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Abstract

Symbolic algorithms using a finite number of exact differentia-
tions and eliminations are able to reduce over and under-determined
systems of polynomially nonlinear differential equations to involutive
form. The output involutive form enables the identification of con-
sistent initial values, and eases the application of exact or numerical
integration methods.
Motivated to avoid expression swell of pure symbolic approaches

and with the desire to handle systems with approximate coefficients,
we propose the use of homotopy continuation methods to perform the
differential-elimination process on such non-square systems. Examples
such as the classic index 3 Pendulum illustrate the new procedure.
Our approach uses slicing by random linear subspaces to intersect its
jet components in finitely many points. Generation of enough generic
points enables irreducible jet components of the differential system to
be interpolated.
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1 Introduction

Over and under-determined (non-square) systems of ode arise in applications
such as constrained multibody mechanics and control systems. For example,
differential-algebraic equations (dae) arise from constrained Lagrangian me-
chanics [2, 28, 30].

In this article we consider systems of constrained ode which are polyno-
mial functions of their dependent and independent variables. For example
consider the class of dae of the form ut = f(u), φ(u) = 0. An initial con-
dition u(t0) = u0 which satisfies the constraint φ(u0) = 0 can be found by
applying Newton’s method to the constraint starting from an initial guess.
Then the numerical solution of the system proceeds by using the differential
equation ut = f(u) as a predictor, and then variations of Newton’s method
as to correct or project the solutions onto the constraint φ(u) = 0 during
the integration [2, 42].

Differentiation of the constraint yields, in the notation1 of [2], the rela-
tion d

dt
φ = φ

u
ut = 0. Then elimination (or geometrically: projection) yields

φuf = 0. This is potentially a new restriction on initial values. Location
of all such new constraints (or so-called reduction of the index) is important
for finding consistent initial values and easing the numerical solution of dae.
The differential index of a dae is r if a minimum of r + 1 (geometric) dif-
ferentiations of the dae are required before no new constraints are found. It
has been used as a measure of the difficulty of numerically solving such sys-
tems, with low (0 or 1) index systems being the easiest to solve numerically.
This index was originally introduced by Gear and its definition was refined
and made coordinate independent in [23, 24]. For algebraic developments
see [22, 41].

1Or more explicitly d
dt
φj =

∑
k
∂φj

∂uk

∂uk

∂t
= 0.
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Recently there has been much progress [4, 17, 19, 20, 22, 25, 27, 41, 44]
in the theoretical development and implementation of symbolic differential-
elimination algorithms to locate all such constraints. The elimination phase
can be complicated because the equations are generally nonlinear. Typi-
cally the symbolic methods use Gröbner bases or triangular sets to perform
eliminations.

We were motivated to propose a new generation of differential-elimination
algorithms by the exploding memory consumption of the symbolic differential-
elimination algorithms on complicated examples. This explosion reflects
the underlying non-polynomial complexity, an exception is the probabilis-
tic method for determining algebraic observability in polynomial time given
in [26]. Moreover, symbolic methods cannot handle approximate input.

An underlying principle of our approach, is our strong emphasis on geom-
etry. In particular we emphasize jet space geometry, the geometry of differ-
ential systems [18, 22, 27, 42]. In comparison to the symbolic differentiation-
elimination approaches, where symbolic or algebraic manipulations of the
equations figure heavily, our approach focuses on the solutions of the system
regarded as algebraic equations. We note that these solutions, are possible
initial conditions, and not the actual solutions of the differential system. In
this jet space picture of a differential equation one regards all the appearing
variables (derivatives etc.) as formal unknowns on an equal footing.

A major principle of our approach is to replace what is usually a symbolic
preprocessing step with a variation of Newton’s method, to locate points on
the hidden constraints. This is quite natural since ultimately variants of
Newton’s method are used in solving the differential system. The new class
of methods presented here can be compared to using an iterative method to
solve systems (in our case Newton’s method), instead of exact elimination
(e.g. Gaussian elimination, or its nonlinear cousin Gröbner bases).

Newton’s method is one of the most widely used methods to solve systems
of nonlinear equations numerically. Although the convergence of this iterative
method is quadratic, it is only local in a small neighborhood of a solution.
To achieve global convergence, we embed the system we have to solve in a
family of systems, a so-called homotopy. For polynomial systems, a typical
homotopy to solve p(x) = (p1(x), ..., pn(x)) = 0 is

H(x, t) = (1− t)q(x) + tp(x) = 0, (1)

which defines solution paths x(t) as the continuation parameter t varies from
0 to 1. The paths x(t) start at t = 0 at known solutions of the start system
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q(x) = 0 and lead to the solutions of p(x) = 0 as t approaches 1. When
q has a structure similar to that of p (see [16] for precise choices of q),
we are guaranteed that numerical path following methods [1] will lead to
approximations to all isolated solutions of p(x) = 0.

The systems of polynomial equations involved in our approach are usu-
ally not square and generally have positive dimensional components (sub-
manifolds) of solutions. Our treatment of such systems, using homotopy
methods, is made possible by recent theoretical progress initiated by [40],
in the developing area of Numerical Algebraic Geometry. The new tech-
niques rely on embedding the given systems in square polynomial systems,
by the inclusion of extra (slack) variables and random linear equations if
necessary. The key idea behind these methods of Sommese, Verschelde and
Wampler [33, 34, 35, 36, 37] is to reduce to the zero dimensional case (where
there are only finitely many solutions), by slicing the solutions with a ran-
dom linear space of the appropriate dimension. Enough points are located to
interpolate the smooth components of a differential system by lowest degree
polynomials.

To motivate the discussion, in Section 2 we will use the example of the
Pendulum, a classic in the literature [2, 23, 24]. We first informally show the
application of an exact differential-elimination algorithm to the Pendulum
equations. In Section 3 we present our geometric method in a more formal
manner. First we apply our new numeric-symbolic methods to an easily
visualizable example in Section 4.1, and then to the Pendulum in Section 4.2.
A discussion of numerical aspects is given in Section 5, and of complexity
and related issues in Section 6. Concluding remarks are given in Section 7.
Acknowledgements. One of the authors (GR) would like to thank George
Corliss for helpful discussions on automatic differentiation and Kamyar Haz-
aveh for discussions on the algorithms in the paper.

2 Exact Differential Elimination applied to

the Pendulum

By the standard formulation of constrained Lagrangian mechanics, the equa-
tions of motion for a unit mass bead constrained to move on a wire of shape
φ(x, y) have form xt = u, yt = v, ut = λφx, vt = λφy−g, φ(x, y) = 0. We use
the case of the Pendulum where φ(x, y) = x2 + y2− 1 = 0. Denoting φ1 = φ,
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the above system is then

p(x, y, u, v, λ, xt, yt) =

{
xt = u, yt = v, ut = 2λx, vt = 2λy − g,

φ1(x, y) = x2 + y2 − 1 = 0.
(2)

Of course the constraint can be easily removed here by using polar coor-
dinates, but for multi-body systems there are often many constraints, and
their elimination by a choice of coordinates may not be practically or even
computationally possible.

In what follows, we present the pendulum example in a very informal
manner (e.g. as in [2]). A differential-geometric treatment of this example
is given in [23], an approach using Gröbner bases is given by [19], and one
using characteristic sets by [41].

Here (x, y) gives the position of the bead, u and v are the horizontal and
vertical velocities, and λ is the Lagrange multiplier. Initial conditions

x(t0) = x0, y(t0) = y0, u(t0) = u0, v(t0) = v0, λ(t0) = λ0 (3)

must satisfy the constraint φ1(x
0, y0) = (x0)2 + (y0)2 − 1 = 0 and this is the

most we can deduce from the system (2) regarding it as an algebraic (not
differential) system.

To determine all the missing constraints on the initial conditions the
equations requires the use of differentiations and eliminations. This type of
method will be the focus of this article.

The space for the constraints, the jet space J 0 of order 0, consists of points
(t, x, y, u, v, λ), satisfying the constraint equations, regarded as algebraic
(non-differential) equations. Graphs of solutions (t, x(t), y(t), u(t), v(t), λ(t))
consist of points satisfying these algebraic equations, but the points them-
selves are not solutions of the differential equation.

We will always suppress t in the coordinates of J 0. Further, the first order
jet space J1, consists of points (t, x, y, u, v, λ, xt, yt, ut, vt, λt). Again these
are not solutions of the differential equation, but rather points satisfying
the equations regarded as polynomial equations. Also we will suppress the
dependence on t since t does not occur explicitly.

2.1 Symbolic Differential-Elimination Procedure

Each step of the procedure consists of an Elimination-Differentiation Step.
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1. Project and Differentiate: The constraint is obvious in the Pendulum
example. However, in general the constraint may not be explicitly
isolated, even in the first step. Thus we discuss elimination (projection)
at this step for completeness.

Symbolic elimination (projection) here, means eliminating first order
derivatives, to find if there are any relations, amongst the 0 order vari-
ables (x, y, u, v, λ) in J0, with the obvious result that the only constraint
is x2 + y2 − 1 = 0.

Differentiating the constraint equation and cancelling the common fac-
tor 2 yields

xxt + yyt = 0. (4)

2. Project and Differentiate: Elimination by substituting xt and yt using
xt = u, yt = v from (2) yields the constraint

φ2 = xu+ yv = 0, (5)

which is new since it restricts the locus of solutions of φ1 in J0. We
interpret elimination as a geometric projection: π : J1 → J0 where

π : (x, y, u, v, λ, xt, yt, ut, vt, λt) 7→ (x, y, u, v, λ). (6)

Here we use symbolic elimination to compute this projection, later
in our numeric-symbolic method, we will not be able to use symbolic
elimination and will have to use the projection as it is defined above.

Differentiation of this constraint yields

xut + yvt + xtu+ ytv = 0. (7)

The algorithm continues since a new constraint was found.

3. Project and Differentiate: Projection by eliminating ut, vt, xt, yt, us-
ing ut = 2λx, vt = 2λy − g, xt = u, yt = v, from (2) yields the new
constraint

φ3 = 2λ(x2 + y2)− gy + u2 + v2 = 0. (8)

Differentiating this last constraint yields

2(x2 + y2)λt + 4(xxt + yyt)λ− gyt + 2uut + 2vvt = 0. (9)

Again the constraint is new.
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4. Project and Differentiate: The derivatives ut, vt, xt, yt can be elimi-
nated from (9) by using (2). However no previous expression is available
for λt. Hence it is impossible to eliminate λt to obtain a new zeroth
order constraint. Differentiation of the existing (unaltered) constraints
yields nothing new. Thus the process of differentiation and elimination
terminates since no new zeroth order constraints were found after 4
elimination-differentiation steps. Its output is the system of equations
from the first 3 elimination-differentiation steps: (2-9). The input sys-
tem (2) is said to have differential index 3 since a sequence of 4 = 3+1
elimination-differentiation steps was required before no new constraints
were obtained. The output system has differential index 0.

The process is summarized in Figure 1.

DAE

@
@
@R

π

φ1 = x2 + y2 − 1 = 0
position

¡
¡
¡µ
d
dt

xxt + yyt = 0

@
@
@R

π

φ2 = xu+ yv = 0
velocity

¡
¡
¡µ
d
dt

xtu+ xut

+ ytv + yvt = 0

@
@
@R

π

φ3 = 2λ − gy + u2 + v2 = 0
acceleration

¡
¡
¡µ
d
dt

2λt − · · ·

Figure 1: Projection (π) and Differentiation ( d
dt
) on the Pendulum Exam-

ple. Repeated elimination and differentiation reveal constraints on position,
velocity, and acceleration of the bead.

3 Numerical-Symbolic Completion for systems

of ODE

In this section we present pseudo code to describe our algorithm to find
missing constraints for polynomially nonlinear dae.

For simplicity we reduce higher dae to first order dae in the standard
way by introducing new dependent variables corresponding to derivatives.
Next by the familiar method of introducing a new dependent variable v such
that dv

dt
= 1, the explicit appearance of t in such systems can also be removed.

So without loss of generality we consider first order systems of polynomially
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nonlinear dae with complex coefficients in C[u,ut] where u = (u1, u2, ..., um)
are the dependent variables in the system.

Here J0 = Cm and J1 = C2m, suppressing the t dependence. It should be
noted that higher order dae with explicit time dependence can be dealt with
directly in the Jet space formalism [3, 27, 42] without recourse to the above
transformations. This has the advantage of representing the same geometric
object with fewer variables. For example, the pendulum example, can be
executed more efficiently in its original second order form. We note also that
once the computations have been completed over the complex numbers, then
on a case by case basis, one could determine what happens in the real case.
One difficulty is that equations can have complex solutions but no real ones,
for example: x2 + y2 + 1 = 0. In general this is the more difficult subject of
real algebraic geometry, applied to differential systems, and is not addressed
by this article. In this paper we work with complex floating point numbers
and for the examples discussed in this paper, standard machine precision
suffices.

Symbolic differentiation is define by the total derivative d
dt

= ∂
∂t
+
∑

j

∂uj

∂t
∂

∂uj
.

For a discussion of the subtleties of the relation between symbolic differenti-
ation and geometric differentiation see [22, 41].

The (jet) variety of a differential system f = 0 in C[u,ut] is the set:

V (f) = V (f1, f2, ..., fq) := {(u,ut) ∈ J1 = C2m : f1 = 0, ..., fq = 0}. (10)

Geometric projection (elimination) takes points (u,ut) in V (f) to points u
in J0:

π (V (f)) = {u ∈ J0 = Cm : f = 0}. (11)

Algorithm 3.1 [φ1, φ2, . . . , φI] = NumericSymbolicCompletion(f)

Input : f a polynomial system in C[u,ut].
Output : [φ1, φ2, . . . , φI] a list of contraints

A := RandomMatrix(m,m) [A is a random matrix in Cm×m]
F := Square(f, Au + b) [+random hyperplanes & slack variables]
I := 0
while φI 6= ∅ do

I := I + 1
(G, kI) := Decompose(F ) [generic points G & top dimension kI ]
φI := Project(F,G) [eliminate variables ut]
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F := Square([F, d
dt
φI ]) [+new constraints to system, diff. & square]

end while loop
return [φ1, φ2, . . . , φI ].

The algorithmNumericSymbolicCompletion uses several subroutines
from the numerical irreducible decomposition method.

Square(f,g): This algorithm was presented in [33] and returns a square
system having the same number of unknowns and equations.

Decompose(F): This algorithm uses incremental interpolation [33], or mon-
odromy as is proposed in [35] (see [6] for the application of the spe-
cial case of factoring multivariate polynomials with approximate coef-
ficients) to return (G, k) where G are the generic points classified by
component, and k is the largest dimension of any component. A general
method to determine the top dimension of the solution set of a poly-
nomial system is to start the sequence of homotopies defined in [32] at
dimension n − 1 (where n is the dimension of the ambient space) and
to remove linear slices until generic points are found. For the specific
systems arising in the treatment of dae, more efficient implementations
of Decompose are possible.

Project(F,G): applies random linear projections [33] and interpolation meth-
ods to return a system in the form of a irreducible numerical decompo-
sition. See [36] for how to apply structured sample grids in combination
with symmetric functions. Here φJ is a list of constraints for each J .

The algorithm above returns polynomially interpolated contraints, with
the caveat that there may be some points on the constraints that are singular
in that they do not satisfy all the conditions for the local existence and
uniqueness theorems of the Geometric Theory of Differential Systems [18, 27].
It is a standard result of geometric elimination theory that π(V (f)) is not
necessarily a variety, but expressible in terms of (set) differences of varieties
(see Section 3.2 of [8]). For autonomous dae these singular varieties result
from conditions on the tangent space of an irreducible component, i.e. on
TM(f) and in particular, that dim TM(V (f)) = dim π (TM(V (f))) [3, 22].
This condition can be checked at the generic points by standard numerical
linear algebra, and approximate rank calculations, using for example the
singular value decomposition. The task of approximating these singular sets
will be investigated in future work. For recent algebraic developments, see [3].
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4 Illustrative Examples of Numerical Differ-

ential Elimination

Symbolic elimination methods are usually not applicable to systems con-
taining floating point numbers. We describe through examples, how homo-
topy continuation methods can be used numerically implement the projection
(elimination) phase of the above differentiation-elimination methods.

Based on the success of homotopy methods to reach all isolated solution
of polynomial systems, Sommese and Wampler outlined in [40] an approach
to describe positive dimensional solution components of polynomial systems.
A central concept here is that of a generic point on a solution component.
We can think of a generic point as a random point on the component, away
from the singular points the component may have. In [32] a sequence of ho-
motopies was proposed to find generic points on all solution components. For
every component, we find exactly as many generic points as its degree. The
numerical irreducible decomposition of the solution set of a polynomial sys-
tem (as introduced in [33]) uses polynomials interpolating through projected
generic points to represent all irreducible solution components. See [34] for a
special class of projection operators. More efficient decomposition methods
use monodromy [35] and interpolate on a structured grid of samples [36].
The implementation [37] as extra module to PHCpack [43] is capable of han-
dling large systems such as the cyclic 8 and 9-roots problem, and several
applications from mechanical engineering [39].

4.1 A Visualizable Example

To illustrate our numerical procedure we consider the non-physical example

xt + y2 − 4 = 0, xt + 2x2 + 3y2 − 6 = 0. (12)

0. Square the System. The dimension of the constraints (in J 0) could be
at most 2, a possibility which can be checked probabilistically by in-
tersecting the variety of the system with a random line, or equivalently
the intersection of 2 random 2 planes. In terms of equations this could
be achieved by appending 2 random linear equations in the J 0 vari-
ables x, y to the system. It would then, however, have 4 equations in 3
unknowns. To make it square a slack variable z1 is also incorporated.
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In particular we consider the following system which results from the
squaring procedure given in Section 3.





xt + y2 − 4 + ν11z1 = 0
xt + 2x2 + 3y2 − 6 + ν21z1 = 0
a10 + a11x + a12y + γ11z1 = 0
a20 + a21x + a22y + γ21z1 = 0

(13)

where aij, ν11, ν21, γ11, γ21 are randomly generated complex constants.

1. Decompose, Project, Differentiate. Applying homotopy continuation
to the above system, we have 4 paths, that converge to 4 generic points.
However each of these is not a regular solution (i.e. they all have
z1 6= 0). Therefore the dimension of the constraint components is less
than 2. Figure 2, shows the varieties of xt + y2 − 4 = 0 (a parabolic
cylinder), xt+2x2+3y2−6 = 0 (an elliptic cone), and their intersection
(the saddle-shaped curve). It is evident from Figure 2 why a random
line, orthogonal to J0 does not intersect this curve.

An important point in what follows, is that appending a system of
linear equations only involving the J0 variables enables us to carry out
the projection onto J0. We keep following the standard decomposition
procedure given in the works of [33], by next checking for 1-dimensional
components in J0. This is achieved by removing one of the linear
equations2, and the slack variable, so we now have the square system:





xt + y2 − 4 = 0
xt + 2x2 + 3y2 − 6 = 0
a10 + a11x+ a12y = 0

(14)

Geometrically we determine the existence of 1-dimensional components
by taking a random plane and determining whether it intersects the
variety of the dae in J1. From Figure 2, we see the given plane does
intersect the variety of the dae in two generic points. For sake of
visualization, we have given a real plane (which apparently with high
probability might not intersect the given curve). In fact, here and
throughout the paper, the methods work over the complex numbers,
where such intersections are guaranteed to occur (the reader is invited

2This removal is performed by homotopy continuation, see [32] for the definition of a
sequence of homotopies to find generic points efficiently.
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to check by doing the elimination algebraically). Since there are two
generic points, when this curve is projected to J 0 (see the arrows in
Figure 2, showing the projection), the projected curve had degree two.

Translating the random plane, and again applying homotopy continua-
tion, generates more intersection points, which are used to interpolate
the equation of the projected variety in J0. As we are interpolating a
planar quadric, five samples suffice. Normalizing the leading coefficient
to one, we obtain an equation of the form

x2 + (1 + ε1)y
2 − (1 + ε2) = 0, (15)

the circle shown in the x, y plane in Figure 2. Here ε1 and ε2 are
complex numbers whose magnitude depends on the accuracy of the
generic points and the degree of the equation. The higher the degree
of the constraint, the more accurate the sample points need to be.

We differentiate the polynomial in (15) and solve





xt + y2 − 4 = 0
xt + 2x2 + 3y2 − 6 = 0
a10 + a11x + a12y = 0

2xxt + 2(1 + ε1)yyt = 0

(16)

Here we find 2 generic points as solutions of this system. Thus the
dimension of constraints in J0 has not decreased, no new constraints
are found, and the procedure terminates with output system (12), (15),
and the derivative of (15).

4.2 Numerical Procedure applied to the Pendulum

We now describe, through our illustrative example, the application of the
numerical projection elimination to the Pendulum, with system p(x, y, u, v,
λ, xt, yt) = 0 as defined in (2).

0. Square the System. The dimension of the constraints (in J 0) can be
at most five. We consider the following system (using 10 for g) which
results from the squaring procedure mentioned in Section 3.





p(x, y, u, v, λ, xt, yt) + αz1 = 0
ak0 + ak1x + ak2y + ak3u+ ak4v + ak5λ+ γkz1 = 0,

k = 1, 2, . . . , 5
(17)
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where α ∈ C5×1 and the coefficients aij and γi1 are randomly generated
complex constants. This gives us 10 equations in 10 unknowns.

1. Decompose, Project, Differentiate: The goal of this step is to find
the constraint on the position of the bead. To find generic points, we
solve the system (17) using homotopy continuation. The projection is
ensured by the random linear equations involving the J 0 variables. We
find no regular solutions (i.e.: no solutions with z1 = 0). So there are
no constraints with 5-dimensional components. Following the decom-
position procedure of [33] we remove one of the random planes, and
also the slack variable so that the system is still square:





p(x, y, u, v, λ, xt, yt) = 0
ak0 + ak1x + ak2y + ak3u+ ak4v + ak5λ = 0,

k = 1, 2, 3, 4
(18)

With four random hyperplanes we cut the four dimensional solution
set given by the original equations down to a set of dimension zero, i.e.
to a set of two generic points.

The purpose of the operation is to eliminate the variables xt, yt, ut, vt,
therefore, the hyperplanes do not involve these variables. For random
hyperplanes with nonzero coefficients for xt, yt, ut, vt, we find four in-
stead of two generic points.

The position constraint can be obtained by sampling more generic
points, varying the four hyperplanes in the system (18). The interpo-
lation through these generic points uses symmetric functions as in [36].
Normalizing the leading coefficient to one, we obtain an equation of the
form

φ̃1 = x2 + (1 + ε1)y
2 − (1 + ε2) = 0, (19)

where ε1 and ε2 are complex numbers whose magnitude depends on the
accuracy of the generic points and the degree of the equation. Other
monomials in φ̃1, involving u and v, with coefficients of a magnitude
smaller than or equal to the working precision are deleted. In general,
the higher the degree of the constraint, the more accurate the sample
points need to be.

Differentiating we obtain:

d

dt
φ̃1 = 2xxt + 2(1 + ε1)yyt = 0. (20)
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2. Decompose, Project, Differentiate: In this step we will find the con-
straint on the velocity of the bead. First we have to include d

dt
φ̃1 in the

system, which then has 10 equations for 9 variables. So we introduce
1 (= 10− 9) slack variable z1 obtaining the square system:





p(x, y, u, v, λ, xt, yt) + αz1 = 0
d
dt
φ̃1 + ν61z1 = 0

ak0 + ak1x + ak2y + ak3u+ ak4v + ak5λ+ γkz1 = 0,
k = 1, 2, 3, 4

(21)

We solve the system (21) using homotopy continuation and find no
regular solutions (i.e.: no solutions with z1 = 0). So there are no
constraints with 4-dimensional components. We remove one of the
random planes, and also the slack variable so that the system is still
square:




p(x, y, u, v, λ, xt, yt) = 0
d
dt
φ̃1 = 0

ak0 + ak1x + ak2y + ak3u+ ak4v + ak5λ = 0, k = 1, 2, 3

(22)

where the coefficients aij are again chosen at random. Here we find
four generic points as solutions of this system. As these four generic
points are cut out by three random hyperplanes, adding the derivative
to the original system has dropped the dimension by one. Note that
we did not include φ̃1 = 0 in the system because the inclusion of this
equation does not alter the variety of the system in J 1.

Four is the degree of the intersection of two quadratic hypersurfaces
given by the exact equations

φ1 = x2 + y2 − 1 = 0 and φ2 = xu+ yv = 0. (23)

We have found already an interpolated equation φ̃1, approximating φ1.
Since deg(φ̃1) = 2, we know that deg(φ̃2) = 2, because their intersection
has degree four. Via interpolation, we find a constraint on the velocity
as a linear combination of the two exact equations:

φ̃2 = αφ1 + βφ2, (24)

where α and β are some constants.

We differentiate (24) to obtain d
dt
φ̃2.
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3. Decompose, Project, Differentiate: In this step we use φ̃2 to gener-
ate a constraint on the acceleration of the bead. We include d

dt
φ̃2 and

introduce slack variable z1 to obtain the square system:





p(x, y, u, v, λ, xt, yt) + αz1 = 0
d
dt
φ̃1 + ν1z1 = 0, d

dt
φ̃2 + ν2z1 = 0

ak0 + ak1x + ak2y + ak3u+ ak4v + ak5λ+ γkz1 = 0, k = 1, 2, 3
(25)

Using homotopy continuation we find no solutions with z1 = 0 so there
are no constraints with 3-dimensional components. We remove one of
the random planes, and also the slack variable so that the system is
still square:






p(x, y, u, v, λ, xt, yt) = 0
d
dt
φ̃1 = 0, d

dt
φ̃2 = 0

ak0 + ak1x+ ak2y + ak3u+ ak4v + ak5λ = 0, k = 1, 2

(26)

We find six generic points that lie on a two dimensional solution com-
ponent. Six is the degree of the intersection of the three constraints,
respectively on position, velocity, and acceleration of the bead. By
interpolation in samples obtained by moving the last two hyperplanes
we find a linear combination of the three quadrics; denote this third
constraint by φ̃3.

We compute d
dt
φ̃3.

4. Decompose, Project, Differentiate: The process terminates when no
new constraints are found. The inclusion of d

dt
φ̃3 introduces 1 equation

and one new jet variable λt, so slack variables are not required:






p(x, y, u, v, λ, xt, yt) = 0
d
dt
φ̃1 = 0, d

dt
φ̃2 = 0, d

dt
φ̃3 = 0

ak0 + ak1x+ ak2y + ak3u+ ak4v + ak5λ = 0, k = 1, 2

(27)

We find again six generic points on a two dimensional solution com-
ponent, thus d

dt
φ̃3 = 0 does not cut the dimension by one as previous

derivatives did.

Thus the method terminates. Also in J1 we see that the number of
generic points drops so that the differential index is three.
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5 Numerical Aspects

The calculations for this paper were carried out with PHCpack [43], recently
extended with routines for the numerical irreducible decomposition [37].
PHCpack contains symbolic differentiation methods for polynomials for the
differentiations needed in this paper.

PHCpack uses polynomials interpolating through projected [34] generic
points to represent irreducible solution components [33]. The computation
of these interpolation polynomials is one of the most expensive parts of the
method, and can be the least well conditioned. In contrast to the stable
computation of generic points the weakest link in our method, concerns the
stability of differentiating the interpolating polynomials. For a discussion of
such difficulties, see [13, Chapter 5].

We now discuss some recent progress on these issues.
In [36] it was shown that the decomposition could be certified by only re-

quiring generic points and without interpolation polynomials. In particular
the decomposition is certified by using the decomposition based on mon-
odromy with linear traces, and the need to construct filter polynomials to
reject generic points lying on higher dimensional components is avoided. In
non-trivial examples with multiplicity free components this new method [36]
was able to be executed in standard precision arithmetic where previously
multi-precision arithmetic was required.

The above results imply that the existence or non-existence of a new con-
straint can be certified at each differentiation step without the construction of
interpolation polynomials. In the current paper, if there is a new constraint,
to progress to the next differentiation step we still require the computation
of the interpolation polynomials for the constraints (although see Section 6.4
for an interpolation-free completion algorithm).

In [36] progress was made on the efficient and accurate construction of
interpolation polynomials on a structured grid of samples, using divided dif-
ferences, and applying symmetric functions. Using a bootstrapping technique,
the Newton form of the interpolating polynomial can be constructed. The
exploitation of the Newton identities enables the number of samples to be
reduced to its theoretical minimum (the number of monomials). However as
numerical experiments show in [36] it is advisable, for high degree compo-
nents, to use extra samples for better conditioning of the interpolants.

Finally we mention that the difficulties of higher multiplicity components
are not discussed in this paper, see [38] for recent progress.
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6 Indices, complexity and systems of PDE

The differential index gives a measure of complexity due to differentiation
in the geometric completion of systems of dae. We discuss the possibility
of using straight line encodings of the input systems of polynomials in im-
proving the complexity of completion methods. Finally we discuss a version
of a completion algorithm for systems of partial differential equations. This
version uses straight line encodings of the input differential equations and
does not use interpolation polynomials.

6.1 Indices

The differential index we use is geometric [22], and and is closely related
to that introduced by Reich [24] and Rabier and Rheinboldt [23]. For sys-
tems with several components, it can take different values, depending on the
component.

There has been considerable discussion about different definitions of in-
dices, some non-geometric, some geometric and some involving perturbations
of the solutions of such systems [5, 10, 15, 29].

The geometric definition of the index we use is bounded by the number
m of dependent variables [22, 41]. It is important that geometric differenti-
ations are used in the completion procedure. Symbolic differentiations, with
Gröbner bases being used for the constraints (or even for membership test-
ing for new constraints) can lead to incorrect and arbitrarily high values for
the index (e.g. see [22, equations (41)-(43)]). Since we use lowest degree
polynomials for interpolating the constraints, this ensures that our symbolic
differentiations of the interpolated constraints are geometric differentiations.

6.2 Complexity

When Gröbner bases or similar exact methods are used to test for new
constraints at each differentiation step, there is generally underlying non-
polynomial complexity in the symbolic differential elimination methods.

We now outline some possibilities for improving the efficiency and under-
lying complexity of our method. Newton’s method has quadratic order of
convergence, once it is in the basin of attraction of a root. Moreover, Shub
and Smale [31] demonstrated that the problem of whether a generic system
has a root, can be answered in polynomial time (under certain circumstances,
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which include the absence of multiplicities). For the homotopy methods used
in the numerical irreducible decomposition, the number of roots (the geomet-
ric degree), is bounded above by the Bézout bound, or more sharply by the
mixed volume bound. The geometric degree is thus an important parameter
in the complexity of such methods.

The lengths of the polynomials themselves are also crucial parameters
in the complexity of such methods. Representing polynomials as evaluation
maps (straight line programs) can, if suitable programs are constructed, use
much less space than using the monomial (dense) representation. A classical
illustration is to symbolically represent a determinant as a sum of mono-
mials versus more cheaply evaluating it numerically at a point. This line
of research has been followed by Giusti, Heintz [9], their collaborators [11]
and recently Lecerf [14]. They have obtained a probabilistic algorithm (the
geometric resolution) which if the input system is successfully encoded as
straight line programs, can solve systems with complexity that is a polyno-
mial function of the geometric degree, and several quantities including the
length of the straight line programs. Worst case non-polynomial complexity
is still obtained for some systems.

The encoding of input polynomials being used in the papers of Sommese,
Verschelde and Wampler currently represents polynomials in their (dense)
monomial representation due to the interpolation phase. However as was
mentioned in the previous section, the numerical irreducible decomposition
can be described using generic points, without the construction of interpola-
tion polynomials [36]. Thus the irreducible numerical decomposition method
can take as input polynomial systems encoded as straight line programs.
Moreover Newton methods, at the core of this method, can use methods
such as automatic differentiation [7] to differentiate the programs, and im-
plement the homotopy methods. Junk points can be rejected by a homotopy
(and thus can again use a straight line encoding). These observations, form
the basis of obtaining improved complexity estimates, analogous to those
obtained in the works of Giusti, Heintz, and their collaborators.

6.3 Geometric completion of partial differential sys-

tems

First we note that Jet methods, were originally formulated for, and are in
theory just equally applicable to systems of partial differential equations.
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Consider a qth order system with: n independent variables x = (x1, x2, ..., xn),
m dependent variables u = (u1, u2, ..., um), first order derivatives u

1
, sec-

ond order derivatives u
2
, etc. The formal total derivative is: Dxj

= ∂
∂xj

+
∑

l u
l
xj

∂
∂ul + ... Thus we consider systems of total derivative order q, of form

R1 = 0, ..., Rs = 0, or more concisely R = 0, where Rk : Jq → C, Jq = CNq .

Here Nq = n+m

(
q + n

q

)
, is the number of jet variables of order less than

or equal to q. The jet variety of the system is:

V (R) := {(x, u, u
1
, ..., u

q
) ∈ Jq : Rk(x, u, u

1
, ..., u

q
) = 0}. (28)

If all of the equations in the system have derivative order exactly q then a
single symbolic prolongation of the system is taken to be:

D(R) := {(x, u, u
1
, ..., u

q
) ∈ Jq : Rk = 0, Dxi

Rk = 0}. (29)

If there are equations with derivative order less than q then derivatives of
these equations are appended to the system, and this process continued until
no undifferentiated equations of lower order remain.

A single geometric projection is defined as:

π
q
q−1

(V (R)) := {(x, u, u
1
, ..., u

q−1
) ∈ Jq−1 : Rk(x, u, u

1
, ..., u

q−1
, u

q
) = 0}. (30)

We note that just as in the ode case projection can be implemented by
intersecting the jet variety of the system in J q with random affine linear
spaces in the jet variables of J q−1.

Algorithm 3.1 is then easily adapted to partial differential systems. How-
ever in general it does not find all constraints, and the new phenomenon which
must be taken into account of integrability conditions. The full method to
complete systems of partial differential equations is the Cartan-Kuranishni
algorithm [22, 27]. This method prolongs the system to order q + 1, then
projects to order q to test for the existence of new constraints. This is con-
tinued until no new constraints are found. If the symbol of the resulting qth
order system is involutive, then the method has terminated and the system
is involutive. If the symbol is not involutive, the system is prolonged until
its symbol becomes involutive. The system is again tested for the existence
of constraints by prolongation and projection. See [22, 27] for definitions of
symbol and the properties of involutivity of the system and its symbol.
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The only new ingredient in the pde case is to check the involutivity of
the symbol, numerically. A probabilistic method to do this using Numerical
Linear Algebra, and in particular the singular value decomposition, is given
in [45, Section 6]. Numerical difficulties can occur, if there are multiplicities,
and that case is under investigation.

6.4 Interpolation free completion algorithms

Although straight line encodings can be used in many parts of the geometric
completion procedure described earlier in this article it can not be directly
used in the interpolation phase.

A method that only uses prolongations (but not homotopy continuation
for the termination tests) is presented in [45, Section 6]. We describe an
interpolation free version of that method that uses homotopy continuation
to check the termination criteria.

The usual termination tests which are based on the highest derivatives
of a system do not always apply (see [45, Section 6, Example 4] for a case
where they fail). As shown in [45] a projected version of those tests should
be used to see when a projected system becomes involutive.

Checking dimensions, and existence of components in these projected
systems, can be done without interpolation polynomials, as explained in the
previous subsection. Checking for involutivity of the projected symbol, can
be carried out when there are only multiplicity free components by using
Numerical Linear Algebra, again without using interpolation polynomials.

The difficulty of applying this method to the case where components have
multiplicity greater than 1 is that the symbolic derivative of an equation, may
not be equivalent to a geometric derivative of an equation. This phenomenon
is discussed in detail in [21, 22]. Simply speaking, for the symbolic algorithm
to be a faithful representation of the underlying geometric algorithm, the
ideals generated by the intermediate systems should be radical. This is a
generalization of the algebra - geometry correspondence to differential sys-
tems. This difficulty does not occur for linear systems of partial differential
equations. While it avoids the use of interpolation polynomials this method
does have the disadvantage the number of jet variables is generally much
larger than that in the method using interpolation.
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7 Concluding Remarks

Systems of differential-algebraic equations are becoming increasingly impor-
tant in applications, such as the control of constrained mechanisms. With
constraints expressed by polynomials, these applications result in polynomi-
ally nonlinear differential systems with approximate coefficients.

Our paper presents the first of a new generation of methods to address
the problem of developing an approximate differential-elimination geometric
completion process to identify and include the missing constraints in such sys-
tems. The foundations of the new method consist of the geometrical theory of
differential equations and the homotopy continuation methods of Sommese,
Verschelde and Wampler for positive dimensional polynomial systems.

The missing constraints are computed via interpolation through generic
points obtained by intersecting the jet submanifolds of the differential-algebraic
system with sufficiently many random hyperplanes. Differentiation of the
constraints is then performed by differentiating the interpolating polynomi-
als. The calculations in this paper with the aid of PHCpack offer a first
feasibility study, on a simple visualizable example and the classic index 3
pendulum. We get results equivalent to those obtained by the exact sym-
bolic methods, but their representation differs (e.g. we obtain approximate
linear combinations of the symbolically calculated constraints).

The new homotopy methods can handle systems with approximate co-
efficients to which symbolic algorithms cannot be applied. Moreover, the
numerical irreducible decomposition of the solution set of a polynomial sys-
tem is conceptually simpler than the primary decomposition of the ideal
generated by the polynomials in the system. The symbolic algorithms to
produce primary decompositions are notoriously complicated and difficult to
implement (implementations do not exist in Mathematica and Maple). For
partial differential systems, Hubert [12] has created factorization-free decom-
position algorithms and Arponen has designed algorithms for analogues of
primary decomposition for ordinary differential systems [3].

Any differential system becomes linear in its highest derivatives after
differentiation. Thus in the development of efficient algorithms, as in the
symbolic case, we anticipate the development of methods that use Numer-
ical Linear Algebra for the highest derivatives[45], and the more expensive
homotopy methods for the nonlinear lower order subsystems.

Just as numerical algebraic geometry is still in its infancy, numerical jet
geometry is newly born. We believe that an exciting future lies ahead for
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numerical jet geometry.
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Figure 2: The varieties of xt + y2 − 4 = 0 (a parabolic cylinder), xt + 2x2 +
3y2−6 = 0 (an elliptic cone), and their intersection (the saddle-shaped curve)
together with its projection onto the x-y plane. Also shown is a random plane
intersecting the saddle curve at two generic points.


