ is sufficiently large, but such that
7(p(io; i1, ¢)) is not contained in C (7(R’),d2). The closest level 1 point to 7(p(ig;i1,£)) is T(p(iz;i1, ¢ + 1))
for iy # g, since v and A curves are interlaced as in , , and . If the d2-neighborhood of
T(p(i2;41,¢ + 1)) contains the first point 7(p(io;i1,¢)), then we can compose these paths to obtain a loop as,
as described in item (3) of the list below.
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We can now define a set of generators of Hq(Mg;Z), which are divided into the following classes: the class
[R] at level 0; the ones that cover the branching from level 0 to level 1; the ones that cover the branching from
level 1 to level 2; and those that allow to make one turn around the Reeb cylinder along a level 2 propeller.

DEFINITION 23.20. Consider the following generators of Hi(Ma;Z):

(1)
(2)

The loop [R] corresponding to the fundamental class of the Reeb cylinder.

The loops P?(ip) at level 1, which are formed as follows. Observe that the level 1 propellers limit
to the Reeb cylinder, so that after |a| + £(d2) turns, where £(d2) depends on d2, the propellers 7(P)
and 7(Py) intersect Cf (7(R’),d2). Consider a loop starting by a segment that connects 7(p(ig)) to
7(p(io; i1,£(82))) € Ci (T(R'),02) and is tangent to M. Then connect the last point to 7(p(i1)) by
a path in F;, and then back to 7(p(ig)) along the Reeb cylinder. The value of ¢(d3) is the smallest
number for which such a loop exists. Observe that the two loops defined by paths

T(pio)) e 7(p(io; 1,£(5))) B 2 (p(1)),
T(pio)) 7(p(i; 2,£(5))) B 1(p(2)

are homologous, since the paths from the level 1 points 7(p(io; 1, £(d2))) and 7(p(io; 2, £(d2))) to 7(p(1)),
as well as the corresponding level 1 propeller, are contained in the d2-neighborhood of the Reeb cylinder.

The one turn loops S3(ig,i1;¢) at level 1, which are formed as follows. Note that if 7(p(io;i1,£)) and
7(p(ia; i1, £ + 1)) for ig # ip do not belong to Cf (7(R'),d2), there is loop formed by concatenating
the path tangent to 9y whose endpoints are 7(p(io;41,¢)) and 7(p(iz;i1,¢+ 1)) with the path joining
these two points that is contained in E;, N Ms.

Observe that for ¢ sufficiently large, the points 7(p(ig;i1,¢)) and 7(p(ia;i1,¢ + 1)) belong to the
dy-neighborhood of the Reeb cylinder, and thus the loop is homotopic to PZ(is) — P2(ig) + [R], as
explained in the proof of Proposition below.

The exceptional loops E?(ig,i1,i2;¢1) at level 2 | which are formed as follows. As in the case k = 1,
we define 7(p(io;i1,¥¢1;42,b)) to be a point in the curve 7(y(i1,f1;42,b)) if i = 1, and in the curve
7(A(i1,£1;42,b)) if 49 = 2. For ¢1 > t(ig;41), consider a path starting at 7(p(ip;i1,¢1)) and tangent
to the corresponding level 2 propeller up to the point 7(p(io;i1,¢1;i2,b)) € E;, (that is, tangent to
T(Py(iy,e0)) if d0 = 1 and to 7(Px, ¢,)) if 40 = 2). Since 7(p(io;i1, £1;42,b)) is contained in the region
bounded by 7(['(i2,b)) if i1 = 1 and by 7(A(iz, b)) if iy = 2, we can connect 7(p(ig;i1,¥1;42,b))
to 7(p(i1;42,b)) by a short segment in E;, N 9Ny (as follows from Lemma [[3.10). Finally, connect
7(p(i1;i2,b)) to 7(p(io;i1,£1)) by a path tangent to M. Observe that for the last step, there is only
one possible choice up to multiples of [R], since MM} retracts to a tree (up to the loop corresponding
to the Reeb cylinder). These loops are illustrated in Figure

Observe that for ¢4 > ((89;40,41), these loops retract to Cif (M, d2). Thus there are at least
23(€(82;140,41) — t(40,41)) such loops that are not homologous to loops in C (M}, 52).

The type (2) loops T?(iq,i1,12,13; /1, {2) at level 2. Recall that for 5 > b, the point 7(p(i1; iz, f2)) lies
in the curve 7(I'(ig, £2)) if 43 = 1, and in the curve 7(A(iz, £2)) if i1 = 2. Thus, we can connect this
point to 7(p(ip; i1, ¥¢1;12,¢2)) for any ¢ such that the point exists and for ig = 1,2. The connecting
path can taken to lie in F;, NNy. From 7(p(ip; i1, ¢1; 42, ¢2)) take a path tangent to the corresponding
propeller to the point 7(p(ig; i1, £1; 43,42 + 1)), for i5 = 1,2. Since 7(p(io;i1,¢1;i3,¢2 + 1)) € E;, is in
the region bounded by 7(T'(i1, ¢1; i3, {2 + 1)) or by 7(A(41,¢1;3,¢2 + 1)), we can connect this point to
7(p(i1;i3, 02 + 1)) by a path in E;; NNy and then back to 7(p(i1;ia, f2)) by a path tangent to 903.
These loops are illustrated in Figure

Observe that for £y > £(d2;40,41), the paths T2 (ig,i1,42,13;¢1,¢2) are homologically trivial, as
explained in the proof of Proposition below.
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FIGURE 56. The exceptional loop F(1,1,2;b+ 2) at level k =2
Solid lines represent paths in the set 912 and dotted lines represent paths in the intersection
of My with the entry regions ;7 and FE5. Here, ig =1,41 =2, i3 =2 and {; = b+ 2.

/A <
7(R')

FIGURE 57. The type (2) loop T2(1,1,1,2;b+2,b+ 1) at level k = 2
Solid lines represent paths in the set 93 and dotted lines represent paths in 9y with the
entry regions F; and E5. Here, i1 =1,io=1,i3=2,¢; =b+ 2 and {5 = b.
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In summary, the set of generators for H;(9y;7Z) are constructed as follows. First, we include the classes
generated by the loops in C]fg (M3, d2), that are either at level 0 or level 1. These are the loops described in
cases (1), (2) and (3) above. Then we must include the homology classes generated by the exceptional loops
which arise from the branching of the level 2 propellers, as described in cases (4) and (5).

PROPOSITION 23.21. The inclusion Ny C My induces a map
Ly © Hl(th,Z> — Hl(‘ﬂl,Z)

such that:
(1) LQ(P12(Z'0)) = Tl(io,il,ﬁ;g(ég) — 1) + Tl(io,il,il;e(ég) — 2) + -+ Tl(io,il,il; b) + El(io, il) fO?” any
il;
(2) 12(S3(ig,i1541)) is homologous to
Tt (io, 1,015 01) + -+ + TV (i2, i1, 415 0) + E'(i2,i1) — E*(io,i1) — T (ig,d1,41;b) — - -+ — T (io, 41,415 61 — 1);

(3) LQ(E2(7;0,i1,i2;€1)) = Tl(io,il,’il;el — 1) —|—T1(io,i1,i1;€1 — 2) —+ -+ Tl(io,il,il;b) + El(io,il);
(4) 12(T?(ig,i1,42,13;€1,l2)) is the trivial element.

In the proof below, there is a basic technique that is used to investigate the image of the different loops.
This operation consist in moving by a homotopy transformation, every path segment tangent to a propeller at
level 2, to a path segment tangent to a propeller at level 1, and joining the endpoints of these two segments by
paths in the entry regions F4 and E; accordingly. The reason why this is possible, is that the level 1 propellers
in 91 are filled, and thus contain all path segments tangent to higher level propellers. Once this homotopy
operation is performed on a given loop, we then put the resulting deformed loop into “simplest form” and
evaluate the resulting homology class.

Proof. Consider first an exceptional loop E?(ig, 41, i2;¢1) of the class (4) which is illustrated in Figure We
consider its image in 91;. Recall that the double propellers at level 1 are filled in 91;. Consider the segment
of E2(ig,i1,42;¢1) from 7(p(ip;i1, 1)) to 7(p(io;i1,f1;i2,b)) that is tangent to a level 2 propeller, as written
in below. Since as {1 — oo, we have that the points 7(p(io;é1,¢1)) limit to 7(p(i1)), and the points
T(p(io;91,£1;2,b)) limit to 7(p(i1;i2,b)). Thus, the tangent path segment at level 2 is homotopic to the union
of the segment tangent to My from 7(p(i1)) to 7(p(i1;i2,b)) and short paths in E;, and FE;,. The first one
of these short paths connects 7(p(ip;i1,¢1)) to 7(p(i1)), and the second one connects 7(p(io; i1, £1;i2,b)) to
7(p(i1;12,b)), and is written in below. We can thus write the loop E?(ig, 41, i9;¢1) in the following way:

(205) T(plioiin, 1)) M (plio; i, b2, b))
Eiz . .

(206) =2 7 (p(i; i, b))

(207) Zongernt, T(p(io;i1,41))-

Then by the previous discussion, this loop is homologous in 91; to the loop

(208) (p(iosin, 1)) — 7(p(in)) 7(p(i; ia, b))

Concatenate the two tangential paths to obtain the loop:

tangent tangent

T(p(io;91,41))-
(209) T(plioy i, 1)) = 7(p(in)) 25 7 (p(ig:i, 1))

Observe that this loop is independent of iz. Also, if ig # 41 the segment between 7(p(i1)) and 7(p(ig; i1, £1))
is homotopic to a path segment containing 7(p(ig)).

The loop P7(ig) corresponds to the following concatenation

(210) T(pio)) 5 r(plio;ir, £(32)))
(211) Zh r(p(in)

(212) LB, 2 (p(io)),
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for any 41. Thus, in My the loops E?(ig,i1,i2;¢1) and P?(ig) are homotopic.
In terms of the generators of Hy(My;Z), for ¢1 > b we then have
(213) LQ(Ez(io, 11,19; él)) = Tl(io, 11,1101 — 1) + Tl(io, 11,1101 — 2) + -+ Tl(io, 11,11; b) + El(io, il).

It is helpful to consider Figure So while E*(ig,i1) is not necessarily in the image of (o, its composition
with level 1 loops of type (2) is in the image of to for each pair (ig,i1).

For the loops P2 (ig) at level 1, described in class (2) above, we obtain by similar reasoning that
(214) va(PE(io)) = T" (i, v, ix; £(82) — 1) + T (io, i1, i150(82) — 2) + -+ - + T (io, in,i1; b) + E' (io, ia).
Next, consider the one turn loop S%(ig, i1; £1), described in class (3) above, that is formed when 7(p(io; i1, £1))
and 7(p(iz; i1, ¢1 + 1)) for iz # iy do not belong to Ci (7(R'), d2). Schematically, this loop can written as

tangent

(215) 7(plios i1, 1)) 7(pliniin, b1 + 1)) =2 7(pliosin, (1)),

Since i # ig the tangent part of the loop can be written as the concatenation

(216) T(plio; i, €1)) 2 1 (plin)) B 1 (plin)) B r(plissit, 1+ 1))

If the two endpoints belong to Cif (7(R'), d1), we have that £ > £(51). Hence, after inclusion in 9%, we can
further decompose the loop as the concatenation

(217) r(pliosin, 01) M (p(igs iy, (31))) =25 T(p(in))

(218) B (pliosin, €061))) E (p(ig)) LIE 1(p(in)
(219) AN, (i) My 7 (plizs i1, £(51))) —2 7(p(i))
(220) Bay o pliny i, £(51))) 25 L (p(in:in, 01 + 1)).

The paths in the first and last lines (217) and (220) are segments contained in Cyf ((R’),d1). The path in
the second line (218)) corresponds to the loop —P7(ig), and the path in the third line (219)) corresponds to the
loop P} (i3). Let ~ denote homological equivalence, then we conclude

(221) 12(SF (io iv; €1) = 1o (P (i2)) — ta(P(i0)) + m[R],

for m = 7(61 - 5(51)) + (61 +1-— 6(51)) =1.

If at least one of the endpoints in (216) is not contained in Cif (7(R'), 1), then in My we can express the
loop 12(S%(ig;i1,¢1) as a concatenation of paths:

angen .. Ei : Eiy s
(222)  r(plioiin, 1)) 25 r(pliosin, by — 1)) —2 7(p(ir)) — 7(plio; i1, 1 — 1))
angen L. Ei, R E;, L.
(223) fangent T(p(io;i1,¢1 —2)) — 7(p(i1)) — 7(p(io; 1,41 — 2))
angen . . angen . angen . Eil . .
(224) LB (plios i1, b)) —E 2 (p(in)) SR £ (p(ir)) — T(plios i1, b))
E;, . angen . angen ..
(225) S 2 (p(in) 2 2 (p(i)) R 2 (p(in;in, 6 4 1)).

Then the path in is homotopic to —T*(ig,i1,41;¢1 — 1) followed by a segment contained in Ej,, from
7(p(io;41,41)) to T(p(io;i1,¢1 — 1)). Analogously, the path in line is homotopic to —T" (ig,i1,i1; 41 — 2)
followed by the path egment contained in F; , from 7(p(io;i1,¢1 — 1)) to 7(p(ip;i1,¢1 — 2)). Continuing in
this way, the path in line is homotopic to —FE1(ig,i1) followed by the segment contained in E;,, from
7(p(ip;i1,b)) to 7(p(i1)). Thus, the path corresponding to the first arrow in is homotopic in M to

(226) — E'(ig,i1) — T (i, 41,413 b) — - — T (ig,d1,41; 41 — 1).
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Applying the same argument to the the path corresponding to the last arrow in (216) we conclude that
12(S%(ig,i1;¢1)) is homotopic to

(227) T (ig, i1, i1;01) 4 -+ T (ia,i1,41;0) + B (ia,41) — E (ig, 1) — T (ig, i1, 415 b) — - - - — T (4, i1, 415 61 — 1).
Finally consider a type (2) loop at level 2, T?(ig, 1,42, 43; £1,{2), as described in class (5) above:

(228) T(piv;iz, b2))  —=  T(plio;ir, l1;i2, L))

(229) Longent, T(p(ios i1, l1;i3, 2 + 1))

(230) —  1(p(ir;is, b2 + 1))

(231) R r(plins iz La)).

tangent

In D% the first tangent segment becomes 7(p(i1; iz, £2)) 7(p(i1;13,¢2+1)), and the points 7(p(i1; iz, {2))
and 7(p(i1;is,f2 + 1)) can be joined to 7(p(i2)) and 7(p(is)), respectively, by segments in E;, and E,,,
respectively, to obtain the path

tangent

T(p(i1;is, 02 + 1))

at levels 0 and 1. Hence, is(T?(ig, 41,42, i3; {1, £2)) is the loop

T(p(i1;i2,l2))

Ei2

(232) T(p(i1; 2, l2)) T(p(i1; iz, l2))
(233) SR (p(insis, b + 1))
(234) sy r(plinsis, £ + 1))
(235) fangent 7(p(iv; iz, 42)),

which yields the trivial class in H;(,7Z). This conclusion can be seen in the illustration Figure as the
two tangential path components become homotopic, but in reverse directions, when these tangential paths are
homotoped to tangential paths in 91;. O

The construction of 915 has an interpretation in terms of the embedded tree T C PMg. The closed set
N, defines a closed neighborhood of 9ty and hence of the embedded tree Tg C M. Topologically, this
corresponds to two operations: first attaching, at a suitably large distance from the root point wg, the ends of
the two level 1 branches to wg. Second, selecting a finite number, equal to Zio,il 0(62340;11) — s(d2540; 1), of
level 2 branches whose endparts get identified to a certain point in the level 1 branches. The branches of the
tree at higher levels are all collapsed into the filled regions, hence to one of the D(ig; i1, ¢).

We next describe the construction of 913, which proceeds in complete analogy with that of s, and so
various repetitive details are left to the reader.

For 0 < 03 < d2/2, introduce the one-sided closed d3-neighborhood of smg given by
(236) Cif (M3, 53) = Cic (M3, 3) N N
Choose 65 sufficiently small, so that Cif (92, 5) does not contain all the level 3 propellers.
The double propellers at level 3 are given by the collections
(237) T(Priy trsinies) A0 T(PAG, 0100000)) 0T £1, 6o > b and d1,i2 = 1,2

Denote the corresponding filled double propellers in K by D(1;41, £1; iz, f2) and D(2; iy, {1; 142, {2), respectively.
Observe that the lengths of the double propellers P{ﬂ(ihel;iz)@z) and P,’\( are not bounded above as
£1,09 — co. Then set:

i1,01502,€2)

(238) 9?3 = Oﬂ—g(gﬁg,&g) U { U{D('L’O;Z‘l,gl;Zé,gQ) |io,i1,i2 = 1,2 & £1,€2 > b} } c K.
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As in the previous analysis of the homotopy types of 911 and 91, the filled double propellers in (238]) have
both intersections and self-intersections, so their addition to the space Ci (92, 63) adds multiple types of
exceptional cycles to the homology of 91s.

As in the analysis of the homotopy type of M3, we define the constant £(d3) to be the least integer such
that the point 7(p(ig;i1,£(d3))) is contained in the d3-neighborhood of the Reeb cylinder, and the constants
0(63310,11) > s(d3510,%1) > b are defined analogously to the level &k = 2 case (204). Moreover, there are
constants t(ig; i1, £1;i2) such that the filled double propellers D(ig; i1, ¢1; 2, f) intersect the regions F; and Es
for with ¢ > t(ig;41,£¢1;42), hence they are not homologically trivial. We then have
(239) £(03570; 71, €1;12) > 5(03590; %1, 41;92) > b
and the following conditions are satisfied:

(1) For b < ¢ < s(33;i0; 1, £1;42), the filled double propellers D(ig; i1, f1; 2, £) intersect Cif (92, d3) only

near their generating curves Pp y and Py

i1,€13i2,02 i1,01502,€2)"

(2) For s(ds;i0;i1,1512) < £ < £(d3;10;%1,01;12), the filled double propeller D(ig; i1, £1;42,¢) is such that
its base and tip are contained in Cyf (932, d3) and do not retract in N3 to Cif (M2, 63). Thus, each of
these propellers adds a handle to Cjf (M3, 53).

(3) For £ > £(03;10;11,¢1;12), the attachment of the filled double propellers D(ig;i1, £1;i2,£) does not
change the homotopy type of Cif (M2, 53).
It follows that the analogs of Lemmas 23.17}, 23.18] and [23.19] hold for 3.

We next describe the image of the map on homology induced by the inclusion. A generating set for
H,(M3;Z) is constructed in an analogous way as before.

DEFINITION 23.22. Consider the following generators of Hi(Ms;Z):

(1) The loop [R] corresponding to the fundamental class of the Reeb cylinder.

(2) Level 1 and 2 loops.
(a) Level 1 loops P{(ig). These are the same as the loops of class (2) generating H;(My; Z), repre-
sented schematically for i; = 1,2, as

~(plio)) s 7(plios i, €(33))) — 7(p(i1)) 2 7(plio)).

(b) Level 2 loops P (ig,i1;¢1). The level 2 propellers limit to the level 1 propellers, and get longer

as the indices (ip;i1,/1) increase, for £1 > s(d3;i0;41), the propeller 7(Py;, ¢,)) if 0 = 1, or
the propellers 7(Py(;, ¢,)) if ip = 2, intersect Cgf (M}, d3) near their base and tip, and thus
represent handles of 913. Then for s(d3;40;41) < €1 < £(d3;140,11), consider the loops starting at
7(p(io;i1,¢1)) tangent to 93 up to the point 7(p(ig; i1, 1;ia,¢2)). For ¢y sufficiently large, the
point 7(p(io; i1, 15 ia, £2)) is contained in Cif (MY, 83), thus we can join this point to 7(p(i; iz, l2))
and then close the loop by a path tangent to 903.
The homology class of the loop P (ig,i1;¢1) is independent of iy = 1,2, as was the case for the
analogous level 1 loops. Given (ig, 41, ¢1), consider the smallest {5 such that 7(p(ig; i1, £1;42,£2))
is contained in CH'{ (MY, 83) for ia = 1,2. Since the part of the level 2 propeller that lies between
the points 7(p(io; i1, £1; 42, 2)) and the tip retracts to Cif (M}, d3), for any ¢4 > ¢5 the loops

tangent

Ei2 . . angen . .
7(plio; i1, &1)) T(plio; i1, L1y in, €)) —25 T(plin; ig, £2)) —5 7 (p(ig; i1, £1))

tangent tangent

E;, .. ..
7(p(io; 1, 41)) 7(p(ios i1, s iz, 0y)) —= T(p(i1;ia, £5)) 7(p(io; i1, 41))

are homotopic.

(3) The one turn loops.



(4)
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(a) Level 1 loops S5 (ig,i1;¢). As in the case of the loops of class (3) for My, consider a pair of points
7(p(ip;i1,¢)) and 7(p(ig;iq, £ + 1)) for iy # ig. By the definition in (236)), the two points can be
connected by a path in E;, N if they belong to

CE(1(R)),82) — CE (7(R), 83),

and the ds-neighborhood of 7(p(ig;i1,¢ + 1)) contains 7(p(ip;i1,£)). In this case, there is a
loop formed by concatenating the path tangent to 9%y between the points 7(p(ip;é1,£)) and
T(p(iz;i1,¢+ 1)), with the path joining these two points that is contained in F;, N M.

Observe that for ¢ sufficiently large, the points 7(p(io;i1,¢)) and 7(p(ig;i1,£ + 1)) belong to the
d3-neighborhood of the Reeb cylinder, and thus the homology class of the loop S} (ig,i1;£) is
equal to P} (iz) — P (io) + [R], as explained in the proof of Proposition

(b) Level 2 one turn loops S3 (ig, i1,42; ¢1,f2). For a point 7(p(io;i1,41;i2,f2)), the nesting property
of the ellipses, as discussed in Section implies that 7(p(i3;i1,¢1 + 1;i2,03)) for iz # ig is
the closest point at the same level. If the ds-neighborhood of 7(p(is;ii, 1 + 1;i2,£3)) contains
7(p(ip;i1,¢1;12,¢2)), then there is loop formed by concatenating the path tangent to 9t whose
endpoints are 7(p(io; i1, £1; 92, £2)) and 7(p(is; i1, €1+ 1; 12, €2)), with the path contained in F,;, N3
joining these two points.

Observe that for ¢; sufficiently large, the points 7(p(io; i1, £1; 42, ¢2)) and 7(p(is; i1, €1 + 1542, ¢2))
belong to the §3-neighborhood of 91} and thus the loop is homotopic to a loop in C]I‘(f (M3, 03).

The exceptional loops E3(ig,i1,142,13;¢1,f2). As in the case of the loops of class (4) for 9y, let
7(p(io; i1, £1; 12, 02;13,b)) be any point in the curve 7(y(i1,¥1;i2,02;43,b)) C E;; if ig = 1, and in
the curve 7(A(i1,1;42,02;43,b0)) C E;, if ig = 2. For fo > t(ig;i1,¥1;92), consider a loop start-
ing at 7(p(ip;i1,¥¢1;12,¢2)), then tangent to the corresponding level 3 propeller up to the point
7(p(io; i1, 41512, l2;i3,0)) € E;y, for i3 = 1,2. Then join this last point to 7(p(i1;ia,¥2;i3,b)) by a
short segment contained in E;, N N3, and return tangent to MZ to the point 7(p(io; i1, f1; 42, l2)).

Observe that for €5 > ((d3;40;41,01;i2) the loops E3(ig,i1,12,43;¢1,l2) are contained in 93 and
thus are homotopic to level 1 and level 2 loops.

The type (2) loops T3(ig, i1, 12,43, i4; {1, {2, £3) at level 3. For £3 > b, the point 7(p(i1; iz, la;i3,f3)) is
contained in the curve 7(I'(iz, £2;43,¢3)) if i1 = 1, and in the curve 7(A(ig, fo;i3,¢3)) if i1 = 2. Thus,
we can connect this point to 7(p(io; i1, £1; 12, f2; 13, £3)) for any ig, and for ¢ big enough so that the last
point exists. The connecting path can taken to lie in E;, N Ns. From 7(p(io; i1, ¢1; 2, 2;i3,¢3)), take
a path tangent to the corresponding level 3 propeller to the point 7(p(ig; i1, ¢1; 42, f2; 14, ¢35 + 1)), for
igs = 1,2. Since 7(p(io; i1, l1; 2, lo; 4,3 + 1)) € F;, is in the region bounded by 7(T'(i2, £2;44, 5 + 1))
or by 7(A(i2,¢2;14,¢5+ 1)), we can connect this point to 7(p(i1; iz, f2; i4, {3+ 1)) by a path in E;, N3
and then back to 7(p(i1;i2, f2;43,¢3)) by a path tangent to 93.

REMARK 23.23. The loops in (1), (2a) and (3a) above generate the homology group Hy(Ci (M3, 83);7Z).
Adding the loops in (2b) and (8b) in the above listing complete the list of generators for the homology group
Hy(CF (IM2,03); Z). As in the case of Mo, the exceptional and type (2) loops are given by the intersections of
the filled propellers, in this case at level 3.

PROPOSITION 23.24. The inclusion Nz C Ny induces a map

L3 : Hl(mg),Z) — Hl(mQ,Z)

such that:

(1) 13(PP(i0)) = (¢(d3) — €(d2))[R] + PE (io):
(2) 13(Ps(io,i1;41)) is homologous to

T2 (i, i1, 02,92 01, b2 — 1) + T2 (ig, i1, iz, i2; b1, b2 — 2) + - -+ + T?(ig, i1, i2,92; 1, b) + E>(io, i1,42; (1),

for any is and ly the minimum possible value so that the loop P3(ig,i1;01) exists.
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(3) 13(S3(ip;i1,41)) is homologous to t3(P{(i2)) — t3(P3(io)) + [R);
(4) 13(S3(ig,i1,12;41,02)) is homologous to

13(— P o, i1; 01) — P (io) + PY(is) + P (is; i1, 01 + 1) + [R]),

foris #ig and up to the sum of type (2) loops at level 2;
(5) 13(E3(ig,i1,42,13;¢1,02)) is homologous to

T2 (i, i1, 2,92 01, b2 — 1) + T2 (ig, i1, d2, d2; €1, b2 — 2) + - -+ + T2 (ig, i1, i2, i2; £1,0) + E>(ig, i1,2; £1);

(6) 13(T3(ig, i1, 12,13,14; 1, b2, €3)) is the trivial element.

The idea of the proof is the same as that of Proposition given a loop in 93 each path segment in
the loop that is tangent to a propeller at level 3, can be homotoped in the filled propeller to a path segment
tangent to a propeller at level 2, since the propellers at level 2 are filled in 91;. We then use segments in the
faces of the filled propellers in 91y to close up the paths into a loop contained in 91z. The resulting path is
then identified up to homology with a combination of the generators for H;(912;Z). We sketch the details of
the individual cases below.

Proof. There are two immediate cases which proceed exactly as in the proof of Proposition The image
of a level 1 loop of M3 is equal in homology to the addition of the class defined by a level 1 loop in 9y with a
multiple of [R]. We give the details for the level 2 one turn loops, and for the level 2 exceptional loops.

Consider a level 2 loop Pj(ig,i1,i2;01,¢2). Assume without loss of generality that ig = 1. Observe that
the IOOp Pg’(io,il,ig;él,gz) exists if 62 > 5(53; 1;i1,€1;i2) and that 8(53; 1; il,él; iz) > 8(52; 1;i1). AISO, the
level 2 propeller 7(P;;, ¢,)) retracts to Cit (MY, 62) only if ¢5 > (523 1;41). We write schematically the loop
P23(1, il, ig; 61, 62) as

tangent

7(p(io;i1, €1)) ——— T(p(io; i1, l1;i2, l2))
Ei, o
—  7(p(i1; iz, la))
tangent

7(p(io; i1, £1)).

Since 7(Py(,,¢,)) C D(1;i1,£1), the loop P3(1,iy,149; £1,f2) is homotopic to the composition of exceptional and
type (2) loops in 9y, so that we obtain

13( Py (i, i, d0; l1, £2)) = T2 (io, i1, da, d0; 1, b2 — 1) + T?(io, i1, da, 95 1, b2 — 2) + -+ -
+ T (io, i1, 12,425 €1, b) + E>(io, i1, d2; (1)
Consider now an exceptional loop E3(ig,i1,142,i3;¢1,2). Since the double propellers at level 2 are filled

in 9y, the tangent segment from 7(p(io;i1,¥¢1;2,¢2)) to 7(p(io; i1, £1; 42, l2;i3,b)) can be identified with the
segment from 7(p(i1;ia,£2)) to 7(p(i1; iz, f2;i3,b)). Hence the image of an exceptional loop becomes

(240) r(pliosin, bisiz £2)) 2 T(plinsia. f2))

(241) SRR T (plins ia, 2313, b))
(242) S 2 (p(ins iz, £2))

(243) R r(plivir, L1 i, o).

E; angen
This simplifies to 7(p(ig; i1, f1;i2,42)) — 7(p(i1; iz, l2)) tangent, 7(p(io; i1, ¢1;12,¢2)), from which we obtain

13(E(io, i1, 12,435 01, ba)) = T2 (i, i1, i2, i2; b1, b2 — 1) + T2 (i, i1, iz, i2; b1, b2 — 2) + -+
+ T2(7;07Z’17i27i2;£17b) + EQ(iO7i17i2;£1>‘
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Consider the one turn loop S$(ig,i1;¢1) that is formed when 7(p(io;i1,¢1)) and 7(p(iz;iy, ¢y + 1)), for
iz # ig, belong to Cff (T(R’), d2) — Cf (1(R'), 83), thus £1 > £(52). Hence, as in the proof of Proposition
we obtain that ¢3(S5 (i9,41; ¢1)) is homologous to

Ls(—Pl?’(io) + Pl?’(ig) + [R)).

For the level 2 one turn loops, we can express S3 (ig, 1, %2; {1, f2) as the concatenation of paths,

(244) 7(plios ir, sz, £2)) —5  w(plios ir, (1))
(245) SR 7 (plio)
(246) Donee F(p(isyin, 01 + 1))
(247) TR (p(in; v, iz, £a))
(248) = 7(p(io; i1, l1; 42, £2)).
In D5, the tangent path in is homotopic to
—T?(ig, i1, 42,425 €1, by — 1) — - -+ — T2(ig, i1, ia, i2; €1, 0) — E>(ig, i1,12; 1),

the the tangent path in is homotopic to
(249) — (6r — £(52))[R] — PE(io),
the the tangent path in is homotopic to
(250) (61 +1 = £(82))[R] + P{ (i3),
and the the tangent path in is homotopic to
(251) T?(is, i1, 40,023 01 + 1,00 — 1) + -+« + T2 (i3, 41, i2, 695 1 + 1,b) + E?(i3, 41,123 61 + 1).
Thus ¢3(S3 (io, i1,12; ¢1,¢2)) is homologous to
(252)  —T2(ig, i1, 02,023 b1, 02 — 1) — - —=T%(ig,iy1,49,40; l1,b) — E>(ig,41,49; (1)
(253) + [R] = PP(io) + PP(i3)
(254) +  T?(ig,in, 02,0230 + 1,0e — 1) + -+ + T2 (i3, i1, d2,92; 61 + 1,b)
(255) +  E*(igyi1,i2; 61 + 1).

Analogously to the case of 15, the homology class of T3 (iq, i1, 12,13, 14; {1, {2, £3) is trivial. O

In general, for k > 3, we consider ), < di_1/2 such that Ckf(imgfl,ék) = C’K(imgfl,&c) N Ny_1 does not
contain all of the propellers at level k.
The space My, is defined by attaching to CH'{ (im’g—l, 0x) the collection of filled propellers at level k. As the

number of handles in M;_; depends on dx_1, the sets N1 and C}f{f (9)115717 Jx) are not homotopy equivalent
for 6 small enough. Analogous versions of Lemmas [23.17] 23.18] and 23.19] hold for 1.

LEMMA 23.25. The set Ny, is compact and satisfies:

(1) M C Ny C Ny—q;
(2) For e > 0 sufficiently small, U(Ny, €) retracts to Ng;
(3) Ny has the homotopy type of a finite wedge of circles.

We now generalize the description of the generators of the homology and give a lower bound on the rank
of the homology groups Hi(My;Z).

DEFINITION 23.26. Consider the following generators of Hy(Ny;Z):

(1) The loop [R] corresponding to the fundamental class of the Reeb cylinder.
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(2) Level 1 to k — 1 loops.
(a) The level 1 loops Pf(ig) are defined by choosing i; then P (i) is the loop:

T(p(io)) E r(plios i, £(0k)))

Eil

—  7(p(i1))

tangent

—  7(p(io))-
(b) For 2 <n <k — 1, the level n loops P¥(ig, i1, yin_1;¢1, - ,{n_1) are defined as:

tangent

T(p(io; i1, 015+ 3in—1,n-1)) T(p(io; i1, 415 5in,ln))

E;, .. E
—  T(pliryio, los -+ yin, ln))

tangent

T(p(ios i, 15 yin—1,ln-1)),

for any 7, and where £, is the smallest number for which such a loop exist.

(3) The one turn loops at level n for 1 < n < k—1, denoted by S¥(ig, i1, ,in; €1, ,£n), is represented
schematically as

. . . tangent . . .
T(p(ioiit, L1 3in,fn)) : T(p(iosit, b1 + 1+ 3in, ln))
Ei1 . . .
—  T(plios it L1 sin,ln)).

(4) The exceptional loops at level k, denoted by E*(ig, i1, ,ig; €1, ,lr_1):

tangent

T(p(ios i, l15- -+ ik—1,lk—1)) T(p(ios i, l15- - 3ik—1,Lr—1:0k,D))
—5  7(plir;io, bo; -+ 3ik—1,Le—1;0k, b))
ngent . . .
fneer, T(p(ios i, l1;- - 3 ik—1,4r—1))-
(5) The type (2) loop at level k, denoted by T*(ig, i1, ,ixr1; 41, ,4r):
T(p(ivyin, bos - sik, by)) —=  7(plioiir, b1;- - 3ik, L))

T

Eip

T(p(ir; i, €o5- - 5iky1, b + 1))

tangent

(p(

e (pio; i, fr; - ik, O + 1))
(i
((

T(p(iv; iz, lo;- -+ 5 ik, l)).

We then have the analog of Proposition
PROPOSITION 23.27. The inclusion Ny, C Ni_1 induces a map
te: HHMy; Z2) — H1(Mg—1;2)
such that:

(1) we(PF(i0)) = (£(Sk) — £(5k—1))[R] + PF~" (io);
(2) For2<mn<k—2, 1x(P*(io, - yin_1;01, ,€n_1)) is homologous to

P* =Yg, Jip_1i b1, 1),
(3) For level k — 1, u,(PF_,(io,++ yik—2;01, -+ ,Lk—2)) is homologous to
T iy -+ yin—t1yip—1; b1, by — 1)+ T Mio, -+ yipo,ip—1i - lomy — 2) + -+
+ T ig, -+ yik—1,in—15 41, ,b)
+ EF i, - g1 b1, Lee2),

for any ix_1 and the minimum possible value of £_1.
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(4) (S (io,ir;61)) = —PF =" (io) + P{™ " (i2) + [R] for iz # io.
(5) For2 <n <k —1, the image of SE(ig, - ,in; €1, -+ ,€n) is homologous to the image under 1, of

n n
= Ph(ioy vim-13 L1, s lm1) + Y Phling1yin, yimo15l1, -+ bmo1) + [R),
m=1 m=1

forini1 #ip and modulo adding some type (2) loops at level k — 1.
(6) For the exceptional loops we have

u(B*Gigy -+ sk by k1)) = T Mo, -+ yik—1yip—13 41, 5 o1 — 1)

+ TR gy ity 13 01y L — 2)
+T5 i, yigp—1,in—1; 1, D)
+ EF M o, yine1i by, fre2).

(7) t(T*(ig, i1, yirs1; b1, -+, Lx)) is the trivial element.

Computing the exact rank of the groups H;(9;Z) seems an impossible task, since the values of the /-
indices for which the different types of loops exist, and are not trivial, does not appear to follow any simple
pattern. In contrast, we can easily give a lower bound.

COROLLARY 23.28. The rank of Hi(My;Z) is at least 2512 — 1.

Proof. We have three distinctive elements in Hy(My;Z): the classes [R], Pf(1) and PF(2). Then for each
2 <n <k —1 and each combination (ig,41, -+ ,i,—1) of 1’s and 2’s, there is at least one level n loop. Thus
we obtain for each n, 2™ elements in H; (9x; Z). Observe that the actual number of generators is greater than
this. For example, for n = 2, given (ig, 1) then for any ¢; such that s(d;i0,41) < €1 < £(0g;i0,41) there is a
level 2 loop and we are just counting 1 of these.

The number of exceptional loops is given by the sum of

2 (L(Oks 0501, s+ sik—1, bp—251k—1) — 5(Oks 40591, 15+ 3 ik—1,lp—250K—1))
over all possible combinations of these indices. Again, counting two generators (i, = 1, 2) for each combination
(40,41, ,ig—1) of I’s and 2’s, we conclude that there are at least 2k+1 Joops. Analogously, there are at least

2F type (2) loops at level k.

We obtain that the rank of Hy(My;Z) is lower bounded by 1424 --- + 2F+1 = 2542 _ 1 Observe that we
are not counting the one turn loops at any level. O

The objective is to build a shape approximation 4 = {Uy | ¢ = 1,2,...} of 9 satisfying the hypothesis of
Proposition [23.8] That is, we require that for k > 0:

e the rank of Hy(Uy;Z) > 2F,
o for all ¢ > k the rank of the image H;(Uy; Z) — H1(Uy; Z) is 3.

Observe that taking a sequence ¢, of sufficiently small positive numbers and Uy, = U (N, € ), then Lemma [23.25
and Corollary [23.28] imply the first condition. In order to satisfy the second condition, we will extract a
subsequence of 9, for which the rank of the image Hy(M,, ,;Z) — H(MNy,;Z) is 3. This follows from the
following result.

The rank of the image of the map 9 : H1(My;Z) — Hy(Mo; Z) is 3, since the generators [R], [b1] and [bo]
are in the image and they generate H; (9o;Z).

As in Remark [23.23] the first homology group of Cyf (M}, dx) is generated by the loops [R], Pf(1), PF(2)
and the level 1 one turn loops S¥(ig,41;¢;). Since the rank of H;(My;Z) is 3, what the proposition asserts is
that given k there is a number ¢ big enough, such that all the homology classes in 91, are homologous inside

M. to loops contained in the dj-neighborhood of 9}, and even more in the group generated by [R], PF(1) and
PF(2). The idea behind the proof is that if there is a loop in My, its image in My, is a loop that travels along
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propellers of level at must k. These propellers have to be sufficiently near the core cylinder 7(R’) to guarantee
that they branch up to level ¢. Thus the image of the loop in 91 has to be close to levels 0 and 1, and then
are homologous to a combination of the loops [R], Pf(1), Pf(2). In order to make this assertion precise we
need to consider the images of the exceptional loops and the loops at levels n for any 2 <n < /¢ — 1.

PROPOSITION 23.29. Given k > 2 there exists { > k such that the image of the map
(256) ot Hi(Me; Z) — Hy (M Z)

has rank equal to 3.

Proof. Fix k > 2 and consider the subgroup G}, of Hy(My;Z) generated by [R], Pf(1) and Pf(2). We will
find ¢ > k such that the image of L;? is Gg.

In the following arguments, all the homotopies will be contained in 9.
First, observe that case (1) of Proposition [23.27 shows that the map ¢;: H1(0M;; Z) — H1(M;_1;Z) satisfies
for each ¢ > k,
i (Pi(io)) = (€(8;) — £(8i—1))[R] + P{ ™" (io)-
It then follows by induction, that for any ¢ > k, the images of the homology classes defined by the level 1
loops, Pf(ig) for ig = 1,2, are in Gj. Thus, the subgroup G} is contained in the image of L’g.

Next consider the one turn loops S¥(ig, -+ ,in;l1,- -+ ,£,) defined in case (3) of Definitions
and Case (4) of Proposition gives a reductive procedure for reducing the homology classes of the
1 turn loops S¥(ig,- - ,in; {1, ,£y) to some combination of [R] and the classes defined by level n loops, for
some 1 < n < £. Thus, the one turn loops do not contribute to the rank of the image of .} for any ¢ > k.

The Type (2) loops at level £ were introduced in case (5) of Definitions [23.20] [23.22] and [23.26] For each
¢ > 1, it was shown that the images of the homology classes of these loops under the map ts: Hy(Ny; Z) —
H,(My_1;7) are trivial. Thus, for all £ > k, their images by f : Hy(MNy; Z) — Hy(Ny; Z) are trivial.

Next, we consider the level n loops P (ig, -+ ,in_1;¢1, -+ ,€n_1) for 2 <n < £ —1, as defined in cases (2b)
of Definitions [23:22] and [23:26] These are loops defined by paths that go out, possibly a “long” distance, along
a propeller at level n, then connect to a path along propellers at a level less than n, and return along the
shortest path tangent to 9.

Fix n between 2 and ¢ — 1, and assume without loss of generality that ig = 1. Let P be a propeller satisfying
the two conditions: the tip of the level n propeller P = 7(Py¢i, ¢,.....i, 1.0, 1)) is contained in C (95", 6¢),
and P does not retract to this set. Note that these conditions depend on the value of §,. Then the loop
P,rl;(’é.(), cee ,’L'nfl; gl» s ,énfl) exists.

Recall from Lemma that level n propellers accumulate (as the first ¢-index goes to infinity) on level
n — 1 propellers, that respectively accumulate on level n — 2 propellers, and so forth. Assume for a moment
that £ > k is fixed, with the level n propeller as above. Then there exists a positive number S, > §; such that
the propeller P is contained in C’H‘(f (M3, Be). Moreover, as £ tends to infinity, 3, decreases to zero. Given this
observation, we claim that for &k fixed, there exists £ > k such that any propeller P as above is contained in
Cy (MG, 61), as it suffices to take any ¢ > k such that 3, < &y.

Recall that P’ (ig, - ,in_1;01, - ;€n_1), for 2 <n < £ —1 is formed by the concatenation of the paths
(257) T(plioiin, b5 in-1,fn-1)) —E% (p(io;it, 415+ 3in1, bn1;ins fn))
(258) — 7(p(irsiz, bos - yin, fn))
tangent . . .
(259) = plioiin, brse e jin1, b))
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The tangent paths (257) and (259) are contained in Cyf (M}, %), and thus are homotopic to tangent paths
contained in propellers at levels 0 and 1. Thus after homotopy, we obtain the loop

(260) T((in—1)) 25 2 (plin 13 ins b)) — 7(p(in)) 25 2 (p(in_1)),

that is homologous to a class in Gj.

Now consider the image of the homology classes defined by the exceptional loops E*(iq, - - - ,i¢; 01, ;€4_1)
which were introduced in case (4) of Definitions [23.20] [23.22| and [23.26] Recall that such a loop can be
described as the composition of paths:

.. . tangent (£ .. . .
(261) T(plioyin, b jie1,le—1)) ——y © T(p(io; i1, l1; -+ ig—1,Le—131¢,D))
(262) - T(p(irs iz, b2; - sie—1,Le—1; 7, D))

(263) Longent(< 9, T(p(io;ir, €15+ 5i0-1,0e—1))-
Figure illustrates such a path for the case k = 2. The path in starts at a point on a propeller at
level £ — 1, entering a propeller at level £ and continuing to a point which is the first entry point into a filled
propeller. Next, is a short path in the face E;, to a point at lower level. It then follows the path
along propellers at level less than £ back to the starting point. A key point, as seen in the analysis below, is
that while the path at lower level may be “short” as in Figure it may just as well traverse the tree
Ts from one extreme to another and not be “short”.

The level k propellers are filled in 91, hence the tangent path segments in (261)) and (263)) at level greater
or equal to k are homotopic to tangent segments at level k. First, the tangent segment (261)) is homotopic to

tangent (k)
EE—

(264) T(pigs igr1, b1 3ie—1,0e—1)) T(p(igs igr1, €gr1s -+ si0—1,Le—1570,0)),

for ¢ = ¢ — k. Note that the result (264) illustrates an important aspect of the homotopy operation moving
a path segment from a level ¢ propeller to one at a lower level. This results in the elimination of the initial
stages of the labeling; that is, the initial indices (ig; i1, 1;- - ;iq—1,%q—1) are deleted in (264).

Next, the second tangent segment (263]), which is a path

(265) T(pins i i i, Loy, b)) 2220,
can be decomposed as a concatenation of segments tangent to propellers at level less than £. This path travels
through the tree T to connect the two level £ — 1 endpoints in 93?6_1. We denote the paths at each level as
follows, where we note that now the final indices are first being removed in lines to 7 as the path
goes to points at successively lower levels. The path then travels along the set zmo—l as indicted in .
It then continues back up the levels to the path in . This process yields the following path which is

equivalent to the path (265)).

T(p(io; i1, br; -+ sie—1,4e—1)),

L. i tangent(¢ — 1 L. 3
(266) T(p(i1;ia, Lo; - - - 34, b)) Lengent® -~ D, T(p(iv; iz, lo; -+ sie—1,00-1))
tangent(£ — 2 .. .
(267) tangent(® - 2, T(p(itsig, lo;- -+ si0—2,00—2))
(268) Longont(k =7~ 9, T(p(ivsig, los - 3ig, Ly))
tangent(< k) . . .
(269) _— T(p(ios i1, 015+ 5 ip—1,0k—1))
tangent(k .. .
(270) Lt r(pio i, b ik Oa))
tangent(£ — 1 .. .
(271) tangent®- 1), T(pliosin, ;- sie—1,0e—1))-
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Note that the reduction in level process stops with the paths in level k, as we can no longer move the curves by
a homotopy through the unfilled propellers at level less than k. Instead, the curve simply follows the propellers
in ME, as indicated by the path in (269).

Replacing each of the tangential segments above, (266]) to (271), with a segment of level at most k = £ — g,
we obtain:

(272) Tpinsin i 3ind) =5 T i 56 b)
(273) Langent(®), T(p(igs g1, Lgris- - 30—1,%e—1))
(274) B, T(plig—13ig, €gi* 3ie—1,Le—1))
(275) et (p(iqnsig by 3ie2, Lo 2))
(276) Langent(®), T(p(ix; iz, bo; -+ 3k, lk))

(277) tangent(< B), T(p(io; 1,15 3ip—1,lKk—1))
(278) Langent(®), T(p(io;ir, 13-+ yik, i)

(279) ey 7(p(i; i, los - -+ sk, Lx))

(280) L), (pligyigy s 3ie—1, lo—1))-

As before, the homotopy operation eliminates the initial indices labeling the endpoints of the path in 9§ as
the path is moved to a tangential path in a lower level of 93?’5.

Now observe that if we follow the paths and homotopies indicated in the lines (264)) which is homotopic to
(261)), followed by (262)), followed by (272)), followed by (273]), we obtain a loop:

T(p(ig; tg+1, Lgt1;- -+ 5%e—1,0e—1)) M@% T(p(igs iq+1, Lgts - sie—1,Le—151r,D))
S5 (plingia, b i, fe1iies D)
aE—iZ—> T(p(igs tg+1, Lgts -+ 3ie, D))
M T(p(igs tq1: Lat1s -+ sie—1,€e—1))

which is homotopic to the trivial loop, as the first and last tangential paths are inverses of each other.
Thus, the image in M* of the exceptional loop Ez(io7 - yigyly, -+ ;Lp—1) defined by the paths in (261)),
280

(262)) and (263)) is homotopic to the loop that starts at the endpoint of (274)), then follows (275)) up to (280
as indicated in the following:

)

. . . tangent(k . . .
(281) T(Pligmsig b+ siem,bm1)) O pigsig by sie—a, le—z))
(282) et (p(insin, ;- ik, b))
(283) Lenge SR (pliosin, i+ ik, Le1))
(284) Langent®), T(p(ios i1, €15+ 3k, Lk))
(285) — T(p(i; i, los- -+ sk, Lx))

tangent (k) . . . .

(286) ? T(p(zq717lq7€q7"' 725717£Z71))'
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Now we express the above loop defined by the paths in (281)) to (286) in more detail. We rewrite this loop,
starting with the segment tangent in (283) to im’g*l:

.. . tangen k .

(287) T(p(i1sdo, lo;- -+ 5ik, k) Langent(< b), T(p(ios i1, b15 - 5 ik—1,lk—1))
angent(k .
(288) Langent®), T(p(ioiit, L1s- - 3k, lk))

E;

(289) — T(p(i1; i, lo;- -+ ik, Ly))
angent(k i
(290) tangent(®), T(p(i1;i2, 025 iy, lrg1))
E’ik+1 .
(291) T(p(i2iiz, 35+ 3 iks1, Lrg1))

Eip_s

(292) T(P(ig-15ig, lg; s i0—2,Le—2))
(293) “engent®), T(plig—13g, lg; -+ 5i0—1,Le-1))
(204) ) iy riigy by i, le2)
(295) AN T(p(ig—25ig—1,lg—1; "+ ;i0—2,00—2))
(296) e UTL T )

(297) tengentlb), T(p(irs iz, b2 5k, Lk))-

Observe that the tangent parts in lines (288)) to (293)) go from a point at level k — 1 to a point at level k,
while the tangent parts in lines (294) to (297)) go from a point at level k to a point at level & — 1

The arrows in lines (293 and (294) represent paths that are tangent to the same propeller, have the same
endpoints and opposite directions, hence their concatenation is homotopic to the trivial loop.

Also notice that the arrows in lines (292) and (295]) represent paths in F;, , with the same endpoints and
opposite directions, hence their concatenation is again homotopic to the trivial loop.

The process continues cancelling pairs of arrows in the representation above, until (296)) cancels with (291)
and (297) cancels with (290). Hence we are left with the loop:

tangent(< k)

(298) T(p(itsig, los - sig, ly)) ————— 7(pliosir, l15- -+ 3ip—1,lk—1))
(299) Lengent(®), T(p(iosiv, 15 5ik, L))
(300) — T(p(irs iz, bos -+ ik, Lr))-

The loop defined by the paths in (298)), (299) and (300)), can then be re-arranged (by moving the first arrow
to be last) as the concatenation

(301) 7(p(io;ir, €15+ 5ik—1,lk—1)) Langent®), T(p(io;it, €15+ 3k, Lx))

(302) Dy (pliyin by i b))

(303) et SR (pigin, £a; - ikt Crt)).

Note that the first maps follows a level k propeller around the cylinder, until the point 7(p(io; i1, ¢1; - -+ ik, lk)),

then it closes by going down one level in the face E;,, then it closes up by following the tree back at levels
less than k.
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The homology class of the loop defined by to to then equals the class
E(igy -+ yiks by, lk) € Hi1(My; Z),
defined by
Elig, -+ yiwi lay o k) = T (io, -+ igyins b, lomry b — 1)+ T i, - iy igi b1, b1, Op — 2)
+o T o gy ini b1y le1,b) + EF(ig, - g by, lp—1).
It follows that the homology class in Hy(9;Z) of the exceptional loop Ee(io, cee gy by, 5 0e—1) s equal to
Eligy - yiki by, -+, lk) € Hi(My;Z). Observe that the class E(ig, -+ ,ix; 41, - ,fk) depends on iy and the

first k of the double indices defining the loop E(iq,--- ,i¢;¢1,--- ,€¢_1), but is independent of the indices
above k.

For simplicity, now assume that i = 1, then the loop defined by (301) to (302) to (303)) becomes the level
k loop

. . tangent(k . .
(304) T(p(Lyig, b1 sig—1,4p—1)) Langent®), T(p(Lyi, Lrs - 3in, Or))
(305) — T(p(iv; iz, lo;- - yik, k)
(306) Langent(< B), T(p(L;in, s 5ip—1,lK—1)),

where the tangent part at level & is along the propeller 7(Py e, ¢,:.-- 1ip 0))-

Recall that we are assuming that the index £ is much larger than k.

If we assume that £ > (dx;40;- -+ ;ig—2, fx—2;9k—1), then then the loop defined by concatenating the path
in , followed by , followed by , is then homotopic to a loop in Cﬂz (zm’g*l, Ok )-

Now proceed recursively. If we assume that €p_1 > €(0;i0; - ;ik—3,fk—3;9k—2), then the result of the
homotopy of the above loop into Cjf (MME=16;,) is then homotopic to a loop in Cg(mgﬂ, 0k).

Continuing in this way, assuming that all the ¢-indices are large enough, we obtain a homotopy of the

loop defined by (304)), (305) and (306)), to a loop in Cﬂ‘g(fm}), 0k). Let E(io, oo g, -+, 4) denote the loop
contained in C’f{' (94, 8x) which results from the above homotopies. Then for ¢ sufficiently large, the homology

class E(ig, -+ ,ig; €1, -+ , L) is defined by the loop E‘(io, s g by, L)

We now claim, that for ¢ sufficiently large, the homology class &(ig, - - ,ix; 41, , k) € G.

Observe that the endpoint of line , that is the point 7(p(1;41, €1;49.02; - - ; ik, k)), can be connected
to the level 1 point 7(p(ix—1;%, £x)) by a path in E;, that is inside the set Cif (93, 6x).

Recall that as ¢ increases to infinity, the level 1 points 7(p(ix—1; ix, £k )) approach the level 0 point 7(p(i)).

As the index ¢ is increased, the index fj also must increase. We may thus assume that ¢ is such that
7(p(1;d1, €13 d.0a; - -+ i, £;)) can be connected to the level 0 point 7(p(ix)) by a path in E;, N Ci (MG, 5k).
We choose a value for £ so that this condition is satified.

Since the loop E‘(io, v Jigiy, -, ) is contained in CFf (M, 0% ), the path in line (304)) can be homotoped

to a path tangent at level 1. The choice of ¢ sufficiently large then implies that E(io, s iy by, lg) ds
homotopic to the loop
. tangent(1 . .
(307) r(plie1)) “ED (i 00))
(308) —  7(p(ir))
tangent (0 .
(309) O, (p(ig-1))-

Thus E‘(io, <+ i3 b1, -+, L) is homotopic to a loop that travels along a level 1 propeller as in line (307)), then
jumps back to the Reeb cylinder as in line (308)) and then closes by a path contained in the Reeb cylinder as
in line (309).
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Observe that since line (309) is homotopic to line (306)), it might be more complicated than the shortest
path from 7(p(ix—1)) to 7(p(ix)). In any case, the path represented by lines (307) to (309) can be written as
the sum PF(ix_1) and a certain multiple of [R], thus we get a loop in Gj. g

To define the shape approximation 4 = {Uy, | k = 1,2, ...} satisfying the hypothesis of Proposition let
Uy = UMy, €1) for €, > 0 small enough such that U; retracts to Ma (as in Lemma 23.18)). By Proposition [23.29
there exists o > 2 such that the image of sz has rank 3. Set Uy = U(My,, €2) for €2 > 0 small enough such

that Us retracts to 9y,. Recursively define ¢, such that the image of Lﬁi’l has rank 3 and set Uy, = U(Ny, , €)
for €, > 0 small enough such that Uy retracts to My, .

The following result finishes the proof of Theorem

PROPOSITION 23.30. There is no shape approzimation 0 = {Vi. | k =1,2,...} of M such that the rank
of the homology groups Hy(Vi,Z) is 3 for any k.

Proof. Let B = {Vi, | k = 1,2,...} be a given shape approximation of 9. Take k > 0, then there exists
¢ > 0 depending on k, such that Cif (M, €) C Vi. The first homology group of Cif (M}, €) has at least 3
generators, one corresponding to the Reeb cylinder, and analogous to the class [R] introduced above. The
other two generators are associated to paths which travel from the basepoint on the Reeb cylinder, through
an entry region, then back down one of the two level 1 propellers back to a neighborhood of the Reeb cylinder.
These are analogous to the classes [b1] and [bs] introduced before. For k sufficiently large, we can assume that
these three generators are also generators of Hy(Vj,Z). Thus, to prove the lemma, it suffices to show that for
k sufficiently large, there is at least one more generator of Hy(Vy,Z). As before, let G C Hy(Vj;Z) be the
group generated by the three elements above.

Recall from Section [I9 that the connected components of the intersection Mg, = MN R, form a (singular)
lamination, and the intersection € = 9t N7 with the transversal T C Ry (introduced in ) is a Cantor
set. Each V is an open set containing 9, thus the set Vi N Ry is a neighborhood of Mgr,. It follows that
for k sufficiently large, the number of connected components of Vi, N Ry must tend to infinity. Moreover,
given distinct points x,y € €', it follows that for k sufficiently large, the points must be contained in distinct
connected components of V3 N Ry. Also, let v, C g, be the arc-component containing =, and likewise let
vy C MR, be the arc-component containing y. Then for a possibly larger value of k, the compact arcs 7, and
7y are contained in distinct connected components of Vi, N Ry.

For each k, let Vko denote the connected component of Vi, "Ry containing the trace 7(R') "Ry of the Reeb
cylinder. Then for k sufficiently large, VkO does not contain all the level one points pg(ig;i1,¢1) in Rg. Even
more, let ny be the largest integer such that for all a < ¢; < ny, the point pg(ig; i1, £1) and the arc-component
of Mg, it defines are not contained in V}?, for any pair (io, i1).

Recall that po(ig; 1,¢) denotes the lower endpoint of the curve vo(¢) C Mg, if ig = 1, and of A\g(¢) C Mg,
if 49 = 2; and po(ip; 2,¢) is the upper endpoint of the curve vy(¢) if ig = 1, and of \o(¥) if ig = 2.

Let k be sufficiently large so that np > 1. We set i3 = 1 in the following. For each level 2 point
po(1;1, 6151, ny), let vo(1, £15ny) C Mg, be the curve with this as lower endpoint. Let V;! be the connected
component of Vi "Ry containing the point po(1; 1, ng), and hence the curve yo(ny). Note that by our choices,
V2N V,! = 0. Then for ¢, sufficiently large, we have vo(1,fa;ny) C Vil

Using the notation for paths as above, define the loop o(¢;) as

M po(l;lv‘gl;lvnk)

po(1;1,ng).

po(1;1,ng)
VieNRg
S0,

Moreover, this path can be chosen so that it is disjoint for the set Vko. In terms of the tree Tg, we are choosing
a path in a level 2 branch that contains a vertex in Vk1 N Te but no vertices in Vko NTe.
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Let [0(¢1)] € H1(Vk,Z) be the homology class of this loop. We claim that it is not contained in Gy, and
thus the rank of H;(Vj,Z) is greater than three as needed. Suppose that o(¢1) is homologous to a class in
Gy, then there exists a connected singular surface B C V}, with boundary, such that o(¢;) is one boundary
component, and the other boundary component represents a class in G. As B is connected, this implies that
VPNV # 0, which is a contradiction. O

Note that the above proof of Proposition [23.30] is a particular case of using the Mayer-Vietoris Theorem
for the decomposition of Vi as the union of the sets V; — (Vx N Ry) and the set Vk’, which is a small open
neighborhood of Vi, N Ry in V.

We conclude this section with a proof that the Mittag-Leffler Condition in Theorem holds for the first
homology groups.

Proof of Theorem[23.7]. Let 4 = {U,} for ¥ be a shape approximation of 9. We must show that for any ¢ > 1
there exists p > ¢ such that for any ¢ > p

(310) Image{H1(Up; Z) — H1(Up; Z)} = Image{H:1(Uy; Z) — H1(Ug; Z)}.

Fix ¢ > 0, and we may assume without loss of generality that U, C 915. Choose k sufficiently large so that
N, C Uy. Then by Proposition there exists m > k so that the image of the map (%, : H;(M;Z) —
Hy(9; Z) has rank 3. Let € > 0 so that U(M,,, €) retracts to IM,,,. Then choose p sufficiently large so that
Up C UMy, €), then for all ¢ > p we have U, C U, C UM, €).

For any such g > p, there exists some v such that 91, C U,. Then consider the sequence of homology
groups, with maps induced by the inclusions,
Lk
(B11)  H(NZ) — Hy(UyZ) — Hy(U (D, € Z) = Hy (W3 Z) 25 Hy (W3 Z) — Hy (U3 Z)

The proof of Proposition [23.29|shows that the images of Hy(9,;Z) and Hq(M,,; Z) under these maps are both
equal to the subgroup Gy C Hi(Mk;Z), so it follows that the image of Hy1(Uy;Z) — H1(Up; Z) equals the
image of Gy in Hy(Uy; Z). Thus, the image is independent of the choice of ¢ > p, as was to be shown. O
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