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Abstract. Homotopy continuation methods to compute numerical ap-
proximations to all isolated solutions of a polynomial system are known
as “embarrassingly parallel”, i.e.: because of their low communication
overhead, these methods scale very well for a large number of proces-
sors. Because so many important problems remain unsolved mainly due
to their intrinsic computational complexity, it would be embarrassing
not to develop parallel implementations of polynomial homotopy con-
tinuation methods. This paper concerns the development of “parallel
PHCpack”, a project which started a couple of years ago in collaboration
with Yusong Wang, and which currently continues with Anton Leykin
(parallel irreducible decomposition) and Yan Zhuang (parallel polyhe-
dral homotopies). We report on our efforts to make PHCpack ready to
solve large polynomial systems which arise in applications.
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1 Motivation: we want to solve large systems

To solve a polynomial system f(x) = 0, a homotopy h(x, t) = 0 connects f to a
start system g(x) = 0 (g stands for generic, i.e.: all start solutions are regular),
for example of the following form

h(x, t) = γ(1− t)g(x) + tf(x) = 0, γ ∈ C, (1)
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where the random complex constant γ ensures with probability one that all
solution of h(x, t) = 0 are regular for all t ∈ [0, 1). Thanks to this regularity,
predictor-correctormethods can track all solution paths defined by h(x(t), t) = 0,
as t moves from 0 to 1, starting at t = 0 at the solution of g(x) = 0 and ending
at t = 1, at approximate isolated solutions of f(x) = 0.

We say that the system f is large if the homotopy we use to solve it requires
more than 100,000 solutions to track. Although large does not always automati-
cally imply “difficult”, numerical problems are more likely to occur. This paper
is concerned with three issues:

– For efficiency, it is undesirable to keep all solutions in main memory.
– Numerical stabilities may occur as dimensions and degrees grow.
– Quality control on the computed solutions must be done fast.

Recent work produced two different software systems: PHoMpara [7] (a paral-
lel version of PHoM [8]) and POLSYS GLP [30] (based upon HOMPACK [39]).
The first software system uses polyhedral homotopies, while the second one
applies linear-product start systems to solve polynomial systems. Independent
of the performance of these programs relative to PHCpack, it matters that
PHCpack [33] offers both types of homotopies.

The parallel implementation of the path trackers in PHCpack started in a
joint work with Yusong Wang [36] and yielded a parallel version of the Pieri
homotopies [10] (refined in [12], see also [18]). Parallel path tracking is discussed
in [1], [4], [5], [9], [20], and [21]. Our computational experiments showed that
distributing all path tracking jobs at the start performs well when all paths
require the same amount of work. Otherwise, dynamic load balancing is needed
to achieve an optimal performance.

The parallel PHCpack project is currently continued in collaboration with
Anton Leykin [16] (see also [14]) and Yan Zhuang [37]. The work in [14] reports
on the parallel implementation of methods to decompose a positive dimensional
solution set, using monodromy [24] and traces [25], as needed in a numerical
irreducible decomposition [23]. The techniques presented in this paper provide
efficient homotopies to create witness sets of these positive dimensional solution
sets, see [26] and [27] for introductions to numerical algebraic geometry. The
development of parallel polyhedral homotopies (described in [37]) will increase
the capabilities of PHCpack to deal with solution sets of larger degrees.

The parallel software was developed using personal cluster computers from
RocketCalc and ported to similar Beowulf clusters like UIC’s supercomputer
argo. Most recently, the parallel path tracking facilities of PHCpack were in-
stalled on NCSA’s IBM pSeries 690 system running AIX 5.3. The use of MPI
and a description of other interfaces to PHCpack can be found in [15].

In this paper we resolve the three issues raised above. To avoid the storage
of all start solutions in the main memory, we propose to jumpstart homotopies,
either by computing the roots whenever and wherever they are needed, or by
reading the start solutions from file. For the sparsest class of polynomial systems,
we discovered a numerically stable solver which computes the magnitudes of the
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roots separately, avoiding numerical overflow or underflow. Thirdly, for efficient
quality control of the results, the programs are allowed only one linear sweep
through the file which contain the solutions.

As noted before, what we call “large” does not automatically imply “diffi-
cult”. The homotopies we consider in this paper are optimal (a notion introduced
in [10]): no solution path diverges to infinity, so the overall cost of the solver is
polynomial in the output size.

Acknowledgements. A first draft of this paper corresponds to a talk given by
the second author at the AMS special session on Numerical Solution of Polyno-
mial Systems held at the University of Notre Dame, 8-9 April 2006. We thank
the organizers of this session, Chris Peterson and Andrew Sommese, for the op-
portunity to present this work. We thank the referee for valuable comments on
the first draft.

2 Jumpstarting Homotopies

Homotopy continuation methods compute one solution at a time. Keeping all
start solutions in main memory may decrease the overall performance, or even be
impossible. Assuming a manager/worker protocol, our solution is the following:

1. The manager reads a start solution from file “just in time”
whenever a worker needs another path tracking job.

2. For total degree and linear-product start systems,
it is simple to compute the solutions whenever needed.

3. As soon as a worker reports the end of a solution path
back to the manager, the solution is written to a file.

Solutions to total degree start systems can be computed very fast, faster
than they can be retrieved from file. A lexicographical indexing scheme allows
the manager to dictate only which node has to track which path. As all nodes
know how to solve total degree start systems, they only need a number, reducing
the communication overhead.

For example, a typical total degree start system may look like

g(x1, x2, x3) =















x4
1 − 1 = 0

x5
2 − 1 = 0

x3
3 − 1 = 0.

(2)

It has 4× 5× 3 = 60 solutions.

We can get the 25th solution via a decomposition of 24 (start counting
from 0): 24 = 1(5×3)+3(3)+0. Let us verify this via lexicographic enumeration:

000→001→002→010→011→012→020→021→022→030→031→032→040→041→042

100→101→102→110→111→112→120→121→122→ 130 →131→132→140→141→142

200→201→202→210→211→212→220→221→222→230→231→232→240→241→242

300→301→302→310→311→312→320→321→322→330→331→332→340→341→342

(3)
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Although examples for which the total degree homotopy is optimal are fairly
rare, one interesting application appears in magnetism, posed by Shigetoshi Kat-
sura [13], see also [3]. This applications leads to a family of systems, which scales
for up to any number of equations and variables. All equations in the systems are
of degree two, except for one linear equation. The largest polynomial system in
this family we considered has 21 equations and a total degree of 220 = 1, 048, 576.
Recently, the mpi2track function in PHCpack tracked all 1,048,576 paths using
a personal cluster of fourteen CPUs all running at a clockspeed of 2.4Ghz, in a
traditional manager/worker dynamic load distribution model. It took 32 hours
and 44 minutes to complete the tracking, leading to an output file of 1.3Gb.

While homotopies based on the total degree are rarely efficient, the simple
principle of lexicographic enumeration of the start solutions applies to linear-
product start systems. These start systems first occurred in [38], using multi-
homogeneous homotopies [19] and were generalized in [34]. Compared to the
total degree, homotopies using linear-product start systems typically follow far
fewer solution paths than the total degree.

All equations in a linear-product start system are products of linear equa-
tions, of the form of the system in (4). Every · · · in (4) corresponds to a linear
polynomial with randomly chosen coefficients.

g(x) =







(· · ·) · (· · ·) · (· · ·) · (· · ·) = 0
(· · ·) · (· · ·) · (· · ·) · (· · ·) · (· · ·) = 0

(· · ·) · (· · ·) · (· · ·) = 0
(4)

The random choice of the coefficients of the linear factors of the products in
the linear-product start systems implies that the maximal number of isolated
solutions is attained. Moreover, if every monomial in the target system f(x) = 0

also occurs in the corresponding equation of the start system g(x) = 0, then
all isolated solutions of f(x) = 0 lie at the end of some solution path defined
by a homotopy using a linear-product start system g(x) = 0, see [34]. Efficient
implementations of this type of homotopies are described in [40] and [30].

Just like (2), the solution of the start system in (4) can be enumerated lexi-
cographically. As the linear-product start system is stored on file in its product
form, one does not need storing the start solutions on file. Moreover, any node in
a parallel computer can solve for one particular solution. While the main moti-
vation is to avoid to store the complete list of start solutions in main memory, an
additional advantage is a reduced communication overhead: instead of passing
the start solution vector from manager to path tracking worker, the manager
simply has to pass out the label (or group of labels) to the nodes.

While there are as many candidates as the total degree, the number of start
solutions (and the corresponding generalized Bézout number) is typically much
less than the total degree. For efficiency – as the sequential root counting proce-
dures in PHCpack already do – an incremental LU factorization of the coefficient
matrices for each linear system leading to a start solution is an effective tech-
nique to prune the tree of all possible combinations of factors in the products
of g.
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3 A Numerically Stable Solver for “Simplex” Systems

Homotopies implementing Bernshtěın’s theorem [2] are described in [35]. What
we now call polyhedral homotopies follows from the more general treatment
in [11]. In [17] these methods are explained in greater detail. Bernshtěın showed
in [2] that the mixed volume of the Newton polytopes of the polynomial system
bound the number of solutions (with all variables different from zero). For sys-
tems with randomly chosen coefficients, this bound is sharp. The first stage of a
polyhedral homotopy method consists in the calculation of this mixed volume,
see [8] and [6] for efficient programs to perform this task.

Polyhedral homotopies require in their second stage the solution of a polyno-
mial system with random coefficients. Choosing all complex coefficients on the
unit circle in the complex plane naturally leads to a well-conditioned polyno-
mial system. Despite this good choice of the coefficients, previous versions of our
software failed for some large examples used for testing the parallel polyhedral
homotopies [37].

Consider for example the 12-dimensional polynomial system below in (5). It
occurs as just one of the one of the 11,417 start systems generated by polyhedral
homotopies to create a random coefficient start system occuring in the design of
a robot (see [28], [29], [31], [32]):























































b1x5x8 + b2x6x9 = 0

b3x
2
2 + b4 = 0

b5x1x4 + b6x2x5 = 0

c
(k)
1 x1x4x7x12 + c

(k)
2 x1x6x

2
10 + c

(k)
3 x2x4x8x10 + c

(k)
4 x2x4x

2
11

+ c
(k)
5 x2x6x8x11 + c

(k)
6 x3x4x9x10 + c

(k)
7 x2

4x
2
12 + c

(k)
8 x3x6

+ c
(k)
9 x2

4 + c
(k)
10 x9 = 0, k = 1, 2, . . . , 9.

(5)

The coefficients bi, i = 1, 2, . . . , 6, and c
(k)
j , j = 1, 2, . . . , 9, k = 1, 2, . . . , 9 are

randomly chosen complex numbers, chosen so that |bi| = 1 and |c(k)
j | = 1.

Because of this good choice of coefficients, all solutions are well conditioned.
Despite the high degrees, there are only one hundred isolated solutions in (C∗)12,
C∗ = C \ {0}, because of the sparsity of the system: only 13 distinct monomials
(after appropriate division).

We call such system a simplex system1 and we can solve it fast, reducing
it to binomial system using LU factorization on the coefficient matrix of the
system. Every equation in a binomial system has exactly two monomials with
nonzero coefficients. In compact form, we denote a binomial system by xA = b

and solve if via the Hermite normal form of A, computing a unimodular matrix
M (det(M) = ±1), so that MA = U , with U is an upper triangular matrix and

1 because its support corresponds to a simplex. We thank the referee for suggesting
this catchy term.
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| det(U)| = | det(A)|. Let x = zM , then xA = zMA = zU , so we have reduced
xA = b to zU = b.

For example, for two variables we write

[z1 z2]

��
u11 u12

0 u22

��
= [b1 b2] for the system

{

zu11

1 = b1

zu12

1 zu22

2 = b2
. (6)

Forward substitution on the triangular system shows that there are exactly
| det(A)| distinct isolated solutions, and |bk| = 1 implies |zk| = 1, for every
solution component, k = 1, 2, . . . , n. So our binomial systems are numerically
very well conditioned.

A simplex system is denoted by CxA = b, where C is some coefficient matrix.
The natural approach to reduce this simplex system to a binomial system is via
a LU-factorization on C. Assuming det(C) 6= 0, we compute a lower and an
upper triangular matrix L and U so that C = LU and solve two systems:

(1) LUy = b, a linear system;
(2) xA = y, a binomial system.

(7)

However, this algorithm is numerically unstable! Even if all coefficients for C

and b are chosen to lie on the complex unit circle, varying magnitudes in the
intermediate values for y do occur. High powers, in the range of 50 and over
occur in the Hermite normal form for larger systems and magnify the imbalance
between the magnitudes in y up to the point where numerical underflow or
overflow crashes the solver.

Our new solver separates the magnitudes of the solutions from their phases.
Using the following notations z = |z|ez, ez = exp(iθz), y = |y|ey, ey = exp(iθy),
i =
√
−1, we rewrite the binomial system and solve

zU = y : |z|UeU
z
= |y|ey ⇔

{

eU
z
= ey

|z|U = |y| (8)

The first binomial system eU
z = ey is well conditioned because all components

of the right hand side vector have modulus one. To find the magnitudes |z| we
solve |z|U = |y|, using a logarithmic scale, i.e.: U log(|z|) = log(|y|). Even as the
magnitude of the values y may be extreme, log(|y|) will be modest in size.

Our new numerically stable solver to solve a simplex system CxA = b exe-
cutes the following steps:

1. The LU factorization of C yields xA = y, where Cy = b.
2. Use the Hermite normal form of A, MA = U , det(M) = ±1,

to solve the binomial system eU
z
= ey, z = |z|ez, y = |y|ey.

3. Solve the upper triangular linear system U log(|z|) = log(|y|).
4. Compute the magnitude of x = zM via log(|x|) = M log(|z|).
5. As |ez| = 1, let ex = eM

z
.
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Even as z may be extreme, causing floating point overflow or underflow, we
deal with |z| at a logarithmic scale and never raise small or large numbers to
high powers. Only at the very end do we calculate |x| = 10log(|x|) and x = |x|ex.

For more on the parallel implementation of polyhedral homotopy methods
in PHCpack, we refer to [37].

4 Scanning Solution Files into Frequency Tables

During runtime, we often want to monitor the progress of a large path tracking
job, and get an impression about the “quality” of the solutions which have
been already computed, but again, we do not want store all solutions in main
memory. For each solution at the end of path, Newton’s method reports three
floating point numbers:

1. the magnitude of the last update to the solution vector;

2. an estimate for the inverse condition number of the Jacobian matrix
at the solution;

3. the magnitude of the residual.

These three numbers determine the quality of a solution.

To determine the overall quality of the list of solutions, The program builds
frequency tables, e.g.: counting #solutions with condition number between 10k−1

and 10k, for some range of k. These frequency tables used to judge the quality
of solution lists are a first step to employ so-called endgames, eventually with
some reruns of the paths at tighter tolerances.

Recall the application posed by Shigetoshi Katsura [13] we mentioned in Sec-
tion 2, which led to a homotopy of 220 paths, leaving a file of 1.3Gb to process.
Reading all solutions from file into main memory takes about 4 minutes and
occupies more than 400Mb. While most modern workstations are well equipped
with a large internal memory, to determine whether all solutions are distinct (no
path crossing has happened) we do not need to occupy that much memory. The
data compression of 400Mb into about 42Mb is by randomly projecting the solu-
tion vectors (of length 21) to the plane. The creation of a quadtree [22] (using as
many levels till each leaf holds no more than 1,024 points) takes about 7 seconds
and occupies about 58Mb. Sorting the leaves of the quadtree to determine path
crossings takes less than a second.

Notice that the time to read all solutions from disk (4 minutes) dominates
the time to create the quadtree (7 seconds).

As the quality analysis of solution lists can already be done while the lists are
still incomplete, remedial action or more computationally demanding endgames
(we refer to [27, Chapter 10] for an overview) will lead to extra jobs to be
distributed among the worker nodes.
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5 Towards High Performance Continuation ...

The polynomial systems we typically consider have a number n of variables which
is relatively modest, averaging around 8 or 10. The nonlinearity results in a large
number of solution paths, which we denote by R for the root count used in the
homotopy. In this paper we considered R in the range of 100,000 and higher.
Because R À n, several issues must be addressed to improve the performance
of parallel homotopies. In particular, we avoid storing all start solutions in main
memory by jumpstarting the homotopies. We discovered a numerical instability
in the polyhedral homotopies which was not treated before and emphasized the
need for fast quality control of large solution lists.

The “parallel PHCpack” effort has led to good speedups of running times
on existing benchmark systems, essentially leaving the basic path tracking fa-
cilities and homotopy constructors intact, calling the routines in PHCpack in
conjunction with message passing primitives. To solve large polynomial systems,
an internal reorganization of PHCpack is needed, in an effort to turn Polynomial
Homotopy Continuation into High Performance Continuation.
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