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Abstract

The classical Theorem of Bézout yields an upper bound for the number of finite

solutions to a given polynomial system, but is very often too large to be useful for

the construction of a start system, for the solution of a polynomial system by means

of homotopy continuation. The BKK bound gives a much lower upper bound for

the number of solutions, but unfortunately, constructing a start system based on

this bound seems as hard as solving the original given polynomial system. This

paper presents a way for computing an upper bound together with the construction

of a start system. The first computation is performed symbolically. Due to this

symbolic computation, the constructed start system can be solved numerically more

efficiently. The paper generalizes current approaches for homotopy construction

towards the BKK bound.
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1 Introduction

Continuation methods can be applied to compute all solutions to a given polynomial
system F = (f1, f2, . . . , fn)

T , with fk ∈ C[x1, x2, . . . , xn] for k = 1, 2, . . . , n. Therefore,
together with a start system G, whose solutions are known, the system F is embedded
in a homotopy H:

H(~x, t) = γ(1− t)kG(~x) + tkF (~x) = ~0, γ, t ∈ C, k ∈ IN 0, see [2].(1)

As the continuation parameter t varies from 0 to 1, one can apply standard numerical
continuation methods [1, 19] to trace the solution paths.

The total degree d is defined as the product of all degrees dk = deg(fk), for k =
1, 2, . . . , n. The classical Theorem of Bézout [16] in projective space states that, if the
system F has a finite number of solutions, this number equals the total degree d. The
term ‘in projective space’ means that d includes finite solutions and solutions at infinity
as well, which are for most applications of no importance. It is our aim to compute all
finite solutions, without the calculation of the solutions at infinity.

In order to avoid the computation of solutions at infinity, Morgan and Sommese [13]
proposed to apply the multi-projective version of Bézout’s theorem [16]. In [18], Wampler,
Morgan and Sommese explained how to construct an m-homogeneous start system. For
a special class of polynomial systems, Li, Sauer and Yorke [10] developed the Random
Product Homotopy, well suited to solve polynomial systems belonging to this class. In
[17], Verschelde, Beckers and Haegemans extended the use of the Newton Homotopy [1]
to more than one solution path. The problem is to construct a trivial to solve start
system in order to compute efficiently all finite solutions.

In [5], Canny and Rojas proved the Vertex Coefficient Theorem. They show that the
BKK bound, named after Bernshtěın [3], Kushnirenko [9] and Khovanskǐı [8], is an exact
bound for the number of solutions in Cn

0 , C0 = C \ {0}, when only certain coefficients of
the system are generally chosen. This BKK bound is often much better than the Bézout
number for the same system. However there are two difficulties for applying the BKK
bound. First, computing the BKK bound for general dimensions is very complicated.
The second major problem is that no algorithm seems to be available at the moment for
the construction of a trivial to solve system that has exactly a number of nonsingular
solutions equal to the BKK bound and that can be useful for homotopy continuation.

In this paper, a new upper bound for the number of solutions in Cn will be intro-
duced, which is not difficult to compute. The construction of a start system follows
then immediately. This paper generalizes the current approaches for constructing start
systems to be used for polynomial continuation towards the BKK bound. This means
that in general our upper bound lies between the bounds obtained by current practical
approaches [10, 13] and the BKK bound [3, 5, 8, 9].

The paper consists of a symbolic and a numerical part. The upper bound will be
computed symbolically in the next section, while in the third section a construction
algorithm will be presented, based on the symbolically computed upper bound. Then
the start system G will be constructed and solved numerically. The latter is performed
efficiently by the application of the results of the symbolic computations. Practical
applications follow. Our conclusions are stated in the last section.
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2 On the number of finite solutions

This section is organized as follows. First the definition of the BKK bound will be given.
Then, based on the supporting set structure, a new upper bound for the number of finite
solutions can be computed, which leads immediately to the construction of a start system.

2.1 The BKK bound

Bernshtěın [3], Kushnirenko [9] and Khovanskǐı [8] introduced an upper bound for the
number of solutions in Cn

0 of a system of Laurent polynomials. Denote a Laurent poly-
nomial f ∈ C[x1, x

−1
1 , x2, x

−1
2 , . . . , xn, x

−1
n ] by f =

∑

q ∈ ZZ
n

cq x
q1
1 x

q2
2 · · ·x

qn
n , cq ∈ C, using a

multi-index notation.

Definition 2.1 The support of f, denoted by supp(f), is the set of all q ∈ ZZn, for which
cq 6= 0.

Definition 2.2 The Newton polytope of f is the convex hull of supp(f) in IRn.

To the system F = (f1, f2, . . . , fn)
T , an n-tuple of Newton polytopes P = (P1, P2, . . . , Pn)

T

is associated, where each Pk is the respective Newton polytope of fk, for k = 1, 2, . . . , n.

Let P1 + P2 = {x1 + x2 | x1 ∈ P1, x2 ∈ P2} be the sum of two polytopes P1 and P2.

Definition 2.3 (See [3].) The BKK bound is defined as the mixed volume V (P):

V (P) = (−1)n−1
∑

i

Vn(Pi) + (−1)n−2
∑

i<j

Vn(Pi + Pj) + · · ·+ Vn(P1 + P2 + · · ·+ Pn)(2)

where Vn(P ) stands for the standard n-dimensional Lebesgue measure.

For a more detailed discussion about these definitions, we refer to the appendix of [15].
Bernshtěın [3], Kushnirenko [9] and Khovanskǐı [8] proved the following

Theorem 2.1 Let F be a system of Laurent polynomials, with Newton polytopes P =
(P1, P2, . . . , Pn)

T
. Then the number of isolated solutions in Cn

0 is bounded by the mixed

volume V (P).

This theorem justifies the name BKK bound for the mixed volume V (P).

Example 2.1 Consider the following polynomial system:

F (~x) =

{

f1 : x2
1 + x1x2 + 3x1 − 1 = 0

f2 : x2
1 + 2x1x2 + x2 + 1 = 0

(3)

The total degree equals 4, while there are only 3 finite solutions.

Figure 1 pictures the Newton polytopes needed for the calculation of the mixed volume.
The powers of x1 and x2 are denoted by q1 and q2 respectively.
Let P = (P1, P2), then the mixed volume V (P) is computed as follows:

V (P) = −(V2(P1) + V2(P2)) + V2(P1 + P2) = −(1 +
3

2
) +

11

2
= 3(4)

where V2 stands for the standard area. Thus the BKK bound equals 3.
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Figure 1: Newton polytopes P1, P2 supporting f1, f2 respectively.

The Vertex Coefficient Theorem, proved by Canny and Rojas [5], states that the BKK
bound depends strongly on coefficients corresponding to vertices and boundaries of the
Newton polytope and is only weakly dependent on its remaining coefficients. This means
that the BKK bound is exact when only certain coefficients are generally chosen. The
BKK bound indicates the lowest number of paths that must be traced in a homotopy
continuation environment, for the computation of all solutions in Cn

0 . However, it is not
clear at the moment how such an ideal homotopy can be constructed. Therefore, we
propose a different upper bound, which leads immediately to the construction of a trivial
to solve polynomial system.

2.2 The set structure

Instead of associating an n-tuple P of polytopes to the system F , a set structure S will
be used to compute an upper bound.

Let X denote {x1, x2, . . . , xn}, the set of unknowns of a polynomial system of n equations.

Definition 2.4 A set structure S is defined as S = (S1, S2, . . . , Sn)
T , where each Sk is a

set of subsets of X, for k = 1, 2, . . . , n.

Definition 2.5 Let f ∈ C[x1, x2, . . . , xn] and S be a set of subsets of X. Then S is said
to be supporting for the polynomial f if it satisfies the following:

1. For each term cqx
q
k of the polynomial f , there are q sets of S that contain xk.

2. For each term cqx
q1
1 x

q2
2 · · ·x

qn
n of the polynomial f , there exist q1 sets of S that

contain x1 such that, if they are removed from S, the resulting set of subsets S̃ is
supporting for the term cqx

q2
2 · · ·x

qn
n .

Definition 2.6 Given a polynomial system F = (f1, f2, . . . , fn), with fk a polynomial in
n unknowns, for k = 1, 2, . . . , n.
The set structure S = (S1, S2, . . . , Sn) is said to be supporting for the polynomial system
F if each set Sk is supporting for the respective polynomial fk, for all k = 1, 2, . . . , n.
Then S is the supporting set structure for the polynomial system F .
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1 {x1} {x1, x2}
2 {x1} {x1, x2}

Table 1: The supporting set structure S for F

Example 2.2 For the system presented in Example 2.1, the supporting set structure S is
displayed in Table 1.

As with m-homogenization [13], there are many ways to choose the set structure S, but
in practice, this choice follows from the structure of the polynomial system. Figure 2
shows the pseudo code for a heuristic construction of the supporting set of sets for one
polynomial. By using the algorithm proposed in Figure 2, a supporting set structure for
a polynomial system can be constructed. The application of the algorithm is illustrated
in Figure 3. It satisfies the conditions of Proposition 3.1. However, this algorithm is
only a proposal. It can happen that better supporting set structures exist, which are not
generated by this algorithm. With better, we mean a set structure that yields a lower
upper bound. The last example of the fourth section is an illustration of this. If we speak
of the set structure S, we mean this set structure S leading to the lowest upper bound.
However, one may not conclude that such a set structure is unique.

2.3 The upper bound based on the set structure

This section explains the computation of a new upper bound for the number of finite
solutions of a polynomial system based on its supporting set structure.

Definition 2.7 Let S = (S1, S2, . . . , Sn)
T be a set structure. An acceptable class of S,

denoted by CS , is an n-tuple of subsets of X such that for k = 1, 2, . . . , n the following
holds:

1. The k-th subset of CS belongs to Sk.

2. Any union of k subsets of CS contains at least k elements of X.

If an n-tuple of subsets of X satisfies the first condition, the second one can be checked
by generating all possible unions U of k sets in the tuple and checking if #U ≥ k, for all
k = 1, 2, . . . , n. This is done in the algorithm shown in Figure 4.
The following definition characterizes the number B∗

S:

Definition 2.8 Let F be a polynomial system and S a supporting set structure for F .
Then B∗

S is defined as the number of all acceptable classes of S.

The characterization of B∗
S in Definition 2.8 enables the calculation. By generating all n-

tuples of the set structure S that satisfy the first condition of Definition 2.7, the algorithm
shown in Figure 4 can be used for checking if the n-tuple is an acceptable class.
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function BUILD SET OF SETS ( f : polynomial ) return Set of Sets is

– – ON ENTRY : f(~x) =
N

∑

i=1

ci x
di1

1 xdi2

2 · · ·xdin
n .

– – ON RETURN : T = {T1, T2, . . . , Td}, with d = deg(f).

d : natural := deg(f);
m : natural;

begin

for k in 1, 2, . . . , d loop
Tk := ∅;

end loop;

for i in 1, 2, . . . , N loop
if 6 ∃k < i: dkj ≥ dij, j = 1, 2, . . . , n
then m := 1;

for k in 1, 2, . . . , n loop
for l in 1, 2, . . . , dik loop
Tm := Tm ∪ {xk};
m := m + 1;

end loop;
end loop;

end if;
end loop;

return T;

end BUILD SET OF SETS;

Figure 2: Algorithm for the heuristic construction of a set of sets.
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The polynomial f :

f = x2
1 + x1x2 + 3x1 − 1

i = 1 i = 2 i = 3 i = 4
d11 = 2 d21 = 1 d31 = 1 d41 = 0
d12 = 0 d22 = 1 d32 = 0 d42 = 0

Initalization:

d := deg(f) = 2;
T := { ∅ , ∅ };

T1 T2

The execution of the main loop:

i = 1 6 ∃k < 1
m := 1;

k := 1; d11 = 2
l := 1; T1 := T1 ∪ {x1}; m := m + 1;
l := 2; T2 := T2 ∪ {x1}; m := m + 1;

k := 2; d12 = 0

i = 2 6 ∃k < 2, because d22 = 1 > d12 = 0
m := 1;

k := 1; d21 = 1
l := 1; T1 := T1 ∪ {x1}; m := m + 1;

k := 2; d22 = 1
l := 1; T2 := T2 ∪ {x2}; m := m + 1;

i = 3 ∃k = 1, d11 = 2 ≥ d31 = 1, d12 = 0 ≥ d32 = 0

i = 4 ∃k = 1, d11 = 2 ≥ d41 = 0, d12 = 0 ≥ d42 = 0

Returning the result :

return T = {{x1}, {x1, x2}};

Figure 3: An example illustrating the construction of a set of sets.
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function IS ACCEPTABLE ( T : n-tuple ) return boolean is

– – ON ENTRY : T = (T1, T2, . . . , Tn)
T , an n-tuple of subsets of X.

T satisfies the first condition of Definition 2.7.

– – ON RETURN : true if T is an acceptable class, false otherwise.

begin

for k in 2, 3, . . . , n loop

– – (T1, . . . , Tk−1)
T is acceptable

for l in 1, 2, . . . , k − 1 loop

for all possible unions U of l sets out of (T1, . . . , Tk−1)
T loop

if #(U ∪ Tk) < k

then return false;
end if;

end loop;
end loop;

end loop;
return true;

end IS ACCEPTABLE;

Figure 4: Algorithm for checking if an n-tuple is an acceptable class.

The following gives the meaning of the defined number B∗
S :

Proposition 2.1 Let F be a polynomial system with supporting set structure S. If F
has a finite number of solutions in Cn, counted with multiplicities, then this number is

lower than or equal to B∗
S .

It will be proved in the next section.

Example 2.3 For the system of Example 2.1, the upper bound B∗
S, based on the set

structure proposed in Example 2.2, will be calculated as follows

B∗
S = 1 + 1 + 1 = 3 .

{{x1}, {x1, x2}} {{x1, x2}, {x1}} {{x1, x2}, {x1, x2}}
(5)

Underneath the formula (5), the acceptable classes are indicated. This yields an upper
bound for the number of finite solutions of the system presented in Example 2.1, which
is better than the total degree.

7



3 Homotopy Construction

In this section, the algorithm for the construction of a random product system G will be
explained. Theoretical results follow.

3.1 Random Product Start Systems

Definition 3.1 Let S = {T1, T2, . . . , Tm} be a set of subsets of X. A random product
start polynomial g based on S is defined as

g =
m
∏

k=1



α
(k)
0 +

∑

xi∈Tk

α
(k)
i xi



(6)

where all α
(k)
i and α

(k)
0 are randomly chosen complex numbers, different from zero.

Definition 3.2 Let S = (S1, S2, . . . , Sn) be a set structure. A random product start
system G based on S is defined as the polynomial system G = (g1, g2, . . . , gn), where each
gk is a random product start polynomial based on Sk, for k = 1, 2, . . . , n.

Example 3.1 For the system of Example 2.1, based on the supporting set structure, see
Example 2.2, the following random product start system G can be constructed:

G(~x) =

{

(x1 + α1)(x1 + α2x2 + α3) = 0
(x1 + β1)(x1 + β2x2 + β3) = 0

(7)

where α1, α2, α3, β1, β2 and β3 are randomly chosen numbers. Thus, applying this start
system, only 3 paths remain to be traced. Note that the classical and the 2-homogeneous
Bézout numbers all equal 4.

Observe the duality between the computation of the upper bound B∗
S and the solution

of the associated start system G. More precisely, for each acceptable class of the sup-
porting set structure S, there corresponds one linear system, yielding a regular solution
of the start system. For example, for the first acceptable class in the formula (5) for
calculating B∗

S in Example 2.3, the following correspondence holds:

{

{x1}
{x1, x2}

}

⇐⇒

{

x1 + α1 = 0
x1 + β2x2 + β3 = 0

(8)

Definition 3.3 A solution to a polynomial system is nonsingular if the Jacobian matrix
has full rank.

Theorem 3.1 Let S = (S1, S2, . . . , Sn) be a given set structure. Then for every random
choice of the coefficients of the start polynomials, except for a set of measure zero, the

random product start system G has exactly B∗
S finite nonsingular solutions, where B

∗
S

equals the BKK bound of G.
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Proof. The BKK bound of the system G will be computed, by considering all linear
systems that come out of the random product system G. First some notations are needed.
Let P = (P1, P2, . . . , Pn) be the n-tuple of Newton polytopes of G. Because each equation
gi of G is the product of linear equations, each polytope Pi can be written as Pi =
Li1 + Li2 + . . .+ Limi

, where mi = #Si and where each Lij is the Newton polytope of a
linear equation. Because of the fact that the mixed volume V (P) is multilinear, see [3]
[15, appendix A.4], V (P) is the sum of all mixed volumes V (L1j1 , L2j2, . . . , Lnjn

), with
1 ≤ ji ≤ mi, for all i = 1, 2, . . . , n. Denote then the corresponding linear systems by
A(J)~x = b(J), using a multi-index notation, J = (j1, j2, . . . , jn), where for each linear
system MJ nonzero coefficients are involved. Let N denote the total number of nonzero
coefficients which can be chosen freely in the start polynomials, then MJ ≤ N .

For each linear system A(J)~x = b(J), there are two possibilities:

1. If the linear system corresponds to an acceptable class, then the system has one fi-
nite solution and V (L1j1, L2j2 , . . . , Lnjn

) = 1. Except for the case where det(A(J)) =
0, which can be expressed by a polynomial equation in MJ unknowns determining
a space of dimension MJ − 1, a set of measure zero in CN .

2. If the linear system does not correspond to an acceptable class, then there is no
finite solution and V (L1j1 , L2j2, . . . , Lnjn

) = 0. In this case, the second condition of
Definition 2.7 is violated. This means that there are k sets, whose union contains
less than k unknowns. Denote this union by the set S, with s = #S and let k = s+r,
with r ≥ 1. So the linear system contains s + r equations in the unknowns of the
set S, which has in general no finite solution. The exceptional case where there is a
finite solution corresponds to the case where all possible choices of s+ 1 equations
out of these s + r equations are linearly dependent. Denote the number of all
possible choices by c and denote all choices of s + 1 equations by A(Jl)~x = b(Jl),
for l = 1, 2, . . . , c. The exceptional case can then be expressed by c polynomial
equations, defined by det(A(Jl)|b(Jl)) = 0, yielding spaces of dimension MJ − kl,
with all kl ≥ 1, for l = 1, 2, . . . , c. Hence, in order to have a finite solution, the
coefficients of these s+ r equations must belong to the intersection of these spaces
of measure zero, which is again a space of measure zero in CN .

The finite union of sets of measure zero is also a set of measure zero in CN . Except
for this set of measure zero, there are exactly B∗

S linear systems whose matrices are
nonsingular. Multiple solutions can only occur when two linear systems are identical,
which is again a choice of the coefficients belonging to a set of measure zero. Hence,
except for some set of measure zero, G has exactly B∗

S finite nonsingular solutions and
B∗

S equals the BKK bound V (P). 2

The start system can be solved by computing all solutions to the linear systems, but
one has only to solve these linear systems that correspond to acceptable classes. There is a
one-to-one correspondence between the set structure S and the start system G. Positions
within the set structure S determine linear systems to be solved. Thus, the algorithm
for computing B∗

S should also give the positions corresponding to the acceptable classes
in order to solve the start system G more efficiently. For the solution of the start system
in Example 3.1, only 3 linear systems must be solved, instead of 4.

9



3.2 Theoretical results

Lemma 3.1 Let F be a polynomial system with supporting set structure S and G the

random product start system based on S. Define the homotopy R by

R(~x, t) = G(~x) + tF (~x).(9)

Then for all t, the system R(~x, t) = ~0 has not more than B∗
S finite nonsingular solutions.

Proof. By Theorem 3.1, the system G has exactly B∗
S finite nonsingular solutions. By

definition of the random product system G, the Newton polytopes of G contain those of
F . Therefore, the Newton polytopes remain invariant, for all t. Hence, the BKK bound
for all systems R(~x, t) = ~0 equals B∗

S. 2

Definition 3.4 A solution to a polynomial system is called geometrically isolated if there
exists a neighborhood of the solution that contains no other solution.

Theorem 3.2 allows the usage of the random product start system G in a homotopy
continuation environment.

Theorem 3.2 Let F be a polynomial system with supporting set structure S. Let G be
the start system based on the set structure S with exactly B∗

S nonsingular solutions.

Consider the following homotopy:

H(~x, t) = γ(1− t)kG(~x) + tkF (~x) = ~0, γ ∈ C, t ∈ [0, 1], k ∈ IN 0.(10)

Then for all, but a finite number of angles θ, γ = reiθ, r ∈ IR+
0 , the following holds:

1. H−1(0) consists of smooth paths over [0, 1) and every geometrically isolated solution
of F (~x) = ~0 has a path converging to it;

2. if m0 is the multiplicity of a geometrically isolated solution ~z0, then ~z0 has exactly

m0 paths converging to it;

3. the paths are strictly increasing in t, dt
ds
> 0, for t ∈ [0, 1) where s is the arc length

parameter.

Proof. First a homogenization of the homotopy will be described. To the k-th equation
of F and G corresponds the supporting set Sk. If xj occurs in jl sets of Sk, then, for the
s-th occurrence of xj, xj will be replaced by xjs. As this introduces new unknowns, the
following linear equations will be added in order to keep the same solutions:

xj1 − xjs = 0 for s = 2, 3, . . . , jl.(11)

By replacing xjs in the k-th equation by xkjs and adding the following linear equations

x1j1 − xkj1 = 0 for k = 2, 3, . . . , n for j = 1, 2, . . . , n(12)

the solutions remain unchanged and all sets belonging to the set structure S can be
linearized into one partition Z. With respect to this partition Z, both systems have the

10



same multi-homogeneous structure. Denote the classical projective space by IP 1. The
unknowns belonging to the i-th set Si of the partition Z will be embedded in an mi-
dimensional projective space IPmi , where mi = #Si. The direct product of all projective
spaces IPmi will be denoted by IP .

Consider the multi-homogeneous homotopy

H̃ = µ0G̃(~z) + µ1F̃ (~z), (µ0, µ1) ∈ IP 1,(13)

where ~z belongs to the multi-projective space IP . Let Ỹ be the union of the irreducible
components of H̃−1(~0) in IP which contain at least one of the B∗

S nonsingular finite
solutions of G̃, Ỹ is an algebraic set in IP × IP 1. By Theorem 3.1, for (1, 0) ∈ IP 1, Ỹ
contains exactly B∗

S nonsingular finite solutions. Denote the natural projection on IP 1 by

π2 : IP × IP 1 → IP 1.(14)

Let U ⊂ Ỹ be the set of points where singularities occur. By [6, Lemma, p. 97], U is
an analytic set, and by Chow’s Theorem [7, p. 167], U is an algebraic set. By the Main
Theorem of elimination theory [14, p. 33], the projection of U , π2(U) is an algebraic set.
π2(U) is a proper subset of IP 1, because for (1, 0) all solutions are nonsingular. Hence,
π2(U) is finite.

Let V ⊂ Ỹ be the set of points were solutions at infinity occur. V is an algebraic
set and so is its projection π2(V ). Because for (1, 0) all B∗

S solutions are finite, π2(V ) is
a proper algebraic set in IP 1. Hence, π2(V ) is finite. Let W = π2(U) ∪ π2(V ). Because
W ⊂ IP 1 is finite, only a finite number of rays reiθ can intersect W . Since then no
singularities occur for the interval [0, 1), dt

ds
> 0. Hence, the smoothness property is

proved.

Consider the homotopy H in affine space, with set of paths Y . Let ~z0 be a nonsingular
isolated finite solution of F . By the Implicit Function Theorem [14, p. 10–11], there are
unique convergent power series in t to denote the solutions in the neighborhood of ~z0.
So the solution ~z0 can be extended for t < 1. Because the solution is finite, for t < 1,
the extended solution is also finite. By the smoothness property, there exists a path,
parameterized by t ∈ (0, 1). By Lemma 3.1, the path that ends at ~z0, belongs to Y .

Let ~z0 be an isolation solution of F with multiplicity m0. By a slight perturbation
of F , for t < 1, m0 isolated regular solutions lie in the neighborhood of ~z0. According
to previous reasoning, every isolated regular solution is reached by a path starting at a
solution of G. Hence, for t → 1, every isolated solution ~z0 with multiplicity m0, has m0

paths converging to it. 2

In the proof, a transformation has been made into a higher dimensional space. Because
of practical considerations, continuation happens in the n-dimensional space. Otherwise,
the computational advantage of this approach would be destroyed.

The following can be considered as a generalization of Bézout’s theorem.

Corollary 3.1 If F has a finite number of solutions in Cn, counted with multiplicities,

then this number is lower than or equal to B∗
S .
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The following illustrates the usefulness of the upper bound B∗
S w.r.t. the total degree d

of the polynomial system.

Proposition 3.1 Let F be a polynomial system with supporting set structure S, where
S = (S1, S2, . . . , Sn)

T
. If the number of sets in Sk, for all k = 1, 2, . . . , n, does not exceed

dk, the degree of the k-th equation of F , then B
∗
S ≤ d, where d is the total degree of F .

Proof. Based on the set structure S, a random product start system G can be con-
structed. G has exactly B∗

S finite nonsingular solutions. While the number of sets in Sk

does not exceed dk, deg(gk) ≤ dk, where gk is the k-th equation of G. Hence, B∗
S ≤ d. 2
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4 Applications

4.1 Polynomial systems

All systems presented, occur in the literature [4, 11, 12, 19] and are coming from practical
applications. We focus on a class of systems for which B∗

S yields a sharper upper bound
than the Bézout number obtained by m-homogenization and for which the Random
Product Homotopy cannot be applied. Together with the system, the supporting set
structure will be written. For the first three systems, the set structure has been generated
by the algorithm shown in Figure 2. But for the fourth example, a better supporting
set structure exists, yielding a lower upper bound. Also the partition Z of the set of
unknowns will be given, yielding the lowest m-homogeneous Bézout number, denoted by
BZ . In [13], one can find a combinatorial definition of BZ .

1. This system is derived from optimizing the Wood function [12]:

FA(~x) =



















200x3
1 − 200x1x2 + x1 − 1 = 0

−100x2
1 + 110.1x2 + 9.9x4 − 20 = 0

180x3
3 − 180x3x4 + x3 − 1 = 0

−90x2
3 + 9.9x2 + 100.1x4 − 20 = 0

The total degree of this system equals 36, while there is only one real solution and
8 complex conjugate solutions.
Table 2 shows the supporting set structure S, which yields B∗

S = 16.

1 {x1} {x1} {x1, x2}
2 {x1} {x1, x2, x4}
3 {x3} {x3} {x3, x4}
4 {x3} {x2, x3, x4}

Table 2: The supporting set structure S for FA.

Taking Z = {{x1}, {x2, x4}, {x3}}, BZ = 25.

2. The following chemical equilibrium problem has been stated in [11]:

FB(~x) =



















































x1x2 + x1 − 3x5 = 0
2x1x2 + x1 + 2R10x

2
2 + x2x

2
3 +R7x2x3

+R9x2x4 +R8x2 − Rx5 = 0
2x2x

2
3 +R7x2x3 + 2R5x

2
3 +R6x3 − 8x5 = 0

R9x2x4 + 2x2
4 + 4Rx5 = 0

x1x2 + x1 +R10x
2
2 + x2x

2
3 +R7x2x3 +R9x2x4

+R8x2 +R5x
2
3 +R6x3 + x2

4 − 1 = 0

The total degree equals 108, but there are only 4 real and 12 complex solutions.
The constants R and Rj can be found in [11].
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The supporting set structure S is listed in Table 3, yielding B∗
S = 44.

1 {x1, x5} {x2}
2 {x3} {x2, x3, x4} {x1, x2, x5}
3 {x3} {x3} {x2, x5}
4 {x4} {x2, x4, x5}
5 {x3} {x2, x3, x4} {x1, x2, x4}

Table 3: The supporting set structure for FB.

The lowestm-homogeneous Bézout number BZ = 56, with Z = {{x1}, {x2, x4, x5}, {x3}}.

3. The third example is a system coming out of an application in the field of electro-
chemistry. It is known as problem 601 in [19].

FC(~x) =



















a1x
6
2 + a2x

5
2 + a3x

4
2 + a4x

2
1x3 + a5x

3
2 + a6x

2
2 + a7x2 + a8 = 0

a9x
5
2 + a10x

4
2 + a11x

2
1x2 + a12x

2
1x3 + a13x

3
2

+a14x1x2 + a15x
2
2 + a16x2 + a17 = 0

a18x
2
1 + a19x1x3 + a20x2 + a21 = 0

The total degree equals 60, while there are only 13 solutions. The coefficients aj
for this problem are available on request to the author of [19].
In Table 4 the supporting set structure S is displayed, yielding B∗

S = 34.
With Z = {{x1}, {x2}, {x3}}, the lowest m-homogeneous Bézout number BZ = 48.

4. The last system belongs to a family of systems, given in [4]:

FD(~x) =































x1 + x2 + x3 + x4 + x5 = 0
x1x2 + x2x3 + x3x4 + x4x5 + x5x1 = 0

x1x2x3 + x2x3x4 + x3x4x5 + x4x5x1 + x5x1x2 = 0
x1x2x3x4 + x2x3x4x5 + x3x4x5x1 + x4x5x1x2 + x5x1x2x3 = 0

x1x2x3x4x5 − 1 = 0

The total degree equals 120, but there are only 70 finite solutions.
In Table 5 the supporting set structure is displayed, yielding B∗

S = 108. Although
this does not substantially improve the total degree, it is an interesting example,
because the heuristic algorithm presented in Figure 2 fails to give a supporting set
structure which leads to a lower upper bound than the total degree. It justifies the

1 {x2} {x2} {x2} {x1, x2} {x1, x2} {x2, x3}
2 {x2} {x2} {x1, x2} {x1, x2} {x2, x3}
3 {x1, x2} {x1, x3}

Table 4: The supporting set structure for FC .
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1 {x1, x2, x3, x4, x5}
2 {x1, x3} {x2, x4} {x5}
3 {x1} {x2} {x3} {x4} {x5}
4 {x1} {x2} {x3} {x4} {x5}
5 {x1} {x2} {x3} {x4} {x5}

Table 5: The supporting set structure for FD.

generality of Definition 2.5. A consequence of this is the fact that the total degree
of the start system G can now be larger than the total degree of the system F that
has to be solved. Therefore, for solving the start system G, more computational
time can be gained by making use of the positions corresponding to the acceptable
classes, see Table 6.
By using m-homogenization, no better upper bound than the total degree can be
found, so Z = {{x1, x2, x3, x4, x5}}, with BZ = 120.

4.2 Performance

Table 6 shows why it is better to use our method for the construction of a start system.
For the computation of the N finite solutions, during continuation, d, BZ and B∗

S solution

d BZ B∗
S N

PA 36 25 16 9
PB 108 56 44 16
PC 60 48 34 13
PD 120 120 108 70

Table 6: Performance of the homotopies.

paths must be traced, when the start system is based on the total degree d, on the m-
homogeneous Bézout number BZ or on the upper bound B∗

S .

The algorithms for computing B∗
S , given the set structure S, and for constructing and

solving the start system G have been implemented on a SUN 3/280. Execution times,
measured in cpu seconds, described in Table 7 only have a relative meaning.
As demonstrated in Table 7, one sees that, with the effort of computing B∗

S , the start
system G can be solved more efficiently, because of the fact that the acceptable classes
are retained. Otherwise, all possible linear systems must be solved, when the numerical
calculations are based on the total degree d of the start system.
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Computing Solving G

B∗
S based on B∗

S based on d

PA 0.040 0.460 0.920
PB 0.240 1.720 3.660
PC 0.060 0.460 1.000
PD 0.520 4.100 12.580

Table 7: Performance of the algorithms.

5 Conclusions

As start systems must be trivial to solve, random product systems are useful to the
homotopy continuation method to solve polynomial systems. This paper describes a
condition upon random product start systems, together with an efficient algorithm to
construct and to solve them. Due to symbolic preprocessing, the start system can be
solved efficiently. Finally, an efficient homotopy has been constructed symbolically.
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