
Parallel Implementation of the Polyhedral Homotopy Method∗

Jan Verschelde† Yan Zhuang‡

Abstract

Homotopy methods to solve polynomial systems are well
suited for parallel computing because the solution paths de-
fined by the homotopy can be tracked independently. For
sparse polynomial systems, polyhedral methods give ef-
ficient homotopy algorithms. The polyhedral homotopy
methods run in three stages: (1) compute the mixed volume;
(2) solve a random coefficient start system; (3) track solu-
tion paths to solve the target system. This paper is about
how to parallelize the second stage in PHCpack. We use a
static workload distribution algorithm and achieve a good
speedup on the cyclic n-roots benchmark systems. Dynamic
workload balancing leads to reduced wall times on large
polynomial systems which arise in mechanism design.

2000 Mathematics Subject Classification. Primary
65H10. Secondary 14Q99, 68W30.

Key words and phrases. Continuation methods, load bal-
ancing, parallel computation, path following, polynomial
systems, polyhedral homotopies.

1 Introduction

Polynomial systems occur in a wide variety of applica-
tion areas in science and engineering, see the case stud-
ies in [34, Chapter 9]. Homotopy continuation methods
to solve polynomial systems (recently surveyed in [27]
and [34]) are well suited for parallel implementation, as de-
scribed in [1], [6, 7], [18], [31], and [32].

∗Date: 26 May 2006.
†Department of Mathematics, Statistics, and Computer Science, Uni-

versity of Illinois at Chicago, 851 South Morgan (M/C 249), Chicago,
IL 60607-7045, USA. Email: jan@math.uic.edu or jan.verschelde@na-
net.ornl.gov. URL: http://www.math.uic.edu/˜jan. This material is based
upon work supported by the National Science Foundation under Grant No.
0134611 and Grant No. 0410036.

‡Department of Mathematics, Statistics, and Computer Science,
University of Illinois at Chicago, 851 South Morgan (M/C 249),
Chicago, IL 60607-7045, USA. Email: yzhuan1@math.uic.edu. URL:
http://www2.uic.edu/˜yzhuan1.

Almost all polynomial systems occurring in applica-
tions are sparse, i.e.: only relatively few monomials ap-
pear with nonzero coefficients. For sparse systems, homo-
topies based on the degrees typically track many paths di-
verging to infinity. For example, in one benchmark system
(from mechanism design [36] [39]), a degree-based homo-
topy used in [38] by the POLSYS GLP extension [37] of
HOMPACK [44] [45] [46] leads to 9,216 paths, whereas
polyhedral homotopies track the optimal number of 1,024
paths. The 1,024 for this system is the mixed volume (which
we will define precisely in the next section). We view the
mixed volume as the number of isolated solutions of a sys-
tem with randomly chosen complex coefficients.

To solve a polynomial system using polyhedral homo-
topies, we distinguish three stages. First we compute the
mixed volume, ignoring the particular coefficients of the
polynomial system. In the second stage, we apply poly-
hedral homotopies to solve a system with the same sparse
structure as the given system, but with random coefficients,
using the results of the first stage. The third and final stage
applies a plain linear homotopy to solve the given system
using coefficient-parameter polynomial continuation [30]
(related to the cheater’s homotopy [29]).

In this paper, we primarily focus on the second stage, and
consider a mixed-cell configuration as given. These mixed-
cell configurations may be computed using PHCpack [40],
or by MixedVol [14], or PHoM [17]. A parallel implemen-
tation of PHoM is described in [16]. While the third stage
involves as many paths as the second stage, the computa-
tional cost can increase significantly because the polyno-
mial system at the end of the homotopy is no longer generic.
Conditions on genericity are given in [33].

This paper continues the development of parallel im-
plementations of homotopy algorithms in PHCpack [40] –
started in [43] with Pieri homotopies, followed by parallel
decomposition methods in [24, 25]. Our first parallel im-
plementation of polyhedral homotopies uses a static work-
load distribution. This static distribution (as we experienced
in [43]) is favorable when all solution paths require the
same computational cost, as could be expected from polyhe-
dral homotopies solving generic polynomial systems. How-
ever, dynamic load balancing significantly improves the
wall time for large mechanisms design problems.

Algorithm 1.1 Polyhedral homotopies to solve a generic system.

Input: �ω, G(x) = 0. mixed-cell configuration and generic system
Output: G−1(0). all solutions to G(x) = 0
for all C ∈ �ω do enumerate all C with inner normals v

create a polyhedral homotopy Ĝ(y, s) = 0; apply coordinate transformation using v
solve the start system Ĝ|C(y, 0) = 0; Ĝ|C(y, 0) = 0 has Vol(C) solutions
track y(s): Ĝ(y(s), s) = 0, for s from 0 to 1; track as many solution paths as Vol(C)

end for.

2 Polyhedral Homotopies

A sparse polynomial f in n variables x =
(x1, x2, . . . , xn) is written as f(x) =

∑
a∈A caxa, with

nonzero coefficients ca ∈ C∗, C∗ = C \ {0}, and xa =
xa1

1 xa2
2 · · ·xan

n . The set A is called the support of f . We de-
note the volume of its convex hull by Vol(A). Kushnirenko
showed in [23] that a system F (x) = 0 whose polynomials
all share the same support A can have no more than Vol(A)
isolated solutions in (C∗)n. Moreover, if the coefficients
ca are generic, then Vol(A) is an exact root count. Kush-
nirenko’s theorem was generalized to general polynomial
systems by Bernshteı̌n [2] and Khovanskiı̌ [21].

Polyhedral homotopies (proposed in [20] and [42]) pro-
vide efficient algorithms to solve systems with random co-
efficients, denoted by G(x) = 0. To solve a given system
F (x) = 0, we then follow the solution paths defined by the
linear homotopy H(x, t) = (1 − t)G(x) + tF (x) = 0, for
t varying between 0 and 1. As shown in [30] (see also [29])
all isolated solutions of F (x) = 0 lie at the end of some
solution path originating at a solution of G(x) = 0. Poly-
hedral homotopies are induced by lifting functions ω : A →
R : a �→ ω(a) applied to polynomials g of G in the above
notation as ĝ(x, t) =

∑
a∈A caxatω(a). Obviously, for

t = 1, we have a polynomial, but at t = 0, we need co-
ordinate transformations to start a polyhedral homotopy.

The right coordinate transformations are obtained as fol-
lows. A regular triangulation �ω is a triangulation — i.e.:
a collection of nonoverlapping simplices so that Vol(A) =∑

C∈�ω
Vol(C) — where every cell C ∈ �ω corresponds

to a facet Ĉ of the lower hull of the lifted support Â =
ω(A) = { â = (a, ω(a)) | a ∈ A }. Every facet Ĉ is char-
acterized by an inner normal v ∈ Rn+1, vn+1 > 0, satisfy-
ing equalities 〈ĉi,v〉 = 〈ĉj ,v〉, for ĉi, ĉj ∈ Ĉ and inequal-
ities 〈â,v〉 > 〈ĉ,v〉, for ĉ ∈ Ĉ and â ∈ Â\Ĉ, where 〈·, ·〉 is
the usual inner product. Because the inner normal v satis-
fies these equalities and inequalities, the coordinate trans-
formation replacing xi by yis

vi and t by svn+1 applied
to ĝ(x, t) results in the homotopy composed of polynomi-
als ĝ(y, s) = ĝ|C(y, s) + ĝ|A\C(y, s), with ĝ|C(y, s) =∑

a∈C yas〈a,v〉 and ĝ|A\C(y, s) =
∑

a∈A\C yas〈a,v〉. In

particular: the equalities on v ensure that the power of s in
ĝ|C is the same, say p, and the inequalities on v ensure that
all powers of s in ĝ|A\C are strictly larger than p. There-
fore, we have a homotopy in s, starting at s = 0 at a system
so sparse it is trivial to solve, and ending at s = 1 at the
random coefficient system G(x) = 0.

To solve systems F (x) = 0, F = (f1, f2, . . . , fn) with
different supports A = (A1, A2, . . . , An), Ai is the support
of fi, we use regular mixed-cell configurations. The Cay-
ley embedding places the sets Ai of A on the vertices of the
(n−1)-dimensional standard basis simplex S. In particular:
E(A) = ∪n

i=1Ei(Ai), where Ei(A) = { (a, ei) | a ∈ A },
with ei the ith vertex of S (e1 is 0 and ei is also zero ex-
cept for 1 at position i − 1). Cells in a regular triangulation
of E(A) which are spanned by exactly two points of ev-
ery support Ai are called mixed. Extending our notation of
�ω to denote the collection of mixed cells of any regular
triangulation of E(A), we then call �ω a regular mixed-
cell configuration, generalizing the volume to the mixed
volume Vol(A) =

∑
C∈�ω

Vol(C). For the relation to
sparse elimination theory, we refer to [9], [15], and [35],
see also [19] for geometric applications. Algorithm 1.1 fol-
lows [20].

The execution of the coordinate transformation to cre-
ate the polyhedral homotopy has a cost linear in n and the
number of monomials in the system. As Ĝ|C(y, 0) = 0 has
exactly n + 1 distinct monomials, the cost of solving the
start system is equivalent to solving one linear system. The
computationally most intensive stage in Algorithm 1.1 is the
path tracking, because tracking one solution path typically
involves solving a couple of hundreds of linear systems in
the Newton corrector.

In addition to leading to more solution paths, the dif-
ficulty with applying polyhedral homotopies is the height
of the power of the continuation parameter, a problem first
addressed in [41] by dynamic lifting, later in [13] by bal-
ancing, and by scaling in [22]. While solving large 12 di-
mensional systems from mechanical design (see section 5
below), we uncovered numerical instabilities when solving
semi-mixed start systems. In [26] we describe a numerically
stable algorithm to resolve this issue.

2

Algorithm 2.1 Sketch of a parallel version of polyhedral homotopies.

Input: �ω, G(x) = 0. mixed-cell configuration and generic system
Output: G−1(0). all solutions to G(x) = 0

Manager Workers
read input file
broadcast data → receive data data = system and lifting
distribute cells → receive cells static workload distribution

track paths compute solutions
collect solutions ← send solutions

write to file

3 Distribution of the Work Load

Polyhedral homotopies are applied to solve generic sys-
tems G(x) = 0. The “generic” means in practice that the
coefficients of G are random points on the complex unit cir-
cle. Because of this randomness, all solution paths are ex-
pected to follow the same uniform behavior, and the track-
ing will require the same amount of computational work.
Therefore, reducing the communication overhead to a min-
imum, a static workload assignment seems the best choice.
Using the manager-worker1 paradigm, Algorithm 2.1 sum-
marizes our parallel version of the polyhedral homotopies.

Because the polynomial systems we consider are sparse,
the broadcast of the supports with their lifting will be dom-
inated by the time to startup the communications. The dis-
tribution of the cells is more data intensive, but there are
fewer cells than solutions, as the volume of every cell is at
least one. So the initial communication cost (before the path
tracking) does certainly not exceed the cost at the end to col-
lect all solutions at the manager node. The tracking of the
paths naturally overlaps the communications. A worker can
start tracking paths, as soon as it has received one cell, and
can send the end point of the path to the manager for writ-
ing to file. The manager node should not track any paths,
so it remains available to handle the data flow, relieving the
workers from needing too much memory.

We introduce the distribution of the cells with an exam-
ple. Suppose there are 8 cells and 41 is the total number
of paths. The manager will distribute these 41 paths evenly
among three workers as the partition 41 = 14 + 14 + 13.
In (1) we show how to manager assigns the cells (with re-
spective volumes listed) and #paths to the workers.

The static workload distribution of the cells of the mixed-
cell configuration �ω is formalized in Algorithm 3.1 and
Algorithm 3.2, respectively executed by the manager and
each worker. The data the manager sends to each worker
is the triplet (C, k, l), with C ∈ �ω a cell, k and l are
indices to the respective first and last start solutions in the

1The terminology we use is less common than “master-slave”, but
avoids the unpleasant historical connotations.

polyhedral homotopy defined by the cell C.
The distribute function in Algorithm 3.1 determines the

workload for each worker. In case the total number of paths
is not divisible by the number of workers, workers with a
lower number will receive some extra paths. This bias in
the workload distribution is justified because workers with
lower number receive their load earlier than the rest. Al-
gorithm 3.2 details the actions performed by every worker.
Because solving a start system involves only the solution
of a linear system, each worker solves the start system and
tracks only the assigned paths.

4 Dynamic workload distribution

For very sparse or generic problems, a static workload
distribution seems the best choice. However, for polynomi-
als which are not so sparse as the mechanisms design prob-
lems, dynamic load balancing is needed.

The dynamic workload distribution of the cells of the
mixed-cell configuration�ω is formalized in Algorithm 4.1
and Algorithm 4.2, respectively executed by the manager
and each worker. The data the manager sends to each
worker is (C, index), with C ∈ �ω a cell, index is the
index of the start solutions in the polyhedral homotopy de-
fined by the cell C.

Algorithm 4.1 distributes the load according to the num-
ber of cells and number of processors. In case the number
of cells is less than the number of processors, we will dis-
tribute the load path by path, otherwise we will distribute
the load cell by cell except for the last cell which will be
distributed path by path.

5 Computational Results

In this section we summarize our computational exper-
iments on two typical benchmark applications. The first
class of polynomial systems is a frequently used and widely
known problem in computational algebraic geometry, the
so-called cyclic n-roots problem. Our second example
comes from mechanisms design.

3

manager worker 1 worker 2 worker 3
Vol(cell 1) = 5
Vol(cell 2) = 4
Vol(cell 3) = 4
Vol(cell 4) = 6
Vol(cell 5) = 7
Vol(cell 6) = 3
Vol(cell 7) = 4
Vol(cell 8) = 8
total #paths : 41

#paths(cell 1) : 5
#paths(cell 2) : 4
#paths(cell 3) : 4
#paths(cell 4) : 1

#paths to track : 14

#paths(cell 4) : 5
#paths(cell 5) : 7
#paths(cell 6) : 2

#paths to track : 14

#paths(cell 6) : 1
#paths(cell 7) : 4
#paths(cell 8) : 8

#paths to track : 13

(1)

5.1 Hardware and Software

We developed and tested our software using two Rock-
etcalc clusters, with four and eight processors respectively.
Combined with the dual processor server machine, our con-
figuration has a total of fourteen 2.4Ghz processors, con-
nected by a 100Mbit Ethernet network.

We also ran our software on UIC’s “argo”, a cluster of
sixty-eight PCs: including two master machines, sixty-four
compute machines, and two file servers. The nodes are
heterogeneous, some processors run at 2.8Ghz, others at
3.0Ghz. Compared to our Rocketcalc clusters, the faster
network connections of argo led to an improved speedup.

Our software is an extension of PHCpack [40]. Our main
programs are written in C, using the MPI library, and call
the path tracking and homotopy facilities in PHCpack.

5.2 Experimental Results on the cyclic n-
roots problem

The cyclic n-roots problem defines a family of polyno-
mial systems widely used for benchmarking. The systems
occur in Fourier analysis [3]. Progress on these systems is
reported in [4], [5], [8], [10], [11], [12], and [28].

In Table 1 we list the computational results for our
cluster configuration, for increasing values of the problem
size n. As is typical for polynomial systems solving the
number of solutions grows exponentially in the number of
variables n in the system. Even for our relatively small clus-
ter configuration, larger problems (in the range of several
hundreds of thousands of solutions) are well within reach.

Table 2 shows the speedup on the cyclic 7-roots problem
for an increasing number of workers. Because the manager
does no path tracking, the time spent when using one worker
corresponds to the sequential time. Moreover, we observe
a very good distribution of the workload, as the difference
in time between the workers is minor. With 13 workers we
obtain an almost tenfold speedup, which is acceptable. For
dynamic workload distribution we get 11.3 speedup which
is better than static. The dynamic workload balancing algo-
rithm on argo achieves a close to optimal speedup.

Problem #Paths CPU Time
cyclic 5-roots 70 0.13m
cyclic 6-roots 156 0.19m
cyclic 7-roots 924 0.30m
cyclic 8-roots 2,560 0.78m
cyclic 9-roots 11,016 3.64m
cyclic 10-roots 35,940 21.33m
cyclic 11-roots 184,756 2h 39m
cyclic 12-roots 500,352 24h 36m

Table 1. Wall time for start systems to solve
the cyclic n-roots problems, using 13 work-
ers, with static load distribution.

5.3 Mechanism Design: the Computation
of Reachable Surfaces

One must solve polynomial systems to design a robot
with five degrees of freedom, forming an RPS (links con-
nected by Revolute, Prismatic, and Spherical joints) serial
chain, see [36] and [39]. In [38] and [37] using results
of [46], the POLSYS GLP extension of HOMPACK [44]
(see also [45] and [46]) used a linear-product start systems
to solve these type of systems.

These systems are more challenging to polyhedral homo-
topies than the cyclic n-roots problems, because they are not
so sparse. For example, nine equations of the first example
we considered (equation (28) of [38]) have 201 monomials,
of which 102 are vertices and belong to the random coeffi-
cient start system. This makes the evaluation of the poly-
nomials more expensive. The mixed volume of this system
equals 125,888, which is about half of the bound 247,968
based on the degrees of the system, used in [38]. The semi-
mixed nature of the system (i.e.: nine equations share the
same support) is exploited by the dynamic lifting algorithm
of [41]. While the computation of the mixed volume is not
the main cost, we also ran the program MixedVol [14] to
confirm this number.

4

Static versus Dynamic on our cluster Dynamic on argo
#workers Static Speedup Dynamic Speedup Dynamic Speedup

1 50.7021 – 53.0707 – 29.2389 –
2 24.5172 2.1 25.3852 2.1 15.5455 1.9
3 18.3850 2.8 17.6367 3.0 10.8063 2.7
4 14.6994 3.4 12.4157 4.2 7.9660 3.7
5 11.6913 4.3 10.3054 5.1 6.2054 4.7
6 10.3779 4.9 9.3411 5.7 5.0996 5.7
7 9.6877 5.2 8.4180 6.3 4.2603 6.9
8 7.8157 6.5 7.4337 7.1 3.8528 7.6
9 7.5133 6.8 6.8029 7.8 3.6010 8.1
10 6.9154 7.3 5.7883 9.2 3.2075 9.1
11 6.5668 7.7 5.3014 10.0 2.8427 10.3
12 6.4407 7.9 4.8232 11.0 2.5873 11.3
13 5.1462 9.8 4.6894 11.3 2.3224 12.6

Table 2. Wall time in seconds for an increasing number of workers to solve a start system for the
cyclic 7-roots problem. First we list the wall time and speedup for the static and dynamic distribution
on our cluster. The last 2 columns list wall time and speedup for the dynamic distribution on argo.

The first parallel implementation using static workload
distribution finished the tracking of 125,888 solution paths
(9,683 to 9,684 paths per processor) with a reported wall
time of 57091.30 seconds using 13 processors within 16
hours (basically “overnight”). The dynamic workload bal-
ancing algorithm improves on this time by more than four
hours, see Table 3 for computational results of this and other
examples of this class.

References

[1] D.C.S. Allison, A. Chakraborty, and L.T. Watson. Granular-
ity issues for solving polynomial systems via globally con-
vergent algorithms on a hypercube. J. of Supercomputing,
3:5–20, 1989.

[2] D. Bernshteı̌n. The number of roots of a system of equa-
tions. Functional Anal. Appl., 9(3):183–185, 1975. Trans-
lated from Funktsional. Anal. i Prilozhen., 9(3):1–4,1975.

[3] G. Björck. Functions of modulus one on Zn whose Fourier
transforms have constant modulus, and “cyclic n-roots”. In
J. Byrnes and J. Byrnes, editors, Recent Advances in Fourier
Analysis and its Applications, volume 315 of NATO Adv. Sci.
Inst. Ser. C: Math. Phys. Sci., pages 131–140. Kluwer, 1989.

[4] G. Björck and R. Fröberg. A faster way to count the so-
lutions of inhomogeneous systems of algebraic equations,
with applications to cyclic n-roots. J. Symbolic Computa-
tion, 12(3):329–336, 1991.

[5] G. Björck and R. Fröberg. Methods to “divide out” cer-
tain solutions from systems of algebraic equations, applied
to find all cyclic 8-roots. In M. Gyllenberg and L. Persson,
editors, Analysis, Algebra and Computers in Math. research,
volume 564 of Lecture Notes in Mathematics, pages 57–70.
Dekker, 1994.

[6] A. Chakraborty, D.C.S. Allison, C.J. Ribbens, and L.T. Wat-
son. Note on unit tangent vector computation for homo-
topy curve tracking on a hypercube. Parallel Computing,
17(12):1385–1395, 1991.

[7] A. Chakraborty, D.C.S. Allison, C.J. Ribbens, and L.T. Wat-
son. The parallel complexity of embedding algorithms for
the solution of systems of nonlinear equations. IEEE Trans-
actions on Parallel and Distributed Systems, 4(4):458–465,
1993.

[8] Y. Dai, S. Kim, and M. Kojima. Computing all nonsingu-
lar solutions of cyclic-n polynomial using polyhedral homo-
topy continuation methods. J. Comput. Appl. Math., 152(1-
2):83–97, 2003.

[9] I.Z. Emiris and J.F. Canny. Efficient incremental algorithms
for the sparse resultant and the mixed volume. J. Symbolic
Computation, 20(2):117–149, 1995.

[10] J.C. Faugère. A new efficient algorithm for computing
Gröbner bases (F4). Journal of Pure and Applied Algebra,
139(1-3):61–88, 1999. Proceedings of MEGA’98, 22–27
June 1998, Saint-Malo, France.

[11] T. Gao and T.Y. Li. Mixed volume computation via linear
programming. Taiwan J. of Math., 4:599–619, 2000.

[12] T. Gao and T.Y. Li. Mixed volume computation for semi-
mixed systems. Discrete Comput. Geom., 29(2):257–277,
2003.

[13] T. Gao, T.Y. Li, J. Verschelde, and M. Wu. Balancing the
lifting values to improve the numerical stability of polyhe-
dral homotopy continuation methods. Appl. Math. Comput.,
114:233–247, 2000.

[14] T. Gao, T.Y. Li, and M. Wu. Algorithm 846: MixedVol:
A software package for mixed volume computation. ACM
Trans. Math. Softw., 31(4):555–560, 2005.

5

[15] I.M. Gel’fand, M.M. Kapranov, and A.V. Zelevinsky. Dis-
criminants, Resultants and Multidimensional Determinants.
Birkhäuser, Boston, 1994.

[16] T. Gunji, S. Kim, K. Fujisawa, and M. Kojima. PHoMpara –
parallel implementation of the Polyhedral Homotopy contin-
uation Method for polynomial systems. To appear in Com-
puting.

[17] T. Gunji, S. Kim, M. Kojima, A. Takeda, K. Fujisawa, and
T. Mizutani. PHoM – a polyhedral homotopy continuation
method for polynomial systems. Computing, 73(4):55–77,
2004.

[18] S. Harimoto and L.T. Watson. The granularity of homotopy
algorithms for polynomial systems of equations. In G. Ro-
drigue, editor, Parallel processing for scientific computing,
pages 115–120. SIAM, 1989.

[19] B. Huber, J. Rambau, and F. Santos. The Cayley trick, lift-
ing subdivisions and the Bohne-Dress theorem on zonotopal
tilings. J. Eur. Math. Soc., 2(2):179–198, 2000.

[20] B. Huber and B. Sturmfels. A polyhedral method for solving
sparse polynomial systems. Math. Comp., 64(212):1541–
1555, 1995.

[21] A. Khovanskiı̌. Newton polyhedra and the genus of com-
plete intersections. Functional Anal. Appl., 12(1):38–46,
1978. Translated from Funktsional. Anal. i Prilozhen.,
12(1),51–61,1978.

[22] S. Kim and M. Kojima. Numerical stability of path tracing
in polynomial homotopy continuation methods. Computing,
73:329–348, 2004.

[23] A. Kushnirenko. Newton Polytopes and the Bézout The-
orem. Functional Anal. Appl., 10(3):233–235, 1976.
Translated from Funktsional. Anal. i Prilozhen., 10(3),82–
83,1976.

[24] A. Leykin and J. Verschelde. Decomposing solution sets
of polynomial systems: a new parallel monodromy breakup
algorithm. Accepted for publication in The International
Journal of Computational Science and Engineering (special
issue dedicated to HPSEC’05).

[25] A. Leykin and J. Verschelde. Factoring solution sets of
polynomial systems in parallel. In T. Skeie and C.-S.
Yang, editors, Proceedings of the 2005 International Con-
ference on Parallel Processing Workshops. 14-17 June 2005.
Oslo, Norway. High Performance Scientific and Engineering
Computing, pages 173–180. IEEE Computer Society, 2005.

[26] A. Leykin, J. Verschelde, and Y. Zhuang. Parallel homo-
topy algorithms to solve polynomial systems. Submitted for
publication.

[27] T.Y. Li. Numerical solution of polynomial systems by ho-
motopy continuation methods. In F. Cucker, editor, Hand-
book of Numerical Analysis. Volume XI. Special Volume:
Foundations of Computational Mathematics, pages 209–
304. North-Holland, 2003.

[28] T.Y. Li and X. Li. Finding mixed cells in the mixed volume
computation. Found. Comput. Math., 1(2):161–181, 2001.

[29] T.Y. Li, T. Sauer, and J. Yorke. The cheater’s homotopy: an
efficient procedure for solving systems of polynomial equa-
tions. SIAM J. Numer. Anal., 26(5):1241–1251, 1989.

[30] A.P. Morgan and A.J. Sommese. Coefficient-parameter
polynomial continuation. Appl. Math. Comput., 29(2):123–
160, 1989. Errata: Appl. Math. Comput. 51:207(1992).

[31] A.P. Morgan and L.T. Watson. A globally convergent par-
allel algorithm for zeros of polynomial systems. Nonlinear
Analysis, 13(11):1339–1350, 1989.

[32] W. Pelz and L.T. Watson. Message length effects for solving
polynomial systems on a hypercube. Parallel Computing,
10(2):161–176, 1989.

[33] J.M. Rojas. Toric intersection theory for affine root count-
ing. Journal of Pure and Applied Algebra, 136(1):67–100,
1999.

[34] A.J. Sommese and C.W. Wampler II. The Numerical solu-
tion of systems of polynomials arising in engineering and
science. World Scientific, 2005.

[35] B. Sturmfels. On the Newton polytope of the resultant. Jour-
nal of Algebraic Combinatorics, 3(2):207–236, 1994.

[36] H.-J. Su and J.M. McCarthy. Kinematic synthesis of RPS
serial chains. In the Proceedings of the ASME Design Engi-
neering Technical Conferences (CDROM), Chicago, IL, Sep
2-6, 2003.

[37] H.-J. Su, J.M. McCarthy, M. Sosonkina, and L.T. Watson.
Algorithm 8xx: POLSYS GLP: A parallel general linear
product homotopy code for solving polynomial systems of
equations. To appear in the Algorithms section of ACM
Trans. Math. Softw.

[38] H.-J. Su, J.M. McCarthy, and L.T. Watson. Generalized lin-
ear product homotopy algorithms and the computation of
reachable surfaces. ASME Journal of Information and Com-
puter Sciences in Engineering, 4(3):226–234, 2004.

[39] H.-J. Su, C.W. Wampler, and J.M. McCarthy. Geometric
design of cylindric PRS serial chains. ASME Journal of Me-
chanical Design, 126(2):269–277, 2004.

[40] J. Verschelde. Algorithm 795: PHCpack: A general-purpose
solver for polynomial systems by homotopy continuation.
ACM Trans. Math. Softw., 25(2):251–276, 1999. Software
available at http://www.math.uic.edu/˜jan.

[41] J. Verschelde, K. Gatermann, and R. Cools. Mixed-volume
computation by dynamic lifting applied to polynomial sys-
tem solving. Discrete Comput. Geom., 16(1):69–112, 1996.

[42] J. Verschelde, P. Verlinden, and R. Cools. Homotopies ex-
ploiting Newton polytopes for solving sparse polynomial
systems. SIAM J. Numer. Anal., 31(3):915–930, 1994.

[43] J. Verschelde and Y. Wang. Computing feedback laws for
linear systems with a parallel Pieri homotopy. In Y. Yang,
editor, Proceedings of the 2004 International Conference on
Parallel Processing Workshops, 15-18 August 2004, Mon-
treal, Quebec, Canada. High Performance Scientific and En-
gineering Computing, pages 222–229. IEEE Computer So-
ciety, 2004.

[44] L.T. Watson, S.C. Billups, and A.P. Morgan. Algorithm 652:
HOMPACK: a suite of codes for globally convergent homo-
topy algorithms. ACM Trans. Math. Softw., 13(3):281–310,
1987.

[45] L.T. Watson, M. Sosonkina, R.C. Melville, A.P. Morgan,
and H.F. Walker. HOMPACK90: A suite of Fortran 90 codes
for globally convergent homotopy algorithms. ACM Trans.
Math. Softw., 23(4):514–549, 1997.

[46] S.M. Wise, A.J. Sommese, and L.T. Watson. Algorithm 801:
POLSYS PLP: a partitioned linear product homotopy code
for solving polynomial systems of equations. ACM Trans.
Math. Softw., 26(1):176–200, 2000.

6

Algorithm 3.1 Static distribution of cells executed by the manager.

Input: �ω, V , p. mixed-cell configuration, volume, #processors
Output: G−1(0). all solutions to G(x) = 0
for i from 1 to p − 1 do the manager is processor 0

load[i] := distribute(V, p, i); #paths for i-th worker
send load[i] to i; message to i-th worker

end for;
V/(p − 1)� ≤ load[i] ≤
V/(p − 1)�
i := 1; start at worker 1
for each C ∈ �ω do

#paths := Vol(C); C defines Vol(C) many paths
j := 1; first index of start solution
while #paths > 0 do

if #paths ≤ load[i] then i-th worker can handle C
send (C, j, j+#paths−1) to i; message to i-th worker
load[i] := load[i] − #paths; reduce load for i-th worker
#paths := 0; done with cell C

else too many paths for i-th worker
send (C, j, j+load[i]−1) to i; message to i-th worker
j := j + load[i]; update index of start solution
#paths := #paths − load[i]; reduce #paths to track
load[i] := 0; finished with i-th worker
i := i + 1; move to the next worker

end if;
end while;

end for.

Algorithm 3.2 Static distribution of cells executed by all the workers.

Input: G(x) = 0. generic system
Output: a subset of G−1(0). as many solutions as load of the worker
count := 0; initialize the counter
receive load from manager; #paths the worker has to track
while count ≤ load do as long as not finished

receive (C, k, l); receive cell and indices to start solutions
create polyhedral homotopy ĜC(y, s) = 0; perform coordinate transformation
solve the start system ĜC(y, 0) = 0; one linear system to solve
track paths from solutions k to l; track l − k + 1 paths
send solutions to manager; message to manager reporting results
count := count + l − k + 1; update the counter

end while.

Bounds on #Solutions dynamic load distribution
Surface Total degree LPD bound Mixvol our cluster time on argo

elliptic cylinder 2,097,152 247,968 125,888 11h 33m 6h 12m
circular torus 2,097,152 868,352 474,112 7h 17m 4h 3m
general torus 4,194,304 448,702 226,512 14h 15m 6h 36m

Table 3. Wall time for mechanism design problems on our cluster and argo. Compared to the LPD
bound of [38], polyhedral homotopies cut the #paths about in half. The second example is easier
(despite the larger #paths) because of increased sparsity, and thus lower evaluation cost.

7

Algorithm 4.1 Dynamic distribution of cells executed by the manager.

Input: �ω, V , p. mixed-cell configuration, volume, #processors
Output: G−1(0). all solutions to G(x) = 0
if #�ω ≤ p then distribute path by path

for i from 1 to p − 1 do the manager is processor 0
compute (C, index); determine which path of which cell
send (C, index) to i; message to i-th worker

end for;
for k from p to V + p − 1 do distribute the rest of the paths

compute (C, index) from k; determine which path of which cell
receive(i,requestTag); i-th worker requests a job
send k to i; i-th worker can expect a job or terminate
if k ≤ V then

send (C, index) to i; send job to i-th worker
end if;

end for;
else distribute cell by cell

for i from 1 to p − 1 do the manager is processor 0
send (Ci,−1) to i; message to i-th worker

end for;
for k from p to #�ω − 1 + Vl + p − 1 do Vl is #paths of the last cell

receive(i,requestTag); i-th worker requests a job
if k > #�ω + Vl then all cells processed

k := V + 1; k signals termination
end if;
send k to i; i-th worker terminates according to k
if k ≤ #�ω then

send (Ck,−1) to i; send i-th worker a new cell
else if k ≤ #�ω + Vl then

send (Cl, k − #�ω + 1) to i; send i-th worker a new path
end if;

end for;
end if.

Algorithm 4.2 Dynamic distribution of cells executed by all the workers.

Input: G(x) = 0, V . generic system, total #paths
Output: a subset of G−1(0). as many solutions as load of the worker
do

receive k; terminate according to k
if k > V then exit loop; end if; terminate loop
receive (C, index); receive cell and indices to start solutions
create polyhedral homotopy ĜC(y, s) = 0; perform coordinate transformation
solve the start system ĜC(y, 0) = 0; one linear system to solve
track paths according to index; track Vol(C) paths or just one path
send solutions to manager; message to manager reporting results

end do.

8

