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Abstract. A matchbox manifold is a foliated space with totally disconnected transversals, and

an equicontinuous matchbox manifold is the generalization of Riemannian foliations for smooth
manifolds in this context. In this paper, we develop the Molino theory for all equicontinuous

matchbox manifolds. Our work extends the Molino theory developed in the work of Álvarez López

and Moreira Galicia which required the hypothesis that the holonomy actions for these spaces
satisfy the strong quasi-analyticity condition. The methods of this paper are based on the authors’

previous works on the structure of weak solenoids, and provide many new properties of the Molino
theory for the case of totally disconnected transversals, and examples to illustrate these properties.

In particular, we show that the Molino space need not be uniquely well-defined, unless the global

holonomy dynamical system is stable, a notion defined in this work. We show that examples in the
literature for the theory of weak solenoids provide examples for which the strong quasi-analytic

condition fails. Of particular interest is a new class of examples of equicontinuous minimal Cantor

actions by finitely generated groups, whose construction relies on a result of Lubotzky. These
examples have non-trivial Molino sequences, and other interesting properties.

1. Introduction

A smooth foliation F of a connected compact manifold is a smooth decomposition of M into leaves,
which are connected submanifolds of M with constant leaf dimension n and codimension q, where
m = n+ q is the dimension of M . This structure is defined by a finite covering of M by coordinate
charts whose image is the product space (−1, 1)n× (−1, 1)q ⊂ Rm, such that the leaves are mapped
into linear planes of dimension n, and the transition functions between charts preserve these planes.
The space (−1, 1)q is called the local transverse model for F . A smooth foliation F is said to be
Riemannian, or bundle-like, if there exists a Riemannian metric on the normal bundle Q → M
which is invariant under the transverse holonomy transport along the leaves of F . This condition
was introduced by Reinhart in [52], and is a very strong assumption to impose on a foliation. The
Molino theory for Riemannian foliations gives a complete structure theory for the geometry and
dynamics of this class of foliations on compact smooth manifolds [34, 47, 48, 49].

An n-dimensional foliated space M, as introduced by Moore and Schochet in [50], is a continuum
- a compact connected metrizable space - with a continuous decomposition of M into leaves, which
are connected manifolds with constant leaf dimension n. Moreover, the decomposition has a local
product structure analogous to that for smooth foliations [9, 50]; that is, every point of M has an
open neighborhood homeomorphic to the open subset (−1, 1)n ⊂ Rn times an open subset of a
Polish space X, which is said to be the local transverse model. Thus, M has a foliation denoted by
FM whose leaves are the maximal path-connected components, with respect to the fine topology on
M induced by the plaques of the local product structure.

An equicontinuous foliated space is the topological analog of a Riemannian foliation. In this case, the
transverse holonomy pseudogroup associated to the foliation is assumed to act via an equicontinuous
collection of local homeomorphisms on the transverse model spaces. The transverse holonomy maps
are not assumed to be differentiable, so there is no natural normal bundle associated to a foliated
space, and the standard methods for showing an analog of the Molino theory do not apply. In a series
of papers, Álvarez López and Candel [4, 5], and Álvarez López and Moreira Galicia [6] formulated
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a topological Molino theory for equicontinuous foliated spaces, which is a partial generalization of
the Molino theory for smooth Riemannian foliations. They formulated the notion of strongly quasi-
analytic “regularity” for a foliated space, which is a condition on the pseudogroup associated to the
foliation, as discussed in Section 9. The topological Molino theory in [6] applies to foliated spaces
which satisfy the strongly quasi-analytic condition.

The topological Molino theory for an equicontinuous foliated space M with connected transversals
essentially reduces to the smooth theory, by the results of [5, 6, 7]. In contrast, when the transversals
to FM are totally disconnected, and we then say that M is a matchbox manifold, the development
of a Molino theory in [6] does not address several key issues, which can be seen as the result of
using techniques developed for the smooth theory in the context of totally disconnected spaces. In
this work, we apply a completely different approach to developing a topological Molino theory for
the case of totally disconnected transversals. The techniques we use were developed in the authors’
works [19, 20, 21]. They are used here to develop a topological Molino theory for matchbox manifolds
in full generality, and to reveal the far greater complexity of the theory in this case. In particular,
we show by our results and examples that the classification of equicontinuous matchbox manifolds
via Molino theory is far from complete.

We recall in Section 2 the definitions of a foliated space M, and of a matchbox manifold, which
is a foliated space whose local transverse models for the foliation FM are totally disconnected.
The terminology “matchbox manifold” follows the usage introduced in continua theory [1, 2, 3]. A
matchbox manifold with 2-dimensional leaves is a lamination by surfaces, as defined in [30, 42]. If
all leaves of M are dense, then it is called a minimal matchbox manifold. A compact minimal set
M ⊂ M for a foliation F on a manifold M yields a foliated space with foliation FM = F|M. If
the minimal set is exceptional, then M is a minimal matchbox manifold. It is an open problem
to determine which minimal matchbox manifolds are homeomorphic to exceptional minimal sets of
Cr-foliations of compact smooth manifolds, for r ≥ 1. For example, the issues associated with this
problem are discussed in [11, 13, 35].

It was shown in [14, Theorem 4.12] that an equicontinuous matchbox manifold M is minimal; that
is, every leaf is dense in M. This result generalized a result of Auslander [8] for equicontinuous group
actions. Examples of equicontinuous matchbox manifolds are given by weak solenoids, which are
discussed in Section 3. Briefly, a weak solenoid SP is the inverse limit of a sequence of covering maps
P = {p`+1 : M`+1 → M` | ` ≥ 0}, called a presentation for SP , where M` is a compact connected
manifold without boundary, and p`+1 is a finite-to-one covering space. The results of [14] reduce the
study of equicontinuous matchbox manifolds to the study of weak solenoids:

THEOREM 1.1. [14, Theorem 1.4] An equicontinuous matchbox manifold M is homeomorphic to
a weak solenoid.

The idea of the proof of this result is to choose a clopen transversal V0 ⊂M, then associated to the
induced holonomy action of FM on V0, one defines (see Proposition 3.4) a chain of subgroups of finite
index, G = {G0 ⊃ G1 ⊃ · · · }, where G0 is the fundamental group of the first shape approximation
M0 to M, where M0 is a compact manifold without boundary. Then M is shown to be homeomorphic
to the inverse limit of the infinite chain of coverings of M0 associated to the subgroup chain G.

The theory of inverse limits for covering spaces, as developed for example in [29, 45, 54, 55, 56, 59],
reduces many questions about the classification of weak solenoids to properties of the group chain
G associated with the presentation P. Thus, every equicontinuous matchbox manifold M admits a
presentation which determines its homeomorphism type. In Section 3.1, the notion of a weak solenoid
SP with presentation P is recalled, and the notion of a dynamical partition of the transversal space
V0 is introduced in Section 3.2. As discussed in Section 3.3, the homeomorphism constructed in
the proof of Theorem 1.1 is well-defined up to return equivalence for the action of the respective
holonomy pseudogroups [17, Section 4]. Thus, we are interested in invariants for group chains that
are independent of the choice of the chain, up to the corresponding notion of return equivalence for
group chains. This is the approach we use in this work to formulate and study “Molino theory” for
weak solenoids.
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Section 4 introduces the group chain model for the holonomy action of weak solenoids, following the
approach in [19, 20, 21]. Section 5 then recalls results in the literature about homogeneous matchbox
manifolds and the associated group chain models for their holonomy actions, which are fundamental
for developing the notion of a “Molino space”. Section 6 introduces the notion of the Ellis group
associated to the holonomy action of a weak solenoid. Ellis semigroups were developed in the works
[8, 22, 23, 24, 25], and also appeared in the work [5]. A key point of our approach is to use this
concept as the foundation of our development of a topological Molino theory.

A key aspect of the Molino space for a foliation is that it is foliated homogeneous. A continuum M
is said to be homogeneous if given any pair of points x, y ∈M, then there exists a homeomorphism
h : M → M such that h(x) = y. A homeomorphism ϕ : M → M preserves the path-connected
components, hence a homeomorphism of a matchbox manifold preserves the foliation FM of M. It
follows that if M is homogeneous, then it is also foliated homogeneous. Our first result is that every
equicontinuous matchbox manifold admits a foliated homogeneous “Molino space”.

THEOREM 1.2. Let M be an equicontinuous matchbox manifold, and let P be a presentation of
M, such that M is homeomorphic to a solenoid SP . Then there exists a homogeneous matchbox

manifold M̂ with foliation F̂ , called a “Molino space” of M, and a compact totally disconnected
group D (the discriminant group for P as defined in Section 6.3) such that there exists a fibration

(1) D −→ M̂
q̂−→M ,

where the restriction of q̂ to each leaf in M̂ is a covering map of some leaf in M. We say that (1)
is a Molino sequence for M.

The construction of the spaces in (1) is given in Section 7. The homeomorphism type of the fibration
(1) depends on the choice of a homeomorphism of M with a weak solenoid SP , and this in turn
depends on the choice of the presentation P associated to M and a section V0 ⊂M, as discussed in
Section 3.3. Examples show that the topological isomorphism type of D may depend on the choice
of the section V0, and the sequence (1) need not be an invariant of the homeomorphism type of M.
This motivates the introduction of the following definition.

DEFINITION 1.3. A matchbox manifold M is said to be stable if the topological type of the
sequence (1) is well-defined by choosing a sufficiently small transversal V0 to the foliation FM of M.
A matchbox manifold M is said to be wild, if it is not stable.

In Section 7.4 we discuss the relation between the above definition, and the notion of a stable group
chain as given in Definition 7.5. Our next result concerns the existence of stable matchbox manifolds.

PROPOSITION 1.4. Let M be an equicontinuous matchbox manifold, and suppose M admits a
transverse section V0 with presentation P, such that the group D in the Molino sequence (1) is finite.
Then M is stable.

Proposition 1.4 is proved in Section 7. Theorem 10.8 shows that every separable Cantor group D can
be realized as the discriminant of a stable weak solenoid, but we do not know of a general criteria
for when a weak solenoid whose discriminant is a Cantor group must be stable.

The Molino space M̂ is always a homogeneous matchbox manifold. By the results in [20], M is
homogeneous if and only if for some section V0, the fibration (1) has trivial fibre D. Each leaf of a
homogeneous foliated space has trivial germinal holonomy, and thus the properties of holonomy for
a matchbox manifold M are closely related to its non-homogeneity. Section 8 considers the germinal
holonomy groups associated to the global holonomy action for a matchbox manifold.

Of special importance is the notion of locally trivial germinal holonomy, introduced by Sacksteder and
Schwartz [58], and used in the work by Inaba [36, 37] in his study of Reeb stability for non-compact
leaves in smooth foliations. A leaf Lx in a matchbox manifold M, which intersects a transversal
section V0 at a point x, has locally trivial germinal holonomy, if there is an open neighborhood
U ⊂ V0 of x, such that the holonomy pseudogroup acts trivially on U . A leaf with locally trivial
germinal holonomy has trivial germinal holonomy, but the converse need not be true. In particular,
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we prove the following result in Section 8. We say that a leaf Lx has finite π1-type if it’s fundamental
group is finitely generated. A matchbox manifold M has finite π1-type if all leaves in the foliation
FM have finite π1-type.

LEMMA 1.5. Let M be an equicontinuous matchbox manifold with finite π1-type. Let Lx be a leaf
with trivial germinal holonomy. Then Lx has locally trivial germinal holonomy.

The statement of Lemma 1.5 is implicit in the authors’ work [21]. The notion of locally trivial
germinal holonomy, and the germinal holonomy properties of equicontinuous matchbox manifolds,
turns out to be important in the study of topological Molino theory. Since a weak solenoid is
a foliated space, by a fundamental result of Epstein, Millet and Tischler [26] it contains leaves
with trivial germinal holonomy. A Schori solenoid is an example of a weak solenoid, and was first
constructed in [59]. Each leaf in the foliation of a Schori solenoid is a surface of infinite genus.

PROPOSITION 1.6. The Schori solenoid contains leaves which have trivial germinal holonomy,
but do not have locally trivial germinal holonomy.

Proposition 1.6 is proved in Section 9. Proposition 1.6 shows that the condition of finite generation
of the fundamental group is essential for the conclusion of Lemma 1.5. Another result, proved in
Section 8, relates the existence of leaves with non-trivial holonomy with non-triviality of the fibre D
in the Molino sequence (1).

THEOREM 1.7. Let M be an equicontinuous matchbox manifold. If M has a leaf with non-trivial
holonomy, then the Molino sequence (1) is non-trivial for any choice of section V0 ⊂M.

The example in Fokkink and Oversteegen [29] and new examples in Section 10 show that non-trivial
holonomy is not a necessary condition for (1) to be non-trivial, as one can construct non-homogeneous
equicontinuous matchbox manifolds with simply connected leaves.

Álvarez López and Moreira Galicia [6] investigated Molino theory in the case when the closure of
the pseudogroup of an equicontinuous foliated space (in the compact-open topology) satisfies the
condition of strong quasi-analyticity (SQA). Geometrically, this means that the pseudogroup action
is locally determined, that is, if a holonomy map acts trivially on an open subset of it’s domain,
then it is trivial everywhere on it’s domain. A natural problem is to determine which classes of
equicontinuous matchbox manifolds are SQA. This question is studied in Section 9.

Note that for equicontinuous actions on Cantor sets the compact-open topology, the uniform topology
and the topology of pointwise convergence coincide. The following result is proved in Section 9. The
set Vn in the statement below is a partition set of V0 ⊂ T as defined in Proposition 3.4.

THEOREM 1.8. Let M be an equicontinuous matchbox manifold which has finite π1-type. Then
there exists a transverse section V0, such that the action of the holonomy pseudogroup on this section
is SQA. In addition, if V0 can be chosen so that the fibre D in the Molino sequence (1) is finite, then
there exists a section Vn ⊂ V0 such that the closure of the pseudogroup action on Vn is SQA as well.

On the other hand, there are equicontinuous matchbox manifolds which do not satisfy SQA condition.

THEOREM 1.9. For every transverse section V0 in the Schori solenoid, the holonomy pseudogroup
associated to the section is not SQA.

Theorem 1.2 proves that the Molino space exists for any matchbox manifold M, including those
who do not admit section with SQA holonomy pseudogroup. Thus, for equicontinuous matchbox
manifolds, our results are more general than in [6].

Analyzing the results of Lemma 1.5 and Theorem 1.8, one concludes that the condition of finite
π1-type, imposed on a matchbox manifold M, and the condition of finiteness of the fibre D in the
Molino sequence (1), are quite strong and force the holonomy pseudogroup to possess various nice
properties, such as locally trivial germinal holonomy and the SQA condition.
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It is natural to ask how diverse is the class of examples with finite fibreD in the Molino sequence? The
authors’ work [20] constructed new examples of equicontinuous matchbox manifolds with finite fibre
D, which are weakly normal, that is, restricting to a smaller transverse section one can arrange that
the Molino sequence (1) has a trivial fibre. One of these examples is also described in Example 8.6
in this paper. Rogers and Tollefson [57] constructed an example of a weak solenoid which turns out
to be stable and have finite fibre D, where the non-triviality of D is due to the presence of a leaf
with non-trivial holonomy. This example illustrates Proposition 1.4 and Theorem 1.7.

The concluding Section 10 gives the construction of a variety of new classes of examples which
illustrate the concepts and results of this work. We first give in Section 10.1 a reformulation of the
constructions of the discriminant groups in Section 6, in terms of closed subgroups of inverse limit
groups, and is analogous with a construction attributed to Lenstra in [29]. This alternate formulation
is of strong interest in itself, as it gives a deeper understanding of the Molino spaces introduced in
this work. This construction can be applied to the examples constructed by Lubotzky in [41] showing
the existence of various products of torsion groups in the profinite completion of torsion-free groups,
as recalled in Section 10.4. We then give three applications of these results, which are included in
Section 10.5. The first construction is based on the conclusions of Theorem 10.4.

THEOREM 1.10. Fix an integer n ≥ 3. Then there exists a finite index, torsion-free subgroup
G ⊂ SLn(Z) of the n × n integer matrices, such that given any finite group F of cardinality |F |
which satisfies 4(|F |+ 2) ≤ n, there exists an irregular group chain GF in G with the properties:

(1) The discriminant group of GF is isomorphic to F ;
(2) The group chain GF is stable, with constant discriminant group isomorphic to F ;

(3) The kernel K(G ĝF ) of each conjugate G ĝF of this group chain is trivial.

The terminology used in Theorem 1.10 will be explained in later sections, where we will show that
given such a group chain, one can construct matchbox manifolds with the following properties:

COROLLARY 1.11. Let F be a finite group. Then there exists a non-homogeneous matchbox
manifold M such that every leaf of FM has trivial germinal holonomy, and for any sufficiently small
transverse section in M, its Molino sequence is non-trivial with fiber group D ∼= F .

Note that it follows by Theorem 1.8 that for the examples constructed in the proof of Corollary 1.11,
there is a section V ⊂ M such that the closure of the pseudogroup action on V satisfies the SQA
condition of Álvarez López and Moreira Galicia [6].

The next two constructions are based on the conclusions of Theorem 10.5 of Lubotzky. Again, the
terminology used in the statements will be explained in later sections.

THEOREM 1.12. There exists a finite index, torsion-free finitely-generated group G such that
given any separable profinite group K, there exists an irregular group chain GK in G such that:

(1) The discriminant group of GK is isomorphic to K;
(2) The group chain GF is stable, with constant discriminant group isomorphic to K.

COROLLARY 1.13. Let K be a Cantor group. Then there exists a non-homogeneous matchbox
manifold M such that, for any sufficiently small transverse section in M, its Molino sequence is
non-trivial with fiber group D ∼= K.

Finally, Theorem 10.10 gives the first examples of equicontinuous matchbox manifolds which are not
virtually regular. The virtually regular condition was introduced in the work [21], and is defined in
Definition 10.9. As the terminology suggests, this notion is related to the homogeneity properties of
finite-to-one coverings of a matchbox manifold M.

The concluding Section 10.6 lists some open problems.
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2. Equicontinuous Cantor foliated spaces

In this section, we recall background concepts about foliated spaces, and introduce the group chains
associated to their equicontinuous Cantor holonomy actions.

2.1. Equicontinuous Cantor foliated spaces. Recall that an n-dimensional matchbox manifold
M is a compact connected metrizable topological space such that every point x ∈ M has an open
neighborhood U ⊂M such that there is a homeomorphism

(2) ϕx : Ux → [−1, 1]n × Tx ,

where Tx is a totally disconnected space. The homeomorphism ϕx is called a local foliation chart,
and the space Tx is called a local transverse model. As usual in foliation theory, one can choose a
finite atlas U = {(ϕi, Ui)}1≤i≤ν of local charts, such that the intersections of the path-connected

components in Ux ∩Uy are connected and simply connected, and the images Ti = ϕ−1
i ({0}×Ti) are

disjoint. The leaves of the foliation FM of M are defined to be the path connected components of
M, which are then a union of the path connected components (the plaques) in the open sets Ui.

A matchbox manifold is (topologically) minimal if each leaf L ⊂M is dense in M.

We require the matchbox manifold M to be smooth; that is, the transition maps

ϕj ◦ ϕ−1
i : ϕ−1

i (U i ∩ U j)→ ϕj(U i ∩ U j)
are C∞-maps in the first coordinate x ∈ [−1, 1]n, and the restrictions to plaques depend continuously
on y ∈ Ti, in the C∞-topology on leaves, for 1 ≤ i, j ≤ ν.

Let pr2 : [−1, 1]n × Ti → Ti be the projection onto the second factor, then πi = pr2 ◦ ϕi : U i → Ti
for 1 ≤ i ≤ ν, are the local defining maps for the foliation FM. Denote by Ti,j = πi(Ui ∩ Uj)
for 1 ≤ i, j ≤ ν. Since the path-connected components of the charts are either disjoint, or have a
connected intersection, there is a well-defined change-of-coordinates homeomorphism

hi,j = πj ◦ π−1
i : Ti,j → Tj,i(3)

with domain Ti,j and range Tj,i. Let G1
F = {(hi,j ,Ti,j) | 1 ≤ i, j ≤ ν}. Denote T = T1 ∪ · · · ∪ Tν .

Then the collection of maps G1
F generates the holonomy pseudogroup GF acting on the transverse

space T. The construction and properties of GF is described in full detail in [14, Section 3].

For the study of the dynamical properties of FM, it is useful to introduce also the collection of maps
G∗F ⊂ GF , defined as follows. Let G0 ⊂ GF denote the collection consisting of all possible compositions
of homeomorphisms in G1

F . Then G∗F consists of all possible restrictions of homeomorphisms in G0

to open subsets of their domains. The collection of maps G∗F is closed under the operations of
compositions, taking inverses, and restrictions to open sets, and is called a pseudo?group in the
works [6, 44], while G∗F is called a localization of G0 in the work [6].

REMARK 2.1. The standard definition of a pseudogroup [9] requires the pseudogroup to be
closed under the operations of composition, taking inverses, restriction to open subsets, and of
combination of maps. A combination of two local homeomorphisms h1 and h2, with possibly disjoint
domains D(h1) and D(h2) and with disjoint ranges, is a homeomorphism h defined on D(h1)∪D(h2)
where h|D(h1) = h1 and h|D(h2) = h2. However, allowing such arbitrary glueings of maps is
unnatural. For example, a composition hj,k ◦ hi,j can be associated with the existence of a leafwise
path γx : [0, 1] → Lx ∈ M with γx(0) ∈ Ui and γy(1) ∈ Uk, where Lx is a leaf such that πi(x) ∈
D(hj,k ◦ hi,j). If πi(y) ∈ D(hj,k ◦ hi,j), then the path γx can be lifted to a nearby leaf Ly to a
‘parallel’ path γy with γy(0) ∈ Ui and γy(1) ∈ Uk. Thus a holonomy transformation hj,k ◦ hi,j has
a geometric meaning as the transverse transport in leaves along a leafwise path. Therefore, in the
definition of G0 and G∗F (and of a pseudo?group in [44]), one does not allow combinations of local
homeomorphisms, unless such homeomorphisms can be obtained by restrictions to open subsets of
maximal domains of elements in G0.

Let dM be a metric on M, and denote by dTi the restriction of dM to the embedded image Ti of the
transversal Ti, 1 ≤ i ≤ ν. For each 1 ≤ i ≤ ν, consider the pullback dTi of dTi along the embedding.
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Then define a metric dT on T by the following formula:

dT(x, y) =

{
dTi

(x, y), if x, y ∈ Ti for some i,
∞, otherwise.

For a homeomorphism γ ∈ G∗F , denote by D(γ) and R(γ) the domain and the range of γ respectively.

DEFINITION 2.2. The action of the pseudo?group G∗F on the transversal T is equicontinuous if
for all ε > 0 there exists δ > 0 such that for all γ ∈ G∗F , if x, x′ ∈ D(γ) and dT(x, x′) < δ, then
dT(γ(x), γ(x′)) < ε.

The following notion is used in the statement of various results in this work.

DEFINITION 2.3. A path-connected topological space X is said to have finite π1-type if the
fundamental group π1(X,x) is a finitely-generated group, for the choice of some basepoint x ∈ X. A
matchbox manifold M is said to have finite π1-type if each leaf L ⊂M is a space of finite π1-type.

2.2. Suspensions. There is a well-known construction which yields a foliated space from a group
action, called the suspension construction, as discussed in [9, Chapter 3] for example. We state this
construction in the restricted context which we use in this work.

Let X be a Cantor space, and H a finitely-generated group, and assume there is given an action
ϕ : H → Homeo(X). Suppose that H admits a generating set {g1, . . . , gk}, then there is a homomor-
phism αk : Z∗ · · · ∗Z � H of the free group on k generators onto H, given by mapping generators to
generators. Of course, the map αk will have non-trivial kernel, unless H happens to be a free group.
Next, let Σk be a compact surface without boundary of genus k. Then for a choice of basepoint
x0 ∈ Σk set G = π1(Σk, x0). Then there is a homomorphism βk : G → Z ∗ · · · ∗ Z onto the free
group of k generators. Denote the composition of these maps by Φ = ϕ ◦ αk ◦ βk to obtain the
homomorphism Φ: G = π1(Σk, x0)→ Z ∗ · · · ∗ Z→ H → Homeo(X).

Now, let Σ̃k denote the universal covering space of Σk, equipped with the right action of G by

covering transformations. Form the product space Σ̃k ×X which has a foliation F̃ whose leaves are

the slices Σ̃k × {x} for each x ∈ X. Define a left action of G on Σ̃k ×X, which for g ∈ G is given

by (y, x) · g = (y · g,Φ(g−1)(x)). For each g, this action preserves the foliation F̃ , so we obtain a

foliation FM on the quotient space M = (Σ̃k×X)/G. Note that all leaves of FM are surfaces, which
are in general non-compact.

Note that M is a foliated Cantor bundle over Σk, and the holonomy of this bundle π : M → Σk
acting on the fiber V0 = π−1(x0) is canonically identified with the action Φ: G → Homeo(X).
Consequently, if the action Φ is minimal in the sense of topological dynamics [8], then the foliation
FM is minimal. If the action Φ is equicontinuous in the sense of topological dynamics [8], then FM

is an equicontinuous foliation in the sense of Definition 2.2.

There is a variation of the above construction, where we assume that G is a finitely-presented group,
and there is given a homomorphism Φ: G → Homeo(X). In this case, it is a well-known folklore
result (for example, see [43]) that there exists a closed connected 4-manifold B such that for a choice
of basepoint b0 ∈ B, then π1(B, b0) is homeomorphic to G. Then the suspension construction can be
applied to the homomorphism Φ: π1(B, b0)→ Homeo(X), where we replace Σk above with B, and

the space Σ̃k with the universal covering B̃ of B. The resulting foliated space M will have holonomy
given by the map Φ.

In summary, the suspension construction translates results about equicontinuous minimal Cantor
actions to results about equicontinuous matchbox manifolds.

3. Weak solenoids

In this section, we first recall the construction procedure for (weak) solenoids, and describe some of
their properties. In Section 3.2, we discuss the construction from [14] which associates a group chain
to an equicontinuous matchbox manifold, which leads to a more precise statement of Theorem 1.1.
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Then in Section 3.3, we make some observations about the conclusion of Theorem 1.1 which are
important when considering the definition of the Molino space for matchbox manifolds.

3.1. Weak solenoids. Let n ≥ 1, then for each ` ≥ 0, let M` be a compact connected simplicial
complex of dimension n. A presentation is a collection P = {p`+1 : M`+1 →M` | ` ≥ 0}, where each
map p`+1 is a proper surjective map of simplicial complexes with discrete fibers, which is called a
bonding map. For ` ≥ 0 and x ∈ M`, the preimage {p−1

`+1(x)} ⊂ M`+1 is compact and discrete, so

the cardinality #{p−1
`+1(x)} <∞. For a presentation P defined in this generality, the cardinality of

the fibers of the maps p`+1 need not be constant in either ` or x.

Associated to a presentation P is an inverse limit space,

SP ≡ lim
←−
{p`+1 : M`+1 →M`}(4)

= {(x0, x1, . . .) ∈ SP | p`+1(x`+1) = x` for all ` ≥ 0 } ⊂
∏
`≥0

M` .

The set SP is given the relative topology, induced from the product (Tychonoff) topology, so that
SP is itself compact and connected.

DEFINITION 3.1. The inverse limit space SP in (4) is called a (weak) solenoid, if for each ` ≥ 0
the space M` is a compact connected manifold without boundary, and p`+1 is a proper covering map
of degree m`+1 > 1.

Weak solenoids are a generalization of 1-dimensional (Vietoris) solenoids, described in Example 3.2
below. Weak solenoids were originally considered in the papers by McCord [45], Rogers and Tollefson
[55, 57] and Schori [59], and later by Fokkink and Oversteegen [29].

EXAMPLE 3.2. Let M` = S1 for each ` ≥ 0, and let the map p`+1 be a proper covering map of
degree m`+1 > 1 for ` ≥ 0. Then SP is an example of a classic 1-dimensional solenoid, discovered
independently by van Dantzig [60] and Vietoris [61]. If m`+1 = 2 for ` ≥ 0, then SP is called the
dyadic solenoid.

Let SP be a weak solenoid as in Definition 3.1. For each ` ≥ 1, the composition

(5) q` = p1 ◦ · · · ◦ p`−1 ◦ p` : M` →M0

is a finite-to-one covering map of the base manifold M0. For each ` ≥ 0, projection onto the `-th

factor in the product
∏
`≥0

M` in (4) yields a fibration map denoted by Π` : SP →M`. For ` = 0 this

yields the fibration Π0 : SP →M0, and for ` ≥ 1 we have

Π0 = q` ◦Π` : SP →M0 .(6)

A choice of a basepoint x0 ∈M0 fixes a fiber X0 = Π−1
0 (x0), which is a Cantor set by the assumption

that the fibers of each map p`+1 have cardinality at least 2. McCord showed in [45] that (6) is a
fibre bundle over M0 with a Cantor set fibre, and the solenoid SP has a local product structure as
in (2). The path-connected components of SP thus define a foliation denoted by FP . We then have:

PROPOSITION 3.3. Let SP be a weak solenoid, whose base space M0 is a compact manifold of
dimension n ≥ 1. Then SP is a minimal matchbox manifold of dimension n with foliation FP .

Denote by G0 = π1(M0, x0) the fundamental group of M0 with basepoint x0, and choose a point
x ∈ X0 in the fibre over x0. This defines basepoints x` = Π`(x) ∈M` for ` ≥ 1.

Let y ∈ X0 be another point, and set y` = Π`(y) ∈M`, and note that y0 = x0 by construction. We
will interchangeably write y = (y`) to denote a point in X0 or SP . Let Ly denote the leaf of FP
containing y. Then the restriction Π0|Ly : Ly →M0 of the bundle projection to each path-connected
component Ly is a covering map. For g = [γ0] ∈ G0, let γ` : [0, 1] → M` be a lift of γ0 with the
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starting point γ`(0) = y`. Define a homeomorphism hg : X0 → X0 by hg(y`) = (γ`(1)). Thus there
is a representation

Φ0 : G0 → Homeo(X0) : γ → hg ,(7)

called the global holonomy map of the solenoid SP .

3.2. Dynamical partitions. It was shown in [14, Theorem 4.12] that an equicontinuous matchbox
manifold M is minimal, that is, every leaf is dense in M. This result generalizes to pseudogroups
a corresponding result of Joe Auslander for equicontinuous group actions in [8]. It follows that for
any clopen subset V0 ⊂ T, the restricted pseudo?group G∗V0

= G∗F |V0 is return equivalent to the
pseudo?group G∗F on T, where return equivalence is defined and studied in [17, Section 4]. Thus,
for the study of the dynamical properties of FM one can restrict to the study of G∗V0

. The following
result is based on the constructions in [14].

PROPOSITION 3.4. [14] Let M be a matchbox manifold with totally disconnected transversal T
and equicontinuous holonomy pseudo?group G∗F on T, let x ∈ T be a point, and let W ⊂ T be a
clopen (closed and open) neighborhood of x. Then there exists a clopen subset x ∈ V0 ⊂ W and a
descending chain of clopen sets V0 ⊃ V1 ⊃ · · · of T with {x} =

⋂
` V`, such that:

(1) The restriction G∗F |V0 is generated by a group G0 of transformations of V0.
(2) For each ` ≥ 1 the collection Q` = {g · V`}g∈G0 is a finite partition of V0 into clopen sets.
(3) We have diam(g · V`) < 2−` for all g ∈ G0 and all ` ≥ 0.
(4) The collection of elements which fix V`, that is,

Gx` = {g ∈ G0 | g · V` = V`},

is a subgroup of finite index in G0. More precisely, |G0 : Gx` | = card(Q`).

There are many choices involved in the construction of the partitions Q` and consequently the
stabilizer groups Gx` :

(1) The choice of a transverse section V0 ⊂ T, which results in the choice of the group G0.
(2) The choice of a basepoint x ∈ V0.
(3) Given V0, x and G0, there is freedom to choose clopen sets V1 ⊃ V2 ⊃ . . ., which results in

the choice of the sequence of groups G0 = Gx0 ⊃ Gx1 ⊃ Gx2 ⊃ . . ..

Thus, the algebraic and geometric data encoded by these choices must be considered up to suitable
notions of equivalence, which will be introduced in Section 4.1.

3.3. Homeomorphisms. Let M be a matchbox manifold with totally disconnected transversal
T and equicontinuous holonomy pseudo?group G∗F acting on T, let x ∈ T be a point, and let
{V`+1 ⊂ V` | ` ≥ 0} be a descending chain of clopen subsets of T with x ∈ V` for all ` ≥ 0, as
introduced in Proposition 3.4, where G0 is a group of transformations of V0, and G` denotes the
stabilizer subgroup of G0 of the set V`.

The basic idea of the proof of Theorem 1.1, is that if we choose the section V0 ⊂ M sufficiently
small and appropriately chosen, then there is a compact manifold M0 and a fibration Π′0 : M→M0

for which the inverse image (Π′0)−1(x0) = V0 where x0 = Π′0(x). Moreover, the restriction of the
map Π′0 to the leaves of FM are coverings of M0. The definition of the map Π′0 requires the highly
technical results of [15] to define a transverse Cantor foliation H0 to FM, so that the quotient space
M0 = M/H0 is a compact manifold, and then Π′0 is the projection along the leaves of the transverse
foliation H0, or better said the equivalence classes defined by the leaves of H0. Then V0 is the
H0-equivalence class of the point x ∈ V0 ⊂M.

Let V` ⊂ V0 be the clopen set in Proposition 3.4 and Gx` = {g ∈ G0 | g · V` = V`} the isotropy
subgroup of V`. Then there is a Cantor subfoliation H` of H0 such that V` is the H`-equivalence
class of x. Moreover, there is a quotient map Π′` : M → M/H` ≡ M` where is M` is identified
with the covering of M0 associated to the subgroup G` ⊂ G0 = π1(M0, x0). Note that the fiber
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(Π′`)
−1(x0) = V` and the monodromy action of G0 on V0 partitions V0 into the translates of V`.

There is then a quotient covering map q` : M` →M0, and as in (6), we have

Π′0 = q` ◦Π′` : M→M0 .(8)

For each ` ≥ 0 let p`+1 : M`+1 → M` be the quotient map defined by expanding the equivalence
classes of M defined by H`+1 to the equivalence classes by H`. Then we obtain a collection of
covering maps P = {p`+1 : M`+1 →M` | ` ≥ 0} which defines a weak solenoid SP . As the diameters
of the clopen partition sets V` tends to 0 as ` increases, it is then standard that the collection of
maps {Π′` : M→M` | ` ≥ 0} induces a foliated homeomorphism Π∗0 : M→ SP .

In later sections, we will also consider the presentations Pn obtained by truncating the initial n
terms in the presentation P. That is, for n ≥ 0 we have

(9) Pn = {p′`+1 : M ′`+1 →M ′` | ` ≥ 0} , where M ′` = M`+n and p′`+1 = p`+n+1 .

It is a basic property of inverse limit spaces [45, 54] that for n ≥ 1 and m ≥ 0, there is a homeo-
morphism σn : SPm+n

∼= SPn
, where the homeomorphism is given by the “shift in coordinates” map

σn in the inverse sequences defining these spaces. Also, by the same reasoning as above, there is a
foliated homeomorphism Π∗n : M→ SPn and we have a commutative diagram of fibrations:

M

Π∗n+m

��

= //M

Π∗m
��

SPn+m

σn // SPm

(10)

Note that if the presentation P is constructed using the holonomy of FM acting on the transversal
V0 ⊂ M, then for n > 0 and m ≥ 0, the map σn : SPn+m

→ SPm
satisfies σn(Vm+n) ⊂ Vn.

That is, the induced map on M sends the transversal (Π∗m+n)−1(Vm+n) ⊂ M into the transversal
(Π∗n)−1(Vn) ⊂ M. On the other hand, given a homeomorphism h : M → M there is no reason it
should map the transversal V0 into itself. In particular, the induced map

(11) (Π∗n) ◦ h ◦ (Π∗m+n)−1 : SPm+n
→ SPn

on weak solenoids need not be fiber preserving. On the other hand, as discussed in [29], there is
always a map h′ : M → M which is homotopic to h such that the induced map as in (11) maps
a clopen subset of Vm+n into a clopen subset of Vn. Thus, by allowing sufficiently large values of
n and m and choice of basepoints in the range and domain, we can always ensure that a given
homeomorphism of M induces a fiber-preserving map between the weak solenoids SPm+n and SPn .

4. Group chain models

Let SP be a weak solenoid defined by a presentation P, with basepoint x ∈ X0 ≡ Π−1
0 (x0) ⊂ SP .

For G0 = π1(M0, x0), let Φ0 : G0 → Homeo(X0) be the holonomy action in (7).

The following “combinatorial model” for the action (7) allows for a deeper analysis of the relation
between the action Φ0 and the algebraic structure of G0. For each ` ≥ 1, recall that

(12) Gx` = image {(q`)# : π1(M`, x`) −→ G0}
denotes the image of the induced map (q`)# on fundamental groups. In this way, associated to the
presentation P and basepoint x ∈ X0, we obtain a descending chain of subgroups of finite index

(13) Gx : G0 ⊃ Gx1 ⊃ Gx2 ⊃ · · · ⊃ Gx` ⊃ · · · .
Each quotient Xx

` = G0/G
x
` is a finite set equipped with a left G0-action, and there are surjections

Xx
`+1 → Xx

` which commute with the action of G0. The inverse limit,

(14) Xx
∞ = lim

←−
{p`+1 : Xx

`+1 → Xx
` } = {(eG0, g1G

x
1 , . . .) | g`Gx` = g`+1G

x
` } ⊂

∏
`≥0

Xx
`

is then a totally disconnected compact perfect set, so is a Cantor set. The fundamental group G0

acts on the left on Xx
∞ via the coordinate-wise multiplication on the product in (14). We denote

this Cantor action by (Xx
∞, G0,Φx).
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LEMMA 4.1. There is a homeomorphism τx : X0 → Xx
∞ equivariant with respect to the action (7)

of G0 on X0 and Φx on X∞; that is, τx ◦ hg(y) = Φx(g) ◦ τx(y) for all y ∈ X0.

In particular, this allows us to conclude that the action Φ0 of G0 on the fibre of the solenoid SP
is minimal. Indeed, the left action of G0 on each quotient space Xx

` is transitive, so the orbits are
dense in the product topology on Xx

∞.

REMARK 4.2. The group chain (14) and the homeomorphism in Lemma 4.1 depend on the choice
of a point x ∈ X0. For a different basepoint y ∈ X0 in the fibre over x0, let τx(y) = (giG

x
` ) ∈ Xx

∞,
then the group chain Gy associated to y is given by a chain of conjugate subgroups in G0, where
Gy` = g`G

x
` g
−1
` for ` ≥ 0. The group chains Gy and Gx are said to be conjugate chains. The

composition τy ◦ τ−1
x : Xx

∞ → Xy
∞ gives a topological conjugacy between the minimal Cantor actions

(Xx
∞, G0,Φx) and (Xy

∞, G0,Φy). The map τx : X0 → Xx
∞ can be viewed as “coordinates” on the

inverse limit space X0, and the composition τy ◦ τ−1
x as a “change of coordinates”. Properties of the

minimal Cantor action (Xx
∞, G0,Φx) which are independent of the choice of these coordinates are

thus properties of the topological type of SP .

4.1. Equivalence of group chains. Fokkink and Oversteegen [29] and the authors [20] studied
equivalences of group chains associated to a given equicontinuous minimal Cantor system (V0, G0,Φ).
We now briefly recall the key results.

Denote by G the collection of all possible subgroup chains in G0. Then there are two equivalence
relations on G. The first was introduced by Rogers and Tollefson in [56].

DEFINITION 4.3. [56] In a finitely generated group G0, two group chains {G`}`≥0 and {H`}`≥0

with G0 = H0 are equivalent, if and only if, there is a group chain {K`}`≥0 and infinite subsequences
{G`k}k≥0 and {Hjk}k≥0 such that K2k = G`k and K2k+1 = Hjk for k ≥ 0.

The next definition was introduced by Fokkink and Oversteegen in [29].

DEFINITION 4.4. [29] Two group chains {G`}`≥0 and {H`}`≥0 in G are conjugate equivalent
if and only if there exists a sequence (g`) ⊂ G0 for which the compatibility condition g`G` = g`+1G`
for all ` ≥ 0 is satisfied, and such that the group chains {g`G`g−1

` }`≥0 and {H`}`≥0 are equivalent.

The dynamical meaning of the equivalences in Definitions 4.3 and 4.4 is given by the following
theorem, which follows from results in [29]; see also [20].

THEOREM 4.5. Let {G`}`≥0 and {H`}`≥0 be group chains in G0, with H0 = G0, and let

G∞ = lim
←−
{G0/G`+1 → G0/G`} ,

H∞ = lim
←−
{G0/H`+1 → G0/H`} .

Then:

(1) The group chains {G`}`≥0 and {H`}`≥0 are equivalent if and only if there exists a home-
omorphism τ : G∞ → H∞ equivariant with respect to the G0-actions on G∞ and H∞, and
such that φ(eG`) = (eH`).

(2) The group chains {G`}`≥0 and {H`}`≥0 are conjugate equivalent if and only if there exists a
homeomorphism τ : G∞ → H∞ equivariant with respect to the G0-actions on G∞ and H∞.

That is, an equivalence of two group chains corresponds to the existence of a basepoint-preserving
equivariant homeomorphism between their inverse limit systems, while a conjugate equivalence of
two group chains corresponds to the existence of a equivariant conjugacy between their inverse limit
systems, which need not preserve the basepoint.

Let G(Φ0) denote the class of group chains in G0 which are conjugate equivalent to the group
chain {Gx` }`≥0 with basepoint x. The following result gives a geometric interpretation the conjugate
equivalence class G(Φ0) of a group chain {Gx` }`≥0.
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PROPOSITION 4.6. For an equicontinuous minimal Cantor action (V0, G0,Φ0), let {Gx` }`≥0 be
a group chain with partitions {Q`}`≥0 and basepoint x, as in Proposition 3.4. Then a group chain
{H`}`≥0 is in G(Φ0) if and only if there exists a collection of G0-invariant partitions S` = {g·U`}g∈G0

of V0, where U` ⊂ V0 is a clopen set, and
⋂
` U` = {y} ⊂ V0, such that H` = Hy

` is the isotropy group
at U` of the action of G0 on the partition S`, for all ` ≥ 0.

4.2. Kernels of group chains. The following notion is important for the study of group chains.

DEFINITION 4.7. The kernel of a group chain G = {G`}`≥0 is the subgroup of G0 given by

(15) K(G) =
⋂
`≥0

G` .

The following property is immediate from the definitions.

LEMMA 4.8. Suppose that the group chains G = {G`}`≥0 and H = {H`}`≥0 with G0 = H0 are
equivalent, then K(G) = K(H) ⊂ G0.

If the chains G and H are only conjugate equivalent, then the kernels need not be equal.

An infinite group G0 which admits a group chain C = {C`}`≥0 where each C` is a normal subgroup
of G0, and such that

⋂
C` = {e}, where e denotes the identity element in G0, is said to be residually

finite. It is an elementary fact that given any group chain G = {G`}`≥0 in G0, there is an associated
core group chain G for which C` ⊂ G` with C` normal in G0, for all ` > 0, as will be discussed in
Section 6.2 below. Thus, if the group chain Gx = {Gx` }`≥0 introduced above has K(Gx) the trivial
group, then G0 must be a residually finite group. On the other hand, there are many classes of
groups which are not residually finite, and thus any group chain for these groups must have non-
trivial kernels. For example, many of the types of Baumslag-Solitar groups are not residually finite
[39, 40, 46], so every equicontinuous minimal Cantor system defined by an action of one of these
groups will have non-trivial kernels.

The kernel K(Gx) has an interpretation in terms of the topology of the leaves of the foliation FP of
a weak solenoid. Let (V0, G0,Φ0) be the holonomy action for a weak solenoid SP with presentation
P and basepoint x ∈ V0, and let Gx = {Gxi }i≥0 be the group chain at x. Recall that the restriction

of the bundle projection Π0|Lx
: Lx →M0 to the leaf Lx containing x is a covering map. Let M̃0 be

the universal cover of M0. Then by standard arguments of covering space theory (see also McCord
[45]) there is a homeomorphism

(16) M̃0/K(Gx)→ Lx .

Now let y ∈ X0 be another point. Then by Remark 4.2, the group chain associated to y is given by
Gy = {giGxi g

−1
i }i≥0 where τx(y) = (giG

x
i ). If y is in the orbit of x under the G0-action, then we

can take gi = g for some g ∈ G0, and thus K(Gy) = gK(Gx)g−1; that is, the kernels of Gx and Gy
are conjugate, which corresponds to the fact that the fundamental group of the leaf Lx at differing
basepoints are conjugate. If y is not in the orbit of x, then the relationship between K(Gx) and
K(Gy) depends on the dynamical properties of the solenoid.

In particular, in Section 8 we relate the algebraic properties of the kernels K(Gy) with the germinal
holonomy groups of the foliation FP . Recall from Section 1 that a manifold L has π1-finite type if
it’s fundamental group is finitely generated. A matchbox manifold M has finite π1-type if all leaves
in FM have finite π1-type. The following statement is immediate from the above discussion.

LEMMA 4.9. An equicontinuous matchbox manifold M has finite π1-type if and only if, for the
associated group chain Gx = {Gx` }`≥0, for all Gy ∈ G(Φ), the kernel K(Gy) is a finitely generated
subgroup of G0.

We next give two examples to illustrate the above concepts.

EXAMPLE 4.10. Let SP be a Vietoris solenoid, as in Example 3.2, where m` > 1 is the degree
of p`. Choose x ∈ SP so that Π`(x) = 0 for ` ≥ 0. Then G0 = Z, and the group Gx` = m̃`Z, where
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m̃` = m1m2 · · ·m` is the product of the degrees of the coverings. Then the kernel K(Gx) = {0},
and the path-connected component Lx is homeomorphic to the real line. Let y ∈ X0 be any other
point in the fibre. Since Z is abelian, any subgroup conjugate to Gx` = m̃`Z is equal to it. It follows
that K(Gy) = {0}, and Ly is homeomorphic to the real line for any y ∈ X0.

More generally, suppose SP is an n-dimensional solenoid, and Gx` is a normal subgroup of G0 for all
` ≥ 1. Then for any y ∈ X0 we have Gy = Gx, and so K(Gy) = K(Gx). It follows that all leaves in
SP are homeomorphic. The Vietoris solenoid SP is of finite π1-type.

EXAMPLE 4.11. This example is due to Rogers and Tollefson [57]. Consider a map of the plane,
given by a translation by 1

2 in the first component, and by reflection in the second component, i.e.

r × i : R2 → R2 where (x, y) 7→ (x+
1

2
,−y).

This map commutes with translations by the elements in the integer lattice Z2 ⊂ R2, and so induces
the map r × i : T2 = R2/Z2 → T2 of the torus. This map is an involution, and the quotient space
K = T2/(x, y) ∼ r × i(x, y) is homeomorphic to the Klein bottle.

Consider the double covering map L : T2 → T2 given by L(x, y) = (x, 2y). The inverse limit
T∞ = lim

←−
{L : T2 → T2} is a solenoid with 2-dimensional leaves. Let x0 = (0, 0) ∈ M0 = T2. The

fundamental group G0 = Z2 is abelian, so for any x, y ∈ X0 the kernels K(Gx) = K(Gy) ∼= Z, and
every leaf is homeomorphic to an open two-ended cylinder.

The involution r × i is compatible with the covering maps L, and so it induces an involution (r ×
i)∞ : T∞ → T∞, which is seen to have a single fixed point (0, 0, . . .) ∈ T∞, and permute other
path-connected components. Let p : K → K be the double covering of the Klein bottle by itself,
given by p(x, y) = (x, 2y), and consider the inverse limit space K∞ = lim

←−
{p : K → K}. Note that

taking the quotient by the involution r × i is compatible with the covering maps L and p; that is,
p ◦ (r × i) = L, and so induces the map i∞ : T∞ → K∞ of the inverse limit spaces. Under this
map, the path-connected component of the fixed point (0, 0, . . .) is identified so as to become a non-
orientable one-ended cylinder. The image of any other path-connected component is an orientable
2-ended cylinder.

Let x = (x`) ∈ K∞ for x` ∈ K. Then G0 = π1(K,x0) = 〈a, b | bab−1 = a−1〉. Fokkink and
Oversteegen [29] computed the kernel K(Gx) = 〈b〉 of the group chain Gx. They also computed
kernels for group chains at any other basepoint y ∈ X0 and found that either K(Gy) is conjugate to
〈b〉, or K(Gy) is equal to 〈b2〉. This example has finite π1-type.

5. Homogeneous solenoids and actions

In this section, we review the results from various works about the criteria for homogeneity of
matchbox manifolds. These data will be of use later, when we give the proof Theorem 1.2.

A continuum M is said to be homogeneous if given any pair of points x, y ∈M, then there exists a
homeomorphism h : M→M such that h(x) = y. A homeomorphism ϕ : M→M preserves the path-
connected components, hence preserves the foliation FM of M. It follows that if M is homogeneous,
then it is also foliated homogeneous.

By [14, Theorem 5.2] a homogeneous matchbox manifold M is equicontinuous. Hence by Theorem 1.1
above, which is proved in [14, Theorem 1.4], the foliated space M is homeomorphic to a weak solenoid
SP . We restrict our attention to equicontinuous foliated spaces, so consider the problem of giving
conditions for when a weak solenoid SP is homogeneous, which is thus equivalent to asking for
criteria when an equicontinuous matchbox manifold is homogeneous. This is one of the original
motivating problems in the study of solenoids, to obtain necessary and sufficient conditions that the
solenoid SP is homogeneous [29, 54, 55, 59]. In this section, we recall the relevant results of these
previous works, and of the authors in [19, 20, 21].
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5.1. Regular actions. An automorphism of (V0, G0,Φ0) is a homeomorphism h : V0 → V0 which
commutes with the G0-action on V0. Denote by Aut(V0, G0,Φ0) the group of automorphisms of the
action (V0, G0,Φ0). Note that Aut(V0, G0,Φ0) is a topological group for the compact-open topology
on maps, and is a closed subgroup of Homeo(V0).

DEFINITION 5.1. The equicontinuous minimal Cantor action (V0, G0,Φ0) is:

(1) regular if the action of Aut(V0, G0,Φ0) on V0 has a single orbit;
(2) weakly normal if the action of Aut(V0, G0,Φ0) decomposes V0 into a finite collection of

orbits;
(3) irregular if the action of Aut(V0, G0,Φ0) decomposes V0 into an infinite collection of orbits.

The terminology in Definition 5.1 is chosen so that to be consistent with the terminology in [20, 29].

Recall that G denotes the collection of all possible subgroup chains in G0, and let G(Φ0) ⊂ G
denote the collection of all group chains in G which are conjugate equivalent to a given group chain
Gx = {Gx` }`≥0. Theorem 4.5 states that a group chain {Gx` }`≥0 is equivalent to the group chain
{Hy

` }`≥0 if and only if there exists a conjugacy h : V0 → V0 of the G0-action on V0, such that
h(x) = y. Such an h is an automorphism of (V0, G0,Φ0), which gives the following result.

THEOREM 5.2. Let (V0, G0,Φ0) be an equicontinuous minimal Cantor action, and {Gx` }`≥0 ∈ G
be a group chain associated to the action. Then (V0, G0,Φ0) is:

(1) regular if all group chains in G(Φ0) are equivalent;
(2) weakly normal if G(Φ0) contains a finite number of classes of equivalent group chains;
(3) irregular if G(Φ0) contains an infinite number of classes of equivalent group chains.

McCord in [45] studied the case when the chain {Gx` }`≥0 consists of normal subgroups of G0. In
this case, every quotient Xx

` = G0/G
x
` is a finite group, and the inverse limit Xx

∞, defined by (14),
is then a profinite group. The group Xx

∞ is identified with V0 as a topological space, and it acts
transitively on V0 on the right. The right action of Xx

∞ commutes with the left action of G0 on Xx
∞,

and thus Xx
∞ ⊂ Aut(V0, G0,Φ0), and so the automorphism group acts transitively on H∞. McCord

used this observation in [45] to show that the group Homeo(SP) acts transitively on SP , proving
the following theorem.

THEOREM 5.3. [45] Let SP be a solenoid with a group chain {Gx` }`≥0, such that Gx` is a normal
subgroup of G0 for all ` ≥ 0. Then SP is homogeneous.

For example, if G0 is abelian, then every group chain {Gx` }`≥0 consists of normal subgroups, and
the solenoid SP is homogeneous.

5.2. Weakly normal actions. We next consider the problem of giving necessary and sufficient
conditions for when a solenoid SP is homogeneous.

The converse to Theorem 5.3 is not true. Indeed, Rogers and Tollefson in [56] gave an example of
a weak solenoid for which the presentation yields a chain of subgroups which are not normal in G0,
yet the inverse limit is a profinite group, and so the solenoid is homogeneous. This example was
the motivation for the work of Fokkink and Oversteegen in [29], where they gave a necessary and
sufficient condition on the chain {Gx` }`≥0 for the weak solenoid to be homogeneous. In particular,
they proved the following result. Let NG0(G`) denote the normalizer of the subgroup G` in G0; that
is, NG0(G`) = {g ∈ G0 | g G` g−1 = G`}.

THEOREM 5.4. [29] Let (V0, G0,Φ0) be an equicontinuous minimal Cantor action, x ∈ V0 be a
point, and let {Gx` }`≥0 be an associated group chain with conjugate equivalence class G(Φ0). Then

(1) (V0, G0,Φ0) is regular if and only if there exists a group chain {N`}`≥0 ∈ G(Φ0) such that
N` is a normal subgroup of G0 for each ` ≥ 0.

(2) (V0, G0,Φ0) is weakly normal if and only if there exists {Gx`
′}i≥0 ∈ G(Φ0) and an n > 0

such that Gx`
′ ⊂ Gxn ⊆ NG0(Gx`

′) for all ` ≥ n.
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In Theorem 5.4, the set G(Φ0) contains group chains which are conjugate equivalent to the given
chain {Gx` }`≥0. The condition that the group chain {N`}`≥0 consists of normal subgroups implies
that every chain in G(Φ0) is equivalent to {N`}`≥0, and so {Gx` }`≥0 is equivalent to {N`}`≥0.
In statement 2), the condition Gx`

′ ⊂ Gxn ⊆ NG0
(Gx`

′) implies that the group chain {Gx`
′}`≥0 is

equivalent to {Gx` }`≥0. Indeed, suppose that Gx`
′ ⊂ Gxm

′ ⊆ NG0
(Gx`

′) for some m. Then for n ≤ m
and ` ≤ n we have Gx`

′ ⊂ Gxn
′ ⊆ NG0

(Gx`
′). If {Gx`

′}i≥0 is equivalent to {Gx` }i≥0, then for some
n ≤ m we have Gxn

′ ⊂ Gxn ⊂ Gxm
′, which yields the statement.

Recall that Proposition 3.4 introduced the descending chain of clopen sets {V`+1 ⊂ V` | ` ≥ 0} of V0

such that V` is stabilized by the action of G`. Thus, the weak normality condition in Theorem 5.4
implies that if we restrict the G0 action to the clopen set Vn ⊂ V0, then the restricted action
(Vn, Gn,Φn) with associated group chain Gxn = {Gx` }`≥n is regular. In the case where the group
chain {G`}`≥0 is associated to a weak solenoid SP , restricting to the action (Vn, Gn,Φn) amounts to
discarding the initial manifolds {M0, . . . ,Mn−1} in the presentation P, to obtain the presentation
Pn defined in (9). Then as discussed in Section 3.3, there is a homeomorphism SPn

∼= SP , where
the homeomorphism is given by the “shift” map σn. Thus, SP is homogeneous if and only if SPn

is homogeneous, and so by Theorem 5.3 a weak solenoid whose associated group chain is weakly
normal is homogeneous. We thus obtain the following result of Fokkink and Oversteegen [29] giving
a criterion for when a weak solenoid is homogeneous.

PROPOSITION 5.5. [29] Let SP be a weak solenoid, defined by a presentation P with associated
group chain {Gx` }`≥0. Then SP is homogeneous if and only if {Gx` }`≥0 is weakly normal.

We also have the following property of presentations of homogeneous solenoids.

PROPOSITION 5.6. [29] Let SP be a weak solenoid, defined by a presentation P with associated
group chain Gx = {Gx` }`≥0. If SP is homogeneous, then the kernel K(Gx) ⊂ G0 has a finite number
of conjugacy classes in G0.

Proof. Suppose that SP is homogeneous. Then by Theorem 5.4, there exists Gx′ = {Gx`
′}`≥0 ∈ G(Φ0)

and an n > 0 such that Gx`
′ ⊂ Gxn ⊆ NG0(Gx`

′) for all ` ≥ n. Then Gxn
′ ⊆ NG0(Gx`

′) for all ` ≥ n,
which implies that Gxn

′ ⊂ NG0(K(G′x)). Indeed, the chain {Gx`
′}`≥n contains subgroups normal in

Gxn
′, and it’s intersection is then again normal in Gxn

′. Then for any h ∈ Gxn
′ we have

(17) h ·K(Gx′) · h−1 = K(Gx′) ,
and K(Gx′) has only a finite number of conjugacy classes, at most [G0 : Gxn

′]. Since Gx is equivalent
to Gx′, we have that Gx0 = Gx0

′ ⊃ Gx1 ⊃ Gx1
′ ⊃ Gx2 ⊃ Gx2

′ ⊃ · · · , and so K(Gx) = K(Gx′), which
yields the statement. �

6. Ellis group of equicontinuous minimal systems

The Ellis (enveloping) semigroup associated to a continuous group action Φ: G × X → X was
introduced in the papers [22, 23], and is treated in the books [8, 24, 25]. The construction of

Ê(X,G,Φ) is abstract, and it can be a difficult problem to calculate this group exactly. A key

problem is to understand the relation between the algebraic properties of Ê(X,G,Φ) and dynamics

of the action. In this section, we briefly recall some basic properties of Ê(X,G,Φ), then consider
the results for the special case of equicontinuous minimal systems.

6.1. Ellis (enveloping) group. Let X be a compact Hausdorff topological space, and G be a
finitely generated group. Consider the space XX = Maps(X,X) with topology of pointwise con-
vergence on maps. With this topology, XX is a compact Hausdorff space. Each g ∈ G defines an

element ĝ ∈ Homeo(X) ⊂ XX = Maps(X,X). Denote by Ĝ the set of all such elements. Ellis [23]

showed that the closure Ĝ ⊂ XX has the structure of a right topological semigroup. Moreover, if

the action (X,G,Φ) is equicontinuous, then the semigroup Ĝ is a group naturally identified with the

closure Φ(G) of Φ(G) ⊂ Homeo(X) in the uniform topology on maps. Each element of Φ(G) is the
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limit of a sequence of points in Ĝ, and we use the notation (gi) to denote a sequence {gi | i ≥ 1} ⊂ G
such that the sequence {ĝi = Φ(gi) | i ≥ 1} ⊂ Homeo(X) converges in the uniform topology.

Assume the action of G on X is minimal, that is, the orbit Φ(G)(x) is dense in X for any x ∈ X. It

then follows that the orbit of the Ellis group Φ(G)(x) = X for any x ∈ X. That is, the group Φ(G)
acts transitively on X. Then for the isotropy group of the action at x,

Φ(G)x = {(gi) ∈ Φ(G) | (gi) · x = x},(18)

we have the natural identification X ∼= Φ(G)/Φ(G)x of left G-spaces.

Given an equicontinuous minimal Cantor system (X,G,Φ), the Ellis group Φ(G) depends only on

the image Φ(G) ⊂ Homeo(X). On the other hand, the isotropy group Φ(G)x may depend on the

point x ∈ X. Since the action of Φ(G) is transitive on X, given any y ∈ X, there exists (gi) ∈ Φ(G)
such that (gi) · x = y. It follows that

Φ(G)y = (gi) · Φ(G)x · (gi)
−1 .(19)

Thus, the cardinality of the isotropy group Φ(G)x is independent of the point x ∈ X, and so the

Ellis group Φ(G) and the cardinality of Φ(G)x are invariants of (X,G,Φ).

6.2. Ellis group for group chains. We consider the Ellis group for an equicontinuous minimal
Cantor action (V0, G0,Φ), in terms of an associated group chain Gx = {Gx` }`≥0 for x ∈ V0. For each
subgroup Gx` consider the maximal normal subgroup of Gx` which is given by

(20) C` ≡ coreG0
Gx` ≡

⋂
g∈G0

gGx` g
−1 ⊆ Gx` .

The group C` is called the core of G` in G0. Since C` is normal in G0, the quotient G0/C` is a finite
group, and the collection C = {C`}`≥0 forms a descending chain of normal subgroups of G0. The

inclusions of coset spaces define bonding maps δ`+1
` for the inverse sequence of quotients G0/C`, and

the inverse limit space

C∞ = {(eG0, g1C1, . . .) | g`C` = g`+1C`} ⊂
∏
`≥0

G0/C`(21)

∼= lim
←−

{
δ`+1
` : G0/C`+1 → G0/C`

}
(22)

is a profinite group. Let ι̂ : G0 → C∞ be the homomorphism defined by ι̂(g) = (gC`) for g ∈ G0.

Then the induced left action of G0 on C∞ yields a minimal Cantor system, denoted by (C∞, G0, Φ̂0).

Also, introduce the descending chain of clopen neighborhoods of the identity (eC`) ∈ C∞, which for
n ≥ 0 defines a neighborhood system for C∞:

Cn,∞ = {(g`C`) ∈ C∞ | gn ∈ Cn} ,(23)

∼= lim
←−

{
δ`+1
` : Cn/C`+1 → Cn/C` | ` ≥ n

}
.(24)

6.3. The discriminant. Observe that for each ` ≥ 0, the quotient group Dx
` = Gx` /C` ⊂ G0/C`.

It follows that the inverse limit space

(25) Dx = lim
←−

{
δ`+1
` : Dx

`+1 → Dx
`

}
is a closed subgroup of C∞. The group Dx is called the discriminant group of the action (V0, G0,Φ0).

The relationship between C∞ and the Ellis group of (V0, G0,Φ0) is given by the following result.

THEOREM 6.1 (Theorem 4.4, [20]). Let (V0, G0,Φ0) be an equicontinuous minimal Cantor action,
let x ∈ V0, and let Gx ≡ {Gx` }i≥0 be the associated group chain at x. Then there is a natural

isomorphism of topological groups Θ̂ : Φ(G0) ∼= C∞ such that the restriction Θ̂ : Φ(G0)x
∼= Dx.

Moreover, the discriminant subgroup is simple by the next result.



MOLINO THEORY FOR MATCHBOX MANIFOLDS 17

PROPOSITION 6.2 (Proposition 5.3, [20]). Let (V0, G0,Φ0) be an equicontinuous minimal Cantor

system, x ∈ V0 a basepoint, and Φ0(G0)x the isotropy group of x. Then

(26) coreG0Φ0(G0)x =
⋂
k∈G0

k Φ0(G0)x k
−1

is the trivial group. Thus, the maximal normal subgroup of Φ0(G0)x in Φ0(G0) is also trivial.

We next consider the homogeneity properties of a solenoid SP in terms of Dx (see [20].) It follows
from Proposition 6.2 that if Dx is non-trivial, then it is not normal in C∞, and therefore the quotient
Xx
∞ = C∞/Dx is not a group. We thus conclude:

PROPOSITION 6.3. [20] The action (V0, G0,Φ0) is regular if and only if Dx is trivial.

Note that Proposition 6.3 does not take into account the possibility that the action of a subgroup
Gx` on a smaller section V` is regular. The general formulation is then as follows.

COROLLARY 6.4. An equicontinuous matchbox manifold M is homogeneous if and only if it
admits a transverse section V0 and a presentation P with associated group chain {Gx` }`≥0, such that
the discriminant group Dx is trivial.

7. Molino theory for weak solenoids

In this section, we obtain a “Molino theory” for weak solenoids, and hence for all equicontinuous
matchbox manifolds, including those for which the hypotheses of the work [6] are not satisfied. There
are often subtle, and not so subtle, differences between the theory for matchbox manifolds and for
smooth Riemannian foliations, as will be discussed further in the following sections.

7.1. Molino overview. Molino theory for Riemannian foliations gives a structure theory for the
geometry and dynamics of this class of foliations on compact smooth manifolds. The Séminaire
Bourbaki article [34] by Haefliger gives a concise overview of the theory and its applications, and
Molino’s book [49] and its multiple appendices give a more detailed treatment of this theory and
its applications. The book [47] is also an excellent reference to read about the essentials of Molino

theory. We give a very brief summary below of some key properties of the “Molino space” M̂
associated to a smooth Riemannian foliation F of a compact connected manifold M .

Given a Riemannian foliation F of a compact connected manifold M , the associated Molino space

M̂ is a compact connected manifold with a Riemannian foliation F̂ whose leaves have the same
dimension as those of F . In the case where F is a minimal foliation, in the sense that each leaf of

F is dense in M , then we can assume that the foliation F̂ is also minimal.

Associated to a minimal Riemannian foliation F is the structural Lie algebra h, given by the algebra
of holonomy invariant normal vector fields to F , and which is well-defined up to isomorphism.

There is a fibration π̂ : M̂ → M equipped with a fiber-preserving right action of a connected Lie

group H whose Lie algebra is h, and for which the foliation F̂ is invariant under the action of H.

Moreover, for each leaf L̂ ⊂ M̂ , there is a leaf L ⊂ M such that the restriction π̂ : L̂ → L is the
holonomy covering of L. We say that

(27) H −→ M̂
π̂−→M

is a Molino sequence for M , and H is the structural Lie group for F̂ .

A key property of the Molino space M̂ of F is that it is Transversally Parallelizable, or TP. This
condition states that there are non-vanishing vector fields {~v1, . . . , ~vq} on M which span the normal
bundle to F at each x ∈ M , and the vector fields are locally projectable. As a consequence, given

any pair of points x, y ∈ M̂ there exists a diffeomorphism h : M̂ → M̂ which maps leaves of F̂ to

leaves of F̂ , and satisfies h(x) = y. A foliation F̂ satisfying this condition is said to be foliated
homogeneous.
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7.2. Molino sequences for weak solenoids. For a matchbox manifold, the TP condition cannot
be defined, as the transversal space to the foliation is totally disconnected. Thus, we need an
alternative approach to defining the Molino fibration (27) in the case where the transversal space to
the foliation is a Cantor set. The basic observation is that the foliated homogeneous condition for

M̂ admits a natural generalization to all foliated spaces, as discussed for weak solenoids in Section 5.
For weak solenoids, we will see below that the structural Lie group H is replaced by the discriminant
subgroup Dx ⊂ C∞ of Section 6.3, and the foliated homogeneous condition is a consequence of the
Ellis group construction. We now restate and prove Theorem 1.2.

THEOREM 7.1. Let M be an equicontinuous matchbox manifold, and let P be a presentation of
M, such that M is homeomorphic to a solenoid SP . Then there exists a homogeneous matchbox

manifold M̂ with foliation F̂ , called a “Molino space” of M, a compact totally disconnected group
D, and a fibration

(28) D −→ M̂
q̂−→M ,

where the restriction of q̂ to each leaf in M̂ is a covering map of some leaf in M. We say that (28)
is a Molino sequence for M.

Proof. Let V0 ⊂ M be a transverse section to the foliation FM of M, as given in Proposition 3.4,
and let x ∈ V0 be a choice of a basepoint. Let G0 be the restricted holonomy group acting on V0.
Let P = {p`+1 : M`+1 → M` | ` ≥ 0} be a presentation at x such that there is a homeomorphism
M ∼= SP , and for x ∈ V0 let Gx = {Gx` }`≥0 be the associated group chain in G0 = π1(M0, x0). Let

Π0 : SP → M0 and set X0 = Π−1
0 (x0). Let τ : V0 → X0 with τx(x) = (eGx` ) be the homeomorphism

defined in Lemma 4.1.

Recall that the covering map q` : M` →M0 defined in (5) is associated to the subgroup Gx` ⊂ G0 =
π1(M0, x0). Recall that the core subgroup C` ⊂ Gx` is the maximal normal subgroup of G0 contained

in Gx` , and has finite index in Gx` . For each ` > 0, let q̂` : M̂` → M0 be the proper covering space
associated to the normal subgroup C`. Each inclusion C`+1 ⊂ C` induces a normal covering map

p̂`+1 : M̂`+1 → M̂`, and so yields a presentation P̂ = {p̂`+1 : M̂`+1 → M̂` | ` ≥ 0}.

DEFINITION 7.2. The Molino space associated to a weak solenoid SP defined by a presentation

P is the inverse limit space associated to the presentation P̂,

(29) ŜP ≡ lim
←−
{p̂`+1 : M̂`+1 → M̂`} .

Let Π̂0 : ŜP →M0 be the projection map, with fiber X̂0 = Π̂−1
0 (x0).

We state some of the basic properties of the space ŜP . The proofs of the following statements are
omitted, as they follow by arguments analogous to the corresponding statements for SP .

PROPOSITION 7.3. Let SP be a weak solenoid defined by a presentation P, and let ŜP be the
solenoid defined by (29). Then we have:

(1) There is a natural isomorphism X̂0
∼= C∞ where C∞ is the profinite group defined by (22) ;

(2) There is a natural map of fibrations q̂ : ŜP → SP , whose fiber over x ∈ X0 is the discriminant
group Dx ;

(3) The global holonomy of the fibration Π̂0 : ŜP →M0 is naturally conjugate as G0-actions with

the minimal Cantor system (C∞, G0, Φ̂0).

DEFINITION 7.4. The Molino sequence for the weak solenoid SP is the principal fibration

(30) Dx −→ ŜP
q̂−→ SP .

Proposition 7.3(3) implies that the foliation F̂P on ŜP is minimal, and the restrictions of q̂ to the

leaves of F̂P are covering maps by construction, as there is a covering map M̂` →M` for each ` ≥ 1
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which induces q̂. Finally, the space ŜP is homogeneous by Proposition 5.5, as it is defined using the
normal group chain {C`}`≥0.

Set M̂ = ŜP and D = Dx, then we have established the claims of Theorem 7.1. �

The construction of the sequence in (30) may depend on the various choices made, and this is a
fundamental aspect of the “Molino Theory” for weak solenoids. We consider in the next Section 7.3
the dependence of the discriminant group on the partition sets Vn ⊂ V0. Then in Section 8, we
consider the dependence of the sequence (30) on the choice of the basepoint x ∈ V0 and the role of
the holonomy of the leaf Lx in the properties of Dx.

7.3. Stability of the Molino sequence. We next consider the stability of the discriminant group
for an equicontinuous Cantor minimal system (V0, G0,Φ0) when one restricts to a section Vn ⊂ V0.

We start with an example that highlights the importance of the “asymptotic algebraic structure”
of the group chain Gx for the definition of the Molino space. Consider a weak solenoid SP with
associated group chain Gx = {Gx` }`≥0 defined by the holonomy action (V0, G0,Φ0) for a clopen
subset V0 ⊂ X0, and suppose that Gx is not regular. Then by Proposition 6.3, the discriminant
group Dx is non-trivial, and thus the sequence (30) has non-trivial fiber. Now suppose that, in
addition, the group chain Gx is weakly normal. Then by Theorem 5.4, there exists some n > 0 such
that the restricted action (Vn, Gn,Φn) is regular, hence the discriminant group Dnx for the truncated
chain Gxn = {Gx` }`≥n associated to the restricted action is trivial. For the truncated presentation

Pn defined by (9), we have ŜPn = SPn as Dnx is the trivial group, and SPn
∼= SP as remarked in

Section 3.3, hence we can consider ŜPn
as a Molino space for SP as well. That is, for this choice of

Vn as a section, the Molino sequence (30) has trivial fiber.

We next develop a comparison, for n ≥ 0, of the discriminant groups Dnx for the group chain Gxn
associated to the truncated presentation Pn defined by (9). We work with the group chain model
(Xx
∞, G0,Φx) of Lemma 4.1 for the holonomy action Φ0 : G0 → Homeo(X0). By definition (25) of

the discriminant group, it suffices to consider this invariant in sufficiently small clopen neighborhoods
of the identity in the core group associated with the group chains. For n ≥ 0, we have the clopen
neighborhoods of {e} ∈ X∞:

Un = {(g`G`) ∈ X∞ | gn ∈ Gxn} ⊂ X∞(31)

∼= lim
←−

{
δ`+1
` : Gxn/G

n
`+1 → Gxn/G` | ` ≥ n

}
.(32)

Note that Un is just the inverse limit group defined by the truncated group chain Gxn. Next, we
introduce the core groups of Gxn for arbitrarily small neighborhoods of {e} ∈ Un. For ` ≥ n ≥ 0, set

(33) En,` ≡ coreGx
n
Gx` ≡

⋂
g∈Gx

n

gGx` g
−1 .

Note that E0,` = C`, and that for all m ≥ n ≥ 0 and ` > m, we have En,` ⊂ Em,` ⊂ Gx` .

For k ≥ n ≥ 0, define the clopen neighborhood Vn,k of {e} for the core group of Gxn by

Vn,k = {(g`En,`) | ` ≥ k , gk ∈ Gxk , g`+1En,` = g`En,`}(34)

∼= lim
←−

{
δ`+1
` : Gxk/En,` → Gxk/En,`+1 | ` ≥ k

}
.(35)

Then Vn,n is the core limit group, or the Ellis group, for the truncated group chain Gxn, and {e} ∈
Vn,k ⊂ Vn,n for all k ≥ n. Note also that V0,0 = C∞ is the Ellis group for Gx.

For each ` ≥ k ≥ m ≥ n, the inclusions En,` ⊂ Em,` induces group surjections

Gxk/En,`
φ`
k,n,m−→ Gxk/Em,` ,(36)

so we obtain surjective homomorphisms of profinite groups φn,m : Vn,k → Vm,k for each m > n ≥ 0.
In particular, for k = m, this states that the clopen neighborhood Vn,m of {e} in the limit core
group for Gxn maps onto the limit core group Vm,m of Gxm.
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We consider next the discriminant groups associated to the group chains Gxn for n ≥ 0, Dnx ⊂ Vn,n,

Dnx = lim
←−

{
δ`+1
` : Gx`+1/En,`+1 → Gx` /En,` | ` ≥ n

}
(37)

∼= lim
←−

{
δ`+1
` : Gx`+1/En,`+1 → Gx` /En,` | ` ≥ m

}
, for m ≥ n .(38)

It follows from (36) and (38) that for m > n, there are surjective homomorphisms:

(39) Dx
ψ0,n−→ Dnx

ψn,m−→ Dmx .

DEFINITION 7.5. A group chain Gx = {Gx` }`≥0 is said to be stable if there exists n0 ≥ 0 such
that the maps ψn,m : Dnx → Dmx defined in (39) are isomorphisms for all m ≥ n ≥ n0. Otherwise,
the group chain is said to be wild.

Theorem 5.4 implies that if the group chain {Gx` }`≥0 is weakly normal, then it is stable, as there
exists some n0 ≥ 0 such that Dnx is the trivial group for all n ≥ n0. This discussion and Lemma 7.6
yield Proposition 1.4 of the Introduction.

LEMMA 7.6. If the discriminant group Dx for Gx = {Gx` }`≥0 is finite, then Gx is stable.

Proof. The map ψ0,n : Dx → Dnx is surjective for all n ≥ 0, so the assumption that the cardinality
#Dx < ∞ implies that the cardinality #Dnx of the group Dnx is decreasing with n, and thus there
exists n0 ≥ 0 such that the cardinality of its image must stabilize for n ≥ n0. Then for n ≥ n0, the
homomorphism ψn,m : Dn0

x → Dnx is an isomorphism. �

7.4. Stable matchbox manifolds. We next consider the relationship between the notion of sta-
ble for a matchbox manifold as given in Definition 1.3, and stable for a group chain as given in
Definition 7.5.

Let M be an equicontinuous matchbox manifold, let V0 be a transverse section in M as given in
Proposition 3.4, and let x ∈ V0 be a choice of a basepoint. Let V` be defined as in Proposition 3.4,
so that x ∈ V` for all ` ≥ 0. Let G0 be the group of transformations of V0 which induces the
restricted holonomy group acting on V0, and let Gx` ⊂ G0 be the stabilizer group of the set V`. Let
Gx = {Gx` }`≥0 be the associated group chain in G0 = π1(M0, x0), let Pn be the presentation (9)
associated to the truncated group chain Gxn = {Gx` }`≥n, and let SPn

be the inverse limit solenoid.

For each n ≥ 0, let ŜPn be the homogeneous solenoid associated to the normal group chain {En,`}`≥n
defined by (33).

Assume that the group chain Gx is stable in the sense of Definition 7.5. That is, there exists an
index n0, such that for any m > n ≥ n0 restricting to the smaller sections Vm ⊂ Vn ⊂ V0 with
induced presentations Pm and Pn, then the induced map ψn,m : Dnx → Dmx in (39) is a topological
isomorphism. Then we have a commutative diagram of fibrations:

Dnx

��

ψn,m // Dmx

��
ŜPn

��

σ̂m−n // ŜPm

��
SPn

σm−n // SPm

(40)

By the discussion in Section 3.3, the shift map σm−n is a homeomorphism, and by assumption,

the map ψn,m : Dn ∼= Dm is a topological isomorphism. Thus the map σ̂m−n : ŜPn → ŜPm is a
homeomorphism. Hence, the Molino sequences for the presentations Pn and Pm yield isomorphic
topological fibrations. Conversely, if the topological type of the Molino sequence

(41) Dnx −→ ŜPn −→ SPn
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is well-defined up to homeomorphism of fibrations, for given V0 and n ≥ 0 sufficiently large, then

there exists n0 ≥ 0 such that m > n ≥ n0 implies that Dnx
ψn,m−→ Dmx is a topological isomorphism.

Thus, the map of fibers ψn,m : Dnx → Dmx is a topological isomorphism, and hence Gx is stable.

The following statement summarizes these conclusions.

THEOREM 7.7. Let M be an equicontinuous matchbox manifold, let V0 be a transverse section
in M as given in Proposition 3.4, and let x ∈ V0 be a choice of a basepoint. Let V` be defined as
in Proposition 3.4, so that x ∈ V` for all ` ≥ 0. Let G0 be the restricted holonomy group acting
on V0, and let Gx` ⊂ G0 be the stabilizer group of the set V`. Let Gx = {Gx` }`≥0 be the associated
group chain in G0 = π1(M0, x0), let Pn be the presentation (9) associated to the truncated group

chain Gxn = {Gx` }`≥n, and let SPn
be the inverse limit solenoid. For each n ≥ 0, let ŜPn

be the
homogeneous solenoid associated to the normal group chain {En` }`≥n defined by (33).

(1) If Gx is stable, then there exists n0 ≥ 0 such that for all n ≥ n0 the fibration (41) is a Molino
sequence for M ∼= SPn

, and the fiber group Dnx is well-defined up to topological isomorphism.

(2) If Gx is wild, then the topological isomorphism type of the fiber in the sequence (41) does not
stabilize as n tends to infinity.

Theorem 7.7 implies that the Molino sequence of a matchbox manifold M need not be well-defined,
though if the associated group chain Gx is stable, then M does have a well-defined Molino sequence.

8. Germinal holonomy in solenoids

In this section, we investigate the relationship between the germinal holonomy groups of leaves in a
solenoid, the kernels of the associated group chains, and the discriminant group of the action.

Let M be an equicontinuous matchbox manifold with transverse section V0, let x ∈ V0 be a point,
and let P = {f `+1

i : M`+1 → M`} be a presentation with associated group chain Gx = {Gx` }`≥0 in
G0 = π1(M0, x0). Then by Theorem 1.1, there is a foliated homeomorphism M ∼= SP .

Let C∞ = lim
←−
{G0/C`+1 → G0/C`}, where C` is the maximal normal subgroup of Gx` , ` ≥ 0, and let

Dx be the discriminant group at x. Denote by Lx ⊂ SP the leaf of FP through x. Recall that the
kernel of Gx is the subgroup K(Gx) ⊂ G0 as defined in Definition 4.7, and is the isotropy subgroup
of the action (V0, G0,Φ0) at x.

8.1. Locally trivial germinal holonomy. The following properties of a pseudogroup action are
basic for understanding their dynamical properties.

DEFINITION 8.1. Given g1, g2 ∈ K(Gx), we say g1 and g2 have the same germinal holonomy at
x if there exists an open set Ux ⊂ V0 with x ∈ Ux, such that the restrictions Φ0(g1)|Ux and Φ0(g2)|Ux
agree on Ux. In particular, we say that g ∈ K(Gx) has trivial germinal holonomy at x if there exists
an open set Ux ⊂ V0 with x ∈ Ux, such that the restriction Φ0(g)|Ux is the trivial map.

By straightforward checking of definitions, one can see that the notion ‘germinal holonomy at x’
defines an equivalence relation on the image of the isotropy subgroup K(Gx) under the global
holonomy map Φ0 : G0 → Homeo(V0). Denote by Germ(Φ0, x) the quotient of Φ0(K(Gx)) by this
equivalence relation. Thus the composition of Φ0 : K(Gx) → Homeo(V0) with the quotient map
gives us a surjective map K(Gx) → Germ(Φ0, x). A standard argument shows that if Germ(Φ0, x)
is trivial, and y is in the same G0-orbit of x, then Germ(Φ0, y) is trivial. This leads to the following
definition.

DEFINITION 8.2. We say that a leaf Lx is without holonomy, or that Lx has trivial holonomy,
if Germ(Φ0, x) is trivial. We say that Germ(Φ0, x) is locally trivial, if there exists an open set
Ux ⊂ V0 with x ∈ Ux such that for every g ∈ K(Gx) the restriction Φ0(g)|Ux is the trivial map.
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The distinction between the holonomy group Germ(Φ0, x) being trivial, and it being locally trivial,
may seem technical, but this distinction is related to fundamental dynamical properties of the
foliation FP of SP . For example, it is a key concept in the generalizations of the Reeb stability
theorem from compact leaves to the non-compact case for codimension-one foliations, as discussed
in the works of Sacksteder and Schwartz [58] and Inaba [36, 37]. The nomenclature “locally trivial”
was introduced by Inaba [36, 37]. As we see below, this distinction is also important for the study of
the dynamics of weak solenoids. First, we make an elementary observation, which implies Lemma 1.5
of the Introduction.

LEMMA 8.3. Suppose that K(Gx) is a finitely-generated. If Germ(Φ0, x) is trivial, then Germ(Φ0, x)
is locally trivial.

Proof. Let {g1, . . . , gk} ⊂ K(Gx) be a set of generators. Then Germ(Φ0, x) trivial implies that for
each 1 ≤ i ≤ k there exists an open Ui ⊂ V0 with x ∈ Ui such that the restriction of Φ0(gi)|Ui is the
trivial map. Then let Ux = U1 ∩ · · · ∩ Uk which is an open neighborhood of x, and the restriction
Φ0(g)|Ux is then trivial for all g ∈ K(Gx). �

We also recall a basic result, which is a version of the fundamental result of Epstein, Millet and
Tischler [26] in the language of group actions on Cantor sets.

THEOREM 8.4. [26] Let (V0, G0,Φ0) be a given action, and suppose that V0 is a Baire space.
Then the union of all x ∈ V0 such that Germ(Φ0, x) is the trivial group forms a Gδ subset of V0. In
particular, there exists at least one x ∈ V0 such that Germ(Φ0, x) is the trivial group.

The following is an immediate consequence of this result and Definition 5.1.

COROLLARY 8.5. Let (V0, G0,Φ0) be a regular equicontinuous minimal Cantor system, then
Germ(Φ0, x) is the trivial group for all x ∈ V0. Consequently, if M is a homogeneous matchbox
manifold, then all leaves of FM are without germinal holonomy.

8.2. Algebraic conditions. Next, we explore the relation between the structure of a group chain
Gx and the germinal holonomy group at x. First, note that for a given section V0 and the holonomy
action (V0, G0,Φ0), the assumption that the germinal holonomy group Germ(Φ0, x) is trivial need
not imply that K(Gx) is trivial, or even that it is a normal subgroup of G0, as the following example
shows.

EXAMPLE 8.6. Let Γ be a finitely presented group, and {Γ`}`≥0 be a chain of normal subgroups

in Γ with kernel Γx =
⋂
`

Γ`. Let H be a finite simple group, and let K ⊂ H be a non-trivial

subgroup. Since H is simple, K is not normal in H.

Let G0 = H×Γ, and G` = K×Γ`, ` ≥ 0. Note that G` is a normal subgroup of G1 = K×Γ1 for all
` ≥ 1, but G` is not normal in G0. Thus, the group chain {G`}`≥0 is weakly normal. Let M0 be a
compact connected manifold without boundary, such that π1(M0, x0) = G0, where x0 ∈M0 is some

basepoint. Then the group chain Gx = {G`}`≥0 yields a presentation P = {f `+1
` : M`+1 →M`}, and

the corresponding solenoid SP is homogeneous by Proposition 5.5.

By Theorem 8.4 SP has a leaf Ly without holonomy. By Remark 4.2, a group chain with basepoint y

is given by Gy = {giGig−1
i }i≥0, where gi = (ci, γi). Since the projection G0/G`+1 → G0/G` restricts

to the identity map on the factor H/K, for all ` ≥ 0, one can write gi = (c, γi) for some c ∈ H. Since
each Γ` is a normal subgroup, we have that giGig

−1
i = cKc−1 × Γi. Thus, K(Gy) = cKc−1 × Γx is

not a normal subgroup of G0, since H is simple.

Next, we consider the holonomy action of the elements in K(Gx) on V0 in more detail, using the
inverse limit model τx : V0

∼= Xx
∞ = {G0/G

x
`+1 → G0/G

x
` }. For each n ≥ 0, denote by

(42) U(x, n) = {(g`Gx` ) ∈ Xx
∞ | g` = e if ` ≤ n ; g`G

x
` = g`+1G

x
` for all ` ≥ n}

which is a “cylinder neighborhood” of (eGx` ) ∈ V0. Note that τx(Vn) = U(x, n) for n ≥ 0, where Vn
is a generating set in the partition introduced in Proposition 3.4.
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Since K(Gx) is a subgroup of G0, for each n ≥ 1 one can consider its left action on the cosets in
G0/G

x
n. Such an action fixes the coset eGxn, thus the action of g ∈ K(Gxn) fixes the neighborhood of

the identity as a set, Φ0(g) : U(x, n)→ U(x, n) for g ∈ Gxn, and permutes the points in U(x, n).

Now observe that the action of g has trivial germinal holonomy at x if for some ng > 0, g acts
trivially on the clopen neighborhood U(x, ng) of x; that is, Φ0(g)|U(x, ng) is the trivial map. The
following algebraic characterization of elements without holonomy was obtained in [21, Lemma 5.3].

LEMMA 8.7. [21] The action of g ∈ K(Gx) has trivial germinal holonomy at x if and only if there
exists some index ig ≥ 0 such that multiplication by g satisfies g ·hK(Gx) = hK(Gx) for all h ∈ Gig .

That is, h−1gh ∈ K(Gx) for all h ∈ Gig .

In the case where the kernel K(Gx) is finitely generated, we have the following consequence of
Lemma 8.7, whose proof can be compared with that of Lemma 8.3.

PROPOSITION 8.8. Let Gx = {Gx` }`≥0 be a group chain, and suppose the kernel K(Gx) is finitely
generated. Suppose that Germ(Φ0, x) is the trivial group, then there is an index `x ≥ 0 such that
K(Gx) is a normal subgroup of Gx`x .

Proof. Let {g1, . . . , gk} ⊂ K(Gx) be a set of generators. Then for each 1 ≤ ` ≤ k, there exists
i` ≥ 0 such that h−1gh ∈ K(Gx) for all h ∈ Gi` . Let `x = max{i1, . . . , ik}, then this implies that
h−1gh ∈ K(Gx) for all g ∈ K(Gx) and h ∈ G`x ; that is, K(Gx) is a normal subgroup of Gx`x . �

REMARK 8.9. The condition that the kernel K(Gx) of the group chain Gx is finitely generated is
essential. Example 9.7 gives a group chain whose kernel at x is infinitely generated, and the germinal
holonomy group Germ(Φ0, x) is not locally trivial.

Proposition 8.8 implies the following result, which is an algebraic analog of Reeb stability.

PROPOSITION 8.10. Let (V0, G0,Φ0) be a minimal equicontinuous Cantor group action. Let
x, y ∈ V0 be such that both germinal holonomy groups Germ(Φ0, x) and Germ(Φ0, y) are locally
trivial. Then for associated group chains Gx and Gy, the kernels K(Gx) and K(Gy) are conjugate
subgroups of G0.

Proof. Let Gx and Gy be group chains at x and y, respectively, for the action (V0, G0,Φ0).

Let τx : X0 → Xx
∞ and τy : X0 → Xy

∞ be the corresponding homeomorphisms defined in Lemma 4.1,
each of which is equivariant with respect to the action (7) of G0.

By the assumption that Germ(Φ0, x) is locally trivial, there exists an open set Ux ⊂ V0 with x ∈ Ux
such that for every g ∈ K(Gx) the restriction Φ0(g)|Ux is the trivial map. As the image τx(Ux) ⊂ Xx

∞
is open, and contains (eGxi ) = τx(x), there exists an index `x > 0 such that U((eGxi ), `x) ⊂ τx(Ux),
where U((eGxi ), `x) is defined in (42). Note that Gx`x is the stabilizer of U((eGxi ), `x) for the action of
G0. Then K(Gx) acts trivially on U((eGxi ), `x), so K(Gx) is a normal subgroup of Gx`x by Lemma 8.7.

Set V1 = τ−1
x (U((eGx` ), `x)) ⊂ Ux and let z ∈ V1 with z 6= x. Then the image τx(z) = (hiG

x
i ) where

hi ∈ Gx`x for i ≥ `x and hi = e for i ≤ `x. As usual, the sequence (hi) also satisfies the compatibility

condition hiG
x
i = hjG

x
i for all i ≥ 0 and j > i. By Remark 4.2, we have that Gz = {hiGxi h

−1
i }i≥0.

Note that hi K(Gx) h−1
i = K(Gx) for i ≥ 0, since K(Gx) is normal in Gx`x , so we have

(43) K(Gx) =
⋂
i≥0

Gxi =
⋂
i≥0

hi K(Gx) h−1
i ⊆

⋂
i≥0

hi G
x
i h
−1
i = K(Gz) .

In general, this inclusion may be proper, as illustrated in Example 9.6.

Now assume that Germ(Φ0, z) is locally trivial. We show that K(Gz) ⊆ K(Gx). First, note that
there exists an open set Uz ⊂ V0 with z ∈ Uz such that for every g ∈ K(Gz) the restriction Φ0(g)|Uz
is the trivial map. Recall that τx(z) = (hiG

x
i ) ∈ U((eGx` ), `x). Then there exists `z ≥ `x such that

(44) U((hiG
x
i ), `z) = {(giGxi ) ∈ Xx

∞ | gi = hi for i ≤ `} ⊂ τx(Uz) ,
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That is, g ∈ K(Gz) acts trivially on the cylinder set U((hiG
x
i ), `z) in Xx

∞. Let h = h`z ∈ Gx`x , so
we obtain an element (hGxi ) ∈ Xx

∞. By choice of h and (44) we have (hGxi ) ∈ U((hiG
x
i ), `z). Now

let g ∈ K(Gz), then the restricted map Φ0(g)|Uz is the identity, so we have g · (hGxi ) = (hGxi ). But
this means that h−1ghGxi = Gxi for all i ≥ 0, and thus h−1gh ∈ K(Gx), or g ∈ hK(Gx)h−1. Since
h ∈ Gx`z ⊂ G

x
`x

, and K(Gx) is a normal subgroup of Gx`x , this implies that K(Gz) ⊆ K(Gx).

Now suppose that y ∈ V0 is such that Germ(Φ0, y) is locally trivial. The action of G0 on V0 is
assumed to be minimal, so there exists g ∈ G0 such that z = Φ0(g)(y) ∈ V1. Then the holonomy
at z is also locally trivial, so K(Gz) = K(Gx) by the argument above. On the other hand, we have
K(Gy) = g−1K(Gz)g as K(Gy) is the isotropy subgroup of y. The claim of the proposition then
follows. �

8.3. Kernels and discriminants. We give two results concerning the relation between the kernel
of a group chain and its discriminant.

PROPOSITION 8.11. Let (V0, G0,Φ0) be an equicontinuous minimal Cantor system, x ∈ V0 be
a choice of a basepoint, and Gx = {Gx` }`≥0 be a group chain associated to (V0, G0,Φ0) at x. Let
L0 = ker(Φ0) denote the kernel of Φ0 : G0 → Homeo(V0). Then K(Gx) ⊂ L0 if and only if the

intersection Φ0(G0) ∩ Φ0(G0)x is the trivial group.

Proof. By Theorem 6.1, we can identify Φ0(G0) ∼= C∞ and Φ0(G0)x
∼= Dx, where the image Φ0(G0)

is identified with the elements (g`C`) ∈ C∞ such that g`C` = gC` for all ` ≥ 0, for some g ∈ G0.

First, suppose that g ∈ G0 satisfies Φ(g) ∈ Φ0(G0)x and Φ(g) is not the trivial element. Then
ĝ = (gC`) ∈ Dx and (gC`) 6= (eC`), so that there exists `0 > 0 such that g 6∈ C`0 . By the definition

of Dx in (25), we have that ĝ is in the image of the map δ`+1
` : Dx

`+1 → Dx
` for all ` > 0 where

Dx
` = Gx` /C`. This implies that gC` ⊂ Gx` , and hence g ∈ Gx` for all ` ≥ 0, and so g ∈ K(Gx). We

claim that Φ0(g) is not the trivial action, so that g 6∈ L0. It is given that g 6∈ C`0 , hence gC`0 6= C`0 .
Then for all ` ≥ `0, we have gC` 6= C`, so g · (eC`) 6= (eC`), which implies that g 6∈ L0. It follows
that K(Gx) 6⊂ L0 as was to be shown.

Conversely, let g ∈ K(Gx) and suppose that g 6∈ L0. First note that g ∈ Gx` for all ` ≥ 0, and so we
have ĝ = (gC`) ∈ Dx. The assumption that g 6∈ L0 implies there exists some (h`C`) ∈ C∞ such that
g · (h`C`) 6= (h`C`). Thus, there exists `0 > 0 such that for all ` ≥ `0 we have gh`C` 6= h`C`, which
implies that h−1

` gh` 6∈ C` and so g 6∈ C` as C` is a normal subgroup of G0. Thus, (eC`) 6= (gC`) for

all ` ≥ `0, and so (gC`) ∈ Dx is non-trivial. That is, Φ(g) ∈ Φ0(G0)x is a non-trivial element, as
was to be shown. �

Compare the following application of Proposition 8.11 with the conclusions of Theorem 7.7.

PROPOSITION 8.12. Let M be an equicontinuous matchbox manifold, let V0 be a transverse
section in M as given in Proposition 3.4, and let x ∈ V0 be a choice of a basepoint. Let V` be defined
as in Proposition 3.4, so that x ∈ V` for all ` ≥ 0. Let G0 be the restricted holonomy group acting
on V0, and let Gx` ⊂ G0 be the stabilizer group of the set V`. Let Gx = {Gx` }`≥0 be the associated
group chain in G0 = π1(M0, x0), let Gxn = {Gx` }`≥n be the associated truncated group chain. Assume
that the leaf Lx containing x has non-trivial germinal holonomy, then the discriminant Dxn for the
chain Gxn is non-trivial, for all n ≥ 0.

Proof. Let n ≥ 0, and let Ln ⊂ Gxn be the kernel of the restricted action Φn : Gxn → Homeo(Vn).
Then by Lemma 8.7, the kernel K(Gxn) ⊂ Gxn is not a normal subgroup, so Ln ⊂ K(Gxn) is a proper
inclusion. Then by Proposition 8.11, the discriminant group Gxn is non-trivial also. �

This yields the proof of Theorem 1.7 of the Introduction, which we restate now.

THEOREM 8.13. Let M be an equicontinuous matchbox manifold. If there exists a leaf with non-
trivial holonomy for FM, then for any choice of transversal V0 ⊂M, the resulting Molino sequence
(28) has non-trivial fiber D.
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The converse to Theorem 8.13 is not true. Fokkink and Oversteegen [29, Theorem 35] constructed
an example of a solenoid with simply connected leaves which is non-homogeneous. Since the leaves
are simply connected, they have trivial holonomy. In Section 10 we construct further examples of
actions with non-trivial Molino fibre and simply connected leaves.

9. Strongly quasi-analytic actions

In this section, we study the condition of strong quasi-analyticity, abbreviated as the SQA condition,
for equicontinuous matchbox manifolds, as defined in Definition 9.2 below. We identify classes of
matchbox manifolds for which this condition holds, and also give examples for which it does not. The
generalization of Molino theory in [6] applies to equicontinuous foliated spaces such that the closure
of their holonomy pseudo?groups satisfies the SQA condition. Thus, it is important to characterize
the weak solenoids with this property.

9.1. The strong quasi-analyticity condition. The precise notion of the SQA condition has
evolved in the literature, motivated by the search for a condition equivalent to quasi-analyticity
condition for the pseudo?groups of smooth foliations as introduced by Haefliger [33]. Álvarez López
and Candel introduced the notion of a quasi-effective pseudo?group in the work [4] as part of their
study of equicontinuous foliated spaces. This terminology was replaced by the notion of a strongly
quasi-analytic pseudo?group in the work [6] by Álvarez López and Moreira Galicia.

DEFINITION 9.1. [33] A pseudo?group G∗ acting on a locally compact locally connected space T
is quasi-analytic, if for every h ∈ G∗ the following holds: let U ⊂ Dom(h) ⊂ T be an open set, and
suppose x ∈ T is in the closure of U . Suppose the restriction h|U is the identity map. Then there is
an open neighborhood V of x, such that the restriction h|V is the identity map.

Definition 9.1 describes the properties of pseudo?groups, which were discussed in Remark 2.1, where
the action of an element is locally determined ; that is, if h is the identity on an open set, then it is
the identity on a larger set. For the case where the space T is not locally connected, Álvarez López
and Candel [4] introduced the following modification of this notion.

DEFINITION 9.2. A pseudo?group G∗ acting on a locally compact space T is strongly quasi-
analytic, or SQA, if for every h ∈ G∗ the following holds: let U ⊂ Dom(h) be a non-empty open
set, and suppose the restriction h|U is the identity map. Then h is the identity map on its domain
Dom(h). A matchbox manifold M satisfies the SQA condition if there exists a traversal V0 ⊂ M
such that the induced pseudo?group G∗F on V0 satisfies the SQA condition.

Definition 9.2 says that the action of an equicontinuous strongly quasi-analytic pseudo?group G is
locally determined. That is, if h is the identity on a non-empty open subset of its domain, then
it is the identity on Dom(h). In the case where the transversal T is locally compact and locally
connected, this condition is equivalent to quasi-analyticity by [4, Lemma 9.8]. However, when T is
totally disconnected, the SQA condition becomes a statement about the algebraic properties of the
group chain associated to the action, as we next discuss.

Recall from Proposition 3.4(1) that if M is an equicontinuous matchbox manifold, then we can
assume that the pseudo?group action on the transversal is given by an equicontinuous minimal
Cantor action (V0, G0,Φ0). Thus, for each h ∈ G0 we have Dom(h) = V0. Moreover, the assumption
that the restriction h|U is the identity in the statement of Definition 9.2, means that the SQA
condition needs only be checked for h ∈ G0 such that there exists x ∈ V0 for which Φ0(h)(x) = x,
that is, those elements whose action fixes at least a point.

Recall from Section 6.1 that the closure Φ0(G0) ⊂ Homeo(V0) in the uniform topology of the
image Φ0(G0) ⊂ Homeo(V0) is called the Ellis group of the Cantor system (V0, G0,Φ0), which

yields a Cantor system (V0,Φ0(G0), Φ̂0), where Φ̂0 : Φ0(G0) → Homeo(V0). Given x ∈ V0 then

Φ0(G0)x ⊂ Φ0(G0) denotes the isotropy subgroup at x for the action, and then the SQA condition
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must be checked for all elements of Φ0(G0)x. We denote by Φ̂0(G0) = {Φ0(g) | g ∈ G0} which is a

dense subgroup of Φ0(G0). The following result follows from the definitions.

LEMMA 9.3. If (V0,Φ0(G0), Φ̂0) satisfies the SQA condition, then (V0, G0,Φ0) also satisfies the

SQA condition. Conversely, suppose that Φ0(G0)x ⊂ Φ̂0(G0), then (V0, G0,Φ0) satisfies the SQA

condition implies that (V0,Φ0(G0), Φ̂0) satisfies the SQA condition.

Proof. Let g ∈ G0 and set ĝ = Φ0(g) ∈ Homeo(V0). Then ĝ ∈ Φ0(G0), so that if (V0,Φ0(G0), Φ̂0)
satisfies the SQA condition then so must the action of ĝ. Conversely, suppose (V0, G0,Φ0) satisfies

the SQA condition. As noted above, the SQA property need only be checked for h ∈ Φ0(G0)x. By
assumption, such h ∈ Φ0(G0) and so satisfies the SQA condition. �

Note that the assumption that Φ0(G0)x ⊂ Φ̂0(G0) implies that the compact set Φ0(G0)x is contained
in a countable set, hence it must be finite. Thus, by Theorem 6.1, this implies that the discriminant
group Dx of the action is finite. The converse need not be true, that is, if the discriminant Φ0(G0)x
is finite, then it may be possible to choose a point y ∈ V0, such that Φ0(G0)y has trivial intersection

with Φ̂0(G0), for instance, this is the case for Example 9.6. Examples in Section 10 show that it is

possible to construct actions (V0, G0,Φ0) such that Φ0(G0)x has trivial intersection with Φ̂0(G0) for
any choice of x ∈ V0.

We next consider the SQA property for an equicontinuous minimal Cantor system (V0, G0,Φ0)

and its associated Ellis system (V0,Φ0(G0), Φ̂0). This condition for the system (V0, G0,Φ0) can
be formulated in terms of the group chain model developed in Sections 4 and 6.2, in which case
Lemma 8.7 and Proposition 8.8 imply that the condition is a statement about the holonomy action
of the kernel K(Gx) of the chain Gx for each x ∈ V0. Examples 9.6 and 9.7 below and the discussion
in Section 10 illustrate the possibilities.

The SQA property for the system (V0,Φ0(G0), Φ̂0) can be much more subtle to check, as now it

is a condition on the action of the isotropy group Φ0(G0)x
∼= Dx which depends on the algebraic

properties of the closed subgroup Dx ⊂ C∞. Note that in this case, for any x, y ∈ V0 the isotropy
groups Dx and Dy are conjugate in C∞, so it suffices to consider the condition for a fixed choice of
basepoint x ∈ V0.

9.2. Sufficient conditions for the SQA property. We next indicate a few classes of solenoids
which satisfy the quasi-analyticity condition.

LEMMA 9.4. If a matchbox manifold M is homogeneous, then there exists a section V0 with

associated presentation P, such that the actions (V0, G0,Φ0) and (V0,Φ0(G0), Φ̂0) are SQA .

Proof. By Corollary 6.4 one can assume that V0 and P are chosen so that the associated group chain
{Gx` }`≥0 consists of normal subgroups. Then K(Gx) is a normal subgroup of G0, so by Lemma 8.7,
each g ∈ K(Gx) defines a trivial holonomy action on V0. Hence the action of G0 on V0 is SQA .

Since {Gx` }`≥0 is a chain of normal subgroups, then by Proposition 6.3 the isotropy group Φ0(G0)x
is trivial, and so the condition Φ0(G0)x ⊂ Φ̂0(G0) is trivially satisfied. Then by Lemma 9.3 the

action (V0,Φ0(G0), Φ̂0) is SQA . �

Note that the holonomy pseudogroups associated to homogeneous solenoids, as in Lemma 9.4, satisfy
a stronger condition than SQA. Recall from [6, Definition 2.22], that the action of G0 on V0 is strongly
locally free if for all h ∈ G0, if h(x) = x, then h(y) = y for all y ∈ V0. If M is homogeneous, then
the action on a local section V0, as given by Lemma 9.4, is strongly locally free. The actions in
Lemma 9.4 are the actions in [6, Example 2.35].

The following result gives a class of equicontinuous matchbox manifolds which satisfy the SQA
condition. This is Theorem 1.8 of the Introduction.
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THEOREM 9.5. Let M be an equicontinuous matchbox manifold of finite π1-type. Then there
exists a section V0 with a presentation P, such that the action (V0, G0,Φ0) is SQA . In addition, if

V0 can be chosen so that the discriminant group Dx = Φ0(G0)x is finite, then there exists an n ≥ 0

such that the restricted action (Vn, G
x
n,Φn) and the action (Vn,Φn(Gxn), Φ̂n) are both SQA.

Proof. Let V0 be a transverse section in M as given in Proposition 3.4, and let x ∈ V0 be a choice of
a basepoint. By Theorem 8.4 we can assume that x is chosen so that Lx is a leaf without holonomy.
As the leaves of FM are assumed to have finite π1-type, by Lemma 8.7 and Proposition 8.8, and
restricting to a smaller section is necessary, we can assume that V0 and {Gx` }`≥0 are chosen so that
K(Gx) is a normal subgroup of G0. Then by Proposition 8.10, K(Gx) ⊆ K(Gy) for all y ∈ V0, and,
if Germ(y,Φ0) is trivial, then K(Gx) = K(Gy).

Since the G0-orbit of x is dense in V0, any g ∈ G0 which is the identity on a non-empty open set in
V0 must be contained in K(Gx), and so it is the identity on V0. Thus, (V0, G0,Φ0) is SQA.

Now let C∞ be the Ellis group, associated to (V0, G0,Φ0), and suppose the discriminant group

Dx ∼= Φ0(G0)x is finite. Suppose there exists a non-trivial element ĝ ∈ Φ0(G0)x which fixes an open
subset U of V0 around x.

Let V` be defined as in Proposition 3.4, so that x ∈ V` for all ` ≥ 0. Choose an index n ≥ 0 large
enough so that Vn ⊂ U . Let y ∈ Vn, then ĝ = (giCi) ∈ Φ0(G0)y, and it follows that

ĝ ∈
⋂
y∈Vn

Φ0(G0)y,

that is, the intersection
⋂
y∈Vn

Dy is non-trivial.

Consider the truncated chain {Gx` }`≥n, and the corresponding action (Vn, G
x
n,Φn). Recall from

Section 7.3 that En` = coreGx
n
Gx` is a maximal normal subgroup of Gx` in Gxn, and there is an

inclusion

C` ⊂ En` ⊂ Gx` ,(45)

where C` is the maximal normal subgroup of Gx` in G0. The Ellis group En∞ of the restricted action
(Vn, G

x
n,Φn) is defined by (34) as the inverse limit of coset spaces Gxn/E

n
` . The inclusions (45) yield

a commutative diagram

Gxn/C`
φn,` //

$$J
JJ

JJ
JJ

JJ
Gxn/E

n
`

zzttt
tt
tt
tt

Gxn/G
x
`

(46)

which is equivariant with respect to the natural action of Gxn on its coset spaces. Taking the inverse
limits, we obtain the commutative diagram

Cn∞
φn,∞ //

$$I
II

II
II

II
En∞

zzuu
uu
uu
uu
u

Gn∞
∼= Vn

(47)

where Cn∞ is the profinite subgroup of C∞, defined by (31), which is again equivariant with respect
to the action of Gxn on the inverse limits, and φn,∞ is a surjective group homomorphism.

Let ĝn = φn,∞(ĝ). We will show that ĝn acts trivially on Vn. Indeed, let ĝ = (g`C`), where g` ∈ Gxn.
Then ĝn = (g`E

n
` ) for ` ≥ n. Since C` and En` are normal subgroups of Gxn, the actions of g`C` and

g`E
n
` on Gxn/G` are well-defined, for example, for any h ∈ Gxn we have

g`C`hG
x
` = g`hC`h

−1hGx` = ghGx` ,
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and similarly for g`E
n
` . Since Diagram 46 is a commutative diagram of equivariant maps, we obtain

that

g`C`hG
x
` = hGx` =⇒ g`E

n
` hG

x
` = hGx` ,

and it follows that if ĝ acts trivially on y = (hiG
x
` ) ∈ Vn, then ĝn acts trivially on y as well.

Then by an argument similar to the one at the beginning of this proof, we obtain that ĝn ∈
⋂
y∈Vn

Dny ,

where Dny is the discriminant group of the truncated action (V0, G
x
n,Φn) at y ∈ Vn. We note that⋂

y∈Vn
Dny is the maximal normal subgroup of Dnx , and so by Proposition 6.2 it must be trivial.

Therefore, ĝn = φn,∞(ĝ) is the identity in En∞.

We note that the restricted group action (Vn, G
x
n,Φn) is SQA since (V0, G0,Φ0) is SQA . By restrict-

ing to a smaller section and applying the above argument a finite number of times we may assume
that no element of the discriminant group Dnx fixes an open subset of Vn. It follows that the action

(Vn,Φn(Gxn), Φ̂n) of the closure is SQA . �

9.3. SQA counter-examples. We give two classes of examples to illustrate the above results.

EXAMPLE 9.6. We first give an example of a group action, corresponding to the holonomy of a
solenoid with leaves of finite π1-type, that is not strongly locally free.

Let K be the Klein bottle, with the fundamental group G0 = 〈a, b | bab−1 = a−1〉, and let
K∞ = lim

←−
{p : K → K} be the inverse limit space, as described in Example 4.11. The solenoid K∞

contains one non-orientable leaf with one end, and every other leaf is an open two-ended cylinder.
Thus, each leaf is homotopic to a circle, and thus has finite π1-type.

The group chain Gx, associated to the choice of a basepoint as in Example 4.11 consists of subgroups

Gx` = 〈a2`

, b〉, ` ≥ 0, and K(Gx) = 〈b〉. This leaf has non-trivial holonomy, with Germ(x,Φ) ∼= Z2.
Fokkink and Oversteegen [29] computed, that the kernel of a group chain based at any point which
is not in the orbit of x, is K(Gy) = 〈b2〉, which is easily seen to be a normal subgroup of G0. Thus
for the chosen section V0, for every point y with trivial Germ(y,Φ) the kernel K(Gy) is a normal
subgroup of Gy` , ` ≥ 0, and the section satisfies Proposition 8.10. So the action (V0, G0,Φ) satisfies
the SQA condition.

This action is not strongly locally free. Indeed, the action of the element b fixes x, but it does not
fix any y with trivial Germ(y,Φ). The non-trivial element in Φ(G0)x acts non-trivially on any open

subset of V0, and so the action (V0,Φ(G0)x, Φ̂) satisfies the SQA condition.

EXAMPLE 9.7. We next give an example of a solenoid, for which the action of the holonomy
group on the fibre is not SQA for any choice of a transverse section V0. This example is the Schori
solenoid [59]. We now recall its construction, as described in [12].

Let X0 be a genus 2 surface. Recall that a 1-handle is a 2-torus without an open disc, and note that
the genus two surface X0 can be seen as the union of two 1-handles H0 and F0 intersecting along
the boundaries of the open discs taken out. Let x0 be a point in the intersection of the handles.
Recall that the fundamental group of the genus 2 surface can be presented as

π1(X0, x0) = 〈a, b, c, d | aca−1c−1bdb−1d−1 = 1〉,

where a and b are longitudinal loops in X0.

Cut the handle H0 (resp. F0) along a closed curve C0 (resp. D0), as shown in Figure 1, a). Pull the
cut handles apart to obtain the surface with boundary X0, see Figure 1, b). Take three copies of

X0, denoted by X
1

0, X
2

0, X
3

0, and identify their boundaries as shown in Figure 1, c). The resulting
surface X1, see Figure 1, d), has genus 4, and there is an obvious 3-to-1 covering map f1

0 : X1 → X0.
Let x1 be the preimage of x0 in the second copy of the handle. We note that the covering f1

0 is not
regular; that is, the image (f1

0 )∗π1(X1, x1) of the fundamental group of X1 is not a normal subgroup
of π1(X0, x0). Geometrically, we can see that f1

0 is irregular as follows: take a longitudinal loop γ
in X0, which represents an equivalence class of loops in π1(X0, x0). The fibre of f1

0 consists of three
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points, and we see from Figure 1, c), that depending on the initial point of the lift, γ may lift to a
loop or to a non-closed curve [59].

3
X0

2
X0

1
X0

c)

H0 F 0

0D’ 0D’’0C’
0C’’

0X

b)

X 1

H 1
F 1

D 1
C 1

d)

0D0C

0F
H0

X0

a)

Figure 1. Construction of the Schori example: a) Choice of the handles H0 and
F0 and closed curves C0 and D0 in X0, b) The cut surface X0, c) Identifications

between X
`

0, ` = 1, 2, 3. Each X
i

0 is represented by a cut copy of figure 8, and
identifications are depicted with straight lines, d) The surface X1 and the choice of
the handles H1 and F1 and closed curves C1 and D1.

Then proceed inductively to obtain a collection of 3-to-1 coverings f `+1
` : X`+1 → X`. That is, we

can see X` as the union of two handles H` and F`, intersecting along their boundaries, see Figure 1,
d), for ` = 1. We cut the handle H` (resp. F`) along a closed curve C` (resp. D`), pull the handles

apart to obtain the surface with boundary X`, take three copies of X`, denoted by X
1

` , X
2

` , X
3

` , and
identify their boundaries in a way similar to Figure 1, c). The resulting surface X`+1 is a 3-to-1

non-regular cover of X`. This defines a presentation P = {f `+1
` : X`+1 → X`, ` ≥ 0} of the Schori

solenoid SP . Let X0 be the fibre of SP at x0.

For each ` ≥ 0, we choose x`+1 to be a preimage of x` under the covering map f `+1
` in the second

copy of X`. Denote by Gx = {Gx` }`≥0 the corresponding group chain, and recall that there is a
conjugacy φ : X0 → Xx

∞ = lim
←−
{G0/G

x
`+1 → G0/G

x
` , ` ≥ 0}. As before, we denote by U(x, `) the

cylinder set in Xx
∞ containing (eGx` ). If y ∈ X0 is a point with φ(y) = (g`G

x
` ), then g` · U(x, `) =

Φ(g`)(U(x, `)) is a cylinder set containing φ(y). Denote Uy` = φ−1(g` · U(x, `)). The group chain

Gy = {Gy` = g`G
x
` g
−1
` }`≥0 corresponds to a presentation P ′ of the Schori solenoid with basepoint y.

The following theorem is Theorem 1.9 of the Introduction.

THEOREM 9.8. In the Schori solenoid, for any choice of a basepoint y ∈ X0, and any choice of
a section Uyn , n ≥ 0, the holonomy action (Uyn , G

y
n,Φn) is not SQA .

Proof. Let y ∈ X0, and let (Uyn , G
y
n,Φn) be the holonomy action. At the end of Section 2 we

described the procedure of restricting to a smaller section, which gives us a presentation P ′n =

{f `+1
` : X`+1 → X`, ` ≥ n}. By a slight abuse of notation, we now denote Gyn = π1(Xn, yn), and

Gy` = (f `n)∗π1(X`, y`) (these groups are isomorphic to the groups (f `0)∗π1(X`, y`), which we denoted
by Gy` earlier). Thus we have a homeomorphism

φ′n : Uyn → Xy
∞,n = lim

←−
{Gyn/G

y
`+1 → Gyn/G

y
`} ,

which commutes with the action of Gyn on Uny and Xy
∞,n. Denote by U(y, `) the cylinder neighbor-

hoods of (eGy` ) in Xy
∞,n. In particular, U(y, n) = X∞,n.

The surface X` in the presentation P ′ has genus m` = 3` + 1 (see [12]), so Gy` has m` generators,
represented by longitudinal loops. In particular, there are loops γn and δn, which wind around the
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handles Hn and Fn in Xn respectively. Denote by gγ and gδ the elements represented by γn and δn
in Gyn respectively.

Now consider the construction of the surface Xn+1. It is obtained by the identification of three

copies X
1,2,3

n of Xn similar to the identification in Figure 1, c). There is a point yn+1 in one of the
copies, which satisfies fn+1

n (yn+1) = yn, and which corresponds to our choice of the basepoint y.
Denote by zn+1 and vn+1 the other two points such that fn+1

n (zn+1) = fn+1
n (vn+1) = yn.

Denote by γyn+1
, γzn+1

, and γvn+1
the copies of γn in X

1,2,3

n with respective basepoints yn+1, zn+1

and vn+1. Note that these loops are cut when constructing X
1,2,3

n . We now proceed to identify the

boundaries of X
1,2,3

n according to the construction, which would close one of the loops back, and
would intertwine the boundaries of the other two loops, so as to create a single loop of twice the
length of γn.

We have the following alternatives: first, suppose γzn+1 is identified into a loop, and γyn+1 and γvn+1

are identified to make a single loop of twice the length. Then the lift of γn with the starting point
yn+1 is the curve γyn+1

which is not closed and has vn+1 as its ending point. This means that
the action of gγ on the coset space Gyn/G

y
n+1 maps eGyn+1 onto gγG

y
n, and so maps the cylinder

neighborhood U(y, n+ 1) onto the clopen set gγ(U(y, n+ 1)). At the same time, the lift of γn with
the starting point zn+1 is a closed loop. So the action of gγ fixes the coset γδG

y
n+1, and the clopen

set gδ(U(y, n+ 1)). We note that on the subsequent steps of the construction, when creating Xn+i,
the lifts of the loop γzn+1

are never cut and identified, which means that the action of gγ is the
identity on gδ(U(y, n+ 1)).

Another alternative is that γyn+1
is identified into a loop, and γzn+1

and γvn+1
are identified to

make a single loop. Arguing similarly, in this case we obtain that the action of gγ is the identity on
U(y, n+ 1), and it permutes the sets gδ(U(y, n+ 1)) and gγ ◦ gδ(U(y, n+ 1)). Thus in both cases we
obtain an element which is the identity on a clopen subset of the section Uyn , which permutes two
other subsets of Uny , which means that (Uyn , G

y
n,Φ) is not SQA . Since the choice of y and n was

arbitrary, we conclude that the holonomy pseudogroup for the Schori solenoid is not SQA . �

From the proof of Theorem 9.8 we obtain the following corollary, which shows that the hypotheses
of Proposition 8.8 are necessary.

COROLLARY 9.9. In the Schori solenoid, for any choice of a transverse section V0, and any
choice of a point x, Germ(Φ0, x) is not locally trivial.

Proof. From the proof of Theorem 9.8 we conclude that, for any choice of a basepoint y ∈ X0, and
any choice of a group chain Gyn = {Gyn}i≥0, the kernel K(Gyn) is not a normal subgroup of Gxn. It
follows that, even if Germ(Φ0, x) is trivial, it is not locally trivial. �

10. A universal construction

In this section, we give a general method to construct examples of group chains with prescribed
discriminant groups. This construction is inspired by the proof of Lemma 37 in Section 8 of Fokkink
and Oversteegen [29], which they attribute to Hendrik Lenstra. The construction of Lenstra is given
in Section 10.1, and Section 10.2 discusses some properties of this construction. Then in Section 10.3
we give criteria for when the resulting group chains are stable.

Section 10.4 recalls two basic results of Lubotzky from the paper [41]. The first, given here as
Theorem 10.4, realizes any given finite group F embedded into the profinite completion of a finitely-
generated, torsion-free group G. A second result of Lubotzky, given here as Theorem 10.5, embeds
the infinite product H of a collection of finite groups as a subgroup of the profinite completion of a
finitely-generated, torsion-free group G. Then in Section 10.5, these constructions of Lubotzky are
used to construct the examples used in the proofs of Theorems 1.10 and 1.12 of the introduction.
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There is an extensive literature on embedding groups into the profinite completion of a given torsion-
free, finitely-generated group (see [53] for a discussion of this topic, and further references). The
methods of this section apply in this generality to yield an enormous range of equicontinuous minimal
Cantor actions with infinite, hence Cantor discriminant groups.

10.1. A profinite construction. We first give a reformulation of the constructions in Sections 6.2
and 6.3, in analogy with the construction of Lenstra in [29]. This alternate formulation is of strong
interest in itself, as it gives a deeper understanding of the Molino spaces introduced in this work.

Let G0 be a finitely-generated group, G = {G`}`≥0 a group chain in G0, and let C = {C`}`≥0 be the
core group chain associated to G, with C∞ the core group associated with C. Also assume that the

kernel K(G) is trivial, so the map Φ̂: G0 → C∞ is an injective homomorphism with dense image

Ĝ0 = Φ̂(G0) ⊂ C∞. Then the discriminant of G is a compact subgroup D ⊂ C∞, whose rational
core as defined in (26) is trivial by Proposition 6.2.

Let Cn,∞ ⊂ C∞ be the clopen normal subgroup neighborhood of the identity {e} defined in (23).

As the intersection
⋂
n≥1

Cn,∞ = {e}, the collection {Cn,∞ | n ≥ 1} is a clopen neighborhood system

about the identity in C∞. Observe that from the definition (21), we have that C∞/Cn,∞ ∼= G0/Cn
and Ĝ0 ∩ Cn,∞ ∼= Gn. As each subgroup Cn,∞ is normal and D is compact, the product Vn =

D · Cn,∞ ⊂ C∞ is a clopen subgroup of C∞ containing D, and we have D =
⋂
n≥1

Vn. Thus, D is

realized as the countable intersection of clopen subgroups of C∞. It is an exercise to show that this
formulation of D agrees the definition of D as an inverse limit in (25).

We now turn the order of the above remarks around, to obtain a construction of a group chain with
prescribed discriminant group.

PROPOSITION 10.1. Let C∞ be a profinite group, and let G ⊂ C∞ be a finitely-generated dense
subgroup. Let D ⊂ C∞ be a compact subgroup of infinite index which has trivial rational core,

(48) coreG D =
⋂
k∈G

kDk−1 = {e} .

Then there exists a group chain G = {G`}`≥0 with G0 = G, with discriminant group D.

Proof. By the assumption that C∞ is a profinite group, there exists a group chain {U` | ` ≥ 1}
which is a clopen neighborhood system about the identity in C∞, so that:

(1) each U` is normal in C∞ ;
(2) for each ` ≥ 0 there is a proper inclusion U`+1 ⊂ U` ;

(3) the intersection
⋂
`≥1

U` = {e} .

In particular, each quotient H` ≡ C∞/U` is a finite group. Let ι`+1
` : H`+1 → H` be the map

induced by inclusion of cosets. Then there is a natural identification

(49) C∞ ∼= lim
←−

{
ι`+1
` : H`+1 → H`

}
.

Next, for each ` ≥ 1, set W` = D · U` which is a subgroup of C∞, as U` is normal. Moreover, the
assumption that D is compact implies that each W` is a clopen subset of C∞. Then set G` = G∩W`

which is a subgroup of finite index in G, and so G = {G`}`≥0 is a subgroup chain in G. Note that

(50) K(G) =
⋂
`≥0

G` =
⋂
`≥0

G ∩W` = G ∩
⋂
`≥0

W` = G ∩ D .

We next calculate the discriminant of the chain G. Let π` : C∞ → H` be the quotient map. As each
H` is finite, the image D` ≡ π`(D) is a finite set. The group G is dense in C∞ so has non-trivial
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intersection with each clopen set gU`. Thus,

(51) D` = π`(D) = π`(W`) = π`(G ∩W`) = π`(G`) ⊂ H` .

The core of the group G` is the group C` ≡ coreG G` =
⋂
g∈G

gG`g
−1. Then we have

(52) π`(C`) = π`(
⋂
g∈G

g G` g
−1) =

⋂
g∈G

π`(g) π`(G`) π
`(g)−1 =

⋂
g∈G

π`(g) π`(D) π`(g)−1 = {e`} ,

where e` ∈ H` is the identity, and the last equality follows since G is dense in C∞ and the core
of D is trivial. It follows that C` = G ∩ U`, and thus we obtain induced maps on the quotients,
π` : G/C` → H`. Then note that π`(G`/C`) = π`(D) = D` for all ` ≥ 0.

The map ι`+1
` : H`+1 → H` induces a map (denoted the same), ι`+1

` : D`+1 → D`. Then for the
inverse limits we have

(53) lim
←−

{
δ`+1
` : G`+1/C`+1 → G`/C`

}
= lim
←−

{
ι`+1
` : D`+1 → D`

}
.

The term on the left-hand-side of (53) is by definition the discriminant of the chain G, while the
term on the right hand side of (53) is homeomorphic to the subgroup D, as {U` | ` ≥ 1} is a clopen
neighborhood system about the identity in C∞. �

10.2. Properties of the Lenstra construction. We make some remarks about the construction
in Proposition 10.1. First, note that the proof of [29, Lemma 37] defined the chain Gn using a
collection of clopen neighborhoods of e ∈ C∞. However, the proof in [29] that the chain Gn is not
weakly regular used Proposition 5.6, that is, the fact that if the number of conjugacy classes of
the kernel K(Gn) is infinite, then Gn cannot be weakly regular. Our approach is to calculate the
discriminant group for the chain directly.

Assume there is given a profinite group C∞, a compact subgroup D ⊂ C∞, and a dense subgroup
G ⊂ C∞ satisfying the hypotheses of Proposition 10.1. Set X = C∞/D which is a Cantor space.
The left action of G on X defines a map Φ: G → Homeo(X), which is a minimal action as G is
dense in C∞. Thus, the construction yields an equicontinuous minimal Cantor system (X,G,Φ).

Next, given a clopen neighborhood system {U` | ` ≥ 1} about the identity in C∞, which satisfies the
conditions in the proof of Proposition 10.1, let G ≡ {G`}`≥0 be the group chain in G constructed
with respect to this clopen neighborhood system. Then it is an exercise, using the techniques of the
proof of Proposition 10.1, to show that there is a G-equivariant homeomorphism of spaces

τ : X ∼= lim
←−
{ι`+1 : G/C`+1 → G/G`} ≡ X∞ .

Now suppose that {V` | ` ≥ 1} is another clopen neighborhood system about the identity in C∞,
which also satisfies the conditions in the proof of Proposition 10.1, and let H ≡ {H`}`≥0 be the
group chain in G constructed with respect to this second clopen neighborhood system. A basic
property of neighborhood systems is that given any ` ≥ 0 there exists `′ ≥ 0 such that V`′ ⊂ U`,
and `′′ ≥ 0 such that U`′′ ⊂ V`. It follows from their definitions that the group chains G and H are
equivalent in the sense of Definition 4.3.

Suppose that G ∩ D = {e}, then the calculation (50) shows that the kernel K(G) = {e} is trivial.
Moreover, suppose the choice of D is made so that G ∩ ĝDĝ−1 = {e} for all ĝ ∈ C∞. Given y ∈ X
let τ(y) = (g`G`) ∈ X∞, and let Gy = {g`G`g−1

` }`≥0 be the conjugate group chain. Choose ĝ ∈ C∞
such that τ(ĝD) = (g`G`). Then

(54) K(Gy) = G ∩ (ĝ D ĝ−1) = {e}

so that Gy also has trivial kernel. Thus, if we chose D so that G ∩ ĝDĝ−1 = {e} for all ĝ ∈ C∞
is satisfied, then the Cantor system (X,G,Φ) has trivial kernel for the group chain Gy at y, for all
points y ∈ X. For example, suppose that G is a torsion-free group, and D is a torsion group. Then
the condition G∩ ĝDĝ−1 = {e} for all ĝ ∈ C∞ is automatically satisfied, as each non-trivial element
of D, and hence ĝDĝ−1, has finite order. We use this observation in Theorem 10.7 below.
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On the other hand, given G ⊂ C∞ as in Proposition 10.1, and suppose that the compact subgroup
D ⊂ C∞ is chosen so that G∩ ĝDĝ−1 6= {e} for some ĝ ∈ C∞, then by Proposition 8.11 there exists
y ∈ X such that the Cantor system (X,G,Φ) has non-trivial kernel K(Gy) for the group chain Gy
about y. It then follows that the germinal holonomy group Germ(Φ, y) is non-trivial, so this method
can also be used to construct examples with non-trivial germinal holonomy groups.

10.3. Stable actions. Recall from Definition 7.5 that a group chain G = {G`}`≥0 is said to be
stable if there exists n0 ≥ 0 such that the maps ψn,m : Dn → Dm defined in (39) are isomorphisms
for all m ≥ n ≥ n0. We consider the problem of when a group chain G = {G`}`≥0 constructed using
the method of proof of Proposition 10.1 is stable.

We assume the hypotheses of Proposition 10.1, and the constructions of its proof. Fix n > 0, and
consider the truncated group chain Gn = {G`}`≥n. Then the calculation of the kernel K(Gn) = G∩D
is the same as (50). Also, note that D ⊂ W` for all ` ≥ 0, so the calculations in (51) also proceed
analogously. However, the last equality in (52) requires the additional assumption

(55) coreU D =
⋂
k∈U

kDk−1 = {e}

for the clopen neighborhoods U = U` of the identity, in order to conclude that D is the discriminant
group for Gn. In other words, we require that the subgroup D is “totally not-normal” for every

neighborhood of the identity in Ĝ. The above remarks yield:

PROPOSITION 10.2. Let C∞ be a profinite group, let G ⊂ C∞ be a finitely-generated dense
subgroup, and let D ⊂ C∞ be a compact subgroup of infinite index, such that (55) holds for every
clopen neighborhood {e} ∈ U ⊂ C∞. Choose a group chain {U` | ` ≥ 1} which is a clopen neighbor-
hood system about the identity in C∞, then the associated group chain G = {G`}`≥0 with G0 = G
has discriminant group D and is stable.

Finally, in the case where D ⊂ C∞ is a compact subgroup of infinite index, but need not satisfy the
condition that its core is trivial, then noting that the core is a normal subgroup, we can modify the
construction above as follows to obtain a minimal Cantor action.

COROLLARY 10.3. Let C ′∞ be a profinite group, G′ ⊂ C ′∞ be a finitely-generated dense subgroup,
and D′ ⊂ C ′∞ be a non-trivial compact subgroup of infinite index , and let coreG′D′ denote the rational
core of D′ as in (55), which is a normal subgroup of C ′∞ as G′ is dense. Set:

C∞ = C ′∞/(coreG′D′) ; G = G′/(G′ ∩ coreG′D′) ; D = D′/coreG′D′ .

Then there exists a group chain G = {G`}`≥0 with G0 = G, and discriminant group D.

10.4. Constructing embedded groups. We next recall the remarkable constructions of Lubotzky,
which when combined with the techniques of Proposition 10.1, makes possible the construction of a
wide class of equicontinuous minimal Cantor actions by a finitely-generated, torsion-free, residually
finite group G, with prescribed discriminant group D. There are two cases of the construction.

THEOREM 10.4 (Theorem 2(b), Lubotzky [41]). Let F be a non-trivial finite group, and set

Fi = F for all integers i ≥ 1. Let F =
∏

Fi denote the infinite cartesian product of F . Then there

exists a finitely-generated, residually-finite, torsion-free group G ⊂ SLn(Z) for n ≥ 3 sufficiently

large, whose profinite completion Ĝ contains F.

Proof. We give just an outline of the construction used in the proof of Theorem 2(b) in [41], with
details as required for the constructions of our examples. First recall some basic facts. For n ≥ 3, let
Γn = SLn(Z) denote the n × n integer matrices. The group Γn is finitely-generated and residually
finite, and hence so are all finite index subgroups of Γn. Let Γn(m) denote the congruence subgroup

Γn(m) ≡ Ker {ϕm : SLn(Z)→ SLn(Z/mZ)} .
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For m ≥ 3, Γn(m) is torsion-free. Moreover, by the congruence subgroup property, every finite index
subgroup of Γn contains Γn(m) for some non-zero m. Then this implies

(56) ŜLn(Z) ∼= lim
←−

SLn(Z/mZ) ∼= SLn(Ẑ) ∼=
∏
p

SLn(Zp)

where Ẑ is the profinite completion of Z, and we use that Ẑ =
∏
p

Zp where Zp is the ring of p-adic

integers, and the product is taken over all primes. Note that the factors in the cartesian product on
the right hand side of (56) commute with each other.

Let G ⊂ Γn be a finite index, torsion-free subgroup, which is then finitely-generated, and its profinite

completion Ĝ is an open subgroup of ŜLn(Z). Then there exists a cofinite subgroup P(G) of the
primes such that

(57)
∏

p∈P(G)

SLn(Zp) ⊂ Ĝ .

Let dF = |F | denote the cardinality of F , and let n ≥ |F | + 2. Then F embeds in the alternating
group Alt(n) on n symbols. Then F is non-trivial implies that n ≥ 4 > 3. For each p ∈ P(F ), the
group Alt(n) embeds into SLn(Zp), and thus we obtain an embedding

(58) ι∞ : F ∼=
∏

p∈P(G)

Fp ⊂
∏

p∈P(G)

Alt(n) ⊂
∏

p∈P(G)

SLn(Zp) ⊂ Ĝ ,

where Fp = F for each p ∈ P(G). This completes the construction. �

In [41, Theorem 1] Lubotzky extended the above construction, to obtain an embedding for a group
D which is an infinite product of possibly distinct finite groups {Hi | i = 1, 2, . . .}. The extension is
highly non-trivial, as if all of the groups Hi are distinct, then the degrees |Hi| must tend to infinity,
and so the above straightforward strategy for embedding no longer works.

THEOREM 10.5 (Theorem 1, Lubotzky [41]). Let {Hi | i = 1, 2, . . .} be an infinite collection of

non-trivial finite groups, and let H =
∏

Hi denote their cartesian product. Then there exists a

finitely-generated, residually-finite, torsion-free group G whose profinite completion Ĝ contains H.

Proof. Again, we only sketch some key aspects of the proof from [41]. Let G ⊂ Γn be the finitely-

generated, torsion-free, residually-finite group constructed on [41, page 330], and Ĝ its profinite
completion. Lubotzky constructs by induction an increasing sequence of primes {pn | n ≥ 3} such
that

(59)

∞∏
n=3

SLn(Zpn) ⊂ Ĝ .

For i ≥ 1, let di = |Hi| denote the cardinality of Hi. Then each Hi embeds in the alternating group
Alt(di + 2) on di + 2 symbols. Now choose an increasing sequence of integers {ni | i ≥ 1} such that
ni ≥ di + 2. Then for each i ≥ 1, the group Alt(di + 2) embeds into the alternating group Alt(ni)
by taking only the permutations on the first (di + 2) symbols. For each i ≥ 1 the group Alt(ni)
embeds into SLni

(Zpni
). Thus, we have embeddings Hi ⊂ Alt(ni) ⊂ SLni

(Zpni
).

The product in (59) is over all n ≥ 3, while the group Hn = Hni
if n = ni for some ni as chosen

above. For n 6= ni for some i, let Hn be the trivial group. Set An = Alt(ni) if n = ni for some ni
and let An be the trivial group otherwise. Then we obtain an embedding of the infinite product H,

(60) ι∞ : D ∼=
∏
n≥3

Hn ⊂
∏
n≥3

An ⊂
∏
i≥1

SLni
(Zpni

) ⊂ Ĝ .

This completes the construction. �
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10.5. Constructing stable actions. We next use Theorems 10.4 and 10.5, and observations from
their proofs in [41], to construct examples of stable equicontinuous minimal Cantor group actions.

We first require a simple observation. For n ≥ 2, the alternating group Alt(n) on n symbols embeds
into the the alternating group Alt(4n) on 4n symbols, by consider Alt(n) as acting on the first n
symbols, and fixing the remaining 3n symbols. We thus consider Alt(n) ⊂ Alt(4n) as a subgroup.

LEMMA 10.6. The core of Alt(n) in Alt(4n) is the trivial group.

Proof. There exists an element σ ∈ Alt(4n) which swaps the first 2n symbols for the last 2n symbols.
Then σ−1 Alt(n) σ is contained in the alternating group which permutes the last 2n symbols, and
hence is disjoint from the subgroup Alt(n). �

Lemma 10.6 is used to ensure that the chains constructed below satisfy the conditions of Section 10.3.

THEOREM 10.7. Let F be a finite group. Then there exists a finite index, torsion-free group

G ⊂ SLn(Z) and an embedding of F into the profinite completion Ĝ, so that the resulting group
chain GK = {G`}`≥0 constructed as in Section 10.1 yields an equicontinuous minimal Cantor system
(X∞, G,Φ) whose discriminant group for the truncated group chain {G`}`≥k is isomorphic to F for
all k ≥ 0. Hence the action is stable and irregular. Moreover, the germinal holonomy group for each
x ∈ X is trivial.

Proof. As noted in the proof of Theorem 10.4, if F is a non-trivial finite group of order dF = |F |,
then F embeds in the alternating group Alt(dF +2). We then embed Alt(dF +2) in the alternating
group Alt(n) for n ≥ 4(dF + 2), by considering Alt(n) as acting on the first n symbols, as in the
proof of Lemma 10.6. We identify F with its image, and then note that the core of F in Alt(n)
is the trivial group. Note that dF ≥ 2, so we have that n ≥ 16. Also note that if F ′ is any other
finite group of order at most dF , then it also embeds into Alt(dF + 2), and hence the following
construction is universal for all finite groups F ′ with |F ′| ≤ |F |.

For n ≥ 4(dF + 2), let G ⊂ Γn = SLn(Z) be the finite index, torsion-free subgroup constructed in

the proof of Theorem 10.4. Set H` = Alt(n) for all integers ` ≥ 1, and let H =
∏

H` denote their

cartesian product. Then the embedding (58) becomes

(61) ι∞ : H ∼=
∏

p∈P(G)

Altp(n) ⊂
∏

p∈P(G)

SLn(Zp) ⊂ Ĝ ,

where Altp(n) = Alt(n) for each prime p.

For each i ≥ 1, we have the embedding F ⊂ Alt(dF + 2) ⊂ Alt(n) = H`. Let F → H be the

diagonal embedding into the infinite product, which then yields an embedding ιF : F → Ĝ into the
profinite completion of G, with image denoted by D = ιF (F ).

Next, use the method of Section 10.1 to construct a group chain in G. The group G is residually

finite, so there exists a clopen neighborhood system {U` | ` ≥ 1} about the identity in Ĝ, where

each U` is normal in Ĝ. Note that G is dense in Ĝ and each U` is closed, so the closure of G ∩ U`
in Ĝ is equal to U`. Set W` = D · U` for ` ≥ 1, and G` = G ∩W`. Let GF = {G`}`≥0 denote the
resulting group chain.

Let {e} ∈ U ⊂ Ĝ be a normal clopen neighborhood of the identity, so that Ĝ/U is a finite group

with cardinality |Ĝ/U |. We claim coreU D = {e}. The normal subgroup U has finite index, hence
as argued in the proof of [41, Theorem 2], there exists a cofinite subset of primes P(G,U) ⊂ P(G)
of the list in the product in (61) such that∏

p∈P(G,U)

Altp(n) ⊂
∏

p∈P(G,U)

SLn(Zp) ⊂ U ⊂ Ĝ .
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For p ∈ P(G,U), note that for the diagonal embedding of F into H, the projection to each factor of
H is an isomorphism. For the image of F in the p− th factor, we have

F ⊂ Alt(dF + 2) ⊂ Alt(n) = Altp(n) ⊂ SLn(Zp) .

The image group has trivial core by Lemma 10.6. The projection of D to F ⊂ Altp(n) is an
isomorphism, so this implies that D has trivial core in U as well. Then by Proposition 10.2, for
all k ≥ 0, the discriminant group for the truncated group chain {G`}`≥k is isomorphic to F . In
particular, GF is a stable group chain.

Next, observe that D compact implies that the closure G` of G` in Ĝ equals W`, and D = ∩ G`. For
the kernel of GF as defined in Section 4.2, we then have

(62) K(GF ) =
⋂
`≥0

G` ⊂
⋂
`≥0

G` = D .

The group D is finite, hence every element of D has finite order, while K(GF ) ⊂ G which is torsion-

free. Thus, K(GF ) ⊂ D ∩G = {e}, hence K(GF ) is the trivial group. Moreover, for each ĝ ∈ Ĝ let

G ĝF = {ĝ G` ĝ−1}`≥0 denote the conjugate group chain. Then by the same reasoning, we also have

K(G ĝF ) = {e}, as ĝ−1 D ĝ ⊂ Ĝ is again a finite subgroup, hence has trivial intersection with G.

Let (X,G,Φ) be the equicontinuous minimal Cantor system with X = Ĝ/D with the associated
group chain GF , as discussed in Section 10.2. The discriminant group of GF is D, and each non-

trivial element h ∈ D is torsion, hence its image in Ĝ is torsion, and thus any conjugate of it is not
contained in the torsion-free subgroup G. Thus, for each y ∈ X, the action Φ has trivial germinal
holonomy at y.

The discriminant group of the truncated chain {G`}`≥k is isomorphic to F for all k ≥ 0. Thus, GF
cannot be a weakly regular group chain. This establishes all of the claims of Theorem 10.7. �

Note that the action (X,G,Φ) satisfies the SQA condition by default, as all germinal holonomy

groups are trivial. The action of Ĝ on X = Ĝ/D satisfies the SQA condition by Theorem 9.5.
Corollary 1.11 now follows by using the construction in Section 2.2 to obtain a matchbox manifold
with section V0

∼= X and induced holonomy action (X,G,Φ).

We remark that it is tempting to use the fact that G ⊂ SLn(Z) ⊂ SLn(R) is a torsion-free subgroup,
and then use the quotient space M0 = SLn(R)/G as the base of a presentation for a weak solenoid
SP . However, this quotient space is not compact, and we do not have a “theory of weak solenoids”
over non-compact manifolds.

We next use Theorem 10.5 to construct two types of embeddings of Cantor groups into profinite
groups. Theorem 10.8 embeds a profinite group such that the resulting action is stable. Theo-
rem 10.10 embeds a Cantor group such that the resulting action is not virtually regular.

THEOREM 10.8. Let K be a separable profinite group. There exists a finitely-generated, residually-

finite, torsion-free group G, and an embedding of K into its profinite completion Ĝ, so that the
resulting group chain GK = {G`}`≥0 constructed as in Section 10.1 yields an equicontinuous min-
imal Cantor system (X,G,Φ) whose discriminant group for the truncated group chain {G`}`≥k is
isomorphic to K for all k ≥ 0. Hence the action is stable and irregular.

Proof. Let G ⊂ Γn be the finitely-generated, torsion-free, residually-finite group in the proof of

Theorem 10.5, and as constructed on [41, page 330], and let Ĝ be its profinite completion.

The assumption that K is a separable profinite group implies that K is isomorphic to an inverse
system of finite groups

(63) K ∼= lim
←−

{
φ`+1
` : K`+1 → K` | ` ≥ 0

}
⊂ K ∼=

∏
K` ,

where each K` is a finite group, and the bonding maps φ`+1
` are epimorphisms for all ` ≥ 0, but not

isomorphisms. Thus, their cardinalities {|K`| | ` ≥ 0} form an increasing sequence of integers. Note
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that we have isomorphisms for all k > 0, induced by the shift map σi on indices,

(64) σi : K ∼= lim
←−

{
φ`+1
` : K`+1 → K` | ` ≥ k

}
.

For each ` ≥ 0, set d` = 4(|K`| + 2). Then as in the construction in Theorem 10.7, there is an
embedding of K` into the alternating group, K` ⊂ Alt(|K`| + 2) ⊂ Alt(d`). Choose an increasing
sequence of integers {n` | ` ≥ 1} so that n` ≥ d` for all ` ≥ 1.

Then as in the proof of Theorem 10.5, we set Hn = Alt(d`) if n = n` for some n` as chosen above.
If n 6= n` for all `, let Hn be the trivial group. Set An = Alt(n`) if n = n` for some n`, and let An

be the trivial group otherwise. Then we obtain an embedding of the infinite product,

(65) H ≡
∏
n≥3

Hn ⊂ A ≡
∏
n≥3

An ⊂
∏
`≥1

SLn`
(Zpn`

) ⊂ Ĝ .

Now observe that the inverse limit presentation in (63), along with the above embedding (65), gives
an embedding

(66) ∆K : K ⊂
∏

K` ⊂
∏
n≥3

Hn ⊂
∏
n≥3

An ⊂ Ĝ .

Set D = ∆K(K) ⊂ Ĝ. Then as in the proof of Theorem 10.7, use the method of Section 10.1 to
construct a group chain in G. The group G is residually finite, so there exists a clopen neighborhood

system {U` | ` ≥ 1} about the identity in Ĝ, where each U` is normal in Ĝ. Set W` = D · U` for
` ≥ 1, and G` = G ∩W`. Let GK = {G`}`≥0 denote the resulting group chain.

Let {e} ∈ U ⊂ Ĝ be a normal clopen neighborhood of the identity, so that Ĝ/U is a finite group with

cardinality |Ĝ/U |. We claim coreU D = {e}. Note that for m ≥ 5, the alternating group Alt(m)
is simple, and its cardinality |Alt(m)| = m!/2 tends to infinity as m increases. As the sequence
{n`} is increasing, for some `0 > 0, then ` ≥ `0 and Am = Alt(n`) non-trivial implies that Hm

has order |Hm| = (n`)!/2 > |Ĝ/U |. Thus, the projection Am ⊂ Ĝ → Ĝ/U cannot be an injection,
and as Am is a simple group, it must be contained in the kernel, so Am ⊂ U . Let πm : A → Am

be the projection onto the m − th factor. We have that D ⊂ H ⊂ A and let Dm ⊂ Am denote its
image. By the choice of m, and that n` ≥ d` = 4(|K`|+ 2), Lemma 10.6 implies the subgroup Dm
has trivial core in Am. It follows that D has trivial core in U .

Then by Proposition 10.2, for all k ≥ 0, the discriminant group for the truncated group chain
{G`}`≥k is isomorphic to K. In particular, GK is a stable group chain and is not weakly normal.

The rest of the proof proceeds as for that of Theorem 10.7. �

Note that in the above proof, we cannot assert that all leaves of the suspended foliation FM have

trivial holonomy, as examples show that some conjugate of D in Ĝ may intersect G non-trivially.

Our final example, which is again based on the application of Theorem 10.5, answers a question
posed in the work [20]. In that work, the notion of a virtually regular action (X,G,Φ) with group
chain G = {G`}`≥0 was introduced:

DEFINITION 10.9. [20, Definition 1.12] A group chain G = {G`}`≥0 is said to be virtually
regular if there exists a normal subgroup G′0 ⊂ G0 of finite index such that the restricted chain
G′ = {G′`}`≥0, where G′` = G` ∩G′0, is weakly normal in G′0.

There is an alternate definition of this concept, which is shown in [20] to be equivalent: a matchbox
manifold M is virtually regular, if there exists a homogeneous matchbox manifold M′ and a finite-to-
one normal covering map h : M′ →M. Thus, the notion of virtually regular is a natural property of
a matchbox manifold M, and can be checked by considering a group chain model for the holonomy
action of the foliation FM.

The following example is the first known to the authors which is not virtually regular, and gives a
natural paradigm for the construction of group chains which are not virtually regular.
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THEOREM 10.10. There exists a finitely-generated, residually-finite, torsion-free group G with

profinite completion Ĝ, such that for any infinite collection {F` | ` = 1, 2, . . .} of non-trivial finite

simple groups, their cartesian product F =
∏

F` can be embedded into Ĝ, so that the resulting

group chain GF = {G`}`≥0 constructed as in Section 10.1 yields an equicontinuous minimal Cantor
system (X,G,Φ) whose discriminant group for the group chain GF is isomorphic to F. Moreover,
GF is not virtually regular.

Proof. The proof follows the same approach as that used in the proof of Theorem 10.8.

Let G ⊂ Γn be the finitely-generated, torsion-free, residually-finite group as used in the proof of

Theorem 10.5, and as constructed on [41, page 330]. Let Ĝ denote its profinite completion.

For each ` ≥ 0, set d` = 4(|F`|+ 2). Then there is an embedding of F` into the alternating groups,
F` ⊂ Alt(|F`| + 2) ⊂ Alt(d`) as in the proof of Theorem 10.8. Choose an increasing sequence of
integers {n` | ` ≥ 1} so that n` ≥ d` for all ` ≥ 1. Let Alt(d`) ⊂ Alt(n`) be the embedding as

the permutations on the first d` symbols. Then we obtain an embedding ιF : F→ Ĝ, of the infinite

product F into Ĝ, given by the composition

(67) ιF : F ∼=
∏
`≥1

F` ⊂
∏
`≥1

Alt(d`) ⊂
∏
`≥1

Alt(n`) ⊂
∏
`≥1

SLn`
(Zpn`

) ⊂ Ĝ .

Set D = ιF(F) ⊂ Ĝ. Use the method of Section 10.1 to construct a group chain in G. The group G
is residually finite, so there exists a clopen neighborhood system {U` | ` ≥ 1} about the identity in

Ĝ, where each U` is normal in Ĝ. Set W` = D · U` for ` ≥ 1, and G` = G ∩W`. Let GF = {G`}`≥0

denote the resulting group chain.

Let U ⊂ Ĝ be a normal clopen neighborhood of the identity. For example, given a normal subgroup

G′ ⊂ G with finite index, we can take U to be the profinite completion of G′ in Ĝ. Let GUF = {G′`}`≥0

be the group chain defined by G′` = G` ∩ U for ` ≥ 0. Then D ∩ U = ∩(U` ∩ U).

We next show that the normal core, coreUD ⊂ D, of D ∩ U in U is a finite subgroup, and then
apply Corollary 10.3 to conclude that the discriminant of the action defined by the group chain
GUF is a non-trivial Cantor group. The following argument is similar to that used in the proof of
Theorem 10.8, and uses that the alternating group Alt(m) is simple for m ≥ 5, and has order

|Alt(m)| = m!/2. Let dU = |Ĝ/U | be the order of the finite group.

Choose `U ≥ 1 such that n`U ≥ 5 and |Alt(n`U )| = (n`U )!/2 > dU .

The for all ` ≥ `U , the factor Alt(n`) in the product in (67) is contained in the kernel of the

projection Ĝ→ Ĝ/U , and thus, F` ⊂ Alt(n`) ⊂ U . Consequently, we have that

(68) D`U ≡
∏
`≥`U

F` ⊂ A`U ≡
∏
`≥`U

Alt(n`) ⊂ D ∩ U .

In particular, this shows that D ∩ U contains a non-trivial Cantor group. Moreover, by applying
Lemma 10.6 to each factor of the product in D`U , we see that D`U has trivial core in U` as well.
Thus, we have

(69) coreUD ⊂
∏

1≤`<`U

F` ,

and so is a finite normal subgroup of U .

By Corollary 10.3, the quotient group chain {(G` ∩ U)/(coreUD)}`≥0 has non-trivial discriminant
group D/(coreUD) which contains a subgroup isomorphic to the non-trivial Cantor group D`U . For
` > 0, apply this to the case U = U` to obtain that the quotient chain {(G` ∩ U`)/(coreU`

D)}`≥0 is

not equivalent to a normal chain. Now suppose that the restricted group chain GU`

F is equivalent to a
normal chain, then as coreU`

D is a normal subgroup of U`, this implies that the quotient group chain
{(G` ∩ U`)/(coreU`

D)}`≥0 is equivalent to a normal chain, hence has trivial discriminant, which is
a contradiction. Thus, the group chain GF is not virtually regular. �



MOLINO THEORY FOR MATCHBOX MANIFOLDS 39

10.6. Open problems. There are many variations of the above method that can be considered,
and open questions about the resulting minimal Cantor actions. First, it is interesting to understand
the answer to the following.

PROBLEM 10.11. Given a separable profinite group Ĥ and an embedding into a profinite group

Ĝ with trivial rational core, constructed using the methods of [41], give criteria for when the resulting
equicontinuous minimal Cantor system (X,G,Φ) is weakly normal, and whether the action is stable
or wild. Furthermore, when do the resulting actions satisfy the SQA condition of Section 9.1?

There is also an extensive literature for the construction of embeddings of groups H into the profinite
completions of torsion-free, finitely generated nilpotent and solvable groups. For example, the work
[18] shows that if G is a finitely-generated, torsion-free nilpotent group, then the profinite completion

Ĝ is torsion free, so if D ⊂ Ĝ is a closed subgroup, then it must be a Cantor group.

On the other hand, the works [27, 38] shows that there exists a countable, torsion-free, residually
finite, metabelian group G such that its profinite completion contains a non-trivial torsion subgroup.
The work [51] studies the profinite topology of nilpotent groups of class two and finitely generated
centre-by-metabelian groups, and uses this to construct embeddings of finite groups into the profinite
completions of these classes of groups. However, the embedding obtained in [51] is contained in the
center of G, so does not satisfy the trivial core condition. We conclude with an open question,
suggested by the examples and results of the works [19, 20, 21, 29, 56, 59].

PROBLEM 10.12. Determine which groups H can be embedded as a closed subgroup of Ĝ with
trivial rational core, where G is a finitely-generated, torsion-free amenable group.
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[48] P. Molino, Géométrie globale des feuilletages riemanniens, Nederl. Akad. Wetensch. Indag. Math.,44:45–76,

1982.

[49] P. Molino, Riemannian foliations, Translated from the French by Grant Cairns, with appendices by Cairns,
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