
Message Passing Interface for Python

1 the Message Passing Interface (MPI)
MPI and MPI for Python
hello world with mpi4py
point-to-point communication

2 Collective Communication
broadcast, scatter, and gather
processing numpy arrays

3 Probing for Messages
nonblocking communications

MCS 507 Lecture 13
Mathematical, Statistical and Scientific Software

Jan Verschelde, 20 September 2023

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 1 / 40

Message Passing Interface for Python

1 the Message Passing Interface (MPI)
MPI and MPI for Python
hello world with mpi4py
point-to-point communication

2 Collective Communication
broadcast, scatter, and gather
processing numpy arrays

3 Probing for Messages
nonblocking communications

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 2 / 40

Message Passing Interface

MPI = Message Passing Interface
is a standard specification for interprocess communication
for which several implementations exist.

Go to www.open-mpi.org for Open MPI,
an open source implementation for MPI.

MPI is a language independent commications protocol
and is the dominant model in high performance computing.

High performance computing became widespread on clusters of
workstations with open source software and commodity hardware.

Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker, Jack Dongarra:
MPI: The Complete Reference. MIT Press, 1995.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 3 / 40

Message Passing Interface for Python
MPI for Python provides bindings of MPI for Python,
allowing any Python program to exploit multiple processors.

Features:
object oriented interface follows closely MPI-2 C++ bindings;
supports point-to-point and collective communications

▶ of any pickable Python object,
▶ as well as numpy arrays and builtin bytes, strings.

mpi4py gives the standard MPI “look and feel” in Python scripts
to develop parallel programs.

Often, only a small part of the code needs the efficiency of a compiled
language. Python handles memory, errors, and user interaction.

Available at https://github.com/mpi4py.
Lisandro Dalcin: MPI for Python. Current release 3.1.4, Nov 2022.
Installs well with pip, requires working mpicc.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 4 / 40

writing parallel programs with MPI
Distributed memory parallel programming:

All processes execute the same program.
Every process has a unique identification number: its rank.
Branch on the rank to determine which process executes what.

Types of Network Communications:
point-to-point or collective

▶ point-to-point: every send/receive has matching receive/send,
▶ collective: every process participates in the communication.

blocking or nonblocking
▶ blocking: sender/receiver waits till receive/send done,
▶ nonblocking: immediate send, probe if a message arrived.

Common manager-worker model:
manager (process with rank 0) distributes jobs among the workers,
workers (processes with rank > 0) execute jobs.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 5 / 40

Message Passing Interface for Python

1 the Message Passing Interface (MPI)
MPI and MPI for Python
hello world with mpi4py
point-to-point communication

2 Collective Communication
broadcast, scatter, and gather
processing numpy arrays

3 Probing for Messages
nonblocking communications

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 6 / 40

hello world with mpi4py

from mpi4py import MPI

SIZE = MPI.COMM_WORLD.Get_size()
RANK = MPI.COMM_WORLD.Get_rank()
NAME = MPI.Get_processor_name()

MESSAGE = "Hello from %d of %d on %s." \
% (RANK, SIZE, NAME)

print(MESSAGE)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 7 / 40

running the script

Programs that run with MPI are executed with mpiexec.

To run mpi4py_hello_world.py by 3 processes:

$ mpiexec -n 3 python3 mpi4py_hello_world.py
Hello from 0 of 3 on pascal.math.uic.edu.
Hello from 1 of 3 on pascal.math.uic.edu.
Hello from 2 of 3 on pascal.math.uic.edu.
$

Three Python interpreters are launched.

Each interpreter executes the script,
printing the hello message.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 8 / 40

some basic MPI concepts and commands

MPI.COMM_WORLD is a predefined intracommunicator.
An intracommunicator is a group of processes.
All processes within an intracommunicator have a unique number.

Methods of the intracommunicator MPI.COMM_WORLD:
Get_size() returns the number of processes.
Get_rank() returns rank of executing process.

Even though every process runs the same script,
the test if MPI.COMM_WORLD.Get_rank() == i:
allows to specify particular code for the i-th process.

MPI.Get_processor_name()
returns the name of the calling processor.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 9 / 40

Message Passing Interface for Python

1 the Message Passing Interface (MPI)
MPI and MPI for Python
hello world with mpi4py
point-to-point communication

2 Collective Communication
broadcast, scatter, and gather
processing numpy arrays

3 Probing for Messages
nonblocking communications

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 10 / 40

send and receive

Process 0 sends DATA to process 1:

MPI.COMM_WORLD.send(DATA, dest=1, tag=2)

Every send must have a matching recv.

For the script to continue, process 1 must do

DATA = MPI.COMM_WORLD.recv(source=0, tag=2)

mpi4py uses pickle on Python objects.

The user can declare the MPI types explicitly.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 11 / 40

mpi4py_point2point.py

from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

if(RANK == 0):
DATA = {’a’: 7, ’b’: 3.14}
COMM.send(DATA, dest=1, tag=11)
print(RANK, ’sends’, DATA, ’to 1’)

elif(RANK == 1):
DATA = COMM.recv(source=0, tag=11)
print(RANK, ’received’, DATA, ’from 0’)

$ mpiexec -n 2 python3 mpi4py_point2point.py
0 sends {’a’: 7, ’b’: 3.14} to 1
1 received {’a’: 7, ’b’: 3.14} from 0

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 12 / 40

a pleasingly parallel computation

The area of the unit disk is π:
-

6

&%
'$

Generate random uniformly distributed points with coordinates
(x , y) ∈ [−1,+1]× [−1,+1].
We count a success when x2 + y2 ≤ 1.

1 generate n points P in [0,1]× [0,1]
2 m := #{ (x , y) ∈ P : x2 + y2 ≤ 1 }
3 the estimate is then 4 × m/n

With two processes:
process i uses i as seed for random numbers;
at end, process 1 sends to 0; process 0 adds up.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 13 / 40

estimating π

import random
from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

print(RANK, ’uses seed’, RANK)
random.seed(RANK)

N = 10**7
k = 0
for i in range(0, N):

x = random.uniform(0, 1)
y = random.uniform(0, 1)
if x**2 + y**2 <= 1:

k = k + 1
R = float(k)/N

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 14 / 40

point-to-point communication in script

print(RANK, ’computes’, R)

if(RANK == 1):
COMM.send(R, dest=0, tag=11)
print(RANK, ’sends’, R, ’to 0’)

elif(RANK == 0):
S = COMM.recv(source=1, tag=11)
print(RANK, ’received’, S, ’from 1’)
RESULT = 2*(R + S)
print(’approximation for pi =’, RESULT)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 15 / 40

executing the script

$ mpiexec -n 2 python3 mpi4py_estimate_pi_2.py
0 uses seed 0
1 uses seed 1
0 computes 0.7853257
1 computes 0.7852532
1 sends 0.7852532 to 0
0 received 0.7852532 from 1
approximation for pi = 3.1411578
$

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 16 / 40

modification for any number of processes
Each worker sends an estimate.
The manager executes as many recv as there are workers.

SIZE = COMM.Get_size()

if(RANK > 0):
COMM.send(R, dest=0, tag=11)
print(RANK, ’sends’, R, ’to 0’)

elif(RANK == 0):
R2 = 0
for i in range(1, SIZE):

S = COMM.recv(source=i, tag=11)
print(RANK, ’received’, S, ’from’, i)
R2 = R2 + S

RESULT = 4*(R + R2)/SIZE
print(’approximation for pi =’, RESULT)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 17 / 40

Quality Up

To improve the quality of the computations:
leave the number of samples fixed, and
double the number of processes in each stage.

How many more correct decimal places in each stage?

Running on 12-core 3.49Ghz workstation, with p processes:

p estimate
2 3.1411578
4 3.1413254
8 3.1413843
16 3.1415143
32 3.1415194
64 3.1415486

With p = 64, more than 21GB in use . . .

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 18 / 40

Message Passing Interface for Python

1 the Message Passing Interface (MPI)
MPI and MPI for Python
hello world with mpi4py
point-to-point communication

2 Collective Communication
broadcast, scatter, and gather
processing numpy arrays

3 Probing for Messages
nonblocking communications

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 19 / 40

broadcasting data

A collective communication involves every process
in the intracommunicator.

A broadcast is a collective communication in which
one process sends the same data to all processes,
all processes receive the same data.

In mpi4py, a broadcast is done with the bcast method.

An example:

$ mpiexec -n 3 python mpi4py_broadcast.py
0 has data {’pi’: 3.1415926535897, ’e’: 2.7182818284590}
1 has data {’pi’: 3.1415926535897, ’e’: 2.7182818284590}
2 has data {’pi’: 3.1415926535897, ’e’: 2.7182818284590}
$

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 20 / 40

the script mpi4py_broadcast.py

from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()

if(RANK == 0):
DATA = {’e’ : 2.7182818284590451,

’pi’ : 3.1415926535897931 }
else:

DATA = None # DATA must be defined

DATA = COMM.bcast(DATA, root=0)
print(RANK, ’has data’, DATA)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 21 / 40

scattering data

A scatter is a collective communication in which data are distributed
among the processes which belong to the same intracommunicator.

Scattering the number (i + 1)2 to process i :

$ mpiexec -n 10 python mpi4py_scatter.py
9 has data 100
0 has data 1
1 has data 4
2 has data 9
3 has data 16
4 has data 25
5 has data 36
8 has data 81
6 has data 49
7 has data 64

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 22 / 40

the script mpi4py_scatter.py

from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()
SIZE = COMM.Get_size()

if(RANK == 0):
DATA = [i**2 for i in range(1, SIZE+1)]

else:
DATA = None # DATA must be defined

DATA = COMM.scatter(DATA, root=0)
print(RANK, ’has data’, DATA)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 23 / 40

gathering data

A gather is a collective communication in which data is sent from all
processes in the same intracommunicator to one process.

An example: process i has data (i + 1)2.
Process 0 gather the data from all processes into a list.

$ mpiexec -n 10 python mpi4py_gather.py
0 has data [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 24 / 40

the script mpi4py_gather.py

from mpi4py import MPI

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()
SIZE = COMM.Get_size()

DATA = (RANK+1)**2
DATA = COMM.gather(DATA, root=0)
if(RANK == 0):

print(RANK, ’has data’, DATA)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 25 / 40

Message Passing Interface for Python

1 the Message Passing Interface (MPI)
MPI and MPI for Python
hello world with mpi4py
point-to-point communication

2 Collective Communication
broadcast, scatter, and gather
processing numpy arrays

3 Probing for Messages
nonblocking communications

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 26 / 40

scattering data

Scattering an array of 100 numbers over 4 processors:

data
-

-

-

-

0

25

50

75

︸ ︷︷ ︸
p0

︸︷︷︸
p1

︸︷︷︸
p2

︸︷︷︸
p3

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 27 / 40

gathering results

Gathering the partial sums at the 4 processors to the root:

sums
�
�
�
�

0
1
2
3

︸ ︷︷ ︸
p0

︸︷︷︸
p1

︸︷︷︸
p2

︸︷︷︸
p3

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 28 / 40

a parallel sum
To sum an array of numbers, we distribute the numbers among the
processes who compute the sum of a slice. The sums of the slices are
sent to process 0 who computes the total sum.

$ mpiexec -n 10 python mpi4py_parallel_sum.py
0 has data [0 1 2 3 4 5 6 7 8 9] sum = 45
2 has data [20 21 22 23 24 25 26 27 28 29] sum = 245
3 has data [30 31 32 33 34 35 36 37 38 39] sum = 345
4 has data [40 41 42 43 44 45 46 47 48 49] sum = 445
5 has data [50 51 52 53 54 55 56 57 58 59] sum = 545
1 has data [10 11 12 13 14 15 16 17 18 19] sum = 145
8 has data [80 81 82 83 84 85 86 87 88 89] sum = 845
9 has data [90 91 92 93 94 95 96 97 98 99] sum = 945
7 has data [70 71 72 73 74 75 76 77 78 79] sum = 745
6 has data [60 61 62 63 64 65 66 67 68 69] sum = 645
total sum = 4950
$

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 29 / 40

distributing slices

from mpi4py import MPI
import numpy as np

COMM = MPI.COMM_WORLD
RANK = COMM.Get_rank()
SIZE = COMM.Get_size()
N = 10

if(RANK == 0):
DATA = np.arange(N*SIZE, dtype=’i’)
for i in range(1, SIZE):

SLICE = DATA[i*N:(i+1)*N]
COMM.Send([SLICE, MPI.INT], dest=i)

MYDATA = DATA[0:N]
else:

MYDATA = np.empty(N, dtype=’i’)
COMM.Recv([MYDATA, MPI.INT], source=0)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 30 / 40

collecting the sums of the slices

S = sum(MYDATA)
print(RANK, ’has data’, MYDATA, ’sum =’, S)

SUMS = np.zeros(SIZE, dtype=’i’)
if(RANK > 0):

COMM.send(S, dest=0)
else:

SUMS[0] = S
for i in range(1, SIZE):

SUMS[i] = COMM.recv(source=i)
print(’total sum =’, sum(SUMS))

Observe the following:
COMM.send and COMM.recv have no type declarations.
COMM.Send and COMM.Recv have type declarations.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 31 / 40

Message Passing Interface for Python

1 the Message Passing Interface (MPI)
MPI and MPI for Python
hello world with mpi4py
point-to-point communication

2 Collective Communication
broadcast, scatter, and gather
processing numpy arrays

3 Probing for Messages
nonblocking communications

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 32 / 40

a motivating example

Consider scheduling 8 jobs on 2 processors:

serial

static
p = 2

dynamic
p = 2

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 33 / 40

dynamic job scheduling

Process a queue of jobs with manager/worker model:
Manager distributes jobs to workers.
Processing time for each job varies.
When done, worker receives new job from manager.

Simulation of a dynamic job scheduler:
Manager distributes random numbers to workers.
Worker sleeps as many seconds as receive number.
After sleeping, worker sends number back to manager.
Manager prints received numbers from workers.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 34 / 40

running the script

$ mpiexec -n 4 python3 mpi4py_dynamic.py
manager sends job 3 to 1
manager sends job 11 to 2
manager sends job 4 to 3
manager waits for jobs to return...
1 receives 3
3 receives 4
2 receives 11
1 sends 3
received 3 from 1
3 sends 4
received 4 from 3
2 sends 11
received 11 from 2
$

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 35 / 40

code for the workers
from mpi4py import MPI
from random import randint, seed
from time import sleep

seed(231112117) # for deterministic runs

COMM = MPI.COMM_WORLD
SIZE = COMM.Get_size()
RANK = COMM.Get_rank()

def worker():
"""
A worker receives a job, sleeps as many
seconds as the value of the job and
then sends the job back to the manager.
"""
job = COMM.recv(source=0, tag=RANK)
print(RANK, ’receives’, job)
sleep(job)
print(RANK, ’sends’, job)
COMM.send(job, dest=0, tag=RANK)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 36 / 40

probing for messages

The manager probes for messages:
Nonblocking check if message arrived.
After arrival, receive the message.

The MPI command Iprobe:

state = MPI.Status()
okay = COMM.Iprobe(source=MPI.ANY_SOURCE, \

tag=MPI.ANY_TAG, status=state)

Processing result of Iprobe:
If okay is True on return, then message arrived.
With state.Get_source() we get the rank of sender.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 37 / 40

code for manager

Distribution of the jobs:

def manager():
"""
Distributes jobs to the workers
and probes for their return.
"""
for i in range(1, SIZE):

job = randint(2, 11)
print(’manager sends job’, job, ’to’, i)
COMM.send(job, dest=i, tag=i)

print(’manager waits for jobs to return...’)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 38 / 40

probing for returning workers

count = 0
while(count < SIZE-1):

state = MPI.Status()
okay = COMM.Iprobe(source=MPI.ANY_SOURCE, \

tag=MPI.ANY_TAG, status=state)
if(okay):

node = state.Get_source()
data = COMM.recv(source=node, tag=node)
print(’received’, data, ’from’, node)
count = count + 1

else:
sleep(0.5)

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 39 / 40

Summary and Exercises

mpi4py works for prototyping parallel algorithms and to learn the
Message Passing Interface from within Python.

Exercises :
1 Replace the bcast in the script mpi4py_broadcast

with send and recv commands to do the broadcast.
2 Replace the scatter in the script mpi4py_scatter

with send and recv commands to do the scatter.
3 Replace the gather in the script mpi4py_gather

with send and recv commands to do the gather.
An extra Exercise :

4 Examine MPI.jl, the MPI wrappers for Julia.
Redo one of the examples in this lecture with MPI.jl.

Scientific Software (MCS 507) MPI for Python L-13 20 September 2023 40 / 40

	the Message Passing Interface (MPI)
	MPI and MPI for Python
	hello world with mpi4py
	point-to-point communication

	Collective Communication
	broadcast, scatter, and gather
	processing numpy arrays

	Probing for Messages
	nonblocking communications

