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Abstract. In this work, we develop shape expansions of minimal matchbox manifolds without

holonomy, in terms of branched manifolds formed from their leaves. Our approach is based on the
method of coding the holonomy groups for the foliated spaces, to define leafwise regions which

are transversely stable and are adapted to the foliation dynamics. Approximations are obtained

by collapsing appropriately chosen neighborhoods onto these regions along a “transverse Cantor
foliation”. The existence of the “transverse Cantor foliation” allows us to generalize standard tech-

niques known for Euclidean and fibered cases to arbitrary matchbox manifolds with Riemannian

leaf geometry and without holonomy. The transverse Cantor foliations used here are constructed
by purely intrinsic and topological means, as we do not assume that our matchbox manifolds are

embedded into a smooth foliated manifold, or a smooth manifold.

1. Introduction

In this work, we consider topological spaces M which are continua; that is, compact, connected
metric spaces. We assume that M has the additional structure of a codimension-zero foliated space,
so are matchbox manifolds. The path-connected components of M form the leaves of a foliation F
of dimension n ≥ 1. The precise definitions are given in Section 2 below. Matchbox manifolds arise
naturally in the study of exceptional minimal sets for foliations of compact manifolds, and as the
tiling spaces associated to repetitive, aperiodic tilings of Euclidean space Rn which have finite local
complexity. They also arise in some aspects of group representation theory and index theory for
leafwise elliptic operators for foliations, as discussed in the books [16, 47].

The class of Williams solenoids and the results about these spaces provide one motivation for this
work. Recall that an expanding attractor Λ for an Axiom A diffeomorphism f : M →M of a compact
manifold is a continuum; that is, a compact, connected metric space. Williams developed a structure
theory for these spaces in his seminal works [63, 64, 65]. The hyperbolic splitting of the tangent
bundle to TM along Λ yields a foliation of the space Λ by leaves of the expanding foliation for f ,
and the contracting foliation for f gives a transverse foliation on an open neighborhood Λ ⊂ U ⊂M .
Williams used this additional structure on a neighborhood of Λ to obtain a “presentation” of Λ as an

inverse limit of “branched n-manifolds”, f̂ : M0 → M0, where n is the dimension of the expanding

bundle for f , and the map f induces the map f̂ between the approximations. The notion of a
1-dimensional branched manifold is easiest to define, as the branches are required only to meet
each other at disjoint vertices. In higher dimensions, the definition of branched manifolds becomes
more subtle, and especially for the “transversality condition” imposed on the cell attachment maps.
The spaces Λ with this structure are called Williams solenoids in the literature. The topological

properties of the approximating map f̂ : M0 →M0 is used to study the the dynamical system defined
by f , for example as discussed in the works [24, 40, 57, 58] and others.

The Riemann surface laminations introduced by Sullivan [59] are compact topological spaces locally
homeomorphic to a complex disk times a Cantor set, and a similar notion is used by Lyubich and
Minsky in [45], and Ghys in [32]. These are also well-known examples of matchbox manifolds.
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Associated to the foliation F of a matchbox manifold M is a compactly generated pseudogroup GF
acting on a “transverse” totally disconnected space X, which determines the transverse dynamical
properties of F . The first two authors showed in [17] that if the action of GF on X is equicontinuous,
then M is homeomorphic to a weak solenoid (in the sense of [46, 55, 26]). Equivalently, the shape
of M is defined by a tower of proper covering maps between compact manifolds of dimension n.

The purpose of this work is to study the shape properties of an arbitrary matchbox manifold M,
without the assumption that the dynamics of the associated action of GF is equicontinuous, though
with the assumption that M is minimal; that is, that every leaf of F is dense. We also assume that
F is without holonomy. Our main result shows that all such spaces have an analogous structure as
that of a William solenoid. An important difference between the case of Williams solenoids, and the
general case we consider, is that the tower of approximations is not in general defined by a single
map, but uses a sequence of maps between compact branched manifolds.

A presentation of a space Ω is a collection of continuous maps P = {p` : M` → M`−1 | ` ≥ 1},
where each M` is a connected compact branched n-manifold, and each p` : M` → M`−1 is a proper
surjective map of branched manifolds, as defined in Section 10. It is assumed that there is given a
homeomorphism h between Ω and the inverse limit space defined by

(1) SP ≡ lim
←−
{p` : M` →M`−1} .

A Vietoris solenoid [61] is a 1-dimensional solenoid, where each M` is a circle, and each p` : S1 → S1
is a covering map of degree greater than 1. More generally, if each M` is a compact manifold and
each p` is a proper covering map, then we say that SP is a weak solenoid, as discussed in [46, 55, 26].

Here is our main result.

THEOREM 1.1. Let M be a minimal matchbox manifold of dimension n. Assume that the foliation
F of M is without holonomy. Then there exists a presentation P = {p` : M` →M`−1 | ` ≥ `0} where
each M` is a triangulated branched n-manifold and each p` is a proper simplicial map, so that M is
homeomorphic to the inverse limit of the system of maps they define,

(2) h : M ∼= SP = lim←− {p` : M` →M`−1 | ` ≥ `0}.

The hypothesis that F is without holonomy may possibly be removed, using a more general definition
of the bonding maps allowed. The work by Benedetti and Gambaudo in [12] gives a model for such
a result, in the case of tiling spaces associated with an action of a connected Lie group G. Also,
the results of the first two authors in [17] applies to equicontinuous matchbox manifolds which
may have non-trivial leafwise holonomy. On the other hand, a generalization of Theorem 1.1 to
arbitrary minimal matchbox manifolds would yield solutions to several classical problems in the
study of exceptional minimal sets for codimension-one foliations, for example as listed in [37, 38],
so an extension of Theorem 1.1 to this generality would be important, but is expected to involve
additional subtleties.

In this work, no assumptions are made on the geometry and topology of the leaves in M, beyond
that they are complete Riemannian manifolds. In order to construct the branched manifold approx-
imations to M, we use a technique based on “dynamical codings” for the orbits of the pseudogroup
associated to the foliation, a method which generalizes that used by Gambaudo and Martens [31] for
flows. This coding method can also be seen as extending a technique used by Thomas in his study
of equicontinuous flows in [60]. The first two authors used this coding approach in their study of
equicontinuous actions of groupoids on Cantor sets in [17], and it also appears implicitly in the work
by Forrest [27] in his study of minimal actions of Zn on Cantor sets. The coding method we use is
more formal, so applies in complete generality. The other ingredient required is the existence of a
transverse Cantor foliation in the generality we consider. We construct these foliations in this work,
extending the results of the authors’ paper [18]. The existence of a compatible transverse Cantor
foliation H on M is fundamental for defining the branched manifold approximations.

As mentioned above, tiling spaces provide an important class of examples for which Theorem 1.1
applies. Let T be a tiling of Rn which is repetitive, aperiodic, and has finite local complexity. The
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tiling space ΩT is defined as the closure of the set of tilings obtained via the translation action
of Rn, in a suitable metric topology [7, 11, 28, 54]. The assumptions imply that ΩT is locally
homeomorphic to a disk in Rn times a Cantor set, so that ΩT is a matchbox manifold. (See [29]
for a discussion of variants of this result.) The seminal result of Anderson and Putnam in [7]
showed that under these assumptions, and under the assumption that the tiling T is defined by an
expanding substitution, then ΩT is homeomorphic to the inverse limit of a tower of branched flat
n-manifolds. The approach of Anderson and Putnam, and the alternative approaches to generalizing
their method and extending the conclusion to all tilings by Gähler and Sadun [53], and in works
[4, 11, 12, 31, 43], used variations on a technique called “collaring” or a method called “inflation”
of a Voronoi tessellation of Rn, to obtain the branched manifold approximations for ΩT. The more
recent work [10] gives a version of this method closest to the approach we take in this paper. The
work here is an important step in developing the general theory of point patterns and tilings for
general, non-Euclidean spaces. As described in Senechal [56], the theory of point patterns and tilings
is directly connected to the theory of quasicrystals, and so our work can be seen as a step towards
understanding possible quasicrystalline structures in non-Euclidean spaces.

We discuss next the contents of the rest of this work, which culminates in the proof of Theorem 1.1.
Section 2 introduces the basic definitions of a matchbox manifold, and Section 3 introduces the
definitions and properties of the holonomy pseudogroups for matchbox manifolds, as developed in
[17] and [18]. Section 4 discusses the Voronoi tessellations of the leaves associated to transversal
clopen sets, then Section 5 develops some fundamental properties of restricted pseudogroups.

A coding of the orbits of the action of the holonomy pseudogroup of the foliation F on M is
developed in Section 6, and used to construct “dynamically defined” nested sequences of clopen
coverings V` for ` ≥ `0 of a Cantor transversal to F , which are “centered” on the transverse orbit
defined by a fixed leaf L0. The study of the dynamics of the induced action on a descending chain of
clopen neighborhoods is a standard technique in almost all approaches to the study of the dynamics
of minimal actions on a Cantor set. It corresponds to the initial steps in the construction of a
Kakutani tower for the measurable theory of group actions.

In Section 7, we associate to each clopen covering of the transversal space X a collection of open sets,
called Reeb neighborhoods which form a covering of M. The results of [18] show that each such Reeb
neighborhood projects along a transverse Cantor foliation to its compact base. Section 9 uses the
results in [18] to show that these bi-foliated structures on the Reeb neighborhoods can be chosen to
be compatible on overlaps. In Section 10, the proof of Theorem 1.1 is completed, by showing that the
Reeb neighborhoods collapsed along the Cantor transversal foliation, can be identified (or “glued”)
each to the other on their overlaps, to obtain a branched n-manifold. By iterating this process for a
chain of clopen covers for X, we obtain a tower of maps whose inverse limit is homeomorphic to M.

Note that the works [4, 43] follow a similar approach to the above, but using an intuitive extension
of the zooming technique for Voronoi cells as in [11, 12]. The geometry and topology of a generic leaf
L0 can be quite complicated, and not at all as intuitively straightforward as for the case of Euclidean
spaces. Hence the geometry and topology of the Voronoi cells which decompose L0 may be similarly
non-intuitive. Some of the subtleties for Voronoi partitions at large scale in non-Euclidean manifolds
are discussed, for example, in the work [42]. The more formal approach using codings that we use in
this work avoids the need to control the geometry of the Voronoi cells introduced. The reader will
also find the care taken with the domains of holonomy maps makes the proofs of some results quite
tedious at times, but a careful consideration of examples shows that these concerns are required.

This work is part of a program to generalize the results of the thesis of Fokkink [25], started during
a visit by the authors to the University of Delft in August 2009. The papers [17, 18] are the initial
results of this study, and this work is the preparation for the forthcoming paper [19] which completes
the program. The authors would like to thank Robbert Fokkink for the invitation to meet in Delft,
and the University of Delft for its generous support for the visit. The authors’ stay in Delft was also
supported by a travel grant No. 040.11.132 from the Nederlandse Wetenschappelijke Organisatie.
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2. Foliated spaces and matchbox manifolds

In this section, we give the precise definitions and results for matchbox manifolds, as required for
this work. More detailed discussions with examples can be found in the books of Candel and Conlon
[16, Chapter 11] and Moore and Schochet [47, Chapter 2]. In the following, details of proofs are
omitted whenever possible, as they are presented in detail in these two texts and the paper [17].

DEFINITION 2.1. A foliated space of dimension n is a continuum M, such that there exists a
compact metric space X, and for each x ∈ M there is a compact subset Tx ⊂ X, an open subset
Ux ⊂ M, and a homeomorphism ϕx : Ux → [−1, 1]n × Tx defined on the closure of Ux in M, such
that ϕx(x) = (0, wx) where wx ∈ int(Tx). Moreover, it is assumed that each ϕx admits an extension

to a foliated homeomorphism ϕ̂x : Ûx → (−2, 2)n × Tx where Ux ⊂ Ûx is an open neighborhood.

The subspace Tx of X is called the local transverse model at x.

Let πx : Ux → Tx denote the composition of ϕx with projection onto the second factor.

For w ∈ Tx the set Px(w) = π−1x (w) ⊂ Ux is called a plaque for the coordinate chart ϕx. We
adopt the notation, for z ∈ Ux, that Px(z) = Px(πx(z)), so that z ∈ Px(z). Note that each plaque
Px(w) for w ∈ Tx is given the topology so that the restriction ϕx : Px(w) → [−1, 1]n × {w} is a
homeomorphism. Then int(Px(w)) = ϕ−1x ((−1, 1)n × {w}).

Let Ux = int(Ux) = ϕ−1x ((−1, 1)n× int(Tx)). Note that if z ∈ Ux∩Uy, then int(Px(z))∩ int(Py(z))
is an open subset of both Px(z) and Py(z). The collection of sets

V = {ϕ−1x (V × {w}) | x ∈M , w ∈ Tx , V ⊂ (−1, 1)n open}
forms the basis for the fine topology of M. The connected components of the fine topology are called
leaves, and define the foliation F of M. For x ∈M, let Lx ⊂M denote the leaf of F containing x.

Definition 2.1 does not impose any smoothness conditions on the leaves of F , so they may just be
topological manifolds. The next definition imposes a uniform smoothness condition on the leaves.

DEFINITION 2.2. A smooth foliated space is a foliated space M as above, such that there exists
a choice of local charts ϕx : Ux → [−1, 1]n × Tx such that for all x, y ∈ M with z ∈ Ux ∩ Uy, there
exists an open set z ∈ Vz ⊂ Ux ∩ Uy such that Px(z) ∩ Vz and Py(z) ∩ Vz are connected open sets,
and the composition

ψx,y;z ≡ ϕy ◦ ϕ−1x : ϕx(Px(z) ∩ Vz)→ ϕy(Py(z) ∩ Vz)
is a smooth map, where ϕx(Px(z) ∩ Vz) ⊂ Rn × {w} ∼= Rn and ϕy(Py(z) ∩ Vz) ⊂ Rn × {w′} ∼= Rn.
The leafwise transition maps ψx,y;z are assumed to depend continuously on z in the C∞-topology on
maps between subsets of Rn.

A map f : M→ R is said to be smooth if for each flow box ϕx : Ux → [−1, 1]n ×Tx and w ∈ Tx the
composition y 7→ f ◦ ϕ−1x (y, w) is a smooth function of y ∈ (−1, 1)n, and depends continuously on
w in the C∞-topology on maps of the plaque coordinates y. As noted in [47] and [16, Chapter 11],
this allows one to define leafwise smooth partitions of unity, vector bundles, and tensors for smooth
foliated spaces. In particular, one can define leafwise smooth Riemannian metrics. We recall a
standard result, whose proof for foliated spaces can be found in [16, Theorem 11.4.3].

THEOREM 2.3. Let M be a smooth foliated space. Then there exists a leafwise Riemannian
metric for F , such that for each x ∈M, the leaf Lx inherits the structure of a complete Riemannian
manifold with bounded geometry, and the Riemannian geometry of Lx depends continuously on x.

Bounded geometry implies, for example, that for each x ∈ M, there is a leafwise exponential map
expFx : TxF → Lx which is a surjection, and the composition expFx : TxF → Lx ⊂ M depends
continuously on x in the compact-open topology on maps.

DEFINITION 2.4. A matchbox manifold is a continuum with the structure of a smooth foliated
space M, such that the transverse model space X is totally disconnected, and for each x ∈M, Tx ⊂ X
is a clopen (closed and open) subset. A matchbox manifold M is minimal if every leaf of F is dense.



SHAPE OF MATCHBOX MANIFOLDS 5

Intuitively, a 1-dimensional matchbox manifold has local coordinate charts which are homeomorphic
to a “box of matches”, which gave rise to this terminology in the works [1, 2, 3].

The maximal path-connected components of M define the leaves of a foliation F of M. All matchbox
manifolds are assumed to be smooth, with a leafwise Riemannian metric, and metric dM on M.

2.1. Metric properties and regular covers. We introduce some local metric considerations for
a matchbox manifold, and give the definition of a regular covering of M.

For x ∈ M and ε > 0, let DM(x, ε) = {y ∈ M | dM(x, y) ≤ ε} be the closed ε-ball about x in M,
and BM(x, ε) = {y ∈M | dM(x, y) < ε} the open ε-ball about x.

Similarly, for w ∈ X and ε > 0, let DX(w, ε) = {w′ ∈ X | dX(w,w′) ≤ ε} be the closed ε-ball about
w in X, and BX(w, ε) = {w′ ∈ X | dX(w,w′) < ε} the open ε-ball about w.

Each leaf L ⊂M has a complete path-length metric, induced from the leafwise Riemannian metric:

dF (x, y) = inf
{
‖γ‖ | γ : [0, 1]→ L is piecewise C1 , γ(0) = x , γ(1) = y , γ(t) ∈ L ∀ 0 ≤ t ≤ 1

}
where ‖γ‖ denotes the path-length of the piecewise C1-curve γ(t). If x, y ∈M are not on the same
leaf, then set dF (x, y) =∞.

For each x ∈M and r > 0, let DF (x, r) = {y ∈ Lx | dF (x, y) ≤ r} be the closed leafwise ball.

For each x ∈M, the Gauss Lemma implies that there exists λx > 0 such that DF (x, λx) is a strongly
convex subset for the metric dF . That is, for any pair of points y, y′ ∈ DF (x, λx) there is a unique
shortest geodesic segment in Lx joining y and y′ and contained in DF (x, λx) (cf. [20, Chapter 3,
Proposition 4.2], or [36, Theorem 9.9]). Then for all 0 < λ < λx the disk DF (x, λ) is also strongly
convex. As M is compact and the leafwise metrics have uniformly bounded geometry, we obtain:

LEMMA 2.5. There exists λF > 0 such that for all x ∈M, DF (x, λF ) is strongly convex.

The following proposition summarizes results in [17, Sections 2.1 - 2.2].

PROPOSITION 2.6. For a smooth foliated space M, given εM > 0, there exist constants λF > 0
and 0 < δFU < λF/5, and a covering of M by foliation charts

{
ϕi : U i → [−1, 1]n × Ti | 1 ≤ i ≤ ν

}
with the following properties: For each 1 ≤ i ≤ ν, let πi = πxi : U i → Ti be the projection, then

(1) Interior: Ui ≡ int(U i) = ϕ−1i ((−1, 1)n × Ti)

(2) Locality: for xi ≡ ϕ−1i (wi, 0) ∈M, U i ⊂ BM(xi, εM) where wi = πi(xi).

For z ∈ U i, the plaque of the chart ϕi through z is denoted by Pi(z) = Pi(πi(z)) ⊂ U i.

(3) Convexity: the plaques of ϕi are strongly convex subsets for the leafwise metric.
(4) Uniformity: for w ∈ Ti let xw = ϕ−1xi (0, w), then

DF (xw, δ
F
U /2) ⊂ Pi(w) ⊂ DF (xw, δ

F
U )

(5) The projection πi(Ui ∩ Uj) = Ti,j ⊂ Ti is a clopen subset for all 1 ≤ i, j ≤ ν.

A regular foliated covering of M is one that satisfies these conditions.

We assume in the following that a regular foliated covering of M as in Proposition 2.6 has been
chosen. Let U = {U1, . . . , Uν} denote the corresponding open covering of M. We can assume without
loss of generality, that the spaces Ti form a disjoint clopen covering of X, so that X = T1 ∪̇ · · · ∪̇ Tν .

Let εU > 0 be a Lebesgue number for U . That is, given any z ∈ M there exists some index
1 ≤ iz ≤ ν such that the open metric ball BM(z, εU ) ⊂ Uiz . Also, introduce a form of “leafwise
Lebesgue number”, defined by

(3) εFU = min
{
εFU (y) | ∀ y ∈M

}
, εFU (y) = max {ε | DF (y, ε) ⊂ DM(y, εU/4)} .
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Thus, for all y ∈ M, DF (y, εFU ) ⊂ DM(y, εU/4). Note that for all r > 0 and z′ ∈ DF (z, εFU ), the
triangle inequality implies that DM(z′, r) ⊂ DM(z, r + εU/4). Note that for y ∈M, we have

DF (y, εFU ) ⊂ DM(y, εU/4) ⊂ DM(y, εU ) ⊂ Uiy , Piy (πiy (y)) ⊂ DF (y, δFU )

which imply that εFU < δFU , and hence δFU /ε
F
U > 1. This last inequality will be used in Section 5.

For 1 ≤ i ≤ ν, let λi : U i → [−1, 1]n be the projection, so that for each z ∈ Ui the restriction
λi : Pi(z)→ [−1, 1]n is a smooth coordinate system on the plaque Pi(z).

For each 1 ≤ i ≤ ν, the set Ti = ϕ−1i (0,Ti) is a compact transversal to F . Without loss of generality,
we can assume that the transversals {T1, . . . , Tν} are pairwise disjoint in M, so there exists a constant
0 < δT < δFU such that

(4) dF (x, y) ≥ δT for x 6= y , x ∈ Ti , y ∈ Tj , 1 ≤ i, j ≤ ν .
In particular, this implies that the centers of disjoint plaques on the same leaf are separated by
distance at least δT . Also, define sections

(5) τi : Ti → U i , defined by τi(ξ) = ϕ−1i (0, ξ) , so that πi(τi(ξ)) = ξ.

Then Ti = Txi is the image of τi and we let T = T1 ∪ · · · ∪ Tν ⊂M denote their disjoint union, and
τ : X→ T is defined by the union of the maps τi.

Define the metric dX on X via the restriction of dM to T , and use the map τ to pull it back to X.

2.2. Local estimates. The local projections πi : U i → Ti and sections τi : Ti → U i are continuous
maps of compact spaces, so admit uniform metric estimates as shown in [17].

LEMMA 2.7. There exists a modulus of continuity function ρπ which is continuous and increasing,
such that:

(6) ∀ 1 ≤ i ≤ ν and x, y ∈ U i , dM(x, y) < ρπ(ε) =⇒ dX(πi(x), πi(y)) < ε .

Proof. Set ρπ(ε) = min
{
ε,min

{
dM(x, y) | 1 ≤ i ≤ ν , x, y ∈ U i , dX(πi(x), πi(y)) ≥ ε

}}
. �

LEMMA 2.8. There exists a modulus of continuity function ρτ which is continuous and increasing,
such that:

(7) ∀ 1 ≤ i ≤ ν and w,w′ ∈ Ti , dX(w,w′) < ρτ (ε) =⇒ dM(τi(w), τi(w
′)) < ε .

Proof. Set ρτ (ε) = min {ε,min {dX(w,w′) | 1 ≤ i ≤ ν , w,w′ ∈ Ti , dM(τi(w), τi(w
′)) ≥ ε}}. �

Next, for each 1 ≤ i ≤ ν, consider the projection map πi : U i → Ti, and define

εTi = max
{
ε | ∀ x ∈ U i such that DM(x, εU/2) ⊂ U i , then DX(πi(x), ε) ⊂ πi (DM(x, εU/2))

}
.

The assumption that DM(x, εU/2) ⊂ U i implies that x has distance at least εU/2 from the exterior
of U i. Then the projection of the closed ball DM(x, εU/2) to the transversal Ti contains an open
neighborhood of πi(x) by the continuity of projections, and εTi is the distance from this center πi(x)
to the exterior of the projected ball. Then introduce εTU ≥ ρτ (εU/2) given by

(8) εTU = min
{
εTi | ∀ 1 ≤ i ≤ ν

}
.

Finally, we give a plaque-wise estimate on the Riemannian metrics. The assumption that the leafwise
Riemannian metric on M is continuous, means that for each coordinate chart ϕi : U i → [−1, 1]n×Ti,
the push-forwards of the Riemannian metric to the slices [−1, 1]n × {w} vary continuously with
w ∈ Ti. Let ‖ · ‖w denote the norm defined on the tangent bundle T (−1, 1)n × {w}, and denote a
tangent vector by (~v, ξ, w), for ~v ∈ Rn and ξ ∈ (−1, 1)n. Let ‖ · ‖ denote the Euclidean norm on Rn.
Then by the compactness of U i and the continuity of the metric, for ε > 0, there exists δU (ε) > 0
such that the following holds, for each 1 ≤ i ≤ ν:

(9) sup

{∣∣∣∣max

{
‖~v‖w
‖~v‖w′

,
‖~v‖w′
‖~v‖w

}
− 1

∣∣∣∣ | dX(w,w′) ≤ δU (ε) , ~v ∈ Rn , ‖~v‖ = 1

}
< ε .
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2.3. Foliated maps. A map f : M→M′ between foliated spaces is said to be a foliated map if the
image of each leaf of F is contained in a leaf of F ′. If M′ is a matchbox manifold, then each leaf of
F is path connected, so its image is path connected, hence must be contained in a leaf of F ′.

A leafwise path is a continuous map γ : [0, 1]→M such that there is a leaf L of F for which γ(t) ∈ L
for all 0 ≤ t ≤ 1. If M is a matchbox manifold and γ : [0, 1]→M is continuous, then γ is a leafwise
path. This yields:

LEMMA 2.9. Let M and M′ be matchbox manifolds, and h : M→M′ a continuous map. Then h
maps the leaves of F to leaves of F ′. In particular, any homeomorphism h : M→M of a matchbox
manifold is a foliated map. �

3. Holonomy of foliated spaces

The holonomy pseudogroup of a smooth foliated manifold (M,F) generalizes the induced discrete
dynamical system associated to a section of a flow. A standard construction in foliation theory (see
[15], [16, Chapter 2] or [35]) associates to a leafwise path γ a holonomy map hγ . The collection of all
such maps with initial and ending points on a transversal to F defines the holonomy pseudogroup
GF for a matchbox manifold (M,F). We recall below the ideas and notations, as required in the
proofs of our main theorems, especially the delicate issues of domains which must be considered.
See [17, 18] for a complete discussion of the ideas of this section and related technical results.

3.1. Holonomy pseudogroup. Let U = {U1, . . . , Uν} be a regular foliated covering of M as in
Proposition 2.6. A pair of indices (i, j), for 1 ≤ i, j ≤ ν, is said to be admissible if Ui ∩ Uj 6= ∅.

For (i, j) admissible, set Ti,j = πi(Ui ∩ Uj) ⊂ Ti. The regular foliated covering assumption implies
that plaques in admissible charts are either disjoint, or have connected intersection. This implies
that there is a well-defined transverse change of coordinates homeomorphism hi,j : Ti,j → Tj,i with
domain Dom(hi,j) = Ti,j and range R(hi,j) = Dom(hj,i) = Tj,i. By definition they satisfy hi,i = Id,

h−1i,j = hj,i, and if Ui ∩ Uj ∩ Uk 6= ∅ then hk,j ◦ hj,i = hk,i on their common domain of definition.

Note that the domain and range of hi,j are clopen subsets of X by Proposition 2.6.(5).

Recall that for each 1 ≤ i ≤ ν, τi : Ti → Ti denotes the transverse section for the chart Ui, and
T = T1 ∪ · · · ∪ Tν ⊂ M denotes their disjoint union. Then π : T → X is the coordinate projection
restricted to T , which is a homeomorphism, and τ : X→ T denotes its inverse.

The holonomy pseudogroup GF of F is the topological pseudogroup modeled on X generated by the

elements of G(1)F = {hj,i | (i, j) admissible}. A sequence I = (i0, i1, . . . , iα) is admissible if each pair
(i`−1, i`) is admissible for 1 ≤ ` ≤ α, and the composition

(10) hI = hiα,iα−1
◦ · · · ◦ hi1,i0

has non-empty domain Dom(hI), which is defined to be the maximal clopen subset of Ti0 for which
the compositions are defined. Given any open subset U ⊂ Dom(hI), we obtain a new element
hI |U ∈ GF by restriction. Introduce

(11) G∗F = {hI |U | I admissible and U ⊂ Dom(hI)} ⊂ GF .

The range of g = hI |U is the open set R(g) = hI(U) ⊂ Tiα ⊂ X. Note that each map g ∈ G∗F admits

a continuous extension g : Dom(g) = U → Tiα as Dom(hI) is a clopen set for each I.

3.2. Plaque-chains. Let I = (i0, i1, . . . , iα) be an admissible sequence. For each 1 ≤ ` ≤ α, set
I` = (i0, i1, . . . , i`), and let hI` denote the corresponding holonomy map. For ` = 0, let I0 = (i0, i0).
Note that hIα = hI and hI0 = Id : T0 → T0.

Given w ∈ Dom(hI), let x = τi0(w) ∈ Lw. For each 0 ≤ ` ≤ α, set w` = hI`(w) and x` = τi`(w`).
Recall that Pi`(x`) = Pi`(w`), where each Pi`(w`) is a strongly convex subset of the leaf Lw in the
leafwise metric dF . Introduce the plaque-chain

(12) PI(w) = {Pi0(w0),Pi1(w1), . . . ,Piα(wα)} .
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Adopt the notation PI(x) ≡ PI(w). Intuitively, a plaque-chain PI(x) is a sequence of successively
overlapping convex “tiles” in Lw starting at x = τi0(w), ending at y = xα = τiα(wα), where each
Pi`(x`) is “centered” on the point x` = τi`(w`).

3.3. Leafwise paths to plaque-chains. Let γ : [0, 1] → M be a path. Set x0 = γ(0) ∈ Ui0 ,
w = π(x0) and x = τ(w) ∈ Ti0 . Let I be an admissible sequence with w ∈ Dom(hI). We say that
(I, w) covers γ, if there is a partition 0 = s0 < s1 < · · · < sα = 1 such that PI(w) satisfies

(13) γ([s`, s`+1]) ⊂ Pi`(ξ`) , 0 ≤ ` < α, and γ(1) ∈ Piα(ξα).

For a path γ, we construct an admissible sequence I = (i0, i1, . . . , iα) with w ∈ Dom(hI) so that
(I, w) covers γ, and has “uniform domains”. Inductively choose a partition of the interval [0, 1], say
0 = s0 < s1 < · · · < sα = 1, such that for each 0 ≤ ` ≤ α,

γ([s`, s`+1]) ⊂ DF (x`, ε
F
U ) , x` = γ(s`).

As a notational convenience, we have let sα+1 = sα, so that γ([sα, sα+1]) = xα. Choose s`+1 to be
the largest value of s` < s ≤ 1 such that dF (γ(s`), γ(t)) ≤ εFU for all s` ≤ t ≤ s, then α ≤ ‖γ‖/εFU .

For each 0 ≤ ` ≤ α, choose an index 1 ≤ i` ≤ ν so that BM(x`, εU ) ⊂ Ui` . Note that, for all
s` ≤ t ≤ s`+1, BM(γ(t), εU/2) ⊂ Ui` , so that x`+1 ∈ Ui` ∩ Ui`+1

. It follows that Iγ = (i0, i1, . . . , iα)
is an admissible sequence. Set hγ = hIγ and note that hγ(w) = w′.

The construction of the admissible sequence Iγ above has the important property, that hIγ is the

composition of generators of G∗F which each have a uniform lower bound estimate εTU on the radii
of the metric balls centered at the orbit and which are contained in their domains. To see this, let
0 ≤ ` < α, and note that x`+1 ∈ DF (x`+1, ε

F
U ) implies that for some s` < s′`+1 < s`+1, we have that

γ([s′`+1, s`+1]) ⊂ DF (x`+1, ε
F
U ). Hence,

(14) BM(γ(t), εU/2) ⊂ Ui` ∩ Ui`+1
, for all s′`+1 ≤ t ≤ s`+1 .

Then for all s′`+1 ≤ t ≤ s`+1, the uniform estimate defining εTU > 0 in (8) implies that

(15) BX(πi`(γ(t)), εTU ) ⊂ Ti`,i`+1
and BX(πi`+1

(γ(t)), εTU ) ⊂ Ti`+1,i` .

For the admissible sequence Iγ = (i0, i1, . . . , iα), recall that x` = γ(s`) and w` = πi`(x`). By
definition (10) of hIγ , the condition (15) implies that DX(w`, ε

T
U ) ⊂ Dom(h`) as was claimed.

DEFINITION 3.1. Let γ : [0, 1] → M be a path starting at x = τ(w) and ending at y = τ(w′).
Then a good plaque-chain covering of γ is the plaque-chain, starting at x, associated to an admissible
sequence Iγ = (i0, i1, . . . , iα) as constructed above with α ≤ ‖γ‖/εFU , and which satisfies (15).

3.4. Equivalence of leafwise holonomy. We give several criteria for when two holonomy maps
must agree. Consider first the case where we are given a path γ with x = γ(0) and y = γ(1).
Let I = (i0, i1, . . . , iα) and J = (j0, j1, . . . , jβ) be admissible sequences such that both (I, ξ0) and
(J , ξ′0) cover the path γ. Then

x ∈ Pi0(ξ0) ∩ Pj0(ξ′0) , y ∈ Piα(ξα) ∩ Pjβ (ξ′β).

Thus both (i0, j0) and (iα, jβ) are admissible, and ξ′0 = hj0,i0(ξ0), ξα = hiα,jβ (ξ′β). The proof of the

following is intuitively clear, with details in [17].

LEMMA 3.2. The point ξ0 is contained in the domains of both hI and hiα,jβ ◦hJ ◦hj0,i0 , and the
intersection of their domains is a non-empty clopen subset on which the maps agree. �

Next, consider paths γ, γ′ : [0, 1] → M with x = γ(0) = γ′(0) and y = γ(1) = γ′(1). Suppose
that γ and γ′ are homotopic relative endpoints. That is, assume there exists a continuous map
H : [0, 1]× [0, 1]→M with

H(0, t) = γ(t) , H(1, t) = γ′(t) , H(s, 0) = x and H(s, 1) = y for all 0 ≤ s ≤ 1
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Then there exists partitions 0 = s0 < s1 < · · · < sβ = 1 and 0 = t0 < t1 < · · · < tα = 1 such that
for each pair of indices 0 ≤ j < β and 0 ≤ k < α, there is an index 1 ≤ i(j, k) ≤ ν such that

H([sj , sj+1]× [tk, tk+1]) ⊂ DF (H(sj , tk), εFU ) ⊂ Ui(j,k)
Then proceeding using the methods above and a standard induction argument, we obtain:

LEMMA 3.3. Let γ, γ′ : [0, 1] → M be paths with x = γ(0) = γ′(0) and y = γ(1) = γ′(1), and
suppose they are homotopic relative endpoints. Then the induced holonomy maps hγ and hγ′ agree
on an open neighborhood of ξ0 = πi0(x).

The strongly convex property of the plaques and the techniques above also yield the following result.

LEMMA 3.4. Let γ, γ′ : [0, 1] → M be paths. Suppose that x = γ(0), x′ = γ′(0) ∈ Ui and y =
γ(1), y′ = γ′(1) ∈ Uj. If dM(γ(t), γ′(t)) ≤ εU/4 for all 0 ≤ t ≤ 1, then the induced holonomy maps
hγ , hγ′ agree on their common domain Dom(hγ) ∩Dom(hγ′) ⊂ Ti.

3.5. Plaque-chains to leafwise paths. Recall another basic construction, which associates to an
admissible sequence I = (i0, i1, . . . , iα) and ξ0 ∈ Dom(hI0) a leafwise path. For each 0 < ` ≤ α,
choose z` ∈ P`−1(ξ`−1) ∩ P`(ξ`). Let γ` : [(` − 1)/α, `/α] → Lx0

be the leafwise piecewise geodesic
segment from x`−1 to z` to x`. Define the path γI : [0, 1]→ Lx0 from x0 to xα to be the concatenation
of these paths. Note that ‖γI‖ ≤ 2αδFU by Proposition 2.6.4.

Let (I ′, ξ0) be a plaque-chain covering of γI , then for U ⊂ Dom(hI) ∩ Dom(hγI ) we have hI |u =
hγI |U by Lemma 3.2. Of course, we may take I ′ = I and then the conclusion is tautologous, or
may take I ′ to define a good plaque-chain covering as in Definition 3.1.

The study of the dynamics of the pseudogroup GF acting on X differs from the case of a group
Γ acting on X, in that for a group action each γ ∈ Γ defines a homeomorphism hγ : X → X.
For a pseudogroup action, given g ∈ GF and w ∈ Dom(g), there is some clopen neighborhood
w ∈ U ⊂ Dom(g) for which g|U = hI |U where I is admissible sequence with w ∈ Dom(hI). By the
definition of a pseudogroup, every g ∈ GF is the “union” of such maps in G∗F . For our applications
to the structure of the dynamics of F , it is very useful to estimate the maximal domain for the
holonomy map defined by an admissible sequence. Recall that εTU was defined by (8).

PROPOSITION 3.5. For each 0 < ε ≤ εTU and integer α > 0, there exists 0 < δ(ε, α) ≤ ε so that
for each admissible sequence I with length at most α, w ∈ Dom(hI) and w′ = hI(w), there exists
an admissible sequence I ′ with DX(w0, δ(ε, α)) ⊂ Dom(hI′) such that hI′ coincides with hI on the
intersection of their domains, and

(16) hI′(DX(w0, δ(ε, α))) ⊂ DX(w′, ε)

Proof. Let γI be the piecewise geodesic from x = τ(w) ∈ T to y = τ(w′) as constructed above.
Then by the method of Section 3.3, there is an admissible sequence I ′ which defines a good plaque-
chain covering (I ′, w) of γI satisfying the condition (15) on domains. The result then follows using
induction, as in the proof of [18, Proposition 5.7]. �

3.6. Dynamics of matchbox manifolds. We recall two definitions from topological dynamics,
that of equicontinuous and expansive dynamics, as adapted to actions of pseudogroups.

DEFINITION 3.6. Say that the action of the pseudogroup GF on X is expansive, or more properly
that it is ε-expansive, if there exists ε > 0 such that for all w,w′ ∈ X, there exists g ∈ G∗F with
w,w′ ∈ D(g) such that dX(g(w), g(w′)) ≥ ε.

DEFINITION 3.7. Say that the action of the pseudogroup GF on X is equicontinuous if for all
ε > 0, there exists δ > 0 such that for all g ∈ G∗F , if w,w′ ∈ D(g) and dX(w,w′) < δ, then
dX(g(w), g(w′)) < ε. Thus, G∗F is equicontinuous as a family of local group actions.

Equicontinuity for GF gives uniform control over the domains of arbitrary compositions of generators,
so that a much stronger conclusion than Proposition 3.5 is true, as shown in [17]:
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PROPOSITION 3.8. Assume the holonomy pseudogroup GF of F is equicontinuous. Then there
exists δTU > 0 such that for every leafwise path γ : [0, 1] → M, there is a corresponding admissible
sequence Iγ = (i0, i1, . . . , iα) so that BX(w0, δ

T
U ) ⊂ D(hIγ ), where x = γ(0) and w0 = πi0(x).

Moreover, for all 0 < ε ≤ εTU there exists 0 < δ ≤ δTU independent of the path γ, such that
hIγ (DX(w0, δ)) ⊂ DX(w′, ε) where w′ = πiα(γ(1)).

It is possible that these are the only two possibilities for a minimal action of a pseudogroup on a
Cantor space. A proof of the following would generalize results in [8, 9, 23]:

CONJECTURE 3.9. Let GF act minimally on a Cantor space X as above. Then either the action
is equicontinuous, or it is expansive for some ε > 0.

3.7. Holonomy groupoids. We next consider the groupoid [35] formed by germs of maps in GF .

Let U,U ′, V, V ′ ⊂ X be open subsets with w ∈ U ∩ U ′. Given homeomorphisms h : U → V and
h′ : U ′ → V ′ with h(w) = h′(w), then h and h′ have the same germ at w, and write h ∼w h′, if there
exists an open neighborhood w ∈ W ⊂ U ∩ U ′ such that h|W = h′|W . Note that ∼w defines an
equivalence relation.

DEFINITION 3.10. The germ of h at w is the equivalence class [h]w under the relation ∼w.
The map h : U → V is called a representative of [h]w. The point w is called the source of [h]w and
denoted s([h]w), while w′ = h(w) is called the range of [h]w and denoted r([h]w).

The holonomy groupoid ΓF is the the collection of all germs [h]w for h ∈ GF and w ∈ Dom(h),
equipped with the sheaf topology for maps over X. Let RF ⊂ X×X denote the equivalence relation
on X induced by F , where (w,w′) ∈ RF if and only if w,w′ correspond to points on the same leaf of
F . The product map s× r : ΓF → RF is étale; that is, a local homeomorphism with discrete fibers.

We introduce a convenient notation for elements of ΓF . Let (w,w′) ∈ RF , and let γ denote a path
from x = τ(w) to y = τ(w′). Proposition 3.5 implies that we can choose an admissible sequence
Iγ for which the domain of the induced map hI satisfies condition (16). By Lemma 3.3, the germ
[hIγ ]w depends only on the endpoint-fixed homotopy class of γ, so that we may assume γ is a geodesic
between x and y. Moreover, by Lemma 3.4 the germ [hIγ ]w is independent of the admissible sequence
covering γ. Thus, we introduce the notation γw = [hIγ ]w for this germ, which depends only on the
end-point fixed homotopy class of γ. Given [h]w ∈ ΓF by Section 3.2 the germ is induced by a
plaque-chain covering a piecewise geodesic between x and y, so all elements of ΓF are represented
by γw for some path γ from x to y.

These remarks imply there is a well-defined surjective homomorphism, the holonomy map,

(17) hF,x : π1(Lx, x)→ Γww ≡ {[g]w ∈ ΓF | r([g]w) = w} .

Moreover, if y, z ∈ L then the homomorphism hF,y is conjugate (by an element of GF ) to the
homomorphism hF,z. A leaf L is said to have non-trivial germinal holonomy if for some y ∈ L, the
homomorphism hF,y is non-trivial. If the homomorphism hF,y is trivial, then we say that Ly is a
leaf without holonomy. This property depends only on L, and not the choice of y ∈ L.

A matchbox manifold M is said to be without holonomy, if every leaf is without holonomy.

As an application of these remarks, we obtain:

LEMMA 3.11. Given a path γ : [0, 1]→M with x = γ(0) and y = γ(1). Suppose that Lx is a leaf
without holonomy. Then there exists a leafwise geodesic segment γ′ : [0, 1]→M with x = γ′(0) and
y = γ′(1), such that ‖γ′‖ = dF (x, y), and hγ and hγ′ agree on an open neighborhood of ξ0.

Proof. The leaf Lx containing x is a complete Riemannian manifold, so there exists a geodesic
segment γ′ which is length minimizing between x and y. Then the holonomy maps hγ and hγ′ agree
on an open neighborhood of ξ0 = πi0(x) by the definition of germinal holonomy. �
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3.8. Word and path length. We recall the word length function on G∗F and ΓF , and the path
length function on ΓF , and give estimates comparing these notions of length.

For α ≥ 1, let G(α)F be the collection of holonomy homeomorphisms hI |U ∈ G∗F determined by
admissible paths I = (i0, . . . , ik) such that k ≤ α and U ⊂ Dom(hI). For each α, let C(α) denote
the number of admissible sequences of length at most α. As there are at most ν2 admissible pairs
(i, j), we have the basic estimate that C(α) ≤ ν2α. This upper bound estimate grows exponentially
with α, though the exact growth rate of C(α) may be much less.

For each g ∈ G∗F there is some α such that g ∈ G(α)F . Let ‖g‖ denote the least such α, which is called

the word length of g. Note that G(1)F generates G∗F .

We use the word length on G∗F to define the word length on ΓF , where for γw ∈ ΓF , set

(18) ‖γw‖ = min {‖g‖ | [g]w = γw for g ∈ G∗F} .

Introduce the path length of γw ∈ ΓF , by considering the infimum of the lengths ‖γ′‖ for all piecewise
smooth curves γ′ for which γ′w = γw. That is,

(19) `(γw) = inf {‖γ′‖ | γ′w = γw} .
Note that if Lw is a leaf without holonomy, set x = τ(w) and y = τ(w′), then Lemma 3.11 implies
that `(γw) = dF (x, y). This yields a fundamental estimate:

LEMMA 3.12. Let [g]w ∈ ΓF where w corresponds to a leaf without holonomy. Then

(20) dF (x, y)/2δFU ≤ ‖[g]w‖ ≤ 1 + dF (x, y)/εFU

Proof. Let [g]w be represented by hI where I = (i0, i1, . . . , iα) of length α = ‖[g]w‖. Then I defines
a plaque-chain PI as in (12) where each plaque is contained in a disk DF (xwi , δ

F
U ), so the piecewise-

geodesic γI which PI defines as in Section 3.2 has length at most 2α δFU . Thus, dF (x, y) ≤ 2α δFU .

Conversely, as noted in Section 3.3, given a path γ from x to y there is a good plaque-chain I which
covers γ, with α ≤ 1 + ‖γ‖/εFU which yields the right-hand-side estimate in (20). �

In general, the leafwise distance function dF of distinct leaves cannot be compared for points which
have a large separation, except when it is possible to define a “shadowing” of a path in one leaf by
a path in a nearby leaf, as described in the following.

Let x ∈M with Lx the leaf containing it, and assume that Lx is without holonomy. Given y ∈ Lx
let γx,y be a geodesic from x to y with ‖γx,y‖ = dF (x, y). Choose a plaque-chain PI covering γx,y
as in Section 3.3 so that Proposition 3.5 holds for the holonomy map hI it induces. Let Ui0 be the
first chart of the plaque-chain, so that x ∈ Pi0(ξ0), with notation as in (13). Let x′ ∈ Ui0 have
the same leaf coordinate as x, so λi0(x′) = λi0(x). Assume that w′ = π(x′) ∈ Dom(hI), then we
define y′ ∈ Uiα corresponding to y in the same way, for the last plaque Piα(ξα) in the plaque-chain.
The curve γx,y is given in (13) as a concatenation of piecewise-geodesic segments, each of which is
contained in a plaque of the plaque-chain PI . Then by shadowing these geodesic segments within
each respective foliation chart, we obtain a piecewise geodesic γ̃x′,y′ from x′ to y′. Then using the
estimates (9) and Proposition 3.5, we obtain:

LEMMA 3.13. Let ε > 0 and R > 0, then there exists δ(ε, R) > 0 such that if x ∈ M is
contained in a leaf Lx without holonomy, and y ∈ Lx satisfies dF (x, y) ≤ R, then for x′ as above
with w′ = π(x′) ∈ BX(w, δ(ε, R)), it follows that w′ ∈ Dom(hI) and for the corresponding endpoint
y′ ∈ Lx′ we have

(21) dF (x′, y′) ≤ (1 + ε) dF (x, y) and dF (x, y) ≤ (1 + ε) dF (x′, y′) .

Proof. Let γx,y be a leafwise geodesic from x to y with ‖γx,y‖ = dF (x, y). Construct a plaque-chain
covering PI of γx,y as above. Let δU (ε) be the constant appearing in (9), then by Lemma 3.12 and
Proposition 3.5, there exists δ(δU (ε), R) > 0 so that BX(w, δ(δU (ε), R)) ⊂ Dom(hI). Moreover, for
any w′ ∈ BX(w, δ(δU (ε), R)) the plaques defined by the shadowed points along the piecewise geodesic
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γ̃x′,y′ from x′ to y′ have separation at most δU (ε). Then use the estimates in (9) in each plaque
to deduce the first estimate in (21). The second estimate follows by considering the path γx,y as
shadowing the path γ̃x′,y′ . �

The technical result Lemma 3.13 illustrates some of the difficulties working with the dynamics of
pseudogroups, as the notion of distance along paths in leaves requires care with the initial point.

3.9. Induced groupoids. For an open subset W ⊂ X, consider the following subsets of ΓF ,

ΓW = {[g]w ∈ ΓF | w ∈W}
ΓWW = {[g]w ∈ ΓF | w ∈W , r([g]w) ∈W}
ΓWw = {[g]w ∈ ΓF | r([g]w) ∈W}

so we have the inclusions

Γww ⊂ ΓWw ⊂ ΓWW ⊂ ΓW ⊂ ΓF .

The set ΓWW is called the induced groupoid on W . On the other hand, the sets ΓW and ΓWw are not
groupoids, as they need not contain the inverses of their elements.

Given w ∈W and R > 0, define the word and path length filtration of the groupoid ΓWw ,

(22) ΓW,Rw =
{
γw ∈ ΓWw | `(γw) ≤ R

}
, ΓW,αw =

{
[g]w ∈ ΓWw | g ∈ G

(α)
F with w ∈ Dom(g)

}
.

By Lemma 3.12, we then have the estimates:

LEMMA 3.14. Let Lw be a leaf without holonomy. For α > 0, set R(α) = 2αδFU and R(α) = αεFU
where we recall from Section 2.1 that εFU < δFU so that R(α) > R(α), then

(23) Γ
W,R(α)
w ⊂ ΓW,αw ⊂ ΓW,R

(α)

w .

The inclusions in (23) are used in the definition of the coding of the orbits of G∗F in Section 6.

4. Delone sets and Voronoi tessellations

In this section, we consider the Delone sets and their associated Voronoi tessellations on the leaves
of F which are associated to a choice of a clopen transversal set W ⊂ X. These ideas are discussed
in extensive detail in [18]. It is important to note that, as no geometric assumption is made on
the leaves of F , many standard techniques for Voronoi tessellations in the literature for Euclidean
spaces do not apply to this general case.

Assume that M is a minimal matchbox manifold, so for every w ∈ X, its GF -orbitO(w) is dense. This
implies that the restriction of GF to any clopen subset U ⊂ X yields an induced dynamical system
which is “equivalent” to the action of GF on X, as discussed in [19]. This restriction property is
fundamental for the study of minimal Cantor actions. Here is an essential application of minimality:

LEMMA 4.1. Let W ⊂ X be an open subset. Then there exists an integer αW such that X is

covered by the collection {hI(W ) | hI ∈ G(αW )
F }. Moreover, as diamX(W )→ 0, we have αW →∞.

Proof. Consider the collection of open sets Q = {hI(W ) | hI ∈ GF } where we adopt the abuse of
notation that hI(W ) = hI(W ∩Dom(hI)). As the action of GF on X is minimal, for all y ∈ X there
exists hI with hI(y) ∈ W . Thus, the collection Q is an open covering of X. Since X is compact,
there exists a finite subcover {hI1(W ), . . . , hIm(W )} of Q, where Ii = (j0, . . . , jαi). Let

(24) αW = max{αi | 1 ≤ i ≤ m}.
The conclusion that αW →∞ as diamX(W )→ 0 follows immediately, as assuming αW is bounded
implies that X admits coverings by clopen sets with arbitrarily small diameters, yet bounded in
number, which is impossible. �
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4.1. Delone sets. We define nets in the leaves of F related to the dynamics of GF .

DEFINITION 4.2. Let (X, dX) be a complete separable metric space. Given 0 < λ1 < λ2, a subset
N ⊂ X is a (λ1, λ2)-net (or Delone set) if:

(1) N is λ1-separated: for all y 6= z ∈ N , dX(y, z) ≥ λ1;
(2) N is λ2-dense: for all x ∈ X, there exists some z ∈ N such that dX(x, z) ≤ λ2.

Given w ∈ X, let Lw denote the leaf containing x = τ(w). Define Nw = Lw ∩ T . Then (4) implies
that Nw is an δT -separated subset of Lw. On the other hand, U is an open covering of M, and
therefore by Proposition 2.6.4 each point of Lw has distance at most δFU from a point of Nw. That
is, Nw is always an (δT , δ

F
U )-net in Lw.

In the following, we assume without loss of generality that the open set W satisfies W ⊂ T1, and
set TW = τ1(W ) ⊂M. For each w ∈W , define NW

w = Lw ∩ TW ⊂ Nw.

If w is a fixed point for some non-trivial holonomy map hγ defined by a path γ, then the length of
γ gives an approximate upper bound on the constant λ1 for the net NW

w . Define the function

(25) λ1(δ) = inf
{
λ | w ∈W ⊂ X, diamX(W ) ≤ δ, NW

w is λ−separated
}
.

We always have λ1(δ) ≥ δT as NW
w ⊂ Nw for all w ∈ X, and Nw is δT -separated. The following

result shows there is no upper bound on the function λ1 for a foliation without holonomy.

LEMMA 4.3. Let M be a matchbox manifold without holonomy, then λ1(δ) is increasing, and
unbounded as δ → 0.

Proof. If 0 < δ′ < δ then λ1(δ′) ≥ λ1(δ) follows from the definition, so the function λ1 is increasing.

We show that the function λ1 is unbounded. Assume there exists λ∗ > 0, such that for each integer
` > 0, there exists distinct points u`, v` ∈ X such that dX(u`, v`) ≤ 1/` and there is a path γ` joining
y` = τ(u`) and z` = τ(v`) with ‖γ`‖ ≤ λ∗. As X is compact, by passing to subsequences, we can
assume that there exists w ∈ X which is the limit of both sequences {u`} and {v`}.

By Lemma 3.12, we can choose a plaque-chain I` which covers γ` with length at most 1 + λ∗/ε
F
U .

Since there are only a finite number of admissible plaque-chains of length at most 1 + λ∗/ε
F
U , we

can pass to a subsequence, and assume without loss of generality that I = I` is independent of
`. Then Proposition 3.5 implies that we can assume that there is some δ′ > 0 and `0 > 0 with
u`, v` ∈ BX(w, δ′) ⊂ Dom(hI) for all ` ≥ `0. Then the holonomy map hI satisfies hI(u`) = v′` for all
` ≥ `0, and thus we have hI(w) = w. The assumption u` 6= v` for all ` ≥ `0 implies that hI is not the
identity map on any open neighborhood of w. Thus, the germ [hI ]w is non-trivial, so that the leaf
Lw has is germinal holonomy, which contradicts our assumption that F is without holonomy. �

REMARK 4.4. The function λ1(δ) is a fundamental property of the dynamics of the pseudogroup
GF acting on X. From the above proof, it is clear that the function is closely related to the “return
times” of the action near to w, though little more seems to be known about its properties in general.
Note that Forrest in [27] derives estimates for the constants {λ1, λ2} for the net NW

w in the case
where GF is induced from a minimal action of Zn on a Cantor set. It is a very interesting problem
to derive estimates for these constants in the more general cases of group actions and pseudogroups.

We next show that the density of the net NW
w in the leaf Lw has a uniform estimate in terms of the

integer αW introduced in Lemma 4.1.

LEMMA 4.5. The set NW
w is (2αW δ

F
U )-dense in the set Nw.

Proof. Let Lw be the leaf determined by w ∈ W . Let y ∈ Nw and w′ = π(y) ∈ X. The collection

{hJ (W ) | hJ ∈ G(αW )
F } is an open covering of X by Lemma 4.1, so there exists J with length

at most αW with w′ ∈ hJ (W ), which defines a plaque-chain from x to y with at most αW plaque
intersections. Each plaque is contained in a disk DF (xwi , δ

F
U ), thus there is a piecewise geodesic

path in Lw from x to y with length at most 2αW δFU . �
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COROLLARY 4.6. For eW = (2αW + 1)δFU the set NW
w is eW -dense in Lw. That is, for every

x ∈M there is a piecewise geodesic path with length at most eW joining x to a point of TW .

Proof. Given x ∈ Lw there exists y ∈ Nw with dF (x, y) ≤ δFU . By Lemma 4.5, there is z ∈ NW
w with

dF (y, z) ≤ 2αW δ
F
U and thus dF (x, z) ≤ (2αW + 1)δFU , as was to be shown. �

4.2. Voronoi tessellations. We develop some of the basic concepts of Voronoi tessellations for
complete Riemannian manifolds, and in particular for the leaves of F . As the leaves of M are not
necessarily Euclidean, some of the usual results for tessellations of Rn with the Euclidean metric
need not be true in this context (see [42] and [48, Introduction]).

The Voronoi tessellation associated to NW
w is a partition of Lw into compact regions with disjoint

interiors, called the “cells”, where each cell is “centered” at a unique point of NW
w . We describe the

construction of these cells and and some of their properties.

Introduce the “leafwise nearest–neighbor” distance function, where for y ∈ Lw,

(26) κWw (y) = inf
{
dF (y, z) | z ∈ NW

w

}
.

Note that κWw (y) <∞ if and only if y ∈ Lw, and κWw (y) = 0 if and only if y ∈ NW
w .

DEFINITION 4.7. For y ∈ NW
w , define its Voronoi cell in Lw by

(27) CWw (y) =
{
z ∈ Lw | dF (y, z) = κWw (z)

}
.

That is, for x ∈ NW
w the Voronoi cell CWw (y) consists of the points z ∈ Lw which are at least as close

to y in the leafwise metric as to any other point of NW
w .

Note that if Lw is a convex metric space for the leaf metric, for example when the leaf Lw is a
Euclidean space, then each cell CWw (y) is a convex subset. However, in the general case, the cells
CWw (y) need not be convex, or even simply connected, especially if the leaf Lw has non-trivial topology
and the constants λ1 and λ2 for the net NW

w are “large”. In this work, we assume only that the
leaves of M are complete metric spaces, and so develop some of the properties of the cells CWw (y) in
the decomposition (28) for this generality.

First, note that by the definition, for each y ∈ L, the set CWw (y) is an intersection of closed subsets
of Lw, hence is closed. Also, from the definitions every point of Lw belongs to some CWw (z) for
z ∈ NW

w , so we have:

DEFINITION 4.8. The Voronoi tessellation of Lw associated to NW
w is the decomposition

(28) Lw =
⋃

y∈NWw

CWw (y)

In general, the geometry of a cell CWw (z) ⊂ Lw may be difficult to describe, though we always have
the following bounds, which are direct consequences of Lemma 4.3 and Corollary 4.6.

LEMMA 4.9. Suppose that W ⊂ BX(w, δ), then for each y ∈ NW
w ,

(29) DF (y, λ1(δ)/2) ⊂ CWw (y) ⊂ BF (y, eW )

In particular, each cell CWw (y) is closed with diameter at most 2eW , and thus is compact.

If F is a foliation without holonomy, then Lemmas 4.3 and 4.9 imply that if W is chosen to have
sufficiently small diameter, then each Voronoi cell in Lw defined by the net NW

w = Lw ∩ τ(W )
contains a ball of radius larger than any prescribed size.

Next, we introduce the star-neighborhoods of Voronoi cells. Given y ∈ NW
w , introduce the vertex-set

(30) VWw (y) = {z ∈ NW
w | CWw (z) ∩ CWw (y) 6= ∅}.
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DEFINITION 4.10. For y ∈ NW
w the “star-neighborhood” of the Voronoi cell CWw (y) is the set

(31) SWw (y) =
⋃

z∈VWw (y)

CWw (z).

LEMMA 4.11. ([18]) For each y ∈ NW
w and z ∈ VWw (y), we have that dF (y, z) ≤ 2eW . Hence,

SWw (y) ⊂ BF (y, 3eW ), and the collection VWw (y) is finite.

For each x ∈ NW
w define the boundary of CWw (x) to be the set ∂CWw (x) ≡ CWw (x)− int(CWw (x)). We

consider the relation between the star-neighborhood of a cell and its boundary ∂CWw (x).

LEMMA 4.12. For each x ∈ NW
w , we have that CWw (x) ⊂ int(SWw (x)).

Proof. We always have int(CWw (x)) ⊂ int(SWw (x)), so we must show ∂CWw (x) ⊂ int(SWw (x)).

Let y ∈ ∂CWw (x) with y 6∈ int(SWw (x)). Then for every 0 < ε < eW , the open ball BF (y, ε) must
intercept the complement of SWw (x) in Lw in a non-empty set; let y′ε be a point in this set. Thus,
there is some zε ∈ NW

w for which y′ε ∈ CWw (zε) so that dF (x, zε) ≤ 2eW + ε < 3eW . There are at
most a finite number of such net points zε, so we can choose a subsequence of the points y′1/` with

dF (y, y′1/`) < 1/` and y′1/` ∈ C
W
w (z′) for all `, where z′ ∈ NW

w is fixed. As CWw (z′) is compact, this

implies that CWw (z′) ∩ CWw (x) 6= ∅ and so y′1/` ∈ S
W
w (x) contrary to choice. �

For z ∈ NW
w with z 6= y, introduce the closed subsets of the leaf Lw defined by

HW
w (y, z) = {ξ ∈ Lw | dF (y, ξ) ≤ dF (z, ξ)}
LWw (y, z) = {ξ ∈ Lw | dF (y, ξ) = dF (z, ξ)}

If Lw is isometric to Euclidean space Rn, then HW
w (y, z) is a closed half-space, and LWw (y, z) is the

boundary hyperplane. In general, the closed subspace LWw (y, z) need not be a manifold.

The next result is a “local” version of the observation that if Lw is isometric to Euclidean space Rn,
then each Voronoi cell CWw (y) ⊂ Rn is the intersection of half-spaces defined by its boundary planes.

LEMMA 4.13. For each y ∈ NW
w we have CWw (y) = SWw (y) ∩

⋂
z∈VWw (y)

HW
w (y, z).

Proof. The identity below and the subsequent inclusion follow from the definitions:

(32) CWw (y) =
⋂

z∈NWw

HW
w (y, z) ⊂ SWw (y) ∩

⋂
z∈VWw (y)

HW
w (y, z) .

We must show the reverse inclusion in (32) holds as well. Observe that for z 6= y, we have CWw (y) ∩
CWw (z) ⊂ LWw (y, z) by the definition. We claim that also, CWw (y) ∩ LWw (y, z) ⊂ CWw (z). Let ξ ∈
CWw (y) ∩ LWw (y, z), so that ξ is closer to y than any other point in NW

w and dF (y, ξ) = dF (z, ξ).
Suppose that ξ 6∈ CWw (z), then there exists z′ ∈ NW

w with dF (z′, ξ) < dF (z, ξ) = dF (y, ξ), so
z′ 6∈ CWw (y), which contradicts the choice of ξ. Thus, ξ ∈ CWw (z).

Now consider z ∈ NW
w and z 6∈ VWw (y). Then CWw (y) ∩ LWw (y, z) = ∅. The cell CWw (y) is compact

by Lemma 4.9, so there exists ε > 0 such that the ε-neighborhood of CWw (y) is also disjoint from
LWw (y, z). Since CWw (y) ⊂ HW

w (y, z), this ε-neighborhood is also contained in HW
w (y, z). Note that

for all z′ ∈ NW
w , either CWw (z′) ⊂ HW

w (y, z) or CWw (z′) ⊂ HW
w (z, y) so by Lemma 4.12, we conclude

that CWw (z′) ⊂ HW
w (y, z) for all z′ ∈ VWw (y). That is, SWw (y) ⊂ HW

w (y, z), which implies the reverse
inclusion, as was to be shown. �
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5. Induced pseudogroups

Let W ⊂ X be an open subset, and let G∗F (W ) denote the restriction of G∗F to W . That is,

(33) G∗F (W ) = {h := (hI , Uh) ∈ G∗F | ∅ 6= Uh ⊆ Dom(hI) ∩W and hI(Uh) ⊆W} .

The goal of this section is to show that if the action of GF on X is minimal, then G∗F (W ) admits

a finite symmetric generating set G∗F (W )(1), whose elements have “maximal” domains in W . We
begin with some preliminary considerations. Introduce the constants:

εH,i < max
{
ε | ∀ x ∈ U i such that DM(x, εU/4) ⊂ U i, then DX(πi(x), ε) ⊂ πi (DM(x, εU/4))

}
(34) εH = min {εH,i | ∀ 1 ≤ i ≤ ν} .
Note that εH ≤ εTU follows by comparing the definition (34) of εH with the definition (8) of εTU .

Recall that αW is an upper bound on the length of plaque-chains I required for a covering of X by
open sets of the form hI(W ). and that Lemma 4.5 shows that hI can be realized by the holonomy
along a piecewise geodesic path of length at most 2αW δFU .

Note that while αW bounds the lengths of plaque-chains required to obtain a covering of X by images
of W , there is no control over the domains of the holonomy maps defined by the overlaps between
the plaques in these chains. Introduce the integer

(35) βW =
⌈
2αW δFU /ε

F
U
⌉
≥ 2αW

where the inequality follows from the inequality δFU /ε
F
U > 1 of Section 2. By allowing plaque-chains

of length βW we can obtain uniform estimates on the domains of the holonomy maps used, as shown
by the following remarks. First, introduce the constant defined by Proposition 3.5 for ε = εH ,

(36) δW = δ(εH , βW ) ≤ εH .
Let hI |Uh ∈ G∗F (W ) where I has length at most αW . Let w ∈ Uh ⊂ W define a leaf Lw without
holonomy. Set w′ = h(w) ∈ W and so w′ ∈ NW

w . Recall that the leaves of F are complete
Riemannian manifolds, so there exists a geodesic segment γx,y from x = τ(w) to y = τ(w′) with
length dF (x, y) ≤ 2αW δFU . By the method of Section 3.3 used in the proof of Proposition 3.5, we
can choose a plaque-chain I ′ covering γx,y with length at most α ≤ dF (x, y)/εFU ≤ βW , and such
that the holonomy map hI′ satisfies DX(w, δW ) ⊂ Dom(hI′), and

(37) hI′(DX(w, δW )) ⊂ DX(w′, εH).

As Lw is a leaf without holonomy, by Lemma 3.11 we have [h]w = [hI′ ]w. We thus obtain the main
result of this section:

PROPOSITION 5.1. Let V ⊂W be an open subset with diamX(V ) ≤ δW , and let w ∈ V be such
that Lw is without holonomy. Then for all h ∈ G∗F (W ) and w ∈ V ∩ Uh with w′ = h(w) represented
by a path γx,y with length dF (x, y) ≤ 2αW δ

F
U , then there exists an admissible sequence I ′ with length

at most βW such that V ⊂ Dom(hI′) and [h]w = [hI′ ]w.

Introduce the following subset of G∗F (W ),

(38) G∗F (W )(1) = {hI | I = (i0, i1, . . . , ik), k ≤ βW , Dom(hI) ∩W 6= ∅, hI(W ) ∩W 6= ∅} .
The number of admissible sequences I with length at most βW is bounded above by ν(βW+1), so
G∗F (W )(1) is a finite collection of maps.

6. Dynamical partitions of the transversal

In this section, we construct coding functions for a minimal action of the pseudogroup G∗F on X, and
show some basic properties for such codings. We note that Gromov [33, 34] and Fried [30] described
applications of the coding technique in dynamics to the study of actions by finitely-generated groups,
as described in the text by Coornaert and Papadopoulos [22] which gives an excellent overview. Our
development of codings for the orbits for a pseudogroup action is an extension of this method.
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The coding technique was developed for equicontinuous actions of pseudogroups on a Cantor space X
in the work [17], where it was also shown that the domains of the coding maps have uniform estimates,
which fails in the general case considered here. Thus, an important aspect of our development of
the coding of the action of the pseudogroup G∗F is the careful treatment of the relation between the
dynamics of the holonomy maps, and the domains on which the coding function is defined.

After establishing the basic properties of the coding functions, we give an inductive method to
construct a nested sequence of partitions of X into clopen sets, defined using the level sets of the
coding function. The resulting clopen covers of X so defined yield “multi-dimensional” Kakutani-
Rokhlin towers for the action of G∗F , analogous to those constructed by Forrest in [27] for minimal
Zn-actions. Our construction here is also related to the “zooming” procedure in Bellisard, Benedetti
and Gambaudo [11, Proposition 2.42] whose proof uses the Euclidean geometry of the leaves. The
work of this section and Section 7 is also related to the construction of a “tower system” for a tiling
space ΩT as sketched in the work of Benedetti and Gambaudo [12, Theorem 3.1], where the leaves
of ΩT are quotients of a connected Lie group. The method of “inflation” described in Section 3.1 of
[4] can also be seen as analogous, though the lack of explicit details in these previous works makes
the connections between the approaches to be mostly on an intuitive level.

In this section, we allow F to have non-trivial holonomy, but work with a leaf without holonomy,
which always exists. Fix a point w0 ∈ X without holonomy, and without loss of generality assume
that w0 ∈ T1. Let L0 denote the leaf determined by w0 and let N0 = L0 ∩ T be the induced net.

6.1. Setting constants. The analysis of the domains of compositions of elements in G∗F requires
careful attention to the metric properties of the action. We first fix some basic constants.

Let 0 < ε1 ≤ εH where εH is defined by (34). Choose V1 ⊂ T1 ⊂ X a clopen neighborhood of w0

with diamX(V1) < ε1. Set N1 = L0 ∩ τ(V1), which is a subnet of N0.

Let α1 be the word length of the elements needed to cover X by translates of V1, as defined by
Lemma 4.1. Then the generators of the induced pseudogroup GF (V1)(1) are represented by elements
of G∗F defined by the holonomy along paths of lengths at most 2α1δ

F
U , and thus by Proposition 5.1

are represented by maps in G(β1)
F , where β1 =

⌈
2α1δ

F
U /ε

F
U
⌉
.

Now let θ1 = (2α1 + 1) δFU , then for all w ∈ V1, the net N V1
w = Lw ∩ τ(V1) is θ1-dense in Lw by

Corollary 4.6. Moreover, by Lemma 4.9 for each y ∈ N V1
w the Voronoi cell CV1

w (y) ⊂ BF (y, θ1), and
by Lemma 4.11 the star-neighborhood SV1

w (y) ⊂ BF (y, 3θ1). Introduce the constants

(39) R′1 = 2θ1 + λF , R1 = 2R′1 = 4θ1 + 2λF .

Finally, observe that a leafwise path of length R1 in M can be covered by a good plaque-chain of

length at most β̂1 + 1, where β̂1 =
⌈
R1/ε

F
U
⌉
.

Proposition 3.5, for the case ε = εH and α = β̂1, yields a uniform estimate on the radius of balls
contained in the domains of holonomy maps associated to plaque-chains of length at most R1, and
such that the images of these balls have diameter at most εH . As L0 is a leaf without holonomy,
the holonomy along a path depends only on the endpoints. As there are only a finite number of
such plaque-chains, there are at most a finite number of homotopies required between them as in

the proof of Lemma 3.3 which will have length at most β̂′1.

In the proof of Theorem 7.3 below, we construct a transverse Cantor foliation for M, based on the
techniques used in the proof of Theorem 1.3 in [18]. Applying these techniques requires a (possibly)
strong restriction on the diameter of the disks transverse to L0. In particular, the proof of [18,
Theorem 1.3] shows that for the given bound R1 on path length distances, there exists δ∗1 > 0 such
that a Reeb neighborhood with base given by compact set of diameter less than R1 and transversal
of diameter less than δ∗1 admits a transverse Cantor foliation. Let δ∗1 denote this constant.

Note that {V1,X − V1} defines a clopen partition of X, and we introduce a constant which bounds
the distance between the sets in it. Let ε1 = min{εH , dF (V1,X − V1), δ∗1} if V1 ⊂ X is a proper
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inclusion; otherwise set ε1 = min{εH , δ∗1}. Define the constant δ̂1 using Proposition 3.5, where

(40) δ̂1 = δ(ε1, β̂
′
1) ≤ ε1 .

This constant is used to conclude that the partial coding functions introduced next are well-defined,
and so assures that the Reeb neighborhoods introduced in Section 7 are well-defined as well.

6.2. Coding functions. We begin with a basic notion.

DEFINITION 6.1. Let 0 < ε′1 < diamX(V1)/2. An ε′1-coding partition of V1 is a collection of
disjoint clopen sets W1 = {W (1; 1), . . . ,W (1;κ1)} with w0 ∈W (1; 1) whose union is V1, satisfying:

(41) diamX(W (1; i)) < min {ε′1, δ̂1} for 1 ≤ i ≤ κ1.

We then have that diamX(W (1; i)) < diamX(V1)/2 so that κ1 ≥ 2, thus the partition is not trivial.

The assumption diamX(W (1; i)) < δ̂1 implies that if w ∈ W (1; i) and w ∈ Dom(γ) with ||γ|| ≤ R′1,
then W (1; i) ⊂ Dom(γ).

The index set A1 = {0, 1, 2, . . . , κ1} of W1 is the “alphabet” used to code the action of the induced
pseudogroup G∗F (V1) on V1. This coding is used to subdivide the sets of W1 into smaller sets with
constant codes, in a way compatible with the dynamics of the induced pseudogroup G∗F (V1). Let

(42) η1 = min { ε1, dX(W (1; i),W (1; j)) | i 6= j } and set ζ1 = δ(η1, β̂
′
1) .

Note that η1 > 0, as V1 is clopen in X, so the constant δ(η1, β̂
′
1) is well-defined by Proposition 3.5.

With the above preparations, we now give a key construction. Given points w,w′ ∈ N1, let γw,w′ be
a length minimizing geodesic from y = τ(w) to y′ = τ(w′). Assume that dF (y, y′) ≤ R1 then there is

an admissible sequence Iw,w′ of length α ≤ β̂′1 which defines a good plaque-chain covering for γw,w′

as in Definition 3.1. Then Iw,w′ yields a holonomy map hIw,w′ satisfying BX(w, δ̂1) ⊂ Dom(hIw,w′ ).
Note that as L0 has no holonomy, the map hIw,w′ is independent of the choice of γw,w′ on the subset

BX(w, δ̂1) of its domain.

For w ∈ X, recall that ΓV1,R
w was introduced in (22). For simplicity on notation in the following,

given γ ∈ ΓV1,R
w we let γ ≡ hIw,w′ denote the holonomy map defined by the path.

The partial coding function for ΓV1,R
w is defined as follows.

DEFINITION 6.2. Given 0 < R ≤ R1 and w ∈ W (1; i) for 1 ≤ i ≤ κ1, the CRw,i-code of

u ∈W (1; i) is the function Ci,Rw,u : ΓV1,R
w → A1 defined as

(43) Ci,Rw,u(γ) = k where γ(u) ∈W (1; k).

The value Ci,Rw,u(γ) encodes the index k for the path starting at τ(u), shadowing the path γw,w′ and

terminating at τ(u′). By the choice of δ̂1 and ε′1 above, w ∈ W (1; i) implies W (1; i) ⊂ Dom(γ) and
thus the function Ci,Rw,u is well-defined.

The next result implies that the coding partition to be defined next will consist of clopen subsets.
Recall that ζ1 is defined above in (42).

LEMMA 6.3. Let 0 < R ≤ R1, w ∈ V1 and u, v ∈ W (1; i) with dX(u, v) < ζ1. Then Ci,Rw,u(γ) =

Ci,Rw,v(γ) for all γ ∈ ΓV1,R
w . Hence, the function Ci,Rw defined by Ci,Rw (u) = Ci,Rw,u is locally constant.

Proof. Let γ ∈ ΓV1,R
w , and suppose that u, v ∈ W (1; i) with dX(u, v) < ζ1. Set u′ = γ(u) and

v′ = γ(v). Then dX(u, v) < ζ1 implies dX(u′, v′) < η1. If u′ ∈ W (1; i) then dX(u′, v′) < η1 ≤
dX(W (1; i),W (1; j)) for all j 6= i implies that v′ ∈W (1; j). Thus, Ci,Rw,u(γw) = Ci,Rw,v(γw). �
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We next introduce clopen partitions of the sets W (1; i) chosen in Definition 6.1, so that the coding
function along paths of length at most R′1 as defined by (39) are constant on each set of the partition.
For each 1 ≤ i ≤ κ1 define the partition V(1; i) = {V (1; i, 1) ∪ · · · ∪ V (1; i, κ1,i)} with

(44) W (1; i) = V (1; i, 1) ∪ · · · ∪ V (1; i, κ1,i) .

where the coding function C
i,R′1
w is constant on each set V (1; i, j), and if j 6= j′ then V (1; i, j) and

V (1; i, j′) have distinct codes. Assume that w0 ∈ V (1; 1, 1).

LEMMA 6.4. For 1 ≤ i ≤ κ1 and each 1 ≤ j ≤ κ1,i the set V (1; i, j) is clopen. Thus, V(1; i) is a
clopen partition of W (1; i) and the collection V(1; 1) ∪ · · · ∪ V(1;κ1) is a clopen partition of V1.

Proof. Lemma 6.3 implies that each set V (1; i, κ1,i) is open, and as they form a finite cover of the
clopen set W (1; i), they are also clopen sets. �

If the action of GF on X is equicontinuous, then it may happen that points u, u′ ∈ V (1; i, j) have
the same code for all paths starting at w ∈ V1, not just those of length at most R′1. In fact, this fact
is used in [17] to define clopen partitions which are invariant under the action of GF . However, if
the action of G∗F is ε-expansive, its action separates points by at least ε, so will have distinct codes
if the diameters of the sets in the clopen partition W1 are less than ε.

We introduce a further partition of the clopen sets in V(1; i) according to their coding for paths
of length at most R1 = 2R′1. This additional decomposition is used for the patching arguments
appearing in later sections to construct the transverse Cantor foliation for F .

For 1 ≤ i ≤ κ1 and each 1 ≤ j ≤ κ1,i let V(1; i, j) = {V (1; i, j, 1) ∪ · · · ∪ V (1; i, j, κ1,i,j)} with

(45) V (1; i, j) = V (1; i, j, 1) ∪ · · · ∪ V (1; i, j, κ1,i,j)

where the coding function Ci,R1
w is constant on each set V (1; i, j, k), and if k 6= k′ then V (1; i, j, k)

and V (1; i, j, k′) have distinct codes. Assume that w0 ∈ V (1; 1, 1, 1). As before, each set in the
partition V(1; i, j) is clopen and the sets are disjoint.

Note that V (1; i, j) ⊂W (1; i) and so satisfies diamX(V (1; i, j)) ≤ min {ε′1, δ̂1} by (41).

6.3. Inductive step. We next extend the above process, so that the diameters of the transverse
partition sets decrease in a systematic manner. The results are used in Sections 8 and 9 for the
construction of nested Reeb neighborhoods. We first show how to proceed to step 2, which refines
the construction above, and the general inductive step follows analogously.

Let 0 < ε2 < ε1/2 be chosen sufficiently small so that the function λ1(δ) defined in Lemma 4.3
satisfies λε2 = λ1(ε2) > R1.

By choice, we have w0 ∈ V (1; 1, 1, 1), and let w0 ∈ V2 ⊂ V (1; 1, 1, 1) be a clopen neighborhood with
diamX(V2) < ε2. Set N2 = L0 ∩ τ(V2), which is a subnet of N1.

Let α2 ≥ α1 be an integer such that X is covered by translates of V2 using words of length at most
α2, as given by Lemma 4.1. Define β2 =

⌈
2α2δ

F
U /ε

F
U
⌉

and θ2 = (2α2 + 1) δFU , and as before, set

(46) R′2 = 2θ2 + λF , R2 = 2R′2 , β̂2 =
⌈
R2/ε

F
U
⌉
.

Choose β̂′2 so that homotopies of paths of length at most β̂2 contain chains of length at most β̂′2. Let

ε2 < min{ δ∗2 , dX(V (1; i), V (1, j)), dX(V2,X− V2)) | i 6= j },(47)

where δ∗2 is given by Corollary 7.5, and then set

(48) δ̂2 = δ(ε2, β̂
′
2).

For ε′2 = diamX(V2)/2 < ε2/2 < ε1/4, choose a clopen partition of V2 as in Definition 6.1, given by
W2 = {W (2; 1), . . . ,W (2;κ2)} with w0 ∈W (2; 1) and which satisfies

diamX(W (2; i)) < min {ε′2, δ̂2} for 1 ≤ i ≤ κ2.
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This yields a new coding alphabet A2 = {1, 2, . . . , κ2} corresponding to W2. For each 1 ≤ i ≤ κ2,
use the coding function for the sets in W2 to refine W2 into its coding partition for the holonomy
along paths of lengths at most R′2, where V(2; i) = {V (2; i, 1) ∪ · · · ∪ V (2; i, κ2,i)} with

(49) W (2; i) = V (2; i, 1) ∪ · · · ∪ V (2; i, κ2,i).

We assume that w0 ∈ V (2; 1, 1), and observe that the clopen sets satisfy

V (2; i, j) ⊂W (2; i) ⊂ V (1; 1, 1, 1) ⊂W1 ⊂ V1 .

In particular, this implies that diamX(V (2; i, j)) ≤ min {ε′2, δ̂2} ≤ εH/4.

We also introduce the subdivision of these partitions for the holonomy of paths with length at most
R2 = 2R′2. For 1 ≤ i ≤ κ2 and 1 ≤ j ≤ κ2,i, let V(2; i, j) = {V (2; i, j, 1) ∪ · · · ∪ V (2; i, j, κ2,i,j)} with

V (2; i, j) = V (2; i, j, 1) ∪ · · · ∪ V (2; i, j, κ2,i,j) , w0 ∈ V (2; 1, 1, 1)

where the coding function is constant along paths of length at most R2 on each set V (2; i, j, k), and
if k 6= k′ then V (2; i, j, k) and V (2; i, j, k′) have distinct codes. As before, each set in the partition
V(2; i, j) is clopen and disjoint.

The above process can now be repeated recursively to obtain:

PROPOSITION 6.5. Let w0 ∈ T1 ⊂ X such that the leaf L0 it determines is without holonomy.
Then each ` ≥ 1, there exists:

(1) clopen neighborhoods w0 ∈ V` ⊂ V`−1 ⊂ · · · ⊂ V1 ⊂ T1 with diamX(Vi) < εH/2
i

(2) constants ε`, α`, θ`, R`, β̂`, δ̂` such that λε` = λ1(ε`) > R`−1
(3) nets N` = L0 ∩ τ(V`) which are λε`-separated and θ` dense
(4) a clopen partition W` of V` with elements W (`; i) labeled by A` = {1, 2, . . . , κ`}
(5) a clopen partition V(`; i) of each W (`, i) with elements V (`; i, j) whose elements are clopen

sets with diamX(V (`; i, j)) < min{δ̂`, εH/4`} for 1 ≤ j ≤ κ`,i, and the coding function is
constant on each V (`; i, j) along paths of length at most R′`

(6) a clopen partition V(`; i, j) of each clopen set V (`; i, j) such that the coding function is
constant on each V (`; i, j, k) along paths of length at most R` = 2R′` for 1 ≤ k ≤ κ`,i,j.

The clopen sets V (`; i, j) of the partition V(`; i) will be used to create Reeb neighborhoods in the
following Sections 7 and 8, by translating them along the holonomy of paths of length at most R′`.

Note that this technique of decomposing a descending chain of clopen transversals V` for ` ≥ 1 into
code blocks V(`; i) is implicit in the studies of Rn-actions by Bellisard, Benedetti and Gambaudo
[11, Proposition 2.39] and by Forrest in [27], and in the sketch of the proof of Theorem 3.1 in [12]
for case when the leaves of F are defined by a transitive action of a connected Lie group.

7. Transverse Cantor foliations

A Cantor foliation H on a continuum Ω is a “continuous decomposition” of it into Cantor sets,
which are the “leaves” of H. Cantor foliations arise naturally in many dynamical and geometric
contexts. In this work, we require Cantor foliations which are “transverse” to the foliation F
of a matchbox manifold M, as made precise in Definition 7.1 below. All constructions in the
literature which build up inverse limit representations for a particular class of matchbox manifolds,
such as the Williams solenoids, tiling spaces, and suspensions of minimal actions on Cantor sets
[5, 7, 10, 11, 12, 17, 18, 43, 53, 60] use such a transverse Cantor foliation either explicitly or implicitly.
The branched manifold quotients of a matchbox manifold are obtained via transverse projections
along subsets of the leaves of H that are the “axes of collapsing” in foliated compact subsets of M.
As such, the existence of such H is fundamental to the proof of Theorem 1.1.

The existence of a transverse Cantor foliation H can be part of the given data, such as when a
matchbox manifold is a fiber bundle over a closed manifold whose fibers are Cantor sets. In this
case, the leaves of H are given by Cantor fibers of the bundle. For a tiling space ΩT formed from
a tiling of Rn with finite local complexity, the foliation by tilings is defined by a free action of Rn
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on ΩT, and the Cantor foliation is defined by the choice of punctures in each of the proto-tiles,
then taking their translates under the Rn-action. Finally, a Cantor foliation may be determined by
dynamical properties of the ambient space, such as in the case of Williams solenoids [63, 65] where
the Cantor foliation is given by intersections of the (unstable) attractor with leaves of the stable
foliation. This dynamical construction has been generalized to the notion of a “Smale space” as
introduced by Ruelle [52], and studied in the works of Putnam [6, 49, 50, 51] and Wieler [62].

For the general matchbox manifold, the existence of a Cantor foliation on the “Big Boxes” in M
is shown in the authors’ work [18], where this is proven using local constructions based entirely on
intrinsic techniques. The results of that paper are used in the rest of this section, and in Sections 8
and 9, where we extend the results to show that a Cantor foliation can always be defined on a
minimal matchbox manifold M without holonomy. Moreover, the Cantor foliation on M can be
constructed to be compatible with the constructions in Section 6.

In Section 7.1, we give a rigorous definition of a Cantor foliation, then in Section 7.2 we recall a main
result proved in [18] which gives the existence of a Cantor foliation on a neighborhood of a compact
path-connected subset Kx in M, called a Reeb neighborhood. Section 7.3 shows the existence of a
covering of M by “Big Boxes”, which are Reeb neighborhoods with a transverse Cantor foliation.

7.1. Definition of transverse Cantor foliations. We assume there is given a regular covering
{Ui | 1 ≤ i ≤ ν} of M by foliation charts, as in Proposition 2.6, with charts ϕi : U i → [−1, 1]n × Ti
where Ti ⊂ X is a clopen subset. Moreover, by construction, each chart admits a foliated extension

ϕ̂i : Ûi → (−2, 2)n × Ti where U i ⊂ Ûi ⊂ M is an open neighborhood of the closure U i and
ϕ̂i|U i = ϕi. For a clopen set V ⊂ Ti set

(50) UVi = π−1i (V ) ⊂ U i ; ÛVi = ϕ̂−1i (V ) ⊂ Ûi .

DEFINITION 7.1. Let M be a matchbox manifold, and B ⊂M a closed subset. An equivalence
relation ≈ on B is said to define a transverse Cantor foliation H of B if for each x ∈ B, the class
Hx = {y ∈ B | y ≈ x} is a Cantor set. Moreover, assume that for each x ∈ B, there exists:

(1) 1 ≤ ix ≤ ν with x ∈ Uix ,

(2) a clopen subset Vx ⊂ Tix with wx = πix(x) ∈ Vx and UVxix ⊂ B;

(3) a homeomorphism into Φx : [−1, 1]n × Vx → Ûix such that for the point wx we have

Φx(ξ, wx) = ϕ̂−1(ξ, wx) for ξ ∈ (−1, 1)n,

(4) for ξ ∈ (−1, 1)n and z = ϕ̂−1(ξ, wx), the image Φx({ξ} × Vx) = Hz ∩ ÛVxix .

The leaves of the “foliation” H are defined to be the equivalence classes Hx of ≈ in B.

We give some additional remarks on the conditions in the definition above. First, the index ix in
Condition 7.1.1 selects a foliation chart containing x in its interior. Then Condition 7.1.2 specifies
a clopen subset Vx which defines a “plaque” in the leaf Hx, so that B is a union of such plaques.

Conditions 7.1.3 and 7.1.4 specify the leaf Hx containing x as the graph of the function Φx : {ξ} ×
Vx → Ûix where ξ = λix(x) ∈ (−1, 1)n is the horizontal coordinate of x for the coordinates ϕix . In
particular, as Vx is clopen, it is a Cantor set, so the leaf Hx is a Cantor set.

Note that the function Φx depends on the index ix as the leaves of H are not assumed to coincide
with the local “vertical” foliation of Uix defined by the transverse coordinate. The function Φx gives
the necessary “adjustment” to the local vertical foliation. Also note, the image of the graph of Φx
through z ∈ U ix is contained in the open neighborhood Ûix of U ix but need not be contained in U ix .

Recall that the constants 0 < δFU < λF/5 were introduced in Proposition 2.6, and there is a constant
λF
∗ ≤ λF/5 introduced in Section 15.4 of [18], where λF

∗ is chosen so that the leafwise balls of
radius λF

∗ are “approximately Euclidean” as required in the constructions there. We can also
assume without loss of generality that λF

∗ < εFU < δFU .
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7.2. Reeb neighborhoods. Cantor foliations as in Definition 7.1 are constructed using the “Big
Box” Theorem [18, Theorem 1.3] as follows. First we define Reeb neighborhoods as in [18, Section 6].

For x ∈ M, let Lx be the leaf containing x, and set w = πix(x) ∈ Xix for some 1 ≤ ix ≤ ν. We
assume that Lx is without holonomy.

Let Qx ⊂ Lx be a compact connected subset with x ∈ int(Qx) and assume that Qx is a union of
plaques. Then Qx ∩ T is a net in Qx, and for each z ∈ Qx ∩ T , there is a path γz in Qx between x
and z. Let hx,z be the holonomy homeomorphism along γx,z as constructed in Section 3.3.

For a clopen neighborhood Vx ⊂ Xix of w, we assume that Vx ⊂ Dom(hx,z) for each z ∈ Qx ∩ T .
Then set V zx = hx,z(Vx), which is well-defined, as Lx has no holonomy. Let 1 ≤ iz ≤ ν denote
the index of the foliation chart containing z, which is the last index for the plaque-chain between
x and z used to define hx,z. The Reeb neighborhood of Qx associated to Vx is a union of saturated
neighborhoods, defined as in (50):

(51) NVx
Qx

=
⋃

z∈Qx∩T
U
V zx
iz
.

Note that each path-connected component in NVx
Qx

is a union of plaques. Here is one of the main

results of [18].

THEOREM 7.2 (Big Box). Let M be a matchbox manifold, x ∈M and suppose that Lx is a leaf
without holonomy. Let Qx be a compact connected subset of Lx with x ∈ int(Qx) and assume that

Qx is a union of plaques. Then there exists a clopen set Vx ⊂ X, a closed connected subset Q̂x which

is a union of plaques with Qx ⊂ int(Q̂x), and a foliated homeomorphic inclusion Φ: Q̂x × Vx →M

such that the images Φ
{
{y} × Vx | y ∈ Q̂x

}
form a continuous family of Cantor transversals on a

neighborhood of F|NVx
Qx

.

Proof. We give a sketch of the proof from [18], so that we can refer to the steps involved in extending
this result in the following. Given Qx, we want to choose a neighborhood Vx small enough so that
Theorem 7.2 follows from Theorem 1.3 of [18].

We require some notations and constants from [18]. The reader can just take these as given, as the
reasons for and details of their choices is part of the most technical aspects of the work [18]. The
constant ε0 > 0 defined in [18] is chosen so that there is a prescribed bound on the metric distortions
in charts. This is used in [18, Section 15.5] to define a “transverse” constant r∗ > 0, such that if x
and y are points in the same plaque, and x′ and y′ are points in a plaque in the same chart which is
at transverse distance at most r∗ from the given one, and x′ and y′ have the same coordinates as x
and y respectively, then the metric distances between x and y, and between x′ and y′, differ by at
most ε0λF

∗, where ε0 is very small and depends on the geometry of leaves. The definition of ε0 > 0
as given in [18, Section 15.3] is the most delicate part of the estimates in that work. In particular,
we have that ε0 < 1/2000 and λF

∗ < εFU , so that ε0λF
∗ < εFU /2000.

We require the following consequence of the choice of r∗ and ε0. Suppose that z ∈ Ui ∩Uj for i 6= j.
Then the divergence div(z, i, j, r) ≤ ε0λF∗ as defined in [18, Section 14.1]. This technical statement
has a simple geometric interpretation. The set of points in Ui with the same horizontal coordinate
as z defines a “standard section” Zz,i ⊂ Ui (see [18, (17.2)]). Likewise, z defines a standard section
Zz,j ⊂ Uj . Let x′ ∈ Zz,i and y′ ∈ Zz,j lie on the same plaque in Ui ∩ Uj and suppose this plaque is

within r∗ from the plaque containing z. Then the leafwise distance dF (x′, y′) ≤ ε0λF∗ < εFU /2000.

For Qx given, let R denote its diameter so that Qx ⊂ DF (x,R). By Proposition 2.6.4, the radii of
the plaques in the atlas U are uniformly bounded by δFU , so the saturation of Qx is contained in
the ball DF (x,R + 4δFU ). Form the closed plaque-saturation of DF (x,R + 4δFU ) and denote the set

obtained by Q̂′x. Then the diameter of Q̂′x is bounded by R+ 8δFU < R+ 2λF .
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Apply Proposition 3.5 for ε = r∗/2 to conclude that there exists δ∗ = δ(r∗/2, R+ 2λF ) such that if

x ∈ V̂x is a clopen neighborhood with V̂x ⊂ BX(wx, δ∗), then for any path γ with initial point x and

length at most R+ 2λF , the holonomy translate hγ(V̂x) of the set V̂x has diameter less than r∗/2.

For V̂x ⊂ BX(wx, δ∗) then by the “Big Box” Theorem [18] there exists a Cantor foliation on a subset

Q̂x ⊂ Q̂′x with Qx ⊂ int(Q̂x) and there is a continuous map Φx : Q̂x× V̂x →M. Since Q̂x ⊂ Lx is a

subset of a leaf without holonomy, the map Φx is injective on Q̂x, and so there exists Vx ⊂ V̂x such

that the restriction Φx|Q̂x×Vx is a homeomorphism onto its image. As Qx ⊂ Q̂x, this completes the

proof of Theorem 7.2. �

7.3. “Big Box” Coverings. We next use Theorem 7.2 to construct coverings of M by “Big Boxes”
which are adapted to the coding partitions of X defined in Section 6. This will use the constant δFU
introduced in Proposition 2.6, the constant εH as defined by (34), and λF

∗ introduced in Section 7.1.

THEOREM 7.3. Let M be a minimal matchbox manifold without holonomy, and there is given
a clopen subset V1 ⊂ X with diam(V1) < eH/2. Choose w0 ∈ V1, and let L0 denote the leaf
containing x0 = τ(w0). Then there exists a constant δ∗1 > 0 such that for any clopen partition
W1 = {W (1; 1), . . . ,W (1;κ1)} of V1 with diam(W (1; i)) < δ∗1 for 1 ≤ i ≤ κ1, there exists:

(1) compact connected subsets {K1,K2, . . . ,Kκ1} of L0;

(2) for each 1 ≤ i ≤ κ1, a compact connected subset K̂i ⊂ L0 which is the closure of a union of

plaques, such that Ki ⊂ int(K̂i);

(3) for each 1 ≤ i ≤ κ1, a foliated homeomorphic inclusion Φi : K̂i ×W (1; i) →M which form

a continuous family of Cantor transversals for F|NW (1;i)
Ki

;

such that the interiors U(1, i) ≡ Φi (int(Ki)×W (1; i)) form an open covering of M.

Proof. The idea of the proof is use the Voronoi cells defined by the net N V1
w0

= L0∩τ(V1) to construct
Reeb neighborhoods as in (51) which cover M, and then choose an appropriate subcover.

We assume without loss of generality that V1 ⊂ T1 ⊂ X, so that τ(V1) = τ1(V1) ⊂ T1.

Let α1 be the integer defined by Lemma 4.1 for the clopen set V1, and let θ1 = (2α1 + 1) δFU be the
density constant for the net N V1

w0
as established in Corollary 4.6. Set R′1 = 2θ1 + λF and R1 = 2R′1.

For w ∈ V1, let O(V1, w) = π(N V1
w ) ⊂ V1 denote the orbit of w in V1 which is dense by minimality.

Then for u ∈ O(V1, w), set z = τ(u) ∈ Lw, and recall that CV1
w (z) denotes the Voronoi cell in Lw as

defined by (27) which contains z in its interior. Lemma 4.11 implies for all w ∈ V1 and z ∈ N V1
w ,

(52) CV1
w (z) ⊂ SV1

w (z) ⊂ BF (z, 3θ1) .

By assumption, for each w ∈ V1 the leaf Lw has no holonomy. Thus, given y, z ∈ N V1
w with

u = π(y) ∈ V1 and v = π(z), there is a geodesic path γy,z in Lx joining them which defines a
holonomy transformation hu,v defined on a sufficiently small open neighborhood of u. More precisely,
Lemma 3.13 implies that for ε′ = δFU /4R1, there exists δ′1 > 0 so that if dX(u, u′) < δ′1 then for a
length-minimizing geodesic γ contained in BF (x,R1), there is a shadowing piecewise geodesic γ′ as
in the proof of Lemma 3.13 from y′ to y′ with the length estimate

(53) ‖γ‖ − δFU /4 ≤ ‖γ′‖ ≤ ‖γ + δFU /4‖ .
For the constant ε = min{εH/2, δ′1/2}, Proposition 3.5 implies there exists δ′′1 > 0 such that for
y, z ∈ N V1

w , dF (y, z) ≤ R1 implies BX(u, δ′′1 ) ⊂ Dom(hy,z), and hy,z(BX(u, δ′′1 )) ⊂ BX(v, ε).

Next, observe that π (BF (x,R′1) ∩ T ) ⊂ N V1
w ⊂ X is a finite subset for all w ∈ V1. As V1 is compact,

its cardinality has a uniform upper bound for w ∈ V1. It follows that there exists δ′′′1 ≤ δ′′1 so that
for all w ∈ V1, then for a clopen neighborhood of w, V ⊂ V1 with diamX(V ) ≤ δ′′′1 ,

(54) {hw,u(V ) | u ∈ π (BF (x,R′1) ∩ T )}
forms a disjoint collection of clopen sets in X. Thus, there is a Reeb neighborhood of the plaque-
saturation of BF (x, θ1 + λF ), defined as in (51).
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DEFINITION 7.4. For each x ∈ N V1
w , let Kx ⊂ Lw denote the closure of the plaque-saturation

of BF (x, θ1 + δFU ), and let K̂x denote the closure of the plaque-saturation of BF (x, θ1 + λF ), so that

Kx ⊂ int(K̂x) as 4δFU < λF .

We next define a constant δ1 > 0 which sets the scale for the coding partition of V1. Theorem 7.2 for

Qx = K̂x implies that there exists 0 < δ1 ≤ δ′′′1 so that if W ⊂ V1 is a clopen neighborhood w ∈ V1
with diamX(W ) < δ1, and K̂x is defined as previously for x = τ(w), then the corresponding Reeb
neighborhood NW

K̂x
admits a Cantor foliation. Moreover, from the proof of Theorem 7.2 in [18], the

choice of δ1 is uniform for all w ∈ V1. We use this uniformity as follows.

For w0 ∈ V1 given, consider the collection {BX(w, δ1/4) ∩ V1 | w ∈ O(V1, w0)}. This forms a
covering of V1 by open sets, as O(V1, w0) is dense in V1. We modify this covering to obtain a

covering of V1 by clopen subsets. Note that the closure DX(w, δ1/4) = BX(w, δ1/4) is compact with
DX(w, δ1/4) ⊂ BX(w, δ1/2), so there exists a finite covering of DX(w, δ1/4) by clopen subsets of
BX(w, δ1/2). Apply this remark to each set in the covering {BX(w, δ1/4)∩V1 | w ∈ O(V1, w0)}, and
we obtain a countable covering of V1 by clopen sets with diameters less than δ1. Since V1 is compact,
we can choose a finite subcover {W1, . . . ,Wm} of this clopen cover. This finite subcovering need not
be disjoint, but we can use it to form a disjoint clopen covering as follows:

Ŵ1 = W1, Ŵ2 = W2 −W1, . . . , Ŵi = Wi −
i−1⋃
k=1

Wk, . . .(55)

If some of Ŵi are empty, we discard them and renumber the remaining sets, thus obtaining a clopen

partition Ŵ1 = {Ŵ1, . . . , Ŵs} of V1 where s ≤ m. Then define:

δ∗1 < min{ δ1, dX(Ŵi, Ŵj) | i, j = 1, . . . , s }.

Next, choose a clopen partition W1 = {W (1; 1), . . . ,W (1;κ1)} of V1 with diamX(W (1; i)) ≤ δ∗1 .

Note that every subset of V1 of diameter less than δ∗1 must be contained in one of the sets Ŵi, for

some 1 ≤ i ≤ s, and so for each 1 ≤ i ≤ κ1, there is a unique 1 ≤ mi ≤ s with W (1; i) ⊂ Ŵmi .

For 1 ≤ i ≤ κ1, choose xi ∈ τ(W (1; i)) ∩ L0 and set wi = π(xi) ∈W (1; i).

Then set Ki to be the closed plaque-saturation of BF (xi, θ1 + δFU ), and let K̂i = K̂xi be defined as

in Definition 7.4. By the choice of δ∗1 above we conclude that there exists K̂ ′i with K̂i ⊂ int(K̂ ′i) and

a foliated homeomorphic inclusion Φi : K̂
′
i ×W (1; i)→M which restricts to a continuous family of

Cantor transversals for F|NW (1;i)

K̂i

To conclude the proof of Theorem 7.3, it remains to show that the sets int (Φi {Ki ×W (1; i)}) yield
an open of covering M. Recall that for any w ∈ V1 the leaf Lw admits a Voronoi decomposition
as in (28), so it suffices to show that for each y ∈ N V1

w the cell CV1
w (y) ⊂ int (Φi(Ki ×W (1; i))) for

some 1 ≤ i ≤ κ1.

Now let y ∈ N V1
w with w = π(y) ∈ V1 then there exists 1 ≤ i ≤ κ1 for which w ∈ W (1; i). Then

CV1
w (y) ⊂ BF (y, θ1) by the choice of θ1, so it suffices to show that BF (y, θ1) ⊂ Φi(Ki ×W (1; i)).

By construction, we have that BF (xi, θ1 + δFU ) ⊂ Φi(Ki × W (1; i)). By the choice of δ′1 above,
given a geodesic path starting at y ∈ τ(W (1, i)) with length at most θ1, there is a piecewise-
geodesic path starting at xi with length at most θ1 + δFU /4 which shadows the given geodesic.

The endpoint of the shadowing curve is contained in BF (xi, θ1 + δFU ), which yields the inclusion
BF (y, θ1) ⊂ Φi(Ki ×W (1; i)) as was to be shown. �

A similar argument may of course be repeated for any clopen subset V` ⊂ V1. We assume the
clopen set V` ⊂ V1 is given with w0 ∈ V`. Let θ` = (2α` + 1) δFU be the density constant for the net
N` = L0 ∩ τ(V`) as established in Corollary 4.6. Set R` = 4θ` + λF and R′` = 2θ` + λF .
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COROLLARY 7.5. There exists a constant δ∗` > 0 such that for any clopen subset W ⊂ V`
of diamX(W ) < δ∗` and w ∈ W , the collection {hw,u(V ) | u ∈ π(BF (x,R′`) ∩ T )} forms a disjoint
collection of clopen sets in X.

REMARK 7.6. Observe that in the proof above, we cover the leaves of F with plaque-saturations
of the balls BF (y, θ1 + δFU ) centered at points y ∈ V1. The fact that these sets provide a covering of
M is a consequence of Corollary 4.6 and the definition of R′1, which implies that, for each y ∈ N V1

w ,
the ball BF (y, θ1) contains the Voronoi cell CV1

w (y), and these Voronoi cells form a covering of
the leaf Lw. Note that the balls BF (y, θ1) do not necessarily provide an efficient covering, as for
y, z ∈ N V1

w the intersection BF (y, θ1) ∩ BF (z, θ1) may be “large”. It would be more efficient to
use small neighborhoods of the Voronoi cells CV1

w (y) themselves to form the covering, except that
in the construction of the Reeb neighborhoods, there is no guarantee that the Cantor foliation of
the neighborhoods of the form Φi {Ki ×W (1; i)} has bounded distortion when used to translate the
Voronoi cells between leaves.

8. Existence of nice stable transversals

Theorem 7.3 shows that a minimal matchbox manifold M without holonomy has a finite covering
by Big Box neighborhoods, each of which is endowed with a transverse Cantor foliation. However,
on the overlaps of the sets in this covering, the Cantor foliations need not agree, so the union of the
leaves of these foliations do not define a Cantor foliation on all of M. In this section, we give an
inductive procedure for modifying the construction of the transverse Cantor foliations on the Big
Boxes in a covering, to obtain a Cantor foliation defined on all of M, which also adapted to a given
initial coding partition on the transversal.

The approach we take here, is to recall the construction of the transverse Cantor foliations on the
Reeb neighborhoods from the authors’ work [18], which reduces the construction to the existence
of a nice stable transversal on each, which is a finite collection X = {Z(ξ, iz,W (1; i)z) | 1 ≤ i ≤ p}
of transversals which intersect each leaf in a net whose separation and spanning constants (d1, d2)
are sufficiently small. The leaves of the Cantor foliation on each Big Box neighborhood are then
defined as collections of points with the same barycentric coordinates in each simplex of the foliated
simplicial decomposition defined by the leafwise triangulations.

The constructions of this section require patience to proceed through the multiple steps required.
However, the idea is simple in principle, in that we start with a nice stable transversal defined on a
subset of an initial Reeb neighborhood, defined using a coding partition of the transversal V1, then
extend this to its intersections with neighboring Reeb neighborhoods also defined by the coding
partition, and observe that the extension so obtained is well-defined. We then recursively repeat
this argument with intersections of the previous results of this procedure, an so obtain a recursive
procedure for obtaining a nice stable transversal on all of M.

8.1. Reeb neighborhoods from partitions. Assume that M is a minimal matchbox manifold
without holonomy. Given a clopen subset V1 ⊂ X with diamX(V1) < eH/2 and w0 ∈ V1, let L0 denote
the leaf containing x0 = τ(w0). Let δ∗1 > 0 be the constant defined in the proof of Theorem 7.3.

Let W1 = {W (1; 1), . . . ,W (1;κ1)} be a clopen partition of V1 with diamX(W (1; i)) < δ∗1 for all
1 ≤ i ≤ κ1 as constructed in the proof of Theorem 7.3, with “basepoints” xi ∈ τ(W (1; i)) ∩ L0 for
which wi = π(xi) ∈ W (1; i). In addition, for each 1 ≤ i ≤ κ1, there is a unique 1 ≤ mi ≤ s with

W (1; i) ⊂ Ŵmi , and Ki is the closed plaque-saturation of BF (xi, θ1 + δFU ), and K̂i = K̂xi is defined
as in Definition 7.4. Recall the constant R′1 = R′1 = 2θ1 + λF was defined by (39).

Then there are coding partitions derived from the partitionW1 as in Section 6.2. For each 1 ≤ i ≤ κ1,
we have V(1; i) = {V (1; i, j) | 1 ≤ j ≤ κ1,i} is a clopen partition of W (1, i) such that the coding
function is constant on each V (1; i, j) along paths of length at most R′1. Also recall the refinements
of these partitions, where the collection V(1; i, j) is a clopen partition of the clopen set V (1; i, j),
where for each 1 ≤ k ≤ κ1,i,j , the coding function is constant on V (1; i, j, k) along paths of length
at most R1 = 2R′1.
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Next choose “basepoints” for these refined partitions. For each 1 ≤ i ≤ κ1, 1 ≤ j ≤ κ1;i, let

v(1; i, j) ∈ V (1; i, j) be a point such that x(1; i, j) = τ(v(1; i, j)) ∈ L0, and let K̂1;i,j be the path-

connected subset of N
W (1;i)

K̂i
containing this point. Denote by N1;i,j ⊂ N

W (1;i)

K̂i
the Reeb neighbor-

hood formed from the base K̂1;i,j and transversal V (1; i, j).

Repeat this procedure for the partitions V(1; i, j). For each 1 ≤ i ≤ κ1 and 1 ≤ j ≤ κ1;i, let

v(1; i, j, k) ∈ V (1; i, j, k) be a point such that x(1; i, j, k) = τ(v(1; i, j, k)) ∈ L0. Let K̂1;i,j,k be a
path-connected subset of N1;i,j which contains x(1; i, j, k) in its interior. Denote by N1;i,j,k, the

subsets of N1;i,j formed from the base K̂1;i,j,k and transversal V (1; i, j, k). Observe that we then
have three collections of Reeb neighborhoods, each of which forms a covering of M:

M =
⋃
{N1;i | 1 ≤ i ≤ κ1}(56)

=
⋃
{N1;i,j | 1 ≤ i ≤ κ1; 1 ≤ j ≤ κ1;i}(57)

=
⋃
{N1;i,j,k | 1 ≤ i ≤ κ1; 1 ≤ j ≤ κ1;i; 1 ≤ k ≤ κ1;i,j} .(58)

The decomposition (56) is that given in the proof of Theorem 7.3. The decomposition (57) arises
naturally when considering the intersections of Reeb neighborhoods in (56), while the decomposition
(58) is used to show that we obtain a well-defined Cantor foliation.

There is no natural notion of “forcing the border” for the decompositions of M that we consider, as
is the case for tiling spaces as discussed in [7, 10, 28, 53, 54], and as a result we use the additional
structure given by the extended coding partitions used to define the spaces in (57) and (58) to show
that our decompositions are well-defined.

8.2. Nice stable transversals. For 1 ≤ i ≤ κ1 and z ∈ K̂1;i ∩ T , there exists 1 ≤ iz ≤ ν

such that z ∈ Tiz ⊂ U iz . Choose a path in K̂1;i joining x(1; i) = xi and z, which determines a
holonomy homeomorphism hx(1;i),z which will be denoted by hz for simplicity of notation. Note
that hz(wi) ∈ Xiz and define

(59) W (1; i)z = hz(W (1; i)) ⊂ Xiz .

Then for ξ ∈ Piz (hz(wi)), a standard transversal through ξ is given by

(60) Z(ξ, iz,W (1; i)z) ≡ ϕ−1iz (λiz (ξ),W (1; i)z)

which is a vertical coordinate slice for the coordinates on Uiz which passes through the point ξ,
and projects to the set W (1; i)z. Note that if ξ ∈ Uiz′ ∩ Uiz for some iz′ 6= iz then the section
Z(ξ, iz,W (1; i)z) need not be a vertical section in the coordinate chart Uiz′ , and so the choice of the
transversal depends on the index iz and not just the point ξ.

A nice stable transversal X (1; i) on the Reeb neighborhood N1;i of K̂1;i is a disjoint union

(61) X (1; i) = X 1;i
1 ∪ · · · ∪ X 1;i

pi

for some ordering of the individual transversals, where each X 1;i
j has the form (60). The choices

of the data defining each X 1;i
j , as given in the proof of [18, Theorem 1.3], are made so that the

intersection X (1; i) ∩ K̂1;i is a (d1, d2)-net on K̂1;i where the separation and spanning constants
0 < d1 < d2 are chosen sufficiently small so that the leafwise nets they induce yield stable leafwise
triangulations, as discussed in [18]. In particular, we note that the constant d2 = λF

∗/5 satisfies
d2 ≤ λF/25, although d2 may be much smaller, as it depends on the sectional curvatures of the
leaves of F , as explained in [18, Sections 15, 17]

The simplicial decomposition on K̂1;i corresponding to X (1; i), and therefore the transverse Cantor
foliation constructed on N1;i, depends on the ordering of the local sections comprising a transversal.
In the proof of Proposition 8.1 below, we make an initial choice of ordering for the section in X (1; 1),
and then extend this ordering to the other transversals X (1; i) for 1 < i ≤ κ1, using a recursive
procedure. This will yield an ordered nice stable transversal for all of M as a result, which is used
to construct the transverse Cantor foliation for M.
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We will consider the restriction of the transversals in X (1; i) to subsets N1;i,j , and so obtain a partial
transversal X (1; i, j) for N1;i,j . To distinguish between these various sections, we will denote by X 1;i

s

a section in N1;i and by X 1;i,j
s the corresponding section for N1;i,j obtained as a restriction of X 1;i

s .
We note that the section X 1;i,j

s is assigned the same number s in the ordering of transverse sections.

If the neighborhoods N1;i,j and N1;k,m intersect, in general the transversals X (1; i, j) and X (1; k,m)
need not match, as illustrated in Figure 1. The recursive procedure developed in the proof of
Proposition 8.1 below yields a collection of transversals X (1; i, j) which match on the intersections
of the corresponding Reeb neighborhoods N1;i,j .

Figure 1. Transversals on the overlap of Reeb neighborhoods N1;i,j and N1;k,m.

8.3. Constructing nice stable transversals. We give a recursive procedure for modifying the
nice stable transversals on the Reeb covering of M as in (57) to obtain a global transversal.

PROPOSITION 8.1. Nice stable transversals X (1; i, j) on Reeb neighborhoods N1;i,j associated to
the partitions V(1; i) can be chosen so that the following property is satisfied: if x ∈ N1;i,j ∩N1;k,m,
and x ∈ X 1;i,j

s , then x ∈ X 1;k,m
s . In other words, sections of X (1; i, j) and X (1; k,m) coincide on

the intersection N1;i,j ∩N1;k,m.

Proof. The recursive construction of the transversals X (1; i, j) follows a multiple step process. Recall
that R′1 = 2θ1 + λF was defined by (39) and R1 = 2R′1.

Step 1. Choose nice stable transversals X (1; i) = {X 1;i
1 , . . . ,X 1;i

pi } on the Reeb neighborhoods N1;i

for 1 ≤ i ≤ κ1 as in (61). By assumption, w0 ∈ V (1; 1, 1). Let X (1; 1, 1) be a nice stable transversal
for N1;1,1 obtained by restriction of X (1; 1).

Step 2. The sets V (1; i, j) for 1 ≤ i ≤ κ1 and 1 ≤ j ≤ κ1;i are defined using the coding function for
paths of length at most R′1 as above, and their indices are given the lexicographic order. We next
extend the transversals in X (1; 1, 1) to those Reeb neighborhoods which intersect N1;1,1.

Let (1; i, j) be the least index not equal to (1; 1, 1) such that N1;1,1 ∩N1;i,j 6= ∅, if such exists. For
any X 1;1,1

s ∈ X (1; 1, 1) such that X 1;1,1
s ∩N1;i,j 6= ∅, we define X 1;i,j

s by

(62) X 1;i,j
s = X 1;1

s ∩N1;i,j = Z(ξs, iz,W (1; j)z) ∩N1;i,j .

That is, we extend the transversal to N1;i,j while preserving the ordering of the sections. Figure 2
illustrates the intersections of the Reeb Neighborhood N1;1,1 with N1;i,j .
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Figure 2. A transversal X (1; 1, 1) constructed on a Reeb neighborhood N1;1,1. A

section X 1;1,1
ξ = Z(ξ, iz, V (1; 1, 1)z) intersects the Reeb neighborhood N1;i,j which

can be extended to a section X 1;i,j
ξ since the diameter of V (1; i, j) is so small that

τ(V (1; i, j)z) ⊂ τ(W (1; 1, 1)z) ⊂ Z(ξ, iz,W (1; 1)z).

We repeat this procedure for every N1;i,j which intersects N1;1,1, following the lexicographical or-
dering on indices. Note that the transversals constructed in the sets X (1; i, j) do not depend on the
order in which the neighborhoods N1;i,j are considered, since they are all obtained by restriction of
the transversal X (1; 1). We thus obtain a transversal X (1; 1, 1) on N1;1,1, and (partial) transversals
X (1; i, j) defined on the neighborhoods N1;i,j , 1 ≤ i ≤ κ1, 1 ≤ j ≤ κ1;i which intersect N1;1,1.

Next, we consider the case where there is a Reeb neighborhood N1;1,m which does not intersect
N1;1,1, but does intersect a subset of N1;i,j on which a partial transversal has been defined in the
previous step. This situation is illustrated in Figure 3, and involves a fundamental point for the
construction of the global Cantor foliation on M.

Figure 3. A nice stable transversal X (1; 1, 1) is continued to define partial
transversals X (1; i, j) and X (1; 1,m).

Let z ∈ X 1;i,j
s = X 1;1

s ∩N1;i,j . Then by the construction of the bases for the Reeb neighborhoods in
Definition 7.4, and by definitions (59), (60) and (61), there is x ∈ τ(V (1; 1)) and a path γ of length
at most θ1 + 2δFU starting at x and ending at z. Let hx,z : V (1; 1) → X 1;1

s be the holonomy map
defined by γ.

Suppose there exists v ∈ X 1;i,j
s ∩N1;1,m, then there is u ∈ τ(V (1; i, j)) and a path γ′ of length at

most θ1 + 2δFU starting at u and ending at v. Let hu,v : V (1; i)→ X 1;1
s be the holonomy map defined

by γ′. Then using the shadowing method in the proof of Lemma 3.13, we can define a path (γ′)−1 ∗γ
with length at most R′ = 2θ1 + λF , which defines the holonomy map h−1u,v ◦ hx,y.
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Then h−1u,v(π(v)) = u ∈ V (1; i, j) and z ∈ N1;i,j implies that h−1u,v(π(z)) ∈ V (1; i, j). This implies

that h−1u,v ◦ (π(x)) ∈ V (1; i, j). Since the inverse path γ−1 ∗ γ′ has length at most R′1 the definition

of the coding partition implies that h−1x,y ◦ hu,v(V (1; i, j)) ⊂W (1; 1).

It follows that X 1;1,m
s = X 1;1

s ∩N1;1,m defines a transversal for N1;1,m.

We repeat this procedure for every N1;1,m which intersects one or more of Reeb neighborhoods with
partial transversals along the subset where the transversal is defined. Since the sections X 1;i,j

s are
obtained by restriction of the same section X 1;1

s , this procedure is well-defined in the case when
N1;1,m intersects two or more distinct Reeb neighborhoods N1;i,j with partial transversal. The
partial transversals X (1; 1,m) do not depend on the order in which the Reeb neighborhoods are
considered, and we choose to follow the lexicographic order for definiteness (see Figure 3).

We now have a nice stable transversal X (1; 1, 1) on N1;1,1, and transversals X (1; i, j) on some of the
neighborhoods N1;i,j , 1 ≤ i ≤ κ1, 1 ≤ j ≤ κ1;i, some of them for i = 1 and j 6= 1.

We must show that the procedure of defining partial transversals eventually stops. For that, let
γ, γ′ be homeomorphisms associated to paths of length at most θ1 + 2δFU . We notice that if for
u ∈ V (1; 1, 1) we have V (1; 1, 1) ⊂ Dom(γ) and γ(u) ∈ V (1; i, j), then for every γ′ with V (1; i, j) ∈
Dom(γ′) the code C1,R1

w0
(γ′ ◦ γ) is known. It follows that γ−1(γ(V (1; 1, 1)) ∩ V (1; i, j)) is a union of

a finite number of sets in the partition V(1; 1, 1) on which the coding function for paths of length at
most R1 is constant. By a similar argument, γ(γ−1(V (1; i, j)) ∩ V (1; 1, 1)) is the union of a finite
number of clopen sets in the partition V(1; i, j). Therefore, an intersection of two slabs N1;1,1 and
N1;i,j is always along a subset corresponding to a clopen subset in V (1; 1) which is a union of sets
in V(1; 1, 1). Similarly, N1;1,m intersects N1;i,j along a subset corresponding to a clopen subset in
V (1; i, j) which is a union of subsets in V(1; i, j). Since the partitions V(1; 1) and V(1; 1, 1) are finite,
and intersections always happen over Reeb neighborhoods within the same range of 1 ≤ i ≤ κ1, the
procedure of defining a partial transversal stops after a finite number of steps.

Step 3 (Inductive step) Suppose for all (1, 1) ≤ (i′, j′) < (i, j) a stable transversal has been defined
on N1;i′,j′ , and numbers 1, . . . , p were assigned to sections in the nice stable transversals so that
on each neighborhood, there is at most one section which is assigned a given number s, and two
sections are numbered by the same number s in two different neighborhoods if and only if these
sections intersect, i.e. X 1;i,j

s ∩ X 1;k,m
c 6= ∅ if and only if s = c. Then two cases are possible.

Case 1. There is a partial transversal X (1; i, j) on N1;i,j . Then use [18, Proposition 17.4] to complete
X (1; i, j) starting to number the newly defined sections in X (1; i, j) from p+ 1.

We now have to repeat the procedure of defining a partial transversal of Step 2. We note that it
is enough to consider (k,m) > (i, j), since for all (k,m) < (i, j) such that N1;k,m ∩ N1;i,j 6= ∅,
the transversal X (1; k,m) has already been defined, and, moreover, possibly gave rise to a subset
of sections in a partial transversal X (1; i, j). This ensures that a section X 1;i,j

s in the transversals
X (1; i, j) which intersect the Reeb neighborhood N1;k,m, (k,m) < (i, j), coincides on this intersection
with a section X 1;k,m

s , as required.

So suppose there exists (k,m) > (i, j) such that N1;k,m ∩ N1;i,j 6= ∅. If X 1;i,j
s ∩ N1;k,m 6= ∅, then

there exists z ∈ K1;i,j and a chart Uiz such that

X 1;i,j
s ⊂ Z(ξs, iz,W (1; i)z) and γ(V (1; k,m)) ⊂W (1, i)(63)

for an appropriate homeomorphism γ associated to a path with the same name. Condition (63)
makes sure that a section X 1;k,m

s is extended to a maximal subset of N1;k,m, and in particular to
the corresponding subset of N1;k,m. We define

X 1;k,m
s = Z(ξs, iz,W (1; i)z) ∩N1;k,m,

and repeat the procedure for every Reeb neighborhood intersecting N1;i,j . We may need to repeat
the procedure of defining a partial nice stable transversal for N1;k′,m′ such that N1;k′,m′∩N1;k,m 6= ∅,
and so on. By an argument similar to the one in Step 2, the procedure stops after a finite number
of repetitions.
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Case 2. There is no partial transversal on N1;i,j . Then implement Step 1 and Step 2 with (1; i, j)
instead of (1; 1, 1), starting to number sections in X (1; i, j) from p+ 1.

Since V(1; i) is a finite partition, and 1 ≤ i ≤ κ`, the procedure stops after a finite number of
steps. �

9. Construction of the transverse Cantor foliation

In this section, we discuss how to obtain the transverse Cantor foliations H` from the nice stable
transversal constructed in Section 8. The foliation H1 is constructed in Section 9.1. Then in Sec-
tion 9.2, we show that H1 induces Cantor foliations H` on families of Reeb neighborhoods associated
with smaller coding partitions, which is the key to obtaining the presentation (2) in Theorem 1.1.

9.1. Stable triangulations. The constructions in Section 8.2 yield a nice stable transversal

(64) X =
⋃
{X (1; i, j) | 1 ≤ i ≤ κ1 , 1 ≤ j ≤ κ1,i}

on M, whose restriction to each Reeb neighborhood N1;i,j yields a (d1, d2)-net for each path-

connected component of N1;i,j . The net X ∩ K̂1;i,j determines a triangulation of K̂1;i,j , using
the circumscribed sphere method as given in [18, Sections 12,17]. The vertices of the triangulation
are contained in the net, and the transverse stability property for X implies that the triangulations
so obtained are isomorphic for each path-connected component of N1;i,j . As remarked earlier, the
leaves of a Cantor foliation on N1;i,j are defined by identifying points with the same barycentric
coordinates in this simplicial decomposition. This procedure is described in detail in [18, Section 11].

In this section, we take care of a technical issue that arises in this construction of the Cantor foliation.
Since taking barycentric coordinates in a simplex only makes sense if all vertices of a simplex are
contained in N1;i,j we have to restrict to a subset of N1;i,j . In addition, we have to make sure that
after shrinking, the new Reeb neighborhoods still cover M. This is achieved if for each w ∈ V (1; i, j)
the restricted neighborhood contains the leafwise ball BF (τ(w), θ1).

PROPOSITION 9.1. A Reeb neighborhood N1;i,j associated to a clopen set V (1; i, j) contains a

foliated neighborhood N̂1;i,j with the following properties.

(1) for every w ∈ V (1; i, j) we have BF (τ(w), θ1) ⊂ N̂1;i,j.

(2) N̂1;i,j ∩K1;i,j is the union of simplices of maximal dimension n for the simplicial decompo-
sition of K1;i,j associated to the nice stable transversal X (1; i, j).

(3) N̂1;i,j is transversely stable; that is, for every path-connected component K ⊂ N1;i,j with

τ(w) ∈ K, the points X 1;i,j
i0
∩K, . . . ,X 1;i,j

ip
∩K are vertices of a p-simplex for 1 ≤ p ≤ n, if

and only if X 1;i,j
i0
∩K1;i,j , . . . ,X 1;i,j

ip
∩K1;i,j are vertices of a p-simplex.

Proof. The intersection X ∩ K̂1;i,j is a (d1, d2)-net for K̂1;i,j , with d2 ≤ λF/25. Thus, for each
y ∈ X (1; i, j) with w = π(y), there is a Voronoi cell CXw (y) ⊂ DF (y, d2). A simplex in the simplicial
decomposition associated to the ordered transversal X which has y as one of the vertices, is contained
in the star-neighborhood SXw (y). Then by Lemma 4.11 for this case, we have SXw (y) ⊂ DF (y, 3d2).

Therefore, for each simplex such that one of its vertices is contained in a ball BF (y, θ1 + δFU ), the
entire simplex is contained in the ball BF (y, θ1 + δFU + 4d2). From the estimates δFU < λF/5 and
d2 ≤ λF/25 we have δFU + 4d2 < λF/2 so that BF (y, θ1 + δFU + 4d2) ⊂ BF (y, θ1 + λF/2).

For v(1; i, j) ∈ V (1; i, j) with y = x(1; i, j) = τ(v(1; i, j)), the ball BF (y, θ1 + δFU ) ⊂ K̂1;i,j where

K̂1;i,j is the closure of the plaque-saturation of BF (y, θ1 + λF ).

Let Kt
1;i,j denote the closed triangulated set obtained from the union of all simplices of maximal

dimension n associated to the net X∩K̂1;i,j which intersect K1;i,j . It then follows that Kt
1;i,j ⊂ K̂1;i,j

so the map Φi given in Theorem 7.3 is defined on Kt
1;i,j × V (1; i, j).
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Set N̂1;i,j = Φi
{
Kt

1;i,j × V (1; i, j)
}

for 1 ≤ i ≤ κ1 and 1 ≤ j ≤ κ1;i.

The inclusions BF (x(1; i, j), θ1 + δFU ) ⊂ K1;i,j implies that these sets form a cover of M, exactly as

in the proof of Theorem 7.3. The transverse stability of the sets N̂1;i,j follows from the transverse
stability of the transversals X (1; i, j). �

We have a clopen set V1, and a clopen partition V (1; i, j) of V1 with associated system of Reeb

neighborhoods N̂1;i,j , 1 ≤ i ≤ κ1, 1 ≤ j ≤ κ1;i defined in Proposition 9.1. Since each path-

connected component of N̂1;i,j is a union of simplices, and the simplicial decomposition is stable in
the transverse direction, the following is well-defined.

DEFINITION 9.2. A Cantor foliation H1;i,j on N̂1;i,j is defined as follows: two points x, y ∈ N̂1;i,j

are equivalent, x ≈1;i,j y if and only if the following conditions are satisfied:

(1) if x ∈ ∆(x0, x1, . . . , xp) where ∆(x0, . . . , xp) is a p-simplex with vertices xk ∈ X 1;i,j
ik

, then

y ∈ ∆(y0, . . . , yp) with yk ∈ X 1;i,j
ik

, the same section of X (1; i, j),
(2) x and y have the same barycentric coordinates in ∆(x0, . . . , xp) and ∆(y0, . . . , yp) respec-

tively.

For a point x ∈M, H1;i,j(x) denotes a leaf of H1;i,j through x.

If two neighborhoods N̂1;i,j and N̂1;k,m intersect, then the foliations H1;i,j and H1;k,m match on
the intersection, since the sections of transversals X (1; i, j) and X (1; k,m) are continuations of each
other, and the ordering of sections in nice stable transversals matches as well. We extend H1;i,j on
M in the following way.

DEFINITION 9.3. Let M be a matchbox manifold, and N̂1;i,j be a Reeb neighborhood with a
Cantor foliation ≈1;i,j. We define ≈1;i,j on M in the following way: let x, y ∈M. Then x ≈1;i,j y

if either x, y ∈ N̂1;i,j and x ≈1;i,j y, or x, y /∈ N̂1;i,j and x = y.

Thus the equivalence classes of ≈1;i,j coincide with leaves of H1;i,j on N̂1;i,j , and points outside of

N̂1;i,j have only themselves in their equivalence class.

DEFINITION 9.4. Let M be a matchbox manifold, and let ≈1;i,j, 1 ≤ i ≤ κ1, 1 ≤ j ≤ κ1;i be a
family of equivalence relations on M. For any x, y ∈ M define x ≈1 y if and only if there exists a
finite collection of points z1, z2, . . . , zk such that

x ≈1;i,j z1 ≈1;i1,j1 z2 ≈ · · · ≈ zk ≈1;ik,jk y

A Cantor foliation H1 has equivalence classes of ≈1 as leaves. For a point x ∈M, H1(x) denotes a
leaf of H1 through x.

It is straightforward that ≈1 is reflexive, symmetric and transitive. Geometrically, this relation

identifies x ∈ N̂1;i,j and y ∈ N̂1;k,m if and only if the leaves H1;i,j(x),H1;i1,j1(z1), . . . ,H1;ik,jk(zk)
form an intersecting chain, and H1;ik,jk(zk) 3 y. The equivalence relation ≈1 determines the Cantor
foliation H1.

Thus, by Propositions 8.1 and 9.1, there is a system of Reeb neighborhoods N̂1;i,j , 1 ≤ i ≤ κ1,

1 ≤ j ≤ κ1;i, and a Cantor foliation H1;i,j on each N̂1;i,j such that the Cantor foliations match on
the intersections of neighborhoods, and their union equals M. These Cantor foliations combine to
yield the Cantor foliation H1 on M.

9.2. Families of nested Cantor foliations. In this section, we give an inductive procedure for
restricting the foliation H1 to the Reeb neighborhoods N`;i,j defined using the partitions defined in
Proposition 6.5.
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PROPOSITION 9.5. There exists a nested sequence of Cantor foliations H`, for all ` ≥ 1, with H1

given as above, such that each Reeb neighborhood N`;i,j associated to a clopen set V (`; i, j) contains

a foliated neighborhood N̂`;i,j with the following properties.

(1) for every w ∈ V (`; i, j) we have BF (τ(w), θ`) ⊂ N̂`;i,j.

(2) N̂`;i,j ∩K`;i,j is the union of simplices of maximal dimension n for the simplicial decompo-
sition of K`;i,j associated to the nice stable transversal X (`; i, j).

(3) N̂`;i,j is transversely stable; that is, for every path-connected component K ⊂ N`;i,j with

τ(w) ∈ K, the points X `;i,ji0
∩K, . . . ,X `;i,jip

∩K are vertices of a p-simplex for 1 ≤ p ≤ n, if

and only if X `;i,ji0
∩K`;i,j , . . . ,X `;i,jip

∩K`;i,j are vertices of a p-simplex.

(4) Each N̂`;i,j has a Cantor foliation H`;i,j such that they defined a Cantor foliation H` on M.
(5) The identity map on M induces an inclusion of leaves of H` into the leaves of H`−1.
(6) For each x ∈M and ` ≥ 1, the leaves of H` containing x are nested Cantor sets. Moreover,

diamM(H`(x)) ≤ δ̂`.

Proof. The idea of the inductive construction of H` is to restrict the given foliation H`−1 on the

Reeb neighborhoods N̂`−1;i,j to the Reeb neighborhoods N`;i,j , and then modify the neighborhoods

N`;i,j to obtain the neighborhoods N̂`;i,j , as in the proof of Proposition 9.1. The procedure is
straightforward, though care is needed, to show that the restricted Cantor foliations are nested.

Let ` > 1, and assume there is given a Cantor foliation H`−1 on M satisfying the conditions of
Proposition 9.5 for `− 1.

We also assume there is given a collection of nested clopen sets as given by Proposition 6.5. Recall
that τ(V`)∩L is a (λ1(ε`), θ`)-net for each leaf L ⊂M, and in particular for the leaf L0. Define the
constants R` = 4θ` + 2λF and R′` = 2θ` + λF . Then we have Reeb neighborhoods which cover M,
defined as in Section 8.2 using this data, so that

M =
⋃
{N`;i,j | 1 ≤ i ≤ κ`; 1 ≤ j ≤ κ`;i}(65)

=
⋃
{N`;i,j,k | 1 ≤ i ≤ κ`; 1 ≤ j ≤ κ`;i; 1 ≤ k ≤ κ`;i,j} .(66)

For each 1 ≤ i ≤ κ` and 1 ≤ j ≤ κ`;i, the inclusion N`;i,j ⊂M defines the foliation H` by restriction.
However, it is necessary that this restriction is of the form in Definition 7.1. This is guaranteed by
the following technical result.

LEMMA 9.6. For each 1 ≤ i ≤ κ` and 1 ≤ j ≤ κ`;i, with

(67) N`;i,j ⊂
⋃

N`−1;k,m

where k and m run over a subset of the indexing sets of W(` − 1) and V(` − 1; k), the following
condition is satisfied:

(A) For each z ∈ K`;i,j∩T , if Z(0, iz, V (`; i, j)z)∩N`−1;k,m 6= ∅, then Z(0, iz, V (`; i, j)z) ⊂ N`−1;k,m.

Proof. Since the sets of V(`; i), 1 ≤ i ≤ κ`, partition V` = V (`−1, 1, 1), the condition (A) is satisfied
for each V (`; i, j). Also this implies that for every z ∈ K`−1;1,1 we have V (`; i, j) ⊂ V` ⊂ Dom(hz),
which means that (A) is satisfied for all z′ ∈ K`;i,j ∩N`−1;1,1 ∩ T .

Suppose N`;i,j∩N`−1;k,m 6= ∅. We assume for now that N`;i,j has a single intersection with N`−1;k,m,
i.e. for each path-connected component K of N`;i,j the intersection K ∩N`−1;k,m is path-connected.

Let z ∈ K ∩ N`−1;k,m ⊂ K ′, where K ′ is a path-connected component of N`−1;k,m. Recall from

conditions (47) and (48) that the restriction diamX(V (`; i, j)) < δ̂` ensures that for every translation
of V (`; i, j) along a path γ of length at most R`, points in V (`; i, j) do not move apart further
than the constant ε`, which was chosen to be smaller than the distance between any two sets in
the partition V(` − 1; k). This means that if γ(V (`; i, j)) hits V`−1, then the image γ(V (`; i, j)) is
contained in one of the sets of the clopen partition V(`− 1; k) of V`−1.
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Let γ′ be a path between the point K ′ ∩ τ(V (`− 1; k,m)) and z. Then

γ(V (`; i, j)) ⊂ V (`− 1; k,m) ⊂ Dom(γ′)

and the condition (A) is satisfied for the section τ(V (`; i, j)z) = τ(γ′(γ(V (`; i, j)))).

Next, suppose that N`;i,j has multiple intersections with N`−1;k,m, as illustrated in Figure 4, where
N`;i,j intersects Reeb neighborhoods N`−1;k,m,N`−1;k′,m′ and N`−1;k′′,m′′ .

Figure 4. N`;i,j cannot intersect the neighborhoods N`−1;k,m and N`−1;k′,m′ as above.

As the bases of the Reeb neighborhoods are plaque saturated, by compactness the number of possible
intersections is finite. That is, for each path-connected component K ⊂ N`;i,j the set K ∩N`−1;k,m
has a finite number of path-connected components. Then the proof is completed by repeating the
above argument for each intersection. �

Lemma 9.6 allows us to define a nice stable transversal on each Reeb neighborhood N`;i,j as follows.

DEFINITION 9.7. Let X (` − 1; k,m) be a family of nice stable transversals defined on Reeb
neighborhoods N`−1;k,m associated to the coding partition V(` − 1; k), and let N`;i,j be a collection
of Reeb neighborhoods associated to the coding partition V(`; i).

Define X (`; i, j) as follows: for each X `−1;k,mξ such that X `−1;k,mξ ∩N`;i,j 6= ∅, define

X `;i,jξ = X `−1;k,mξ ∩N`;i,j .

Now use argument similar to the proof of Proposition 9.5 to restrict each Reeb neighborhood N`;i,j

to a Reeb neighborhood N̂`;i,j where each connected component is the union of simplices in the
simplicial decomposition associated to the transversal X`. Then use an argument similar to those
in Section 9.1 to define a family of equivalence relations ≈`;i,j on M, and to obtain an equivalence
relation ≈` and a Cantor foliation H` on M.

The claims (5) and (6) in Proposition 9.5 follow from the construction of H`. �

10. Inverse limit approximations of matchbox manifolds

In this section we complete the proof of Theorem 1.1. Namely, having established a sequence of
nested equivalence relations≈` on a matchbox manifold M, we prove that each quotientM` = M/ ≈`
is a topological branched manifold, and M ∼= lim←−{q`′` : M`′ → M`}, where q`′,` is map induced by
inclusions of equivalence classes of ≈`′ into equivalence classes of ≈`.

THEOREM 10.1. Let M be a minimal matchbox manifold with a Cantor foliation H` and asso-
ciated equivalence relation ≈`. Then the quotient M` = M/ ≈` is a compact connected metrizable
space. For each x ∈M, an open neighborhood of x is homeomorphic to a finite union of open disks
in Rn modulo identifications. Thus, M` is a topological branched manifold.
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Proof. We first show that the quotient M` = M/ ≈` is a compact connected metrizable space.

Since equivalence classes of ≈` are closed, for every closed set U ⊂ M its saturation S(U) by
equivalence classes of ≈` is closed. Therefore, ≈` is a closed equivalence relation [14].

Since M is compact and Hausdorff, it is locally compact and so it is completely regular [41, p.42].
Since ≈` is a closed equivalence relation, its graph is closed in M×M [14, p.82]. It follows that M`

is Hausdorff. The quotient M` is compact and connected since M is compact and connected. It is
a continuous image of a compact metric space M, and so is metrizable.

Since each x ∈ M is contained in at most a finite number of Reeb neighborhoods N̂`;i,j , a point
[x]` ∈M` has a neighborhood which is a finite union of open disks modulo identifications. Although
leaves of M are Riemannian manifolds, there is no canonical way to put a differentiable structure
on M`, and therefore, it is a topological branched manifold (compare [65]). �

Denote by q` : M → M/ ≈` the projection map. Let `′ > `, and M`′ = M/ ≈`′ and M` = M/ ≈`
be quotient branched manifolds. We are going to define bonding maps between them.

LEMMA 10.2. For `′ > `, there is a natural continuous map q`′` : M`′ → M` such that q`′ =
q` ◦ q`′,`.

Proof. Note that for `′ > ` we have the following diagram

M
id //

q`′

��

M

q`

��
M`′ q`′`

//______ M`

so we set q`,`′ : M/ ≈`′→M/ ≈`: x̄′ = [x]`′ → [x]`. By Lemma 9.6 the equivalence classes of ≈`′ are
subsets of equivalence classes of ≈`, and so this map is well-defined. It is straightforward that q`′`
is continuous. �

Recall that the inverse limit of the directed systems of maps {q`,`+1 : M`+1 →M` | ` ≥ `0} is the
topological space

(68) S{q`,`′ : M`′ →M`} ≡ {ω = (ω`0 , ω`0+1, . . .) ∈
∞∏
`≥`0

M` | q`,`+1(ω`+1) = ω`}

THEOREM 10.3. There is a homeomorphism q : M→ S{q`,`′ : M`′ →M`} of foliated spaces.

Proof. For x ∈M define

q(x) = ([x]1, [x]2, . . .) ∈ S{q`,`′ : M`′ →M`}

which is well-defined by Lemma 10.2. The map to each factor, x 7→ [x]` = q`(x) is continuous, hence
q is continuous.

Let x, y ∈M such that q(x) = q(y). Then q`(x) = q`(y) for all ` ≥ 1. That is, x ≈` y for all ` ≥ 1.

This means that x and y are always in the same leaf of H`. Proposition 9.5.6 shows that the
maximal diameter of H`-equivalence classes tend to zero as `→∞. It follows that x and y cannot
be separated by an open set, and, therefore, x = y.

Surjectivity of q follows again from the fact that equivalence classes of ≈` are nested, and their
maximal length tends to zero. �

This completes the proof of Theorem 1.1.
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[16] A. Candel and L. Conlon, Foliations I, Amer. Math. Soc., Providence, RI, 2000.
[17] A. Clark and S. Hurder, Homogeneous matchbox manifolds, Transactions AMS, 365:3151–3191, 2013,

arXiv:1006.5482v2.

[18] A. Clark, S. Hurder and O. Lukina, Voronoi tessellations for matchbox manifolds, Topology Proceedings,
41:167–259, 2013, arXiv:1107.1910v2.

[19] A. Clark, S. Hurder and O. Lukina, Classifying matchbox manifolds, preprint, 2013, arXiv:1311.0226.

[20] M. do Carmo, Riemannian geometry, Translated from the second Portuguese edition by Francis Flaherty,
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