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Abstract

We present a modification of Newton’s method to restore quadratic con-

vergence for isolated singular solutions of polynomial systems. Our method

is symbolic-numeric: we produce a new polynomial system which has the

original multiple solution as a regular root. Using standard bases, a tool

for the symbolic computation of multiplicities, we show that the number

of deflation stages is bounded by the multiplicity of the isolated root. Our

implementation performs well on a large class of applications.
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1 Introduction

Let F (x) = 0 be a polynomial system of N equations in n unknowns x ∈ Cn.
We are interested in x∗, an isolated solution of F (x) = 0:

for small enough ε > 0 : { y ∈ Cn : ||y − x∗|| < ε } ∩ F−1(0) = {x∗}. (1)

Denote by A(x) the Jacobian matrix of the system F (x) = 0. We call x∗ a
singular solution of F (x) = 0 ⇔ rank(A(x∗)) < n. Let m be the multiplicity of
the isolated solution x∗ of F (x) = 0.
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Newton’s method (also called1 the method of Gauss-Newton when N > n,
see [49]) generates a sequence of approximations xk for x∗. If x∗ is nonsingular,
then the sequence converges quadratically (i.e.: ‖xk−xk+1‖ = O(‖xk−1−xk‖2))
to x∗, which justifies its widespread usage. But otherwise, if x∗ is singular, the
convergence slows down and gets lost when xk ≈ x∗.

A straightforward approach is to use a working precision of m×D decimal
places to achieve D correct decimal places in the final approximation. Even as
multiprecision arithmetic is widely available and nowadays less expensive to use,
this approach can only work if all coefficients in the system F have their first
m×D decimal places correct. Our goal is to restore the quadratic convergence
of a sequence converging to an isolated singular root without imposing extra
requirements of precision on F . This means that we can compute isolated
singularities with great accuracy in standard machine arithmetic, effectively
reconditioning the problem.

Newton’s method for singular solutions has been extensively researched. The
research up to the mid eighties is surveyed in [23]. We classify research on
Newton’s method related to our work in two domains:

1. Detection and treatment of bifurcation points. When following a so-
lution path of a system defined by a parameter, the solution path may
turn back or bifurcate for increasing values of the parameter. Techniques
to detect and compute such bifurcation points are generally done via
Lyapunov-Schmidt reduction. General references are [1], [11], and [19];
see also [36, 37], [12], and [29]. One could interpret our method as a
recursive application of the methods used to compute bifurcation points.

2. Deflation method for polynomial systems. A symbolic deflation method
was presented in [48], and further developed in [45], [46], and [47]. We
discovered this approach from the reference list of [31], which offers a sym-
bolic deflation method whose complexity is quadratic in the multiplicity.
As first announced in [57], we provide a numerically stable implementation
of a modified symbolic deflation method.

A theoretical framework to study the complexity and numerical stability of
Newton’s method was developed by Shub and Smale, see [4], and was generalized
to overdetermined systems in [10]. See [17, 18] for recent generalizations of this
α-theory to multiple roots.

Singular solutions of polynomial systems are investigated in computational
algebraic geometry, in particular we distinguish:

1. Standard bases in computer algebra. SINGULAR [22] allows the com-
putation of standard bases [21], implementing generalizations [20] of the
algorithms in [41]. We use standard bases to show that the number of

1In the light of the historical development outlined in [58], one should call Newton’s method
the Newton-Raphson-Simpson method.
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deflations to restore the quadratic convergence of Newton’s method is
bounded by the multiplicity.

2. Dual bases in numerical polynomial algebra. The dual of an ideal, stud-
ied by Macaulay [39] with the goal of capturing multiplicity, is relevant
from the point of numerical computations, see [54] and also [44]. Differ-
ential operators define Gröbner duality [42], providing suitable represen-
tations for multiple roots [40].

Similar as in [6], the only numerical parameter needed in our deflation method
is a tolerance to decide the rank of a matrix. Just as we deferring the problem
of region of convergence, counting on homotopy continuation methods [1, 52]
to give us a good initial approximation for an isolated singularity, we defer to
methods in numerical linear algebra [15, 38] to determine the numerical rank of
a matrix.

In the next section we describe our method, followed by an introduction
to standard bases and our proof in the third section. Our symbolic-numeric
implementations and numerical results are described in sections four and five.

Acknowledgements. Our modified method with numerical results was pre-
sented at a poster session at ISSAC’04, 6 July 2004, Santander, Spain. We
are grateful for the reactions of Grégoire Lecerf – in particular for pointing at
the work of Kunkel. We thank Erich Kaltofen and Zhonggang Zeng for useful
remarks at that poster session. Also discussions with Andrew Sommese and
Charles Wampler at Oberwolfach helped us. We are grateful to the referees for
helpful suggestions.

2 A Modified Deflation Method

A singular root x∗ of a square (i.e.: N = n) system F (x) = 0 with Jacobian
matrix A(x) satisfies {

F (x) = 0
det(A(x)) = 0.

(2)

The augmented system (2) forms the basic idea for deflation. If x∗ is isolated
and corank(A(x∗)) = 1, then x∗ as root of (2) has a lower multiplicity.

We find deflation used repeatedly first in [48], and later modified in [45] and
applied in [46, 47].

In theory, det(A(x)) = 0 (or maximal minors) could be used to form new
equations. But this is neither good symbolically because the determinant is usu-
ally of high degree and leads to expression swell, nor numerically, as evaluating
polynomials of high degree is numerically unstable.

Instead of using the determinant, on a system F of N equations in n vari-
ables, we proceed along the following three steps to form new equations:
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1. Let r = rank(A(x0), ε) for x0 ≈ x∗ and tolerance ε, 0 < ε ¿ 1. For
numerical stability, we compute the rank via a Singular Value Decompo-
sition (SVD) of the matrix A = A(x0). The numerical rank r equals the
number of singular values larger than the tolerance ε.

2. Let h ∈ Cr+1 be a random vector. For numerical stability, we generate
random numbers on the complex unit circle. We use h as scaling equation
to obtain a unique vector in the kernel of the Jacobian matrix.

3. Let B ∈ Cn×(r+1) be a random matrix, also with numbers on the com-
plex unit circle. Using B, we form C(x) = A(x)B. Notice that C =
[c1, c2, . . . , cr+1] is an N × (r + 1) matrix with polynomial entries.

With probability one (exceptional pairs of vectors h and matrices B belong to
a proper algebraic subset of Cr+1 × Cn×(r+1)) we have

rank(A(x∗)) = r ⇔ corank(C(x∗)) = 1

⇔ there is a unique λ =




λ1

λ2

...
λr+1


 : G(x∗,λ) =




r+1∑

i=1

λici(x
∗)

r+1∑

i=1

hiλi − 1




= 0.

(3)

The random h and B guarantee the existence and uniqueness of the solution
λ to G(x,λ) when x = x∗. Note that2 instead of multiplying the Jacobian
matrix of F (x) = 0 by B, we could use B for a generic coordinate change
x = By, which would after application of the chain rule on F (By) be equivalent
to the formation of C = A(x)B.

In one deflation step, we add the equations of G(x,λ) instead of det(A(x)) =
0 to the system F (x) = 0, adding r + 1 extra variables λ1, λ2, . . ., λr+1. The
flowchart for our modified deflation algorithm is displayed in Figure 1.

3 A Bound on the Number of Deflations

The termination of our algorithm in Figure 1 depends on the following theorem.

Theorem 3.1 The number of deflations needed to restore the quadratic conver-
gence of Newton’s method converging to an isolated solution is strictly less than
the multiplicity of the isolated solution.

The answer to the question “How much less?” can be understood by looking
at a standard basis for the ideal generated by the given polynomials in the
system. We use standard bases to prove the termination of our algorithm, as
explained in the next two subsections.

2We thank Alistair Spence for pointing this observation out to us, referring to [11]
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Figure 1: Flowchart for a modified deflation method.

A duality analysis of our method was presented in [6]. Like the analysis in [6]
gives a better understanding on the number of needed deflations (establishing
“depth” as a tighter bound), the shape of the standard basis (visualized by its
staircase) leads to a more accurate bound.

3.1 Standard Bases for Local Orderings

Let R = k[x1, . . . , xn] be the ring of polynomials in n variables with coefficients
in the field k. We use the following multi-degree notation: xα = xα1

1 xα2

2 · · ·xαn

n ,
where α = (α1, . . . , αn) is a vector of nonnegative integers.

A multiplicative ordering ≤ on the monoid {xα | α ∈ Zn
≥0} is a local ordering

if xα < 1 for all α 6= (0, 0, . . . , 0).
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To any weight vector ω ∈ Zn
<0 we may associate the ordering ≤ω by setting

xα ≤ω xβ ⇔ 〈α, ω〉 ≤ 〈β, ω〉, (4)

where 〈·, ·〉 is the usual inner product. Note that it is possible to have xα =ω x
β

(unless there are no integer vectors orthogonal to ω). In this case, the order is
refined by, say, a lexicographic order.

In presence of a monomial ordering ≤ω, a polynomial

f(x) =
∑

α∈Zn

≥0

cαx
α ∈ R, where supp(f) = { α | cα 6= 0 } is finite, (5)

has the following attributes associated with it:

le(f) = the leading exponent = max
≤ω

supp(f)

lm(f) = the leading monomial = xle(f)

lc(f) = the leading coefficient = cle(f)

lt(f) = the leading term = lc(f)lm(f)

Let I ⊂ R be an ideal. We call a set of polynomials S ⊂ I a standard basis
of I if for any f ∈ I there is g ∈ S such that lm(g)|lm(f). Alternatively, S is a
standard basis iff the initial ideal in(I) = 〈{lm(f)|f ∈ I}〉 is generated by the
leading monomials lm(S) = {lm(g)|g ∈ S}.

The monomials that do not belong to the initial ideal in(I) are called stan-
dard monomials. The minimal generators of in(I) shall be called the corners
of the staircase. The corners of the form xai for some i and a are called the
endpoints of the staircase.

A standard basis S is reduced if the leading monomials of its elements form
a minimal generating set for the initial ideal in(I) and the tail g−lt(g) contains
only standard monomials.

Graphically, any monomial ideal can be represented by a staircase in the
nonnegative integer lattice Zn

≥0. For example, let I be the ideal of R = k[x1, x2]
generated by

f1 = x3
1 + x1x

2
2;

f2 = x1x
2
2 + x3

2; (6)

f3 = x2
1x2 + x1x

2
2.

The initial ideal depends on the ordering chosen: the staircase at the left in
Figure 2 represents inw(I), where ω = (−1,−2). The staircase at the right in
Figure 2 represents inw(I), where ω = (−2,−1).

Observe in Figure 2 that the number of standard monomials is the same for
both orderings. This is so for any local ordering, as the standard monomials
form a basis of the k-linear space R〈x1,...,xn〉/R〈x1,...,xn〉I, where R〈x1,...,xn〉 is
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Figure 2: Two different staircases of the standard basis of I with respect to dif-
ferent local orderings ≤(−1,−2) (at the left) and ≤(−2,−1) (at the right). Mono-
mials generating in(I) are represented by black disks, while the standard mono-
mials are shown as empty circles.

the localization of the polynomial ring R at the origin and R〈x1,...,xn〉I is the
extension of the ideal I in this localized ring (see [5] for details). This linear
space is of finite dimension iff the origin is an isolated solution; its dimension,
which is the multiplicity of the origin, then equals the number of the standard
monomials for any local ordering.

Thanks to Mora [41], there is an algorithm for computing standard bases,
generalized by Greuel and Pfister [20], and implemented in the computer algebra
system Singular [21]. We will not use standard bases explicitly – except for
theoretical purposes – but note an analytic interpretation of the local ordering
≤w: as we approach the origin along a smooth curve

c : C→ Cn such that c(t) =





b1t
−ω1(1 +O(t))

...
bnt

−ωn(1 +O(t))

(7)

with ω ∈ Zn
<0 and (b1, ..., bn) ∈ Cn\{0}, for every f ∈ I the leading term ltw(f)

becomes dominant, i.e.:

f(c(t)) = ltω(f)(c(t)) +O(t−〈ω,le(f)〉). (8)

3.2 Understanding the Deflation Method

First of all, let us formulate the goal of what we would call the symbolic deflation
process: Given a system of polynomial equations fi = 0, i = 1, 2, . . . , N , with
the point x∗ ∈ Cn as an isolated solution of multiplicity m > 1, find a system
gi = 0, i = 1, 2, . . . , N ′, such that x∗ is still an isolated solution of multiplicity
less than m.

The best deflation one can cook up is the one that corresponds to the max-
imal ideal annihilating x∗i , i.e.: gi = xi − x∗i , i = 1, 2, . . . , n. However, from a
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practical angle of numerical methods what we actually need is an algorithm that
would relate the deflated system to the original one in a numerically stable way
and taking into account the fact that the isolated solution x∗ may be known
only approximately.

3.2.1 A Symbolic Deflation Method

Here we assume that everything is exact and, therefore, without loss of generality
we may assume that the isolated solution x∗ is the origin.

Consider the ideal I generated by the polynomials fi of the original system.
We call an ideal I ′ a deflation of I if I ′ ⊃ I, I ′ 6= R, and the multiplicity of
the origin for I ′ is lower than that for the original ideal I.

If the multiplicity m > 1, it means that the initial ideal in(I) does not
contain xi for some i.

Proposition 3.2 Suppose m > 1 and let g be an element of a reduced standard
basis of I with respect to a local monomial ordering ≤, such that lm(g) = xdi , for
some i ∈ {1, ..., n} and d > 1. Then the ideal I ′ = I + 〈∂g/∂xi〉 is a deflation
of I.

Proof. The derivative ∂g/∂xi can not contain monomials > xd−1
i . Therefore,

I ′ contains I properly, since lm(∂g/∂xi) = xd−1
i is a standard monomial for I.

The appended generator ∂g/∂xi still vanishes at the origin, hence, I ′ 6= R. ¤

Mora’s tangent cone algorithm [41] for computing standard bases is expen-
sive symbolically and, more importantly, unstable numerically. Can we find xi
and g in the proposition in a less straightforward way? The next lemma gives
a positive answer.

A linear coordinate change T : Cn → Cn induces an automorphism of the
polynomial ring R = C[x1, ..., xn], which we call T as well: T (f)(x) = f(T (x)).
The ideal T (I) = {T (f) | f ∈ I} = 〈T (f1), . . . , T (fN)〉 represents the system
after the change of coordinates.

Let A(x) be the Jacobian matrix of the system F (x) = 0, i.e.: an N -by-n
matrix with polynomial entries Aij(x) = ∂fi/∂xj . The origin is singular iff
c = corank(A(0)) > 0. Since the Jacobian matrix is rank-deficient, the kernel
of A(0) is nonzero.

Lemma 3.3 Take a nonzero vector λ ∈ kerA(0) ⊂ Cn and let T : Cn → Cn be
a linear coordinate transformation such that:

Ti(x) = λix1 +

n∑

j=2

µijxj , for i = 1, 2, . . . , n, (9)

where [λ,µ2, . . . ,µn] is a nonsingular matrix.

Then ∂1(T (I)) = { ∂
∂x1

f | f ∈ T (I)} is a deflation of T (I).
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Proof. For all i = 1, 2, . . . , N ,

∂

∂x1
(fi(T (x))) =

n∑

j=1

∂fi
∂xj

(T (x)) · ∂Tj
∂x1

(x) =

n∑

j=1

(
∂fi
∂xj

(T (x))

)
λj . (10)

The last expression is equal to 0 when x = 0, since λ ∈ kerA(0).

Take any g = b1T (f1) + · · ·+ bNT (fN) ∈ T (I), where bi ∈ R for all i. Then

∂g

∂x1
= b1

∂(T (f1))

∂x1
+ · · ·+ bN

∂(T (fN))

∂x1

+ T (f1)
∂b1
∂x1

+ · · ·+ T (fN)
∂bN
∂x1

.

In view of (10), the last expression evaluates to 0 at x = 0. Therefore, ∂1(T (I))
is a proper ideal annihilating the origin. On the other hand, there is an element
g of a reduced standard basis of T (I) with respect to a local ordering such
that in(g) = xd1 with d > 1. According to the Proposition 3.2 the ideal I ′ =
T (I) + 〈∂g/∂x1〉 is a deflation of T (I). So is ∂1(T (I)), for it contains I ′. ¤

Lemma 3.3 leads to Algorithm 1.

Algorithm 1 G = Symbolic Deflation(F )

Require: F , a finite set of polynomials in R, such that the ideal 〈F 〉 has mul-
tiplicity m > 1 at the origin.

Ensure: G, a finite set of polynomials in R, such that the ideal 〈G〉+ 〈F 〉 is a
deflation of 〈F 〉.
Compute the Jacobian A of F at the origin;
Pick a nonzero vector λ ∈ kerA(0);

G :=

{
n∑

i=1

λi
∂f

∂xi
| f ∈ F

}
.

3.2.2 A Numeric Deflation Method

Our method formalized in Algorithm 2 is a numerical version of Algorithm 1.
In this section we explain the transition from the symbolic to the numeric de-
flation method.

Consider a point P = (x,λ) ∈ Cn,r+1 and let x = x0. When this specializa-
tion is performed, the values for λ are determined by the following system of
N + 1 linear equations: {

A(x0)λ = 0
〈h,λ〉 = 1

(11)

where h = (h1, . . . , hr+1) is a vector of random complex numbers.
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Algorithm 2 G = Numeric Deflation(F,x0)

Require: F = {f1, . . . , fN}, a finite set of polynomials in R, such that the ideal
〈F 〉 has multiplicity m > 1 at the point x∗ ≈ x0.

Ensure: G, a finite set of polynomials in R′ = R[λ1, . . . , λr+1], where r =
rankA(x0), such that
• the ideal 〈G〉 ⊂ R′ has an isolated solution at the point P = (x∗,λ∗) ∈
Cn,r+1;
• the vector λ∗ is determined uniquely;
• the multiplicity of P is less than m.

Compute the Jacobian matrix A(x) of F ;
r := rankA(x0); (numerical rank at the approximate solution x0)
(R1) Generate a random matrix B ∈ Cn×(r+1);
C(x) := A(x)B; (N × (r + 1) matrix with polynomial entries)
Let λ = (λ1, . . . , λr+1)

T be a vector of indeterminates;
Consider N new polynomials gi(x,λ) = (C(x)λ)i ∈ R′;
(R2) h(λ) := h1λ1 + · · ·+ hr+1λr+1 − 1, where the hi are random numbers
in C;
G := F ∪ {g1, . . . , gN} ∪ {h}.

Observe how C is created: the randomization step R1 insures that the
r+1 columns of C(x∗) are random combinations of the columns of A(x∗) and,
therefore, corankC(x∗) = 1 with probability one. Then λ is bound to live in the
one-dimensional kerC(x∗). The randomization step R2 makes sure one nonzero
vector is picked out from the kernel. This proves the uniqueness of λ∗.

Assume that the original system is of corank 1 (we can always replace F (x)
with F (x)B, where B is as above). The correctness of the numeric deflation
process relies on the following Proposition.

Proposition 3.4 Let x∗ ∈ Cn be an isolated solution of F (x) = 0 (in C[x])
and corank(A(x∗)) = 1.

Consider the augmented system

G(x,λ) = (f1, . . . , fN , g1, . . . , gN , h)(x,λ) = 0,

with the new N + 1 equations

gi(x,λ) = λ · ∇fi(x) =
n∑

j=1

λj
∂fi(x)

∂xj
, (i = 1, ..., N) (12)

h(λ) = h · λ− 1 =
n∑

j=1

hjλj − 1, (13)

For a generic choice of coefficients h = (h1, . . . , hr+1), there exists a unique
λ∗ ∈ Cn such that system G(x,λ) of equations in C[x,λ] has an isolated solution
at (x∗,λ∗).
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Moreover, the multiplicity of (x∗,λ∗) in G(x,λ) = 0 is lower than that of
x∗ in F (x) = 0.

Proof. Consider g1 = · · · = gN = h = 0 as a system of equations in the local
ring R∗ = C[x,λ](x∗,λ∗) that is linear in λ.

The specialization of this system at x = x∗ makes it a linear system (with
constant coefficients) of full rank with the unique solution: λ∗. Therefore, using
row operations in the ring R∗ it is possible to reduce the system to the system
of the form 




λ1 = a1(x),
...

λn = an(x),

(14)

where ai(x) are rational expressions. Note that ai(x
∗) = λ∗i .

Now we conclude that considering multiplicity of the augmented system
G(x,λ) = 0 with indeterminate λ in the ring R∗ is equivalent to looking at the
system G(x) = 0 with fixed λ = λ∗ in the local ring C[x]x∗ .

Assuming x∗ is the origin, the multiplicity drops by Lemma 3.3. ¤

Proof of Theorem 3.1. To show that at most m−1 deflation steps are needed
to restore the quadratic convergence of an isolated root x∗ of multiplicy m, it
suffices to show that after one deflation step, the augmented system has the
same root with its multiplicity decreased by at least one. This statement is
shown by Proposition 3.4 in case the Jacobian matrix A(x∗) has corank one.
To reduce to the general case, our deflation algorithm replaces A(x) by A(x)B
using a random matrix B of r + 1 columns, where r = rank(A(x∗)). ¤

Remark 3.5 By bounding the number of deflations steps with multiplicity,
Theorem 3.1 guarantees the termination of the deflation procedure. However,
a stronger bound can be given: one may show that the number of deflations is
equal to or less than the maximal total degree of monomials under the staircase
for any local monomial ordering.

This statement can be rephrased in the language of dual bases of differen-
tial functionals; in this form it has been proved in [6]. The discussion of the
correspondence between the two methods is beyond the scope of this paper.

In practice, finer information – staircases, dual bases, multiplicity structure
– is not available at the time when the deflation is applied. The algorithm of [6]
for computing the multiplicity structure, in fact, depends on the precision of
the solution approximation, hence, on deflation.

4 A Symbolic-Numeric Implementation

The method was tested and developed in Maple 9. Since release 2.3 of PHCpack [56],
the deflation algorithm is part of the validation (phc -v) module. In this section
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we briefly address symbolic-numeric issues.

4.1 Avoiding the Expression Swell

Although the symbolic implementation performs well for a couple of deflation
steps, the multiplication of polynomial matrices by a random matrices leads to
expression swell, amplified by the doubling of the size of the systems in each
deflation stage.

Inspired by automatic differentiation [24, 50] and [30], we found that we
should first evaluate the Jacobian matrices before multiplication with the ran-
dom matrices. Furthermore, observing that the multiplier variables occur lin-
early in the block structure of the Jacobian matrices of the deflated systems,
we presented in [32] a directed acyclic graph to evaluate the Jacobian matrices
of the deflated systems efficiently. We refer to [32] for a detailed description of
the efficient evaluation of the Jacobian matrices.

Another significant reduction of the expression swell lies in treating the
corank one case separately, an issue we address in the Section 4.3 below.

4.2 A Posteriori Validation of the Numerical Rank

Our implementation defers the problem of the computation of the numerical
rank to the established SVD and the recent techniques presented in [15] and [38].

The critical decision to deflate or not depends on the correct determination
of the numerical rank of the Jacobian matrix. If we get the rank correctly, then
after the deflation – with an accurate root – we obtain an a posteriori validation
of all decisions made to determine the numerical rank. If we deflate with an
incorrect rank, then there are two cases: either our numerical rank is too low
or too high. The first case of a too low numerical rank will be detected early
as the algorithm will then produce too many additional constrains. In that
case, the calculation in Figure 1 of the initial values λ̂ for the multipliers via
the least squares problem is already likely to fail and an interactive application
of the method may backtrack. In the second case, when the numerical rank is
too high, one may not deflate at all in case of full rank and continue applying
Newton’s method until one is close enough for the threshold to be crossed. A
deflation with a too small corank may be remediated by an extra deflation step,
although we have no practical experience with this case.

4.3 Special Case Implementations and Extensions

The case where the corank of the Jacobian matrix equals one occurs frequently
and can be treated more efficiently than the general case. In [6] propose a
modification of the deflation algorithm for the important case of corank one.

In the corank one case, there is no need to multiply the Jacobian matrix with
a random matrix. Moreover, as pointed out in [6], subsequent deflations should
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only concern the original set of equations. Deflating a system of N equations in
n unknowns m times then leads to a system of mM equations in mn unknowns
as shown in [6].

Another extension, exemplified in [6], concerns the application of our defla-
tion method to analytic systems.

5 Applications and Numerical Results

The implementation has been tested on several examples, available
at http://www.math.uic.edu/~jan/demo.html, mostly all obtained from sur-
veying the literature. The initial approximations for Newton’s method were
taken from the end points of solution paths defined by a polynomial homotopy
to find all isolated solutions (see [33, 34] for recent surveys). The numerical re-
sults reported in Table 1 below are obtained with standard machine arithmetic3.
We highlight three examples from our benchmark collection.

A simple monomial ideal. Consider the simple polynomial system

f(x, y) =





x2 = 0
xy = 0
y2 = 0.

(15)

Viewing (15) as a monomial ideal, we immediately read off the multiplic-
ity as 3. However, as explained in [51] and [52], this system presents a
challenge to numerical solvers: making this overdetermined system square
either by adding a random multiple of the last equation to the first two
(and then removing the third equation), or by adding one slack variable,
increases the multiplicity from three to four. As our deflation departs from
Gauss-Newton, only one deflation step is needed to restore the quadratic
convergence. Table 1 opens with a summary of these calculations.

The 4-fold cyclic 9-roots. The so-called cyclic 9-roots problem (labelled as
cyclic9 in Table 1) is one of our largest examples. This system is a
widely used benchmark in the field of polynomial system solving, e.g.:
[2, 3], [14], [16], [25], [35], with theoretical results in [26]. In addition to
six two dimensional cubics, there are 5,594 (333 orbits of size 18) isolated
regular cyclic 9-roots, and most interestingly for this paper: 162 isolated
solutions of multiplicity four. One deflation suffices to restore quadratic
convergence on all 162 quadruple roots of this large application.

Lines tangent to a special configuration of 4 spheres. Given four spheres,
how many real lines are tangent to all four spheres? A clue to the an-
swer (see the Maple supplements to [53]) is obtained by placing the four

3In case the multiple root is the origin, the number of correct digits in the last column of
Table 1 equals the negative exponent of ten in the magnitude of the root, i.e.: “24” refers to
10−24 as the magnitude of the root. This is explains why the accuracy is higher than what
can be achieved from double precision floating-point arithmetic.
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spheres so they mutually touch each other. There are three distinct lines
connecting the points where the spheres touch each other. Solving the
corresponding algebraic system [13] shows the multiplicity of each line to
be four, revealing twelve as the answer for this problem. One deflation
suffices to compute all solutions accurately to the full machine precision,
even with 16-digit approximations for the algebraic numbers

√
3 and

√
6

appearing as coefficients in the system. Computational results are in the
last line of Table 1.

These three examples illustrate the motivation of our deflation algorithm: we
present a method, designed to handle any kind of general isolated singular solu-
tions of polynomial systems, efficient enough for large problems, and accepting
approximate input coefficients.

System n m D corank(A(x∗)) Inverse Condition# #Digits

simple [51] 2 3 1 2 → 0 1.0e-08 → 4.1e-01 8 → 24
baker1[27] 2 2 1 1 → 0 1.7e-08 → 3.8e-01 9 → 24
cbms1[55] 3 11 1 3 → 0 4.2e-05 → 5.0e-01 5 → 20
cbms2[55] 3 8 1 3 → 0 1.2e-08 → 5.0e-01 8 → 18
mth191 3 4 1 2 → 0 1.3e-08 → 3.5e-02 7 → 13

decker1[9] 2 3 2 1 → 1 → 0 3.4e-10 → 2.6e-02 6 → 11
decker2[7] 2 4 3 1 → 1 → 1 → 0 4.5e-13 → 6.9e-03 5 → 16
decker3[8] 2 2 1 1 → 0 4.6e-08 → 2.5e-02 8 → 17
kss3[28] 10 638 1 9 → 0 4.4e-12 → 1.4e-02 7 → 16
ojika1[45] 2 3 2 1 → 1 → 0 9.3e-12 → 4.3e-02 5 → 12
ojika2[45] 3 2 1 1 → 0 3.3e-08 → 7.4e-02 6 → 14
ojika3[48] 3 2 1 1 → 0 1.7e-08 → 9.2e-03 7 → 15

4 1 2 → 0 6.5e-08 → 8.0e-02 6 → 13
ojika4[47] 3 3 2 1 → 1 → 0 1.9e-13 → 2.4e-04 6 → 11

caprasse [43] 4 4 1 2 → 0 1.5e-09 → 9.3e-03 8 → 15
cyclic9 [2, 3] 9 4 1 2 → 0 5.6e-10 → 1.8e-03 5 → 15
tangents [53] 6 4 1 2 → 0 2.6e-08 → 2.4e-02 7 → 14

Table 1: Numerical Results on a Collection of Test Systems. The dimension is
listed under n, m is the multiplicity, and D is the number of deflations needed
to restore quadratic convergence. The fifth column shows the decrease in the
corank of the Jacobian matrix for all stages in the deflation. The second to last
column contains the estimate for the inverse condition number of A(x) at the
start of the deflation to the end of the deflation for x ≈ x∗. The last column
lists the increase in the number of correct digits from the initial guess to the
final approximation.

One of the interesting examples is taken from [48] and listed as “ojika3” in
Table 1. This system has two isolated roots: one with multiplicity two, and the
other one has multiplicity four. Both roots need only one deflation, but at the
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double root, the rank of the Jacobian matrix is two, while the rank is one at the
other 4-tuple root. The program produces two different deflated systems: one
with three multipliers (for the double root) and the other with two multipliers
(for the 4-tuple root).

The high multiplicity 638 of one root of the system kss3 in Table 1 looks
spectacular, but since the defining equations are nice quadrics, one simple de-
flation suffices to compute the multiple root accurately, starting from any ap-
proximate root in the cluster of 638 solutions.

Observe the improved numerical conditioning in Table 1. This observation
justifies the naming4 of our method as a “re-conditioning” method.

6 Conclusions

Our modified deflation method works in general, is numerically stable, relatively
simple to implement; and perhaps most importantly, a preliminary implemen-
tation on a wide class of examples performs quite well.

The doubling of the number of equations by the deflation has been addressed
in [32] and [6] for the corank one case. Our method is numerically robust,
depending primarily on a reliable determination of the numerical rank of a
matrix, a well studied subject in numerical linear algebra (see e.g. [15] or [38]).
Nevertheless, an alpha theoretic certificate [4] of the numerical rank might be
desirable for a fully automatic computer implementation.
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