
Factoring Solution Sets of Polynomial Systems in Parallel

Anton Leykin∗ Jan Verschelde†

Abstract

We report on a £rst parallel implementation of a re-
cent algorithm to factor positive dimensional solution
sets of polynomial systems. As the algorithm uses ho-
motopy continuation, we observe a good speedup of
the path tracking jobs. However, for solution sets of
high degree, the overhead of managing different homo-
topies and large lists of solutions exposes the limits of
the master/servant parallel programming paradigm for
this type of problem. A probabilistic complexity study
suggests modi£cations to the method which will also
improve the serial version of the original algorithm.

2000 Mathematics Subject Classi£cation. Primary
65H10. Secondary 14Q99, 68W30.

Key words and phrases. Linear trace, monodromy,
numerical algebraic geometry, numerical homotopy al-
gorithms, numerical irreducible decomposition, paral-
lel computation, path following, polynomial systems.

1 Introduction

Systems of polynomial equations occur frequently
in various £elds of science and engineering [22], such
as the assembly of a mechanical device. In addition to
isolated solutions, a system may have positive dimen-
sional solution sets, for example, when the correspond-
ing mechanism permits motion. Once the dimension
and the degree of a solution set are known, the next

∗Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, 851 South Morgan (M/C 249),
Chicago, IL 60607-7045, USA. Email: leykin@math.uic.edu. URL:
http://www.math.uic.edu/˜leykin.

†Department of Mathematics, Statistics, and Computer
Science, University of Illinois at Chicago, 851 South Mor-
gan (M/C 249), Chicago, IL 60607-7045, USA. Email:
jan@math.uic.edu or jan.verschelde@na-net.ornl.gov. URL:
http://www.math.uic.edu/˜jan. This material is based upon work
supported by the National Science Foundation under Grant No.
0134611 and Grant No. 0410036.

important question concerns its irreducible decompo-
sition. Does the solution set factor? Or is there only
one irreducible factor? The number of irreducible fac-
tors is related to the number of possible ways one can
assemble the pieces of the mechanical device.

One recent algorithm [17, 18] to decompose a pure
dimensional solution set into irreducible components
uses homotopy continuation methods [14]. See [1, 3, 9]
for granularity issues of path following. The prelimi-
nary implementation of our factorization algorithm has
factored solution sets of degrees up to one thousand.
As path following methods are “embarrassingly par-
allel” (i.e.: the processors no longer have to commu-
nicate after the distribution of the solution paths), it
would be embarrassing not to have a parallel imple-
mentation. However, many modern homotopies occur
in sequences: some paths start at the end of other paths,
e.g: Pieri homotopies, parallelized in [24]. The jobs
we distribute are still path tracking jobs, but the homo-
topies change, and the jobs must follow a certain order
of execution, thus no longer embarrassingly parallel.

The main contribution of this paper is the parallel
implementation of a factorization algorithm, as an ex-
tension to PHCpack [23], a publicly available software
package to solve polynomial systems. In addition to
this parallel implementation, a probabilistic complex-
ity study provides ideas to improve the ef£ciency of
the algorithm, even on one single processor machine.
Our computational experiments show that, while the
path tracking jobs give a good speedup, to improve the
total execution time of the factorization algorithm, al-
ternatives to the master/servant parallel programming
paradigm must be developed for this problem.

This paper is organized as follows. In the next sec-
tion we give a formal de£nition of the problem, fol-
lowed by the presentation of our algorithms in the third
section. In section four, we present a probabilistic com-
plexity study. Computational experiments with our £rst
parallel implementation are given in section £ve. In
section six we summarize our conclusions.

1

2 Representing Varieties by Witness Sets

To deal numerically with “varieties” (the proper
term for solution sets of polynomial systems), we de-
sire (1) a memory ef£cient and (2) a well-conditioned
representation. We achieve (1) by storing only the min-
imal data that is needed to sample new points from the
variety, and (2) by taking random sections of the vari-
ety, thus avoiding singularities.

An application in algebraic statistics [6] (see
also [10]) considers the solution set de£ned by all ad-
jacent minors of a general 2-by-9 matrix:

[

x1,1 x1,2 · · · x1,9

x2,1 x2,2 · · · x2,9

]

(1)

Writing all adjacent minors gives 8 quadrics
x1,kx2,k+1 − x2,kx1,k+1 = 0, k = 1, 2, . . . , 8, in
18 unknowns, whose solution set is a 10-dimensional
surface of degree 256. The degree 256 is seen alge-
braically as the product of all degrees of the de£ning
equations, yielding 28. Geometrically, if we intersect
the solution set with 10 random hyperplanes (10 is
the difference between the number of variables and
the number of equations), we will obtain 256 isolated
solutions. Computing these 256 intersection points
with homotopy methods takes on a modern workstation
only a couple of minutes.

The numerical representation of the 10-dimensional
surface then consists in the original 8 quadrics, the 10
random hyperplanes, and the 256 isolated solutions cut
out by these 10 hyperplanes. As the quadrics are nice
and easy to evaluate, this representation is well con-
ditioned and serves as start system in a homotopy to
generate new samples from the surface. We formalize
this concept in the following de£nition.

De£nition 2.1 A witness set for a k-dimensional solu-
tion set Z of degree d in Cn consists of

1. a system f(x) = 0 of polynomial equations in n
variables x;

2. k hyperplanes L(x) = 0, whose coef£cients are
random; and

3. a list WL of d solutions, WL = { x ∈
Cn | f(x) = 0 and L(x) = 0 }.

Note that, instead of the multivariate polynomials in the
system f in item (1), algorithms to evaluate and dif-
ferentiate the polynomials in the system serve equally
well.

By the random choice of the coef£cients of the k
hyperplanes of the linear system L(x) = 0, the k-
dimensional solution set Z is reduced to a list WL of
isolated solutions. If Z occurs with no multiplicity
(which we assume), all points in WL are nice well-
conditioned solutions of the system f(x) = 0, aug-
mented with the k linear equations of L.

Many varieties arising in practical applications are
often de£ned by overdetermined polynomial systems,
i.e.: having more equations than unknowns. As we
still need to intersect with k hyperplanes to get to iso-
lated solutions cutting away the k degrees of freedom,
we proposed the addition of slack variables – in anal-
ogy with linear programming – and a cascade of ho-
motopies in [16] to ef£ciently compute witness sets on
all positive dimensional solution sets of a polynomial
system. Witness sets are a key concept in “numerical
algebraic geometry”, a new £eld proposed in [21]. The
subject of this paper is to address the development of a
parallel algorithm to solve one of the main problems in
computational algebraic geometry.

The input of our factorization algorithms is a wit-
ness set, formalized in De£nition 2.1. The output is
formalized in the following de£nition:

De£nition 2.2 A numerical factorization of a pure di-
mensional solution set is a partition of a witness set.
Every set in the partition represents an irreducible fac-
tor of the solution set.

One speci£c application is the factorization of mul-
tivariate polynomials. For example, x2 + y2 − 1 is ir-
reducible, whereas x2 − y2 can be written as the prod-
uct of x − y and x + y. The need for a polynomial
time algorithm for the approximate multivariate poly-
nomial factorization expressed in [12] received a lot of
research attention [4, 5, 7, 8, 11, 15, 20].

3 Monodromy Breakup certi£ed by Lin-
ear Trace

Given a partitioned witness set, with linear traces
we can certify whether the sets in the partition corre-
spond to a factor with relatively little work. For exam-
ple, consider a planar cubic curve de£ned by the equa-
tion f(x, y) = 0. After a generic coordinate change,
we may assume y3 appears in f with a nonzero coef£-
cient. Then we may view f as f(x, y(x)) and consider
f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x)). Ex-

2

panding the £rst two factors gives

(y2−(y1(x)+y2(x))y+y1(x)y2(x))(y−y3(x)). (2)

The y-values of points on the curve are thus considered
as functions y1(x), y2(x), y3(x) depending on x. Sup-
pose the witness set of the cubic curve is partitioned
into {{(x0, y1(x0), (x0, y2(x0))}, {(x0, y3(x0)}}. If
this corresponds to the true factorization of f , then
t1(x) = y1(x) + y2(x) must be linear in x, in order
for the degree of the £rst factor of f in (2) to be two.
With samples at x0 and at x1, we £nd coef£cients a and
b after solving the following linear system:

{

t1(x0) = y1(x0) + y2(x0) = ax0 + b
t1(x1) = y1(x1) + y2(x1) = ax1 + b.

(3)

Then the test for the linearity of y1(x) + y2(x) is exe-
cuted by

t1(x2) = ax2 + b = y1(x2) + y2(x2). (4)

The equality in (4) on the value t1(x2) compares what
is predicted from samples at x0 and x1 with what is ob-
served from summing the y-values from samples at x2.
If the test holds, then f has a quadratic factor.

The use of the linear trace is a key ingredient in
many factorization algorithms, see for example [4, 7,
15, 18, 20]. While for low degree solution sets, a good
approach (as done in [7]) is to enumerate all possi-
ble partitions and then to apply the linear trace test,
for high degrees this approach becomes prohibitively
expensive. We can predict a breakup by generating
loops around singularities, exploiting the monodromy
group action. We applied this idea in [17], see also [5]
and [20]. Note that for this breakup to work, we do not
need to know the precise location of the singularities.

Generating loops is naturally done by homotopies.
Starting from a list of well-conditioned solutions
in WL, we compute more samples of a k-dimensional
solution set, moving L to another set of k random hy-
perplanes K(x) = 0, using the homotopy hL,K,α(x, t)

=

(

f(x)
α(1 − t)L(x) + tK(x)

)

= 0, α ∈ C. (5)

At t = 0, the solution paths start at the set WL and
end, at t = 1, giving a new set WK . The constant α is
chosen at random, to avoid singularities. A loop is then
generated by picking another constant, say β, and re-
turn from WK to WL using the homotopy hK,L,β(x, t)

=

(

f(x)
β(1 − t)L(x) + tK(x)

)

= 0, β ∈ C. (6)

At t = 1, we £nd the same set WL back, but with
possible permutations in the order of solutions. As a
permutation may occur only among points on the same
irreducible component, one loop typically reveals more
about the factorization.

With monodromy loops we join points on the same
irreducible components. To certify whether we have
found enough points, we use the linear trace test, as a
stop condition for the monodromy breakup algorithm,
i.e.: the monodromy breakup algorithm stops when
all irreducible components have passed the linear trace
test. The linear trace test requires two new witness sets,
with samples taken on hyperplane sections parallel to
the original ones.

We give the sequential version of the factorization
method in Algorithm 3.1 below, and indicate at the
right the obvious parallelization strategy, using a mas-
ter/servant scheme.

Obviously, the amount of computational work in Al-
gorithm 3.1 is concentrated in the “track d paths” state-
ments. Statements 2 and 3 are needed to use the linear
trace as stop test. Algorithm 3.1 generates one loop
with statements 4.2 and 4.4. Every path tracking state-
ment occurs with a different homotopy.

Notice that the communication overhead is rela-
tively minor. The polynomials in the homotopy are
sent out only once, at the beginning of the algorithm.
The data transmitted in the loop consists of the numbers
de£ning the moving hyperplane and the corresponding
solutions.

Since we choose generic hyperplane sections, ev-
ery path tracking job takes roughly the same amount
of work, so a static work load distribution will per-
form well. In our parallel implementation we have one
master node distributing the d paths evenly among the
available nodes. The master node is responsible for
broadcasting the homotopy, collecting the results, com-
puting the permutation, updating the partition, and the
linear trace test.

4 A Probabilistic Complexity Study

In order to test out various approaches to the par-
allelization of the monodromy breakup algorithm we
developed a probabilistic model based on several cru-
cial assumptions/postulates. Note that these assump-
tions are not meant to model the reality closely and we
intentionally sacri£ce the quality of the model in favor
of simplicity.

3

Algorithm 3.1 Monodromy Breakup certi£ed by Linear Trace: P = Breakup(WL, d,N)
Input: WL, d, N witness set, degree, max #loops
Output: P partitioned witness set

0. initialize P with d singletons; done by master node
1. generate two slices L′ and L′′ parallel to the given L; broadcast data to all nodes
2. track d paths for witness set with L′; executed in parallel by servants
3. track d paths for witness set with L′′; executed in parallel by servants
4. for k from 1 to N do

4.1 generate new slices K and a random α; broadcast K and α to all nodes
4.2 track d paths de£ned by (5); executed in parallel by servants
4.3 generate a random β; broadcast β to all nodes
4.4 track d paths de£ned by (6); executed in parallel by servants
4.5 compute the permutation and update P ; done by master node
4.6 if linear trace test certi£es P

then leave the loop;
end if;

end for.

The following setup is assumed:

• The model algorithm’s goal is to certify the irre-
ducibility of a solution component of degree d using
s generic witness sets W1,W2, . . . ,Ws that are the so-
lutions of the following systems for i = 1, 2, . . . , s:

{

f(x) = 0 (the original system)
Li(x) = 0 (d hyperplanes)

(7)

• The (only) atomic operation the algorithm can per-
form is tracking a single path starting at a given point
P of a given witness set Wi to discover where the other
endpoint Q ∈ Wj , where Wj (j 6= i) is another given
component. Let us give it a name TRACK:

Q = TRACK(P,Wi,Wj). (8)

• We think of the witness sets Wi as vertices in
the complete non-oriented graph, where the edge con-
necting Wi and Wj is assigned a nonnegative integer
weight νij equal to the number of calls of the form
TRACK(−,Wi,Wj) made by the algorithm.

• We assume that the £rst task of the algorithm is to
establish a 1-to-1 correspondence between the points of
different witness sets.

After this is done, it makes sense to assume that
the partitions of different witness sets agree with each
other. Therefore, the algorithm records the current par-
tition simply as a partition C = {C1, C2, . . . , Cm} of
the set {1, 2, . . . , d} representing the witness points. At

the beginning, C consists of d singletons Ci = {i}; at
the end, C is supposed to have only one component.

• In practice, TRACK proceeds by picking a random
γ ∈ C, |γ| = 1 and tracking the path starting at P ∈
Wi along the homotopy hLi,Lj ,γ(x, t) = 0 as in (5).
The time this takes and the probability prob(P,Q) of
ending up at a particular Q ∈ Wj are hard to determine
or even predict analytically. In our model we assume
that every path takes 1 unit of time to track.

Let Q be in the witness set Wj , but outside the com-
ponent C(P) of the current partition C that contains
P . We also assume that the probability is distributed
uniformly among all d − |C(P)| possible endpoints Q
outside the component C(P), i.e. for £xed i, j:

prob(i,j)(p, q1) = prob(i,j)(p, q2), (9)

where p, q1, q2 ∈ {1, ..., d}, q1, q2 /∈ C(p) where C(p)
is the current component of p and prob(i,j)(p, q) is the
probability of going from the p-th point of Wi to the
q-th point of Wj .

• Another crucial assumption on the probabilities dis-
tribution is imposed to account for the fact that, in re-
ality, choosing a pair of witness sets and tracking paths
exclusively between them is not the best strategy: the
probability of landing in the same component as you
started grows with the number of tracked paths.

Hence, for q /∈ C(p), we have to make
prob(i,j)(p, q) dependent on νij . The formula that we

4

used for our test runs is

prob(i,j)(p, q) =
1

d(1 + r ln(1 + νij))
, (10)

where r is a positive real parameter.

Considering the rules of the game above, we pro-
pose the following serial algorithm that conducts the
needed computational experiment and returns the time
t consumed by the model.

Algorithm 4.1 M1(serial) t = M1S(d, s)

Input: d is the degree of the irreducible solution
component in question;

s is the number of witness sets W1, . . . ,Ws

used in the algorithm.
Output: t is the time it takes to certify the irreducibility.

C := {{1}, . . . , {d}};
{ To establish a 1-to-1 correspondence, track d paths
from W1 to Wi, (i = 2, . . . , s). }

t := d(s− 1); { This takes d(s− 1) units of time. }
while |C| > 1 do { while the partition is non-trivial ...}

pick a point p such that the size of its partition
component C(p) is minimal;

pick an edge (i, j) such that νij is minimal;
generate a random number r ∈ [0, 1];
if r < (d− |C(p)|) · prob(i,j)(p, q), q /∈ C(p)
{ ... the probability of getting outside C(p) }

then take a random q /∈ C(p);
{ assume q := TRACK(p,Wi,Wj) }
merge C(p) and C(q) in the partition C;

end if;
t := t + 1;

end while.

Given the assumptions on the probability distribu-
tion, this algorithm minimizes the expected time of cer-
tifying irreducibility.

The pseudo-paths considered at steps where the par-
tition C remains unchanged are called a rejected paths
and in the implementation of the model we have a
counter nrejected to record the number of these.

Example 4.2 We performed a test run of M1S with
d = 200, s = 2, . . . , 10. (Also, we have deliberately
set r = 2.5 in (10) for this example). Table 1 displays
the resulting time t (= total #paths) and the percentage
of rejected paths.

s 2 ... 6 7 8 ...
npaths 4146 ... 3365 3333 4121 ...

% rejected 90 ... 64 58 61 ...

Table 1. Maple sequential simulation re-
sults.

In Table 1 we see that the rejection percentage de-
creases with s. However, the cost of initialization of
every witness set does not let us improve the running
time in£nitely.

Therefore, in the future (practical) implementations
it would make sense to develop a heuristic that would
adjust the number of used witness sets dynamically.

The algorithm M1P,

t = M1P(d, s,NP), (11)

where NP is the number of processors, is a parallel ver-
sion of M1S that uses the following simple paralleliza-
tion strategy.

At every loop it devotes all NP processors to track-
ing random paths starting at the component(s) of min-
imal size. There is no synchronization issue, since all
loops take equal amount of time to compute by the as-
sumption. The information gathered at the end of each
loop is processed – in negligible time – by merging
components of the partition C in a natural way. Al-
though there are no idling processors by construction,
some of the resources are still wasted; it may happen
that several processors £nd connecting paths between
the same two components simultaneously. The num-
ber of the redundant passes is stored in the counter
nduplicate.

Example 4.3 Continuing Example 4.2 we made a test
run for M1P using the same parameters with the number
of processors NP = 1, 11, 21, 31, 41, 51, see Table 2.

Why the speedups are not linear could be explained,
for instance, on the results for s = 7, the value of s that
seems to be optimal for this example, see Table 3.

From Table 3 it is evident that the number of dupli-
cate paths grows with NP and this triggers the growth
in the percentage of rejections as well.

5

NP\s 2 5 6 7 8 9
1 1.0 1.0 1.0 1.0 1.0 1.0
11 11.1 11.9 9.53 9.95 11.1 10.7
21 18.4 21.2 16.7 16.5 19.1 19.0
31 24.8 28.4 21.9 21.5 26.6 26.1
41 30.6 32.2 29.5 26.9 34.3 32.1
51 34.2 39.0 30.6 29.2 37.5 38.1

Table 2. Speedups achieved with M1P, for
NP processors.

NP npaths % rejected % duplicate
1 3333 58 0
11 3686 62 0.14
21 4245 67 0.54
31 4827 70 1.1
41 5095 70 2.3
51 5841 74 1.9

Table 3. Speedups with s = 7.

5 Implementation and Computation

Algorithm 3.1 was implemented using a mas-
ter/servant method, as indicated in the algorithm. Ex-
tensive experiments on one medium sized benchmark
system show the qualities of this £rst parallel factor-
ization algorithm and also point at the defects of this
straightforward parallel approach.

5.1 A state machine interface to PHCpack

PHCpack [23] is legacy software, developed – and
still under development – for more than a decade.
Three recent papers document new extensions to the
software: tools to deal with positive dimensional solu-
tion sets [19]; an interface to Maple [13]; and a parallel
version of the Pieri homotopies [24].

The parallel main program is written in C and uses
the publicly available version of MPI. This program
does not have any data structures for multivariate poly-
nomials or lists of solutions. Yet, it is in complete con-
trol of the computations and has full access to all data,
managed by PHCpack (written in Ada). The interface
to PHCpack operates very much like a vending ma-
chine, whose operations fall in four categories: (1) put
in data; (2) select options; (3) push go; and (4) collect

results.

Our equipment consists of one workstation with two
dual 2.4Ghz processors, running Linux, and serving
two Rocketcalc clusters: one with four and an other
with eight 2.4Ghz processors. So we have a total of 14
processors: one master node and 13 computing nodes.

5.2 Benchmarking and performance results

As the benchmark problem, we took a medium sized
polynomial system: the well known cyclic 8-roots
problem [2]. This system has a solution curve of de-
gree 144, which breaks up into 16 irreducible factors.
There are 8 factors of degree 16 and 8 quadratic fac-
tors. Table 4 shows the ¤uctuation between the number
of loops needed to factor this curve.

Since seven is the average number of loops to factor
this system, we retained only the timings from different
runs on different number of processors which all took
seven loops, see Table 5 and Figure 1.

Looking at the max row in Table 5, we see a de-
crease in a factor of about ten times when going from 2
to 14 processors, i.e.: in going from 144.3 to 14.1 sec-
onds. The constant time of about 7 seconds spent by
the master node becomes more and more substantial.
The data is visualized in Figure 1.

6 Conclusions

We have presented a £rst parallel implementation
of a factorization method using monodromy and lin-
ear traces, employing the conventional master/servant
computation model. On selected examples of medium
sized degrees around one hundred, we have experi-
enced a good performance of this model. For higher
degrees, the workload of the master node prevents a
good speedup.

Our probabilistic model outlined the future modi-
£cations to the algorithm aimed at boosting the ef£-
ciency of both serial and parallel implementations. Our
experimental complexity study examined the trade off
between generating more slices and using more loops
between the same two slices within the assumption that
using the same slices over and over again lowers the
probability of gaining new information. As polyno-
mial systems often arise in families, information on the
probabilities may be gained from computing smaller
systems in the family, or by sample runs.

6

#L 4 5 6 7 7 7 7 7 8 9
min 6.0 7.8 9.2 10.1 10.3 10.9 10.9 10.7 11.8 12.3
max 9.9 11.5 12.8 15.4 15.1 14.7 14.1 14.5 16.3 16.9
total 11.7 14.9 16.9 19.2 19.3 19.5 19.7 20.3 21.9 23.4

Table 4. Results of 10 runs on 14 processors. Each time we recorded the number of loops
#L, the minimal and maximal time (in seconds) spent by the path tracking nodes and the total
amount of time.

NP 2 3 4 5 6 7 8 9 10 11 12 13 14
min – 68.7 47.4 31.5 25.8 21.5 20.0 18.0 14.8 12.1 11.7 11.2 10.9
max 144.3 69.2 48.6 33.6 28.0 25.3 22.0 20.1 18.8 17.6 16.2 14.7 14.1
total 150.9 77.1 56.5 41.4 35.7 32.5 29.1 27.3 25.9 22.3 21.7 20.2 19.7

Table 5. Execution times for number of processors NP, from 2 to 14, using seven loops. We
list the total time and the maximal and minimal computational times (expressed in seconds)
for the processors. The difference between total and max is about 7 seconds, which is the
time spent by the master node.

2

150.9

3

77.1

4

56.5

5

41.4

6

35.7

7

32.5

8

29.1

9

27.3

10

25.9

11

22.3

12

21.7

13

20.2

14

19.7

Figure 1. Plot of the data in Table 5. The shaded top area is the time spent by the master
node. The lowest horizontal bar indicates the minimal time spent by the path tracking nodes.

Finally, we observed that the monodromy breakup
algorithm makes the most gains in the £rst loops, often
halving the number of irreducible factors in one step,
but then spends several loops to £nd the connections
for factors of small degree. A hybrid strategy, combin-
ing alternative methods [7, 15] based on the linear trace
will further increase the performance of the factoriza-
tion algorithm.

References

[1] D. Allison, A. Chakraborty, and L. Watson. Granular-
ity issues for solving polynomial systems via globally
convergent algorithms on a hypercube. J. of Supercom-
puting, 3:5–20, 1989.

[2] G. Björck and R. Fröberg. Methods to “divide out”
certain solutions from systems of algebraic equations,
applied to £nd all cyclic 8-roots. In M. Gyllenberg
and L. Persson, editors, Analysis, Algebra and Com-

7

puters in Math. research, volume 564 of Lecture Notes
in Mathematics, pages 57–70. Dekker, 1994.

[3] A. Chakraborty, D. Allison, C. Ribbens, and L. Wat-
son. The parallel complexity of embedding algorithms
for the solution of systems of nonlinear equations.
IEEE Transactions on Parallel and Distributed Sys-
tems, 4(4):458–465, 1993.

[4] G. ChÁeze and A. Galligo. Four lectures on polynomial
absolute factorization. In A. Dickenstein and I. Emiris,
editors, Solving Polynomial Equations: Foundations,
Algorithms, and Applications, volume 14 of Algo-
rithms and Computation in Mathematics, pages 339–
392. Springer–Verlag, 2005.

[5] R. Corless, A. Galligo, I. Kotsireas, and S. Watt. A
geometric-numeric algorithm for factoring multivariate
polynomials. In T. Mora, editor, Proceedings of the
2002 International Symposium on Symbolic and Alge-
braic Computation (ISSAC 2002), pages 37–45. ACM,
2002.

[6] P. Diaconis, D. Eisenbud, and B. Sturmfels. Lattice
walks and primary decomposition. In B. Sagan and
R. Stanley, editors, Mathematical Essays in Honor of
Gian-Carlo Rota, volume 161 of Progress in Mathe-
matics, pages 173–193. Birkhäuser, 1998.

[7] A. Galligo and D. Rupprecht. Irreducible decomposi-
tion of curves. J. Symbolic Computation, 33(5):661–
677, 2002.

[8] X.-S. Gao, E. Kaltofen, J. May, Z. Yang, and L. Zhi.
Approximate factorization of multivariate polynomials
via differential equations. In J. Gutierrez, editor, Pro-
ceedings of the 2004 International Symposium on Sym-
bolic and Algebraic Computation (ISSAC 2004), pages
167–174. ACM, 2004.

[9] S. Harimoto and L. Watson. The granularity of homo-
topy algorithms for polynomial systems of equations.
In G. Rodrigue, editor, Parallel processing for scien-
ti£c computing, pages 115–120. SIAM, 1989.

[10] S. Hoşten and J. Shapiro. Primary decomposition of
lattice basis ideals. Journal of Symbolic Computation,
29(4&5):625–639, 2000.

[11] Y. Huang, W. Wu, H. Stetter, and L. Zhi. Pseudofac-
tors of multivariate polynomials. In C. Traverso, edi-
tor, Proceedings of the 2000 International Symposium
on Symbolic and Algebraic Computation (ISSAC 2000),
pages 161–168. ACM, 2000.

[12] E. Kaltofen. Challenges of symbolic computation:
my favorite open problems. J. Symbolic Computation,
29(6):891–919, 2000.

[13] A. Leykin and J. Verschelde. PHCmaple: A Maple
interface to the numerical homotopy algorithms in
PHCpack. In Q.-N. Tran, editor, Proceedings of
the Tenth International Conference on Applications of
Computer Algebra (ACA’2004), pages 139–147, 2004.

[14] T. Li. Numerical solution of polynomial systems by
homotopy continuation methods. In F. Cucker, editor,
Handbook of Numerical Analysis. Volume XI. Special

Volume: Foundations of Computational Mathematics,
pages 209–304. North-Holland, 2003.

[15] T. Sasaki. Approximate multivariate polynomial fac-
torization based on zero-sum relations. In B. Mourrain,
editor, Proceedings of the 2001 International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC
2001), pages 284–291. ACM, 2001.

[16] A. Sommese and J. Verschelde. Numerical homotopies
to compute generic points on positive dimensional al-
gebraic sets. J. of Complexity, 16(3):572–602, 2000.

[17] A. Sommese, J. Verschelde, and C. Wampler. Using
monodromy to decompose solution sets of polynomial
systems into irreducible components. In C. Ciliberto,
F. Hirzebruch, R. Miranda, and M. Teicher, editors,
Application of Algebraic Geometry to Coding The-
ory, Physics and Computation, pages 297–315. Kluwer
Academic Publishers, 2001. Proceedings of a NATO
Conference, February 25 - March 1, 2001, Eilat, Israel.

[18] A. Sommese, J. Verschelde, and C. Wampler. Sym-
metric functions applied to decomposing solution sets
of polynomial systems. SIAM J. Numer. Anal.,
40(6):2026–2046, 2002.

[19] A. Sommese, J. Verschelde, and C. Wampler. Nu-
merical irreducible decomposition using PHCpack. In
M. Joswig and N. Takayama, editors, Algebra, Geom-
etry, and Software Systems, pages 109–130. Springer–
Verlag, 2003.

[20] A. Sommese, J. Verschelde, and C. Wampler. Numer-
ical factorization of multivariate complex polynomi-
als. Theoretical Computer Science, 315(2-3):651–669,
2004. Special Issue on Algebraic and Numerical Al-
gorithms edited by I.Z. Emiris, B. Mourrain, and V.Y.
Pan.

[21] A. Sommese and C. Wampler. Numerical algebraic ge-
ometry. In J. Renegar, M. Shub, and S. Smale, editors,
The Mathematics of Numerical Analysis, volume 32
of Lectures in Applied Mathematics, pages 749–763.
AMS, 1996. Proceedings of the AMS-SIAM Summer
Seminar in Applied Mathematics. Park City, Utah, July
17-August 11, 1995, Park City, Utah.

[22] A. Sommese and C. Wampler. The Numerical solution
of systems of polynomials arising in engineering and
science. World Scienti£c, 2005.

[23] J. Verschelde. Algorithm 795: PHCpack: A
general-purpose solver for polynomial systems
by homotopy continuation. ACM Trans. Math.
Softw., 25(2):251–276, 1999. Software available at
http://www.math.uic.edu/˜jan.

[24] J. Verschelde and Y. Wang. Computing feedback laws
for linear systems with a parallel Pieri homotopy. In
Y. Yang, editor, Proceedings of the 2004 International
Conference on Parallel Processing Workshops, 15-18
August 2004, Montreal, Quebec, Canada. High Per-
formance Scienti£c and Engineering Computing, pages
222–229. IEEE Computer Society, 2004.

8

