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Abstract

One can consider the problem of factoring multivariate complex polynomials as a
special case of the decomposition of a pure dimensional solution set of a polynomial
system into irreducible components. The importance and nature of this problem
however justify a special treatment. We exploit the reduction to the univariate root
finding problem as a way to sample the polynomial more efficiently, certify the de-
composition with linear traces, and apply interpolation techniques to construct the
irreducible factors. With a random combination of differentials we lower multiplic-
ities and reduce to the regular case. Estimates on the location of the zeroes of the
derivative of polynomials provide bounds on the required precision. We apply our
software to study the singularities of Stewart-Gough platforms.
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1 Introduction

We consider a polynomial f with complex coefficients in several variables. We wish to write f
as a product of irreducible polynomials:

f(x) =
N∏

i=1

qi(x)
µi , x = (x1, x2, . . . , xn),

N∑

i=1

µi deg(qi) = deg(f). (1)

Note that for each i, the factor qi occurs with multiplicity µi.

The problem of factoring multivariate polynomials occurs frequently in computer algebra.
Especially the case when the coefficients of f are known only approximately is important for
applications and is stated as a challenge problem to symbolic computation in [10]. Recent
papers on this problem are [2,3], [5,6], [8], [19], [20]. These papers propose algorithms in
hybrid symbolic-numeric computation [4]. We find our way of working very much related
to the method of computing the approximate gcd of two polynomials using their zeros, as
presented in [16]. Using homotopies theoretically, the complexity of factoring polynomials
with rational coefficients was shown in [1] to be in NC.

The crux of our approach is the numerical computation of witness sets, which in the case
of a single polynomial means finding the intersection of f−1(0) with a generic line in Cn

and then partitioning these witness points according to their membership in the irreducible
factors. In this way, each factor qi is witnessed by deg(qi) distinct points of multiplicity µi.
The main contribution of this paper is a symbolic-numeric method for reducing multiplicities
by differentiation, along with an analysis of the numerical stability of this step.

Subsequent to the determination of the witness sets, one can numerically reconstruct the
coefficients of each qi by tracking the witness points in a continuation as the generic line
is moved and interpolating points on these paths. For many purposes, the interpolation
step is not necessary; for example, using only the witness set for a component, a homotopy
membership test can check if a given point lies on that component. In this sense, we may
consider the polynomial to be numerically factored once the witness set for f has been
decomposed into the witness sets for its irreducible components qi.

Because interpolation can be sensitive to errors in the sample points, it is preferable to work
directly with the witness sets whenever possible. Even so, for the sake of completeness, we
carry out the interpolation step in our test examples.
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The approach just described is a specialization of the tools we built for computing an irre-
ducible decomposition of the solution set of a polynomial system. These tools were developed
to implement the research program Numerical Algebraic Geometry, outlined in [30]. In [22] we
gave algorithms to decompose solution sets of polynomial systems into irreducible components
of various degrees and dimensions, applying an embedding and sequence of homotopies [21]
to find generic points efficiently. The homotopy test presented in [23] to determine whether
a given point belongs to an irreducible component led to the use of monodromy [24] for
which linear traces [25] provide an efficient verification and interpolation method. Applica-
tions of our software [27] to design problems in mechanical engineering are described in [28].
A tutorial to our recent developments can be found in [29].

In [25] we gave an algorithm for using monodromy to decompose the zero set of a polynomial
system into irreducible components. The main difficulty in the use of monodromy occurs when
we track points on irreducible components of multiplicity at least two. In [26] we presented a
method for tracking these singular paths, but it necessitates special care and usually requires
higher precision arithmetic. In this article we specialize the algorithm of [25] to the case of
a single polynomial f(x) on Cn where it is possible to replace singular paths by nonsingular
ones via differentiation.

Consider the example f(x) = (x2
1 − x2)

3(x2
1 + x2

2 + x3
2). If this polynomial is represented

exactly, we could symbolically differentiate twice with respect to x1 to obtain a polynomial
where x2

1 − x2 is a factor of multiplicity one. However, when f is represented numerically in
unfactored form, care must be taken to ensure that differentiation does not lead to numerical
instability and erroneous results.

For simplicity, first assume that the polynomial is on C. Data for polynomials arising in
engineering and science is sometimes noisy. Also zeroes of polynomials of multiplicity more
than one are hard to compute exactly. Thus even if the actual polynomial has a factor with
multiplicity µ ≥ 2, we must expect that if we solve the restriction of the polynomial to a
general line, we will find not a single zero of multiplicity µ, but a cluster of µ zeroes. Assume
a polynomial has a zero z of multiplicity µ. Differentiating µ−1 times will yield a polynomial
having a nonsingular factor x−z. Because of slightly perturbed coefficients or roundoff errors,
we may have a nearby polynomial f(x) containing a factor

∏µ
i=1(x − zi) with zi near z. In

contrast to the case of an exact multiple root, it does not follow that f (µ−1)(x) has a single
zero near z. Here a remarkable result of Marden and Walsh [11] (formulated as Corollary 3.3
below) gives mild numerical conditions guaranteeing the numerical stability of the symbolic
operation of differentiation. It guarantees that if we have a cluster of µ roots in a disk D
of radius r, and no root outside of D is a distance less than R from the center of the disk
D, then under mild conditions on the size of R/r, f (µ−1)(x) has one root in D, and a lower
bound is given for the distance of any root of f (µ−1)(z) outside of D to the center of D.

For polynomials of several variables, i.e., x ∈ Cn, we find the roots of the restriction of f(x)
to a general line, i.e., a line x(t) = x0 + tv where we have chosen random vectors x0,v ∈ Cn.
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For roots of multiplicity one, we can use the monodromy technique of [24], or if the degree of
f(x) is low, use the trace theorem of [25] to justify the partial sum approach of [19]. To deal
with the clusters of µ roots we can compute the (µ− 1)-st derivative of f(x) in the direction
v, i.e., with v = (v1, . . . , vn), we compute

g(x) :=

(
v1

∂

∂x1
+ · · ·+ vn

∂

∂xn

)µ−1

f(x), (2)

and apply the techniques to the multiplicity one roots of g(x) corresponding to the clusters.
Since

g(x0 + tv) =

(
d

dt

)µ−1

f(x0 + tv), (3)

we can use Corollary 3.3 to check that g(x0 + tv) has multiplicity one roots corresponding to
the multiplicity µ clusters. Now as we vary the line, we can use g(x) to track the appropriate
roots. As a numerical safety check we can check that the continuations of these roots on the
line intersection with g−1(0) have small residual when we evaluate f(x) at them.

In this paper we first outline the algorithms using pseudocode. Then we justify our use
of differentiation to remove multiplicities and examine the implications of the results of
Marden and Walsh for the behavior of root clusters under differentiation. After discussing
some numerical aspects of our implementation, we apply our software to a problem from
mechanical engineering concerning the singularities of Stewart-Gough platforms.

Acknowledgments. We gratefully acknowledge the support of this work by Volkswagen-
Stiftung (RiP-program at Oberwolfach). The first author thanks the Duncan Chair of the
University of Notre Dame and National Science Foundation. This material is based upon
work supported by the National Science Foundation under Grant No. 0105653. The second
author thanks the Department of Mathematics of the University of Illinois at Chicago and
National Science Foundation. This material is based upon work supported by the National
Science Foundation under Grant No. 0105739 and Grant No. 0134611. The third author
thanks General Motors Research and Development for their support. The authors thank
André Galligo for bringing the work of [1] to their attention. Last and not least, we are
grateful to the editors and referees for their suggestions to improve the paper.

2 Algorithms

Given a pure k-dimensional affine algebraic set Z, we use the term “witness point set” to
designate the intersections of Z with a generic linear space LN−k of complementary dimension
N − k. (See, for example, [22].) LN−k can be defined by k linear equations on CN , each
having random, complex coefficients, or equivalently, it can be given in parametric form as
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x = x0 +
∑N−k

i=1 viti, where x0,vi ∈ CN are random and complex. In the case at hand, Z
is a hypersurface given by a single polynomial equation f(x) = 0, so we intersect it with a
one-dimensional linear space, L1.

In the initial stage we compute a set of witness points on the hypersurface defined by f(x) = 0
and store clustered points according to the size of the cluster. More precisely, if d = deg(f),
WitnessGenerate computes d witness points and partitions the set of witness points into
W = {W1,W2, . . . ,Wm}, where each Wi is a set of clusters of size i.

Algorithm W =WitnessGenerate(f,x0,v)
Input : f(x) polynomial in n variables with complex coefficients;

x0 and v represent a random line x(t) = x0 + tv.

Output : W = {W1,W2, . . . ,Wm}, m =
d

max
i=1

µi, for all X ∈ Wi: #X = µi.

The method to solve a polynomial in one variable is invoked once in WitnessGenerate.
The algorithm RegularFactor assumes the witness points all have multiplicity one. It is
invoked repeatedly in the main factorization algorithm.

Algorithm P = RegularFactor(f,x0,v,W1)
Input : f(x) polynomial in n variables with complex coefficients;

x0 and v represent a random line x(t) = x0 + tv;
W1 set of t-values for which f(x(t)) = 0, with multiplicity one.

Output : P = {p1, p2, . . . , pk}, k irreducible factors of f with
k∑

i=1

deg(pi) = #W1.

We have two different implementations of RegularFactor:

(1) Using the monodromy grouping algorithm [24], certified with linear traces [25].
(2) Applying linear traces to enumerated factors [5,6], [19].

Both methods apply path-following techniques. In each step of the path tracker we slightly
move the random line, predict the location of the solutions and feed the predicted solutions
to Newton’s method for correction.

The main difference between the two implementations lies in the number of computed sam-
ples. With monodromy we compute witness point sets on many random lines, and take the
witness points connected by paths as belonging to the same irreducible factor. Linear traces
are then applied to certify the factorization predicted by the monodromy. In the enumeration
method, we also use linear traces, but plainly enumerate all possible factorizations. For three
witness points, the enumeration method runs as in Figure 1.

Each test is answered by the computation of a linear trace and comparing the value at the
linear trace with the sum directly computed from the samples. The largest number of tests
in this algorithm occurs when the factor witnessed by W1 is irreducible, and equals 2w−1− 1,
where w = #W1.
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Fig. 1. Illustration of the combinatorial method to factor a cubic, given by witness points 1, 2, 3.
Every question is answered by a linear trace test.

After the grouping of the witness points along the irreducible factors, we can apply inter-
polation techniques to find symbolic expressions for the polynomials. In our implementation
we postponed all interpolation to the end, because this stage is most time consuming and
sometimes also not really necessary.

After WitnessGenerate and RegularFactor we have all irreducible factors of multiplicity
one. To build the higher multiplicity factors, we propose to take random combinations of
all partial derivatives. Each differentiation cuts the multiplicity by one and the number of
solutions in the cluster drops accordingly. To processWi, f is differentiated i−1 times yielding
g := D(i−1)f . The routine RefineCluster takes the center of each clustered set of Wi as an
initial approximation for root refinement with g. Thereafter we can apply RegularFactor
on g and the reduced set Wi as before.

With the witness points grouped according to the factors, we can apply interpolation methods,
e.g., using traces [20], to obtain symbolic representations of the factors.

3 How clusters of zeroes spread out under differentiation

At the innermost level of our routine, we have reduced the problem to following a multiple
root of a complex polynomial in one variable. Recall that if h(z) has a root of multiplicity µ at
a point z0, then its derivative h′(z) has a root of multiplicity µ−1 at z0, and so h(µ−1)(z) has a
nonsingular root at z0. While a nonsingular root is much easier to compute accurately than a
multiple root, we must be concerned about the numerical stability of the differentiation. This
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Algorithm Q = Factor(f)
Input : f(x) polynomial in n variables with complex coefficients.
Output : Q = { (qi, µi) | i = 1, 2, . . . , N }, irreducible factors qi with multiplicities µi.

x0 := Random(n,C); [choose n random numbers in C]
v := Random(n,C); [v is direction of line x(t) = x0 + tv]
W := WitnessGenerate(f,x0,v); [find witness points]
Q := ∅; [Q will collect all factors]
P := RegularFactor(f,x0,v,W1); [find regular factors]
for all pi ∈ P do
Q := Q ∪ (pi, 1); [collect multiplicity one factors]

end for;

D :=
n∑

i=1

vi
∂

∂xi
; [differential along direction v]

g := f ; [g is (µ− 1)-th differential of f , µ = 1]
for µ = 2, 3, . . . ,#W do [construct multiplicity µ factors]
g := Dg; [differentiate so that g = D(µ−1)f ]
Wi := RefineCluster(g,x0,v,Wi); [refine center of clusters]
P := RegularFactor(g,x0,v,Wi); [find regular factors]
for all pi ∈ P do

Q := Q ∪ (pi, µ); [collect multiplicity µ factors]
end for;

end for;
return Q.

problem manifests itself in the way that the roots away from z0 move under differentiation.
Ignoring the roots exactly at z0, it may well happen that h′(z) has at least one root closer to
z0 than any root of h(z), and after µ− 1 derivatives, some root may come so close to z0 as to
be numerically indistinguishable from z0 itself. For a simple example showing the problem,
consider h(z) = zµ(z − 1)d−µ. The root z = 0 occurs with multiplicity µ, with the d − µ
remaining roots at z = 1. The derivative h′(z) has z = 0 as a root of multiplicity µ− 1, but

it also has a root
µ

d
, which for large d can be near zero. If we will need to differentiate µ− 1

times, this can lead to a serious problem.

The problem is further exacerbated if, due to numerical roundoff in its representation, we
begin with ĥ(z), nearby to h(z), having a cluster of µ roots near z0. After differentiation, we
would like to have an ĥ′(z) with a cluster of µ− 1 roots near z0 and all other roots far away,
but as seen from the above example, this may not always be the case. The following result
gives some bounds on the behavior of the roots under differentiation and helps in guiding the
choice of how many digits of precision we should use in implementation of our algorithm. The
result follows from a very special case of a beautiful, but somewhat intricate, classical result
of Marden and Walsh [11, Theorem 21.1] about the geometry of the zeroes of the derivative
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of a polynomial. For the convenience of the reader, we include a self-contained proof of the
result we need.

As a preliminary step, we derive a simple result on sums of complex numbers.

Lemma 3.1 Let u1, . . . , uµ denote µ > 0 complex numbers satisfying |ui − ρ| < r where ρ
and r are real numbers satisfying ρ > r > 0. Then

µ

ρ+ r
<

∣∣∣∣∣

µ∑

i=1

1

ui

∣∣∣∣∣ . (4)

Proof. Write each ui in polar form, rie
√
−1θi . Since ρ > r, the real parts of each

1

ui
are

positive, and we have from the triangle inequality that

∣∣∣∣∣

µ∑

i=1

1

ui

∣∣∣∣∣ ≥
µ∑

i=1

Re
(
1

ui

)
=

µ∑

i=1

1

ri
cos(−θi). (5)

Note that for a fixed ri, the smallest value of the positive number
1

ri
cos(−θi) for |ui− ρ| < r

occurs at the boundary |ui− ρ| = r. It is a simple calculus problem that the minimum of the

real part of
1

u
for u satisfying |u− ρ| = r, occurs when u = ρ+ r. 2

Theorem 3.2 (Marden and Walsh [11]) Let h(z) be a degree d polynomial of one com-

plex variable. Assume that h(z) has µ zeroes in the disk ∆r(z0) := {z ∈ C
∣∣∣|z − z0| ≤ r} and

d − µ zeroes in the region {z ∈ C
∣∣∣|z − z0| ≥ R}, where R > r. Then, if µ(R + r) > 2dr, it

follows that h′(z) has µ− 1 roots in ∆r(z0) and all the remaining d− µ roots in the region

{
z ∈ C

∣∣∣∣∣|z − z0| ≥
µ

d
(R + r)− r

}
. (6)

Proof. By translation we can assume without loss of generality that z0 = 0. In this case we
abbreviate ∆r(0) to ∆r. Without loss of generality we assume that h(z) is monic, i.e., that
the highest order term of h(z) is zd.

Note that to prove the theorem, it is enough to prove the following assertion.

Claim 1 Given a real number ρ satisfying R > ρ > r, it follows that if

ρ <
µ

d
(R + r)− r, (7)

then h′ has exactly µ− 1 zeroes in the disk ∆ρ.
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The assumptions of Theorem 3.2 and Claim 1 imply that we may write h(z) = p(z)q(z), where
p(z) is a monic polynomial of degree µ, which has the same µ zeroes with multiplicities, that
h(z) has in ∆r, and q(z) is a monic polynomial with all roots at least distance R > ρ > r
from the origin. The polynomial p′(z)q(z) has the same zeroes in ∆r as p′(z). Therefore, it
suffices to check, that for ρ > r satisfying equation (7), p′(z)q(z) and h′(z) have the same
number of zeroes counting multiplicities in ∆ρ. By Rouché’s Theorem, e.g., [11, page 2], we
know that p′(z)q(z) and h′(z) = p′(z)q(z) + p(z)q′(z) have the same number of zeroes in ∆ρ

if

|p(z)q′(z)| < |p′(z)q(z)| (8)

for z satisfying |z| = ρ. Therefore, to prove Claim 1, it suffices to show that equation (7)
implies equation (8). Since h(z) has no zeroes satisfying |z| = ρ, it suffices to show that
equation (7) implies ∣∣∣∣∣

q′(z)

q(z)

∣∣∣∣∣ <
∣∣∣∣∣
p′(z)

p(z)

∣∣∣∣∣ . (9)

Letting z1, . . . , zµ denote the zeroes of p(z), each listed a number of times equal to its mul-
tiplicity, and letting w1, . . . , wd−µ denote the zeroes of q(z), each listed a number of times
equal to its multiplicity, we see that equation (9) is equivalent to

∣∣∣∣∣∣

d−µ∑

j=1

1

z − wj

∣∣∣∣∣∣
<

∣∣∣∣∣

µ∑

i=1

1

z − zi

∣∣∣∣∣ . (10)

Consequently, we prove Claim 1, and hence the theorem, by showing that for |z| = ρ

∣∣∣∣∣∣

d−µ∑

j=1

1

z − wj

∣∣∣∣∣∣
<

d− µ

R − ρ
<

µ

ρ+ r
<

∣∣∣∣∣

µ∑

i=1

1

z − zi

∣∣∣∣∣ . (11)

The leftmost inequality in expression (11) follows from the triangle inequality and the fact
that for z satisfying |z| = ρ we have |z − wj| > R − ρ. The middle inequality is a simple
consequence of equation (7). To complete the proof, we proceed as follows. For ρ fixed, let
z∗ = ρe

√
−1θ∗ denote the point that minimizes the rightmost side of expression (11). Then,

∣∣∣∣∣

µ∑

i=1

1

z − zi

∣∣∣∣∣ ≥
∣∣∣∣∣

µ∑

i=1

1

ρe
√
−1θ∗ − zi

∣∣∣∣∣ =
∣∣∣∣∣

µ∑

i=1

1

ρ− zie−
√
−1θ∗

∣∣∣∣∣ . (12)

Since |zi| ≤ r, we see that Lemma (3.1) applies, and the result is shown. 2

We denote the k-th derivative of h by h(k)(z).

Corollary 3.3 Let h(z) be a degree d polynomial of one complex variable. Assume that h(z)

has µ zeroes in the disk ∆r(z0) := {z ∈ C
∣∣∣|z − z0| ≤ r} and d − µ zeroes in the region
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{z ∈ C
∣∣∣|z−z0| ≥ R}, where R > r. Assume further that k ≤ µ−1. Then, if

R

r
>

2
(
d

µ

)

d− µ+ 1
−1,

it follows that h(k)(z) has µ−k roots in ∆r(z0) and all the remaining d−µ roots in the region



z ∈ C

∣∣∣∣∣|z − z0| >

(
µ

k

)

(
d

k

) (R + r)− r



 . (13)

Proof. Use Theorem (3.2) k times. 2

Suppose that h(z) is an approximation to an underlying exact polynomial having a root of
multiplicity µ. If we increase the precision used to evaluate h(z) sufficiently, it will have a
tight cluster of µ roots near the multiple root of the exact polynomial. Refining the precision
until the radius r of the cluster is within the bound given by Corollary (3.3) assures us that
the roots of h(k)(z) remain clustered. In particular, letting r denote the radius of a disk ∆r(z0)
around z0, the multiplicity weighted average of the µ roots, which contains the cluster of µ
roots, and letting R denote the distance from z0 to the first root outside of ∆r(z0), we have
that the conservative estimate

R

r
≥

2
(
d

µ

)

d− µ+ 1
(14)

guarantees that h(k)(z), for all k ≤ µ− 1, has exactly µ− k zeroes in ∆r(z0).

For example, for a polynomial of degree 75, with roots of at most multiplicity 10, log10 (R/r) ≥

10.41 is sufficient. For a given d, the worst case happens when µ is approximately
d

2
. Thus

log10(R/r) ≥ 57.3 is sufficient for a degree 200 polynomial having a worst case root of
multiplicity 100. We may also regard log10(R/r) as a measure of the number of decimal
places needed to accurately carry out the computations. Using Stirling’s approximation, we
see that the number of decimal places needed in case µ ≈ d/2, and thus for all µ with the
given d is approximately:

log10(R/r) ≥ 0.3d. (15)

To determine how to set the precision, we rearrange the inequality (14) into

r ≤
2
(
d

µ

)

d− µ+ 1
R. (16)

We consider the quantities at the right of (16) as fixed, while the radius r of the cluster is
variable. The right-hand side of (16) imposes a bound on the accuracy of the cluster, i.e., the
number of decimal places all points in the cluster need to agree on. In a straightforward but
effective manner we can apply Newton’s method locally to all points in the cluster, adapting
the precision until the radius r is small enough.

10



4 Computational experiments

In this section we report numerical results obtained with PHCpack [31]. This software package
has recently been extended with facilities to handle positive dimensional solution components,
see [27]. In particular, invoking the executable with the option -f gives access to the capa-
bility to factor multivariate polynomials. The black-box solver of PHCpack now applies the
numerical factorization methods when given on input a single polynomial in several variables.

All our experiments were done with standard double precision arithmetic.

4.1 A numerical implementation

Specialized versions of the path tracking routines in PHCpack have been built to deal with
the case of homotopies between systems of one polynomial equation in several variables:

f(z(t, λ)) = 0 (17)

where

z(t, λ) = (x0 + tv)λ+ (y0 + tw)(1− λ) (18)

defines the movement from the line x(t) = x0 + tv to the line y(t) = y0 + tw, as λ moves
from 1 to 0, i.e.: z(t, λ) = x(t)λ + y(t)(1− λ).

One motivation for this specialized code is to save linear algebra operations. Without the
parametric representation of a general line x(t) = x0 + tv, we have to consider polynomial
systems of n equations consisting of one polynomial (the polynomial we wish to factor)
and n − 1 hyperplanes to cut out the line. Now we can use, like in [20], the method of
Weierstrass 1 (also known as Durand-Kerner) to solve f(x(t)) = 0. See [32] for methods to
locate zero clusters of univariate polynomials. The other motivation is that we hope to have
a better understanding and control of the numerical stability of the algorithms.

To give an impression of the numerical difficulty of computing witness points, consider the
substitution of x(t) = x0 + tv into the polynomial f(x) = xd (in one variable x). Application
of the binomial theorem gives

f(x) = (x0 + tv)d =
d∑

k=0

(
d

k

)
xd−k

0 vktk = 0, (19)

1 In [15] this method is qualified as “quite effective and increasingly popular.” Convergence is global
and quadratic in the limit [17].
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which must be solved for t. Assuming that the magnitudes of x0 and v are approximately one,
the leading coefficient is also magnitude one, but for degree d = 30, the largest coefficient
(k = 15) has a magnitude occupying nine decimal places. Such large ranges in coefficients
are known to cause numerical sensitivity.

Extrapolating from this simple case to the general case of computing all witness points,
solving f(x(t)) = f(x0 + tv) = 0 for t, we warn that even if the original coefficients of
f are nice, and if we choose the entries of x0 and v on the complex unit circle, for large
degrees, the univariate polynomial in t may have coefficients that vary greatly in magnitude.
To deal with such polynomials numerically, higher working precision may be required. This
also implies that the path tracking in the monodromy phase of the algorithm may need higher
precision. In previous work on polynomial systems having positive dimensional solution sets of
higher multiplicity [27], we already extended the path-tracking routines in PHCpack to multi-
precision. For such general polynomial systems, multi-precision path tracking tends to be
computationally expensive, but we expect more reasonable execution times when addressing
homotopies of only one polynomial equation.

Our working precision determines the accuracy of the algorithm RegularFactor. For in-
stance, consider the polynomial f(x, y) = xy + 10−16. Working with standard double preci-
sion floating point numbers, the constant in f(x, y) will be ignored and a loop which shows
f is irreducible will not be found, and also the validation with linear traces will confirm the
breakup into the factors x and y. On the other hand, doubling the precision will show that
f is irreducible.

In principle, the groupings of the monodromy algorithm can deal with approximate coef-
ficients if we set the working precision according to the accuracy level of the coefficients.
However, this scheme only works for sufficiently low degrees, because more precision is usu-
ally needed to evaluate polynomials of high degree.

To obtain symbolic expressions of the polynomial factors, we applied the interpolation meth-
ods using traces, developed and implemented for any degree and any number of variables
using multi-precision arithmetic if needed, reported in [25]. Multivariate Newton interpola-
tion with divided differences is outlined in [9]. Since the algorithms for multivariate Newton
interpolation involve a recursive application of the classical one variable case, the error anal-
ysis in [7, pages 110–111] shows the relation between the errors on the coefficients, the degree
of the polynomial, and the working precision. In particular, the error ∆c on the coefficients
is bounded by

|∆c| ≤

(
1

(1− 3u)n
− 1

)
|L||f |, (20)

where u is an upper bound on the roundoff in one arithmetical operation (depends on the
working precision), n is the degree of the polynomial, L is the product of n bidiagonal matrices
of dimension n (expressing the computation of divided differences in matrix-vector form), and
f is the vector of function values at sample points.
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Note however that usually we do not need the symbolic representation of the factors to work
with them. For instance, with the witness points we can determine whether a point satisfies
a factor, via the homotopy membership test of [23].

4.2 Singularities of Stewart-Gough platforms

A mechanical device of considerable interest in mechanical engineering is the Stewart-Gough
platform, consisting of a moving platform supported above a stationary base by six legs. One
end of the i-th leg connects to the base via a ball joint centered on point bi (given in the base
coordinate system) and the other end connects to the platform via a ball joint at point ai
(given in platform coordinates). The length of the leg, Li, is controlled by a linear actuator.
A good general reference discussing this device and its relatives is Merlet [13].

For fixed leg lengths, the device is generally rigid, but at singular configurations, the rigidity
of the device is lost. That is, even though the leg lengths are held constant, the platform has at
least one combination of velocity and angular velocity that, up to first order, is unconstrained.
In the design of such a device, an understanding of its singularities is crucial; see [12,14] and
their references for background.

The condition for singularity can be derived as follows. We represent the position of the
platform by p ∈ C3 and the orientation by a quaternion q ∈ P3. Letting vi be the vector, in
base coordinates, from base point bi to the corresponding platform point ai, we have

vi := −bi + p +R(q)ai = −bi + p+ qaiq
′/qq′, (21)

where R(q) is the 3 × 3 rotation matrix giving the same rotation to a vector w as the
quaternion operation qwq′/qq′. The squared length of leg i is L2

i = vi · vi, so

LiL̇i = vi · v̇i = vi · (ṗ + ω × (Rai)), (22)

where “·” is the vector inner product, × is the vector cross product, and ω is the angular
velocity vector. Rewriting R = R̂/Q with

Q := qq′ = q2
0 + q2

1 + q2
2 + q2

3, (23)

and substituting from Eq.(21), we may transform Eq.(22) into

QLiL̇i = (Q(p− bi) + R̂ai) · ṗ+ ((R̂ai)× (p− bi)) · ω. (24)

Letting J be the matrix whose i-th column is

Ji =



Q(p− bi) + R̂ai

(R̂ai)× (p− bi)


 , i = 1, . . . , 6, (25)
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the singularity condition is 0 = Jw for some w 6= 0, or equivalently, detJ = 0.

Since the elements of R̂ and Q are quadratic polynomials in q, one sees that detJ is a
polynomial in p,q, ai,bi. Taking all of these as variables, the first three rows of J are cubic
and the last three are quadric, so detJ is a homogeneous polynomial of degree 1728 in 42
variables. Not much understanding is likely to result from analyzing such a complicated
object, nor could we begin to deal with it numerically. However, considerable insight can be
gained by studying cases where some variables are taken as given, as has been done in [12,18].
In the next few paragraphs, we study such cases, some never before published, and use our
numerical algorithm to factor detJ.

In all of the following examples, we expanded detJ into monomials for convenient input to
our computer code. This made automatic computation of derivatives very simple, but it is a
very inefficient way to evaluate the polynomial. It would be much more efficient and accurate
to evaluate the matrix entries numerically and then evaluate the determinant by reducing
the matrix to triangular form. Therefore, the computation times reported here are far from
the best that could be achieved. The examples serve to show how the algorithm works on
fully expanded polynomials.

4.2.1 General platform, fixed position

For the general platform, we give p, ai and bi, i = 1, . . . , 6, as random, complex values; that
is, we choose a generic Stewart-Gough platform at a generic position, and look for singularities
arising from rotations of the platform. The factorization of one such example will indicate,
with probability one, the form of the factorization for almost all 2 Stewart-Gough platforms.
In this case, detJ is a homogeneous polynomial of degree 12 in q = {q0, q1, q2, q3}. We
find numerically that a generic line hits detJ in six regular points and two singular points
of multiplicity 3. The regular points form one factor of degree six. Using differentiation to
remove the multiplicity, we find that the two singular points form one quadratic factor, and
interpolating that factor shows it to be precisely Q from equation (23). That is,

detJ = F1(q)Q
3, (26)

where F1(q) is a sextic. Since a quaternion with zero norm does not represent a valid rotation
matrix, the factor of Q3 = 0 is not of physical significance.

The computed factorization is certified with linear traces by comparing the value at the linear
trace with the calculated sum of the witness points on each factor. The maximal difference
in the comparison for the two factors is 2.049E-13. If we multiply the interpolated factors
and take the difference with the original polynomial, then the largest norm of the coefficients

2 The exceptions will be an algebraic subset of the space of all platform devices as parameterized
by p, ai, bi, i = 1, . . . , 6.
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of the difference polynomial is 1.919E-05, as explained by roundoff in the interpolation of
high degree polynomials.

The data for the cluster analysis, comparing cluster radius r and distance R to the nearest
other root outside the cluster, is given in Table 1. For d = 12 and µ = 3, the right-hand side
of the estimate (14) evaluates to 44. This bound is clearly smaller than 104, so the initial
approximations for the multiple root are accurate enough for the differentiation process.

cluster r R R/r

one 1.7E-05 3.4E-01 2.0E+04

two 4.9E-06 1.7E-01 3.6E+04

Table 1
Cluster radius r versus distance R to the nearest root outside the cluster, for the first case of general
platform, fixed position. There are three roots in every cluster.

Table 2 lists the execution times for each stage in the factorization: monodromy grouping, cer-
tification with linear traces, interpolation in the factors, and finally, the comparison between
the product of the factors with the original polynomials. The evaluation of a polynomial of
degree 12 in four variables with 910 terms is responsible for the dominance of stages one and
three in the overall execution time.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 0h 6m 40s 469ms

2. linear traces certification : 0h 0m 30s 672ms

3. interpolation at factors : 1h 41m 53s 78ms

4. multiplication validation : 0h 0m 8s 156ms

total time for all 4 stages : 1h 49m 12s 391ms

Table 2
Execution times for the first case of general platform, fixed position.

4.2.2 Planar base and platform, fixed position

This is the same as the former case, except that the third component of each of ai, bi,
i = 1 . . . , 6 is zero, meaning that the points of the base are all in a common plane, as are the
points of the platform. Now detJ is still homogeneous of degree 12, and it still factors in two
pieces: one irreducible single factor of degree six, and the quadratic factor having multiplicity
three.

The maximal difference in certifying with linear traces is 4.147E-11, i.e.: the difference
between the calculated sum in the roots and the value predicted by the linear trace of the
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factor is 4.147E-11, showing the influence of roundoff in evaluation a polynomial of degree
12 in four variables with 910 terms. The influence of roundoff in the comparison between the
original and product of the interpolated factors is even more obvious: we see 9.483E-05 as
the maximal norm of the difference in the coefficients.

In Table 3 we summarize the results of the cluster analysis for two clusters which contain
witness points of multiplicity three. As in Table 1 we can make the same observations, to
conclude that R/r ≈ 104 > 44 is safe for the differentiations. Table 4 shows the execution
times. The algorithm RegularFactor takes so much time because of the cost of evaluating
a polynomial of degree 12 in four variables with 910 terms.

cluster r R R/r

one 6.2E-05 2.4E-01 3.8E+04

two 4.8E-05 6.0E-01 1.2E+04

Table 3
Cluster radius r versus distance R to the nearest root outside the cluster, for the second case of
planar base and platform, fixed position. There are three roots in every cluster.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 0h 17m 34s 735ms

2. linear traces certification : 0h 0m 27s 359ms

3. interpolation at factors : 1h 24m 45s 766ms

4. multiplication validation : 0h 0m 8s 172ms

total time for all 4 stages : 1h 42m 56s 32ms

Table 4
Execution times for the second case of planar base and platform, fixed position.

4.2.3 Planar base and platform, parallel planes

In this case, which was studied in [12,18], we consider a device with planar base and platform
in a configuration with the two planes parallel to each other. The condition of parallelism
means that the platform is rotated only about the third axis, so q1 = q2 = 0. The position,
p, is now left as variable, and detJ becomes cubic in p, homogeneous of degree 12 in (q0, q3),
and degree 15 in (p,q) together. One does not know a priori that the contribution of p will
factor out separately, but in fact it does. The computed factorization is

detJ = ap3
3(q0 + bq3)(q0 + cq3)(q0 + iq3)

5(q0 − iq3)
5, (27)

where a, b, c are constants that depend on the choice of ai,bi. This result is in agreement
with [18], when we consider that, over the complex numbers, any homogeneous polynomial
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in two variables breaks into linear factors. Notice that the multiplicity five factors are points
on Q from equation (23) and therefore are not of physical significance. The condition p3 = 0
means that the two planes coincide, which is clearly singular since then the legs provide no
support perpendicular to the plane. Otherwise, singularity does not depend on position at
all, as the other factors depend only on orientation. This fact is used to advantage in [18] to
characterize the singularities of the planar-planar Stewart-Gough platforms.

The numerical results give a maximal difference over all factors between the computed sum
of roots and the value at the linear trace as 8.047E-08. When we interpolate the factors
and compare the multiplied factors with the original polynomial, we find 3.599E-07 as the
highest norm of the difference between the coefficients.

In Table 5 we summarize the results of the cluster analysis for the three factors occurring with
multiplicities three, five, and five. Observe that the cluster radius grows as the multiplicity
gets larger. The bound in the estimate of the right-hand side of (14) now evaluates to 546
using d = 15 and µ = 5. While the approximation for R/r lies now much closer to this bound,
numerically we can still apply the differentiation procedure successfully.

Table 6 shows the execution times. Since there are three witness points of multiplicity three,
no monodromy is needed to isolate this factor. While the other polynomials each have 910
terms, this polynomial is much sparser: only 24 terms. The sparsity reduces the cost of
evaluation and explains why this polynomial is factored much faster than the other ones.

cluster r R R/r

one 5.1E-07 1.0E+00 2.0E+06

two 7.3E-04 3.4E-01 4.7E+02

three 4.0E-03 7.2E-01 1.8E+02

Table 5
Cluster radius r versus distance R to nearest root outside the cluster, for the third case of planar
base and platform, parallel planes. There are three roots in the first cluster, and five roots in the
other two clusters.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 1m 13s 656ms

2. linear traces certification : 0m 3s 891ms

3. interpolation at factors : 0m 4s 734ms

4. multiplication validation : 0m 1s 657ms

total time for all 4 stages : 1m 23s 938ms

Table 6
Execution times for the third case of planar base and platform, parallel planes.
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4.3 Monodromy compared to the enumeration method

In this section we show that for the polynomials of modest degrees that we factored in this
paper, the enumeration method outperforms the monodromy algorithm. In Table 7 we list
execution times for the three cases treated above. We see the enumeration method as a clear
winner. Recall that the highest degree of an irreducible factor is six, so only relatively few
tests are needed in the enumeration method.

User CPU times on 2.4Ghz Windows XP

case monodromy enumeration

1 6m 40s 460ms 40s 750ms

2 17m 34s 735ms 31s 657ms

3 1m 13s 656ms 3s 0ms

Table 7
Execution times for the factorization using monodromy, compared to enumerating factors, for the
three cases of the singularities of the Stewart-Gough platform.

Irreducible polynomials are the most difficult for the enumeration method. In Table 8 we
compare execution times again, but now for random irreducible polynomials of five mono-
mials, and for increasing degrees. We see that the ratio of monodromy time to enumeration
time drops from 18 to about 6 as the degree increases.

User CPU times on 2.4Ghz Windows XP

degree monodromy enumeration

10 5s 484ms 312ms

15 8s 187ms 1s 453ms

16 16s 63ms 2s 875ms

Table 8
Execution times for the factorization using monodromy, compared to enumerating the irreducible
factors, for three very sparse random polynomials of increasing degrees.

5 Conclusions

In this paper we show how the numerical factorization of a single polynomial in several
variables with approximate complex coefficients can be accomplished by specializing contin-
uation methods for the numerical irreducible decomposition of a polynomial system. In the
case of a system of polynomials, components with multiplicity µ > 1 require the tracking of
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a singular path, but this difficult numerical task can be avoided in the specialization to a
single polynomial. To do so, we symbolically differentiate the polynomial µ − 1 times, thus
replacing singular roots with nonsingular ones. In floating point calculations, a multiple root
becomes a cluster of nearly singular roots. Via a result of Marden and Walsh, we can estimate
the precision needed to successfully apply differentiation to replace such clusters with one
nonsingular root.

To illustrate the methods, we applied the algorithms in a study of singularities of Stewart-
Gough platforms. We experienced that a numerical factorization (i.e., partition of the witness
set) is is usually less expensive and more numerically stable than the subsequent interpolation
to obtain coefficients for the factor written as a polynomial. Since most questions can be
answered via continuation of the witness set, the interpolation step can usually be omitted.

As the algorithms require repeated evaluations of the polynomial and its derivatives, a major
factor in the cost of the method is the sparsity of the polynomials. The sparser the polyno-
mials, the faster the evaluation and interpolation algorithms run.

Since the polynomials we can factor with standard arithmetic have modest degrees, the
enumeration methods of Galligo and Rupprecht ([5,6], [19]) proved to be faster than the
monodromy method in our tests. If one were to factor polynomials of higher degree, the speed
advantage might reverse, due to exponential growth of the number of cases the enumeration
method may have to test.

References

[1] C. Bajaj, J. Canny, T. Garrity, and J. Warren. Factoring rational polynomials over the complex
numbers. SIAM J. Comput. 22(2):318–331, 1993.

[2] R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas, and S.M. Watt. Towards factoring
bivariate approximate polynomials. In Proceedings of the 2001 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2001), edited by B. Mourrain, pages 85–92, ACM
2001.

[3] R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt. A geometric-numeric algorithm for
factoring multivariate polynomials. In Proceedings of the 2002 International Symposium on
Symbolic and Algebraic Computation (ISSAC 2002), edited by T. Mora, ACM 2002.

[4] R.M. Corless, E. Kaltofen, and S.M. Watt. Hybrid methods. In Computer Algebra Handbook,
edited by J. Grabmeier, E. Kaltofen, and V. Weispfenning, pages 112–125, Springer-Verlag,
2002.

[5] A. Galligo and D. Rupprecht. Semi-numerical determination of irreducible branches of a
reduced space curve. In Proceedings of the 2001 International Symposium on Symbolic and
Algebraic Computation (ISSAC 2001), edited by B. Mourrain, pages 137–142, ACM 2001.

19



[6] A. Galligo and D. Rupprecht. Irreducible decomposition of curves. J. Symbolic Computation
33(5):661–677, 2002.

[7] N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 1996.

[8] Y. Huang, W. Wu, H.J. Stetter, and L. Zhi. Pseudofactors of multivariate polynomials. In
Proceedings of the 2000 International Symposium on Symbolic and Algebraic Computation
(ISSAC 2000), edited by C. Traverso, pages 161-168, 2000.

[9] E. Isaacson and H.B. Keller. Analysis of Numerical Methods. Dover Reprint of the 1966 Wiley
edition, 1994.

[10] E. Kaltofen. Challenges of symbolic computation: my favorite open problems, J. Symbolic
Computation 29(6): 891–919, 2000.

[11] M. Marden. The Geometry of the Zeroes of A Polynomial in a Complex Variable. Volume 3
of Mathematical Surveys, American Mathematical Society, New York, 1949.

[12] B. Mayer St-Onge and C.M. Gosselin. Singularity analysis and representation of the general
Gough-Stewart platform. Int. J. Robotics Research, 19(3):271–288, 2000.

[13] J.P. Merlet. Parallel Robots, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2000.

[14] J.P. Merlet. Singular configurations of parallel manipulators and Grassmann geometry. Int.
J. Robotics Research, 8(5):45–56, 1989.

[15] V. Pan. Solving a polynomial equation: some history and recent progress. SIAM Review
39(2):187–220, 1997.

[16] V. Pan. Computation of approximate polynomial GCDs and an extension. Information and
Computation 167:71–85, 2001.

[17] L. Pasquini and D. Trigiante. A globally convergent method for simultaneously finding
polynomial roots. Math. Comp. 44(169):135–149, 1985.

[18] F. Pernkopf and M.L. Husty. Singularity analysis of spatial Stewart-Gough platforms with
planar base and platform. Proc. ASME Design Eng. Tech. Conf., Montreal, Canada, Sept. 30–
Oct. 2, 2002.

[19] D. Rupprecht. Semi-numerical absolute factorization of polynomials with integer coefficients.
J. Symbolic Computation, to appear.

[20] T. Sasaki. Approximate multivariate polynomial factorization based on zero-sum relations.
In Proceedings of the 2001 International Symposium on Symbolic and Algebraic Computation
(ISSAC 2001), edited by B. Mourrain, pages 284–291, ACM 2001.

[21] A.J. Sommese and J. Verschelde. Numerical homotopies to compute generic points on positive
dimensional algebraic sets. J. Complexity 16(3):572–602, 2000.

[22] A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical decomposition of the solution sets
of polynomial systems into irreducible components. SIAM J. Numer. Anal. 38(6):2022–2046,
2001.

20



[23] A.J. Sommese, J. Verschelde, and C.W. Wampler. Numerical irreducible decomposition using
projections from points on the components. In J. Symbolic Computation: Solving Equations
in Algebra, Geometry, and Engineering, volume 286 of Contemporary Mathematics, edited by
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