
Numerical Homotopy Algorithms

for Satellite Trajectory Control

by Pole Placement1

Jan Verschelde2 and Yusong Wang3

Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago

851 South Morgan (M/C 249)

Chicago, IL 60607-7045, USA

Abstract

The aim of this paper is to illustrate the application of numerical homotopy algorithms

to control the trajectory of a satellite. We design output feedback laws via pole place-

ment. The output feedback laws are computed by numerical homotopy algorithms,

which are based on enumerative geometry. We combine the use of MATLAB with

PHCpack.

2000 Mathematics Subject Classification. Primary 93B55. Secondary 14Q99,

65H10, 68W30, 93B27.

Key words and phrases. numerical homotopy algorithms, pole placement, satellite

trajectory control.

1 Introduction

The satellite trajectory control problem is a frequently occurring illustration in textbooks [4,

8]. For the purposes of this paper, the textbook models suffice, see [1] for a more realistic

model.

In section two we regard the output feedback laws for this problem as lines meeting four

given lines in projective 3-space. In the third section we outline the numerical homotopy

algorithms we use to find the feedback laws. In the last two sections we show how we combine

MATLAB and PHCpack [15] to find the feedback laws and to study their robustness.

While the scale of the control problem is rather modest, this paper is the first – to the

best of our knowledge – to apply the new Pieri homotopies (see [6], [7] and [10]) to a control

engineering problem, which appeared as case study in the literature.

Our methodology extends to the design of controllers with internal states, as our software

also implements the dynamic pole placement problem [13].
1The authors gratefully acknowledge the support of this work by the Campus Research Board of UIC.

This material is based upon work supported by the National Science Foundation under Grant No. 0105739

and Grant No. 0134611.
2E-mail: jan@math.uic.edu, URL: http://www.math.uic.edu/∼jan
3E-mail: ywang25@uic.edu

1

2 A Geometric View on the Pole Placement Problem

The relevance of algebraic geometry for the pole placement problem was realized in the

seventies, see the survey [2]. In this section we state the problem and derive the format of

the equations we solve to get the feedback laws.

We assume we are given a linear system with m inputs u ∈ Rm, and p outputs y ∈ Rp

by three matrices: A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rp×n, where n equals the number of

internal states stored by the vector x ∈ Rn. These three matrices define the system of linear

first order differential equations : ẋ = Ax + Bu, with output y = Cx. We assume the

system is completely observable and controllable. The most simple output feedback law can

be denoted by a single matrix F ∈ Cm×p, which leads to the feedback u = Fy. Elimination

of u and y leads to the following closed-loop system:

ẋ(t) = (A +BFC)x(t), ẋ(t) =
d

dt
x(t), (2.1)

whose behavior is determined by the eigenvalues of A+BFC.

Our problem is then to find feedback laws F , for given eigenvalues λi = 1, 2, . . . , n. Thus

F is defined by the equations

det(λiIn − (A+BFC)) = 0, i = 1, 2, . . . , n, (2.2)

where In is the identity matrix of size n. To derive the geometric model, we consider equations

equivalent to (2.2):

det

λiIn − (A+BFC) BF −B

0 Ip 0

0 0 Im

 = 0, i = 1, 2, . . . , n. (2.3)

The matrices BF and −B will serve us well in the reduction of λIn − (A + BFC) to In.

First we eliminate the BFC: we right multiply the second column of the matrix in (2.3) by

C and add the result to the first column. We remove BF by right multiplication of the third

column by F and addition of the result to the second column. So, we obtain

det

λiIn − A 0 −B

C Ip 0

0 F Im

 = 0, i = 1, 2, . . . , n. (2.4)

We multiply the first row of the matrix in (2.4) by (λiIn − A)−1 (inverse exists if λi is not

an eigenvalue of A) and then we eliminate C, subtracting C times the first from the second

row. Thus,

det

In 0 −(λiIn − A)−1B

0 Ip C(λiIn − A)−1B

0 F Im

 = 0, i = 1, 2, . . . , n, (2.5)

2

or equivalently,

det

(

Ip C(λiIn − A)−1B

F Im

)

= 0, i = 1, 2, . . . , n. (2.6)

In this equivalent formulation for our problem the given data: (A,B,C) and λi, i =

1, 2, . . . , n appear separate from the unknown feedback laws F .

For each eigenvalue λi, we create a matrix [C(λiIn − A)−1B Im]
T with m + p rows and

m columns. We interpret this matrix as the matrix whose columns contain the generators

of an m-plane. Then the feedback laws correspond to p-planes in Cm+p, and the equations

in (2.6) require the p-planes to intersect the given m-planes. For a complete intersection

problem: n = mp, because we have mp unknown coefficients in F ∈ Cm×p.

In Figure 1 we show an example in projective three space, where m = 2, and p = 2. A

2-plane in projective space, spanned by two generators, is a line in affine space. For visual-

ization purposes, the positive orthant of projective real space is mapped into a tetrahedron.

Figure 1 is computed with Maple, the worksheet is available via the first author’s homepage.

Figure 1: Two (solid) lines meet four given (dashed) lines in three space. At the left, one of

the four given lines is in special position, i.e.: one given line touches two other given lines.

The configuration at the right is generic. Its solution lines by homotopy continuation. As

the special line at the left moves to general position, we continuously adjust the two solution

lines so that they keep meeting the four given lines.

3

3 Numerical Homotopy Algorithms

The development of numerically stable algorithms for the pole placement is stated as an

open problem in [14]. Citing [3]: “the output feedback pole assignment problem (OPAP) is

essentially unsolved”.

The use of homotopies to numerically solve the polynomial systems defined by the pole

placement was already mentioned in [2]. In this section we outline the three different stages

of our method, using the following homotopies:

1. Pieri homotopies to solve one generic instance in complex space.

Geometric problems are often solved by bringing the input configuration from a general

to a special position where the solution can be determined by inspection, or by induc-

tion to a lower dimensional problem. If the solution paths defined by this deformation

stay finite and free of singularities – except possibly for some algebraic set – then the

principle of “conservation of number” applies. This principle is used in enumerative

geometry to count the number of solutions, but leads very naturally to an efficient

numerical homotopy algorithm to compute all solutions.

For our problem in (2.6), so-called Pieri homotopies were first defined in [6], and then

implemented and generalized in [7]. Recently, a more efficient version is described

in [10].

2. Cheater’s homotopy to solve one specific real instance.

With “real” we do not mean that the numbers need to be real, because eigenvalues

with nonzero imaginary parts lead to complex input planes, but that the input data

have a physical meaning. For the cheater’s homotopy to work, we assume we have

already solved a problem with similar structure, but with different coefficients. As it

is in general not obvious how to obtain the solutions to such a similar problem, there

is some cheating going on. For our problem, Pieri homotopies deliver the solutions to

a generic problem instance.

We can define the transition from the generic to the specific as a convex linear com-

bination between two systems of equations, defined in (2.6). In a nonlinear cheater’s

homotopy, we put the continuation parameter inside the determinant. In both cases,

singularities can only occur at the end of the paths.

A more general version of cheater’s homotopy [9] is coefficient-parameter polynomial

continuation [11], which can also be applied for the next type of homotopies.

3. Natural parameter homotopies for design and sensitivity analysis.

The natural parameters are the eigenvalues of the closed-loop system. As we wish to

move those eigenvalues, the corresponding feedback laws are varying continuously as

well. As with many design problems, the outcome of the design process can only be

4

evaluated through simulation. For fine tuning and sensitivity analysis of the feedback

laws it is important that we do not apply the Pieri homotopies or the Cheater’s ho-

motopy from a random complex instance to a real case. Note that eigenvalues are

generally chosen to minimize the sensitivity of the closed-loop system to errors [12].

These homotopy methods have been implemented in PHCpack [15]. In the computational

experiments MATLAB scripts were used to generate the input files with the matrices for

PHCpack. The solutions computed with homotopies were read from file by MATLAB scripts.

4 Solving Equations to Find the Feedback Laws

As in [8], polar coordinates are used for the satellite being in a circular equatorial orbit.

The goal of the feedback is to keep the satellite in the same orbit when disturbances such as

aerodynamic drag [4] cause it to deviate.

The state vector is x = [r ṙ θ θ̇], and the input is u = [ur ut], with ur and ut respectively

the radial and tangential thrusters. The linearized state-space equations are defined by the

matrices

A =

0 1 0 0

3ω20 0 0 2ω0r0
0 0 0 1

0 −2ω0/r0 0 0

and B =

0 0

1/m 0

0 0

0 1/mr0

, (4.7)

where the radius r0 and angular velocity ω0 are such that r
3
0ω
2
0 equals a constant. The mass

of the satellite is m. As we now have a system with two inputs, we also like to have two

outputs. We can define C ∈ R2×4 as some random matrix – which can be interpreted as a
random projection of the states onto a plane. Another choice of C that allows us to find

feedback laws is

C =

(

0 0 1 0

0 0 0 1

)

. (4.8)

This special choice of C is in agreement with the demonstration in [4, pages 659–660] that

the satellite is completely controllable with the tangential thruster ut only, thus without ur.

While this choice “works”, we obtained better numerical results with random choices for C.

Values for ω0 and r0 are chosen at random. While this may seem unrealistic, our choice can

be justified by an appropriate selection of units to measure distances and angles. We choose

eigenvalues for the closed-loop systems, two are complex conjugated, and two are real. In

particular, our selection of eigenvalues is (−2 + i,−2− i,−5,−7). Dividing the eigenvalues

with nonzero imaginary part by their length leads to better numerical results. In both cases,

the two feedback laws are real.

We use the convenience of the matrix manipulation capabilities in MATLAB to define the

input matrices [C(λiI4−A)
−1)B I2]

T for the four chosen eigenvalues λi. In (2.6) we multiply

5

the matrix with a random orthogonal matrix to simulate a random coordinate change. In

this way, the paths in the homotopies will not diverge because of the special shape of the

matrix, characterized by the positioning of the identity matrices.

The results of the homotopy methods for this small 2-input 2-output system come almost

immediate. Most of our efforts with an application of this small scale are spent on format

conversions. The sequence of operations goes as follows :

1. MATLAB generates input planes and writes to a file;

2. the file produced by MATLAB is converted into PHCpack format;

3. with PHCpack output planes are computed and written to a file;

4. the file produced by PHCpack is converted into MATLAB format;

5. the feedback laws are read into MATLAB for processing (see section 5).

The first task is done with a MATLAB script (see the appendix). For stages two and four

we wrote little C programs.

The computation of the two output feedback laws takes less than half a second on a SUN

Ultra-4 Workstation.

For larger systems with more states we will have more feedback laws to compute. For

example, with three inputs and three outputs, there are 42 feedback laws, and we can assign

9 eigenvalues. In the Pieri homotopies we trace 148 paths (in 52s 860ms cpu user time) to

solve a generic complex instance of the geometric problem. To solve a random real instance,

we start the cheater’s homotopy at the complex solutions of the generic instance. Tracing

those 42 paths takes 1m 52s 120ms cpu user time. The total cpu user time of the two stages

is 2m46s840ms. So our approach extends to larger multi-input multi-output systems.

5 Verification and Robustness Study

The first step after the computation of the feedback laws consists in verifying whether the

closed-loop system, defined by ẋ(t) = (A + BFC)x(t) has the desired behavior. This ver-

ification consists in comparing the initial given eigenvalues in the pole placement problem

with the computed eigenvalues of the matrix A+BFC.

For a choice (−2 + i,−2 − i,−5,−7) of the four eigenvalues, the computed eigenvalues

for the closed-loop system differ by as much as 10−9. If we choose the eigenvalues as

(−2+i√
5
, −2−i√

5
,−5,−7), the difference between given and computed eigenvalues lowers to 10−10.

It is quite plausible that by cranking up the number of decimal places in the computa-

tion, we can wipe out the roundoff errors and bring the computed eigenvalues arbitrarily

close to the given ones. However, the corresponding feedback laws may still be useless for

practical purposes as the matrices A and B which define the model are usually subject to

perturbations. And even if we knew the parameters ω0 and r0 exactly, we have to keep in

mind that our model is only an approximate linearized model. To investigate the quality of

the computed feedback laws, in a second stage, we compute condition numbers.

6

To estimate the condition numbers measuring the sensitivity of the feedback laws with

respect to changes in the parameters m, ω, and r, we can look at the condition numbers of

the solutions of the polynomial system. These numbers range between 106 and 107. Note

that these estimates ignore the structure of the problem and are therefore not very accurate.

Moreover, we are interested in the sensitivity of the eigenvalues of the resulting closed-loop

loop system.

In our robustness study, we follow the approach taken in [12]. If we perturb A and B

adding respectively ∆A and ∆B, then the error on the eigenvalues λi can be estimated by

||∆A+ (∆B)F ||

|yH
i xi|

, i = 1, 2, . . . , n, (5.9)

where vectors xi and yi denote the unit right and left eigenvectors of the closed-loop sys-

tem A+BFC. See [5, page 323] for the derivation of |yH
i xi| as the reciprocal of the condition

number for the eigenvalue λi.

The perturbation matrices ∆A and ∆B respect the specific problem structure, i.e.: they

are determined by ∆m, ∆ω and ∆r. In ∆A and ∆B, we work with relative errors:

∆A =

0 1 0 0

6ω20

∣

∣

∣

∆ω
ω0

∣

∣

∣
0 0 2ω0r0

(∣

∣

∣

∆ω
ω0

∣

∣

∣
+
∣

∣

∣

∆r
r0

∣

∣

∣

)

0 0 0 1

0 2ω0

r0

(∣

∣

∣

∆ω
ω0

∣

∣

∣
+
∣

∣

∣

∆r
r0

∣

∣

∣

)

0 0

(5.10)

and

∆B =

0 0
1
m

∣

∣

∆m
m

∣

∣ 0

0 0

0 1
mr0

(

∣

∣

∆m
m

∣

∣ +
∣

∣

∣

∆r
r0

∣

∣

∣

)

. (5.11)

If
∣

∣

∆m
m

∣

∣,
∣

∣

∆ω
m

∣

∣, and
∣

∣

∣

∆r
r0

∣

∣

∣
are all equal to 10−5, then the error on one real eigenvalue is less

than 10%. For 10−6, the errors on the two real eigenvalues are less than 10%. The errors on

all eigenvalues are less than 10% for magnitudes 10−7 or lower.

See [16] for other techniques to determine the range of the size of tolerable perturbations.

References

[1] R.H. Bishop, S.J. Paynter, and J.W. Sunkel. Adaptive control of space station with

control moment gyros. IEEE Control Systems, pages 23–27, October 1992.

[2] C.I. Byrnes. Pole assignment by output feedback. In Three Decades of Mathematical

Systems Theory, edited by H. Nijmacher and J.M. Schumacher, pages 13–78. Springer–

Verlag, Berlin, 1989.

7

[3] E.K. Chu. Optimization and pole assignment in control system design. International

Journal of Applied Mathematics and Computer Science 11(5):1035–1053, 2001.

[4] D.C. Dorf and R.H. Bishop. Modern Control Systems. Addison-Wesley, 1998.

[5] G.H. Golub and C.F. Van Loan. Matrix Computations. Third Edition. The Johns

Hopkins University Press, 1996.

[6] B. Huber, F. Sottile, and B. Sturmfels. Numerical Schubert calculus. J. of Symbolic

Computation 26(6):767–788, 1998.

[7] B. Huber and J. Verschelde. Pieri homotopies for problems in enumerative geom-

etry applied to pole placement in linear systems control. SIAM J. Control Optim.

38(4):1265–1287, 2000.

[8] T. Kailath. Linear Systems. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1980.

[9] T.Y. Li, T. Sauer, and J.A. Yorke. The cheater’s homotopy: an efficient procedure

for solving systems of polynomial equations. SIAM J. Numer. Anal. 26(5):1241–1251,

1989.

[10] T.Y. Li, X. Wang, and M. Wu. Numerical Schubert calculus by the Pieri homotopy

algorithm. To appear in SIAM J. Numer. Anal.

[11] A.P. Morgan and A.J. Sommese. Coefficient-parameter polynomial continuation. Appl.

Math. Comput., 29(2):123–160, 1989. Errata: Appl. Math. Comput. 51:207(1992).

[12] W.F. Moss. Vertical stabilization of a rocket on a movable platform. In Applied

Mathematical Modeling. A multidisciplinary approach, edited by D.R. Shier and K.T.

Wallenius, pages 363–381. Chapman & Hall/CRC 2000.

[13] M.S. Ravi, J. Rosenthal, and X. Wang. Dynamic pole placement assignment and

Schubert calculus. SIAM J. Control Optim. 34(3):813–832, 1996.

[14] J. Rosenthal and J.C. Willems. Open problems in the area of pole placement. In Open

Problems in Mathematical Systems and Control Theory, edited by V.D. Blondel, E.D.

Sontag, M. Vidyasagar, and J.C. Willems, pages 181–191. Springer–Verlag, 1998.

[15] J. Verschelde. Algorithm 795: PHCpack: A general-purpose solver for polynomial

systems by homotopy continuation. ACM Transactions on Mathematical Software

25(2):251–276, 1999. Software available at http://www.math.uic.edu/~jan.

[16] R.K. Yedavalli. Robust control design for aerospace applications. IEEE Transactions

on Aerospace and Electronic Systems 25(3):314–324, 1989.

8

Appendix: Matlab Script to generate the input planes

% Communications Satellite in a circular equatorial orbit

% This MATLAB script generates the input planes for the Pieri

% homotopy algorithm and writes those to the file Result.txt.

% The choice of eigenvalues is in the variable lambda below.

delete Result.txt;

diary Result.txt;

diary on;

n = 4; % dimension of ambient space

m = 2; % dimension of input space

p = 2; % dimension of output space

w = 0.345354; % angular velocity

r = 1.2342; % radius is distance of satellite to center of earth

ms = 0.74564; % mass of satellite

A=[0 1 0 0

3*w^2 0 0 2*w*r

0 0 0 1

0 -2*w/r 0 0];

B=[0 0

1/ms 0

0 0

0 1/(ms*r)];

C = rand(2,4);

format long

lambda = [complex(-2,1) complex(-2,-1) -5 -7];

ct = orth(rand(4)); % random coordinate change

Id = eye(m);

for j=1:n

M = lambda(j)*eye(n)-A;

Result = C/M*B;

for i=1:m

Result(i+p,:) = Id(i,:);

end;

disp(ct*Result);

end;

diary off;

Note that the random coordinate change (realized by the random matrix ct in the script)

is needed to make sure the solution will fit the localization pattern of the Pieri homotopies.

9

