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Abstract. Homotopy continuation methods have proven to be reliable and efficient
to approximate all isolated solutions of polynomial systems. In this paper we show
how we can use this capability as a blackbox device to solve systems which have
positive dimensional components of solutions. We indicate how the software pack-
age PHCpack can be used in conjunction with Maple and programs written in C.
We describe a numerically stable algorithm for decomposing positive dimensional
solution sets of polynomial systems into irreducible components.
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1 Introduction

Using numerical algorithms to solve polynomial systems arising in science and
engineering with tools from algebraic geometry is the main activity in “Nu-
merical Algebraic Geometry.” This is a new developing field on the crossroads
of algebraic geometry, numerical analysis, computer science and engineering.
One of the key problems in this area (and also in Computational Algebraic
Geometry [10]) is to decompose positive dimensional solution sets into irre-
ducible components. A special instance of this problem is the factoring of
polynomials in several variables.
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With the dictionary in Table 1 we show how to translate the key con-
cepts of algebraic geometric to define an irreducible decomposition into data
structures used by numerical algorithms. For each irreducible component we
find as many generic points as the degree of the component. With this set
of generic points we construct filters that provide a probability-one test to
decide whether any given point belongs to that component.

We say that an algorithm is a probability-one algorithm if the algorithm
depends on a choice of a point in an irreducible variety X and the algorithm
works for a Zariski open dense set points U ⊂ X .

For example, consider that we want to check whether a polynomial p(x) on
C is identically zero, We might have as our algorithm: take an explicit random
x∗ ∈ C and check if p(x∗) = 0. Then p(x) is identically zero if p(x∗) = 0.
Here X := C. The algorithm fails precisely when p(x) is not identically zero
and p(x∗) = 0. Since p(x) is not identically zero, p−1(0) is finite and we need
to choose x∗ ∈ U := C \ p−1(0). We are assuming that a random point on C

will not lie in p−1(0). Of course, since we are working with machine numbers,
there is an exceedingly small chance we will be wrong, e.g., see [34]. Usually
we choose not one but many constants in an algorithm, e.g., the coefficients
of the equation of a random hyperplane. In this case, the point will be the
vector made up of the coefficients.

Numerical Algebraic Geometry Dictionary

Algebraic example Numerical
Geometry in 3-space Analysis

variety collection of points, polynomial system
algebraic curves, and + union of witness point sets, see below

algebraic surfaces for the definition of a witness point

irreducible a single point, or polynomial system
variety a single curve, or + witness point set

a single surface + probability-one membership test

generic point random point on point in witness point set; a witness point
on an an algebraic is a solution of polynomial system on the

irreducible curve or surface variety and on a random slice whose
variety codimension is the dimension of the variety

pure one or more points, or polynomial system
dimensional one or more curves, or + set of witness point sets of same dimension

variety one or more surfaces + probability-one membership tests

irreducible several pieces polynomial system
decomposition of different + array of sets of witness point sets and
of a variety dimensions probability-one membership tests

Table 1. Dictionary to translate algebraic geometry into numerical analysis.
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The goal of this paper is to elaborate the sentence “all algorithms have
been implemented as a separate module of PHCpack” in recent papers [34–
38], a sequence that has its origin in [39]. PHCpack [42] is a general purpose
numerical solver for polynomials systems. In this paper we describe the ex-
tensions to this package, with a special emphasis on interfaces.

Our main tool is homotopy continuation, which has proven to be reliable
and efficient to compute approximations to all isolated solutions of polyno-
mials systems. Nowadays [26], this computation involves a combination of
computational geometry techniques to calculate the mixed volume of the tu-
ple of Newton polytopes of the polynomial system and numerical methods to
follow the solution paths defined by the homotopies.

After outlining the design of PHCpack, reporting on an interface to fast
mixed volume calculations, we describe a simple Maple procedure to call
the blackbox solver of PHCpack. Via sampling and projecting we obtain a
numerical elimination procedure. The algorithms are numeric-symbolic: with
numerical interpolation we construct equations to represent the solution com-
ponents. In section four we illustrate this sampling on a three dimensional
Burmester linkage, using Maple as plotting tool. Since factoring of polyno-
mials in several variables is a special instance of our general decomposition
algorithms, we developed a low level interface to call the Ada routines from
C programs. Section six explains the membership problem and our homotopy
test to solve it. This test is then used as one of the tools in the decomposition
method, illustrated in section seven. In the last section we list some of our
major benchmark applications.

2 Toolbox and Blackbox design of PHCpack

PHCpack [42] was designed to test new homotopy algorithms to solve sys-
tems of polynomial equations. In particular, three classes of homotopies [43]
have been implemented. For dense polynomial systems, refined versions of
Bézout’s theorem lead to linear-product start systems [45,47]. Polyhedral
homotopies [46,48] are optimal for generic sparse polynomial systems. The
third class contains SAGBI [44] and Pieri homotopies [23] implementing a
Numerical Schubert Calculus [21].

These three classes of homotopies can be accessed directly when the soft-
ware is used in toolbox mode. For general purpose polynomial systems, a
blackbox solver was designed and tested on a wide variety of systems [42].
Although a blackbox will rarely be optimal and can therefore not beat the
particular and sophisticated uses offered by a toolbox, both a toolbox and
a blackbox are needed. The writing of PHCpack reflects the dual use of the
software: on the one hand as a package, offering a library of specialized ho-
motopy algorithms, and on the other hand as a blackbox, where only the
executable version of the program, i.e.: PHC, is needed.
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In this paper we focus on recent developments and interfaces. Combining
both the recent research and use of other software, we report on an experi-
ment with PHCpack for which a customized interface to the software of T.Y.
Li and Li Xing [27] was used to compute generic points on the two dimen-
sional components of cyclic 9-roots. In the next two paragraphs we provide
a situation for the polyhedral methods.

To solve polynomial system with homotopies we deform a start system
with known solutions to the system we wish to solve, applying Newton’s
method to track the solution paths. If we want to approximate all isolated
solutions, then one major problem is the construction of a “good” start sys-
tem that leads to an optimal number of paths. As shown in [1], mixed volumes
of the tuples of convex hulls of the exponent sets of the polynomials provide
a generically sharp bound for the number of isolated solutions. The theorems
of Bernshtein [1] led to polyhedral homotopies [22], [48], and to a renewed
interest in resultants, spurred by the field sparse elimination theory [7], [12],
[13] and [32]; see also [40].

Mixed volumes for the cyclic n-roots problems were first computed in [12]
and [13]. In [14], the cyclic 9-roots problem was reported to be solved with
Gröbner bases. This problem has two dimensional components of solutions.
Following [34], an embedding of the original polynomial system was con-
structed.

The first time we used the interface to the software of T.Y. Li and Li
Xing was to find all 18 generic points on the two dimensional components of
the cyclic 9-roots problem. This type of interface was also used to compute
all 184,756 isolated cyclic 11-roots with PHC. The 8,398 generating solutions
(with respect to the permutation symmetry) are on display, via the web site
of the second author. Note that cyclic 11-roots is numerically “easier” as all
solutions are isolated.

Besides [27], other recent computational progress is described in [16,17]
and [41], with application to cyclic n-roots in [8]. Polyhedral methods led
to a computational breakthrough in approximating all isolated solutions. To
deal with positive dimensional solution sets we solve an embedded system
that has all its roots isolated. Thus the recent activity on polyhedral root
counting methods is highly relevant to the general solution method.

3 A Maple Interface to PHCpack

In this section we describe how to use the blackbox solver of PHCpack from
within a Maple worksheet. The interface is file oriented, just like PHC was
used with OpenXM [28].
The blackbox solver offered by PHCpack can be invoked on the command
line as

phc -b input output
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with output the name of the file for the results of the computation. The file
input contains a system in the format

2
x*y - 1;
x**2 - 1;

where the “2” at the beginning of the file indicates the number of equations
and unknowns. We point out that this blackbox only attempts to approximate
the isolated solutions.

To bring the solutions into a Maple worksheet, PHC was extended with
an addition option -z. The command

phc -z output sols

takes the output of the blackbox solver and creates the file sols which con-
tains the list of approximations to all isolated solutions in a format readable
by Maple.

The simple Maple procedure listed below has been tested for Maple6
on Linux and Maple7 on Windows 2000. A MapleV version runs on Solaris
machines. Besides a list of polynomials, the user should provide a path name
for the executable version of PHC.

run_phc := proc(phcloc::string,p::list)
description ‘Calls phc from Maple6+7 session. \

The name of file with the executable version of phc \
should be provided in the string phcloc. \
The second input argument p is a list of polynomials. \

On return is a list of approximations to all isolated \
roots of the system defined by p.‘:

local i,n,sp,semcol,sr,infile,outfile,solfile,cmd1,cmd2,sols:
n := nops(p): # number of polynomials
semcol := ‘;‘:
sr := convert(rand(),string): # to randomize file names
infile := input||sr: outfile := output||sr:
solfile := sols||sr:
fopen(infile,WRITE):
fprintf(infile,‘%d\n‘,n):
for i from 1 to n do
sp := convert(p[i],string):
sp := ‘ ‘||sp||semcol: # append semicolon (dot in MapleV)
fprintf(infile,‘%s\n‘,sp):

od:
fclose(infile):
cmd1 := phcloc||‘ -b ‘||infile||‘ ‘||outfile:
cmd2 := phcloc||‘ -z ‘||outfile||‘ ‘||solfile:
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ssystem(cmd1): ssystem(cmd2):
read(solfile):
sols := %: # use " instead of % in older Maple versions
fremove(infile): fremove(outfile): fremove(solfile):
RETURN(sols);

end proc:

As pointed out earlier, we can only obtain approximations to all isolated
solutions with this blackbox. The aim of the remainder of this paper is to
sketch the ideas of the algorithms needed in a toolbox to describe also the
positive dimensional solution components.

4 Numerical Elimination Methods

Recently we extended the use of homotopies from “just” approximating all
isolated roots to describing all solution components of any dimension. In this
section we introduce our approach by example. The system{

y − x2 = 0
z − x3 = 0 (1)

defines the so-called “twisted cubic” as the intersection of a quadratic and
cubic surface.
For this example, we distinguish three possible orders of elimination:

1. projection onto the (x, y)-plane gives y − x2 = 0;
2. projection onto the (x, z)-plane gives z − x3 = 0;
3. projection onto a random plane gives a cubic curve.

To eliminate we first sample generic points from the curve using the system


y − x2 = 0
z − x3 = 0

ax + by + cz + d = 0
(2)

where the constants a, b, c, and d are randomly chosen complex numbers. For
any general choice of (a, b, c, d) we get exactly three regular solutions which
are generic points on the twisted cubic. Moving the last equation of (2) we
generate as many samples as desired.

To eliminate z properly (to get the symbolic outcome y−x2 = 0), the last
equation of (2) must be parallel to the (x, y)-plane, with a zero coefficient
for z. Similarly, for a proper elimination of y, the last equation of (2) must
be parallel to the (x, z)-plane, with a zero coefficient for y. To project onto a
random plane, we multiply the samples with a random complex two-by-three
matrix. Interpolating through the projected samples, we obtain equations as
result of the elimination.
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The next example comes from mechanical design. Suppose N placements
of a rigid body in space are given and consider the associated positions,
x1,x2, . . . ,xN , occupied by a designated point, x, of the body. For four gen-
eral placements, x1, . . . ,x4 define a sphere having a center point, say y, and
this is true for any general point x of the body. However, for five general
placements, x1, . . . ,x5 lie on a sphere only if x is on a certain surface within
the body, and for six general placements, x1, . . . ,x6 lie on a sphere only if
x is on a certain curve in the body. Seven general positions determine 20
center-point/sphere-point pairs, a result proven by Schönflies at the end of
the nineteenth century [6]. These points are of interest because we may build
a linkage to guide the body through the given placements by connecting a
rigid link between point x and its center y. In the following, we consider the
center-point/sphere-point curve arising when only six placements are given.

The polynomial system is given by five quadratic equations in six vari-
ables: x = (x1, x2, x3) the coordinates on the sphere and y = (y1, y2, y3)
points on the centerpoint curve. The equations of the system have the fol-
lowing form:

||Rix + pi − y||2 − ||R0x + p0 − y||2 = 0, i = 1, 2, . . . , 5, (3)

where pi ∈ R3 are positions of the body and we use Ri ∈ R3×3, RT R = I, to
denote the rotation matrices for the orientations of the bodies. The problem
is to find values for the unknown variables (x,y) ∈ C6, given the positions
and orientations of the body, encoded respectively by pi ∈ R3 and Ri ∈ R3×3.
In our experiment the values for y are separated from those for x and we
construct line segments between the coordinates. Figure 1 shows part of the
ruled surface made by Maple.

The data for Figure 1 was generated as follows. While the degree of the
solution curve is twenty and we are guaranteed to find twenty generic points
as isolated solutions when we add one random complex hyperplane to the
original system, we cannot be sure to find twenty real points when we use a
random real hyperplane. Actually, all generic points may still have nonzero
imaginary parts, but fortunately we found four real generic points. Starting
at the first real generic point, PHC sampled 100 points, moving the constant
coefficient in the real hyperplane from 0.0 with steps of size 0.1. Observe that
in the Maple session we only use the first 14 samples as the curve started
moving too fast for the fixed step size of 0.1.

This last point illustrates that it does not suffice to have a one way com-
munication to export samples for plotting. The plotting program (in our
case Maple) must be able to take an active role to control the step size, or
equivalently, one should change the sampling for plotting purposes.

Finally, one may wonder about the degrees of the curves for x and y in
Figure 1. Like with the special planes to cut the twisted cubic, the degree of
the curve drops when the hyperplane is parallel to the x or y coordinates. In
particular, the degree drops from twenty to ten when such special hyperplanes
are chosen.
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> read sbr100x: read sbr100y:  # samples
> with(plottools):
> a := 1: b := 14:
The curve for x appears in dashed lines, the curve for y is drawn in solid lines :
> x := curve(xl1[a..b],linestyle=4,thickness=3,color=black):
> y := curve(yl1[a..b],thickness=3,color=black):
> T1 := plots[textplot3d]([-.5,-.3,.8,‘curve 
x‘],align=LEFT,color=black):

> T2 := plots[textplot3d]([0,0.3,0.2,‘curve 
y‘],align=RIGHT,color=black):

> l := []:
> for i from a to b do
>   l := [op(l),line(xl1[i],yl1[i],thickness=2)]:
> od:
> plots[display](x,y,T1,T2,l,axes=BOXED);

curve y

curve x
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Fig. 1. A Maple session to draw a piece of a ruled surface, from samples generated
by PHC.

5 Factoring into Irreducible Components

For the spatial Burmester problem above, it is natural to wonder if the so-
lution curve is a single irreducible piece or whether it breaks up into several
irreducible components.

The decomposition of positive dimensional solution sets into irreducible
components is similar to that of decomposing (multivariate) polynomial into
irreducible factors. We emphasize that our algorithms are closer to geometry
than to algebra. We allow the input polynomials to have complex coefficients,
and view those as complex multi-valued functions, see Figure 2.

The algorithm to decompose solution sets into irreducible has following
specifications:
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Fig. 2. The Riemann surface produced by cplxroot of MATLAB plots Re(z) with
z satisfying z3 − x = 0, for x ∈ C. These solutions form a connected component.
Observe that a loop of x around the origin permutes the order of the three solution
points.

Input: A set of witness points on a positive dimensional solution set.
Output: A partition of the set; points in same subset of the partition

belong to the same irreducible component.

To find out which points lie on the same irreducible component, we use ho-
motopies to make the connections. For a system f(x) = 0 we cut out witness
points by adding a set of hyperplanes L(x) = 0. The number of hyperplanes
in L equals the dimension of the solution set. With the homotopy

hKL(x, t) = λ

(
f
K

)
(1 − t) +

(
f
L

)
t = 0, λ ∈ C, (4)

we find new witness points on the hyperplanes K(x) = 0, starting at those
witness points satisfying L(x) = 0, letting t move from one to zero.

The role of the random complex constant λ is very important in what
follows. Suppose we move back from K to L, using the homotopy

hLK(x, t) = µ

(
f
L

)
(1 − t) +

(
f
K

)
t = 0, µ ∈ C, (5)

using some random constant µ 6= λ.
After using hKL(x, t) = 0 and hLK(x, t) = 0, we moved the hyperplanes

added to f(x) = 0, from L to K and back from K to L. The set of solutions
of f(x) = 0 at L is the same with the important difference that the order
of the solutions in the set may have been changed. In particular, we obtain
a permutation from the witness points in the set. Points that are permuted
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(e.g., the first point went to the third, the third to the second, and the
second to the first), belong the same irreducible component, as illustrated on
Figure 2.

The example above contains the main idea of the monodromy breakup
algorithm developed in [36]. While the connections found in this way indicate
which points lie on the same irreducible component, we may miss certain
loops. Therefore, we recently developed an efficient test [38], based on the
linear trace, to certify the partitions obtained by the monodromy algorithm.
Besides the efficiency, the test is numerically stable as it only requires to set
up a linear function.

For the spatial Burmester problem, the solution components was found
to be an irreducible curve of degree 20.

At this stage we wish to show how a low level interface to the numerical
factorization routines with PHC is planned. PHCpack is developed in Ada 95,
which provides mechanisms to interface with other languages, such as For-
tran, C, and Cobol. In our example we wish to call the factorization routines
in Ada from a C program. This multi-lingual programming is supported by
the gcc compilation system. A polynomial is represented in human readable
format like Maple input, e.g. for x2 − y2, we use the string "x**2 - y**2;",
using the semicolon as terminator (also according the conventions in Maple).
The sample C program is listed below.

#include <stdio.h>
extern char *_ada_phc_factor(int n, char *s);
extern void adainit();
extern void adafinal();
int main() {

char *f;
adainit();
f = _ada_phc_factor(2,"x**2-y**2;");
adafinal();
printf("The factors are %s \n",f);

}

A more elaborate interface to C programs allows to pass numerical data
(such as matrices of doubles), directly from C to Ada. This kind of interface
is currently under construction.

Also in [15] the authors propose monodromy to factor multivariate poly-
nomials numerically.

6 A Membership Test

From the dictionary in Table 1 we see that a membership test figures promi-
nently. Traditional uses of homotopies discard roots as nonisolated when the
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Jacobian matrix is sufficiently close to being singular. But this approach fails
in the presence of isolated roots of multiplicity greater than one.
The membership problem can be formulated as follows:

Given: A solution x ∈ C
n of f(x) = 0 and

a witness point set for an irreducible solution component V .
Wanted: To determine whether x lies on V .

In our example, we present the equations of f in factored form, so we can
read off the equations for the solution components. We emphasize that we
only take this for the sake of presentation, our method does not require this
factorization. Consider,

f(x, y, z) =
{

(y − x2)(y + z) = 0
(z − x3)(y − z) = 0 (6)

From the factored form, we read off the four solution components of the
system f(x, y, z) = 0:

1. V1 = { (x, y, z) | y − x2 = 0, z − x3 = 0 } is the twisted cubic;
2. V2 = { (x, y, z) | y−x2 = 0, y− z = 0 } is a quadratic curve in the plane

y − z = 0;
3. V3 = { (x, y, z) | y + z = 0, z − x3 = 0 } is a cubic curve in the plane

y + z = 0;
4. V4 = { (x, y, z) | y + z = 0, y − z = 0 } is the x-axis.

While the symbolic solution of the system is given by the factored form of
the equations, the numerical solution is given by nine generic points: three on
the first, two on the second, three on the third, and one on the last component.
These generic points are solutions of the system

e(x, y, z) =




(y − x2)(y + z) = 0
(z − x3)(y − z) = 0

c0 + c1x + c2y + c3z = 0
(7)

where the constants c0, c1, c2, and c3 are randomly chosen complex numbers.
The partition of the set of nine witness points corresponding to the compo-
nents is achieved by running the monodromy algorithm on the nine solutions
of the system e(x, y, z) = 0.
The homotopy membership test consists of the following three steps:

1. Adjust the constant term c0 in (7) to c′0 so that the plane defined by
c′0 + c1x + c2y + c3z = 0 passes through the test point.

2. Use the homotopy h(x, y, z, t) = 0 to track paths with t going from 1 to
0 in the system

h(x, y, z, t) =




(y − x2)(y + z) = 0
(z − x3)(y − z) = 0

c0t + c′0(1 − t) + c1x + c2y + c3z = 0
(8)
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At t = 1 we start the path tracking at the witness point set of one of the
irreducible components Vi of f(x) = 0 and find their end points at t = 0.

3. If the test point lies on the component Vi, then it will be one of the
endpoints at t = 0.

4. Repeat steps (2) and (3) for each of the components Vi.

This test is numerically stable because the comparison of the test point with
the end points at t = 0 does not require any extra precision.

This numerical stability is very important for components of high degree.
In [35], multi-precision arithmetic was needed to present filtering polynomi-
als [35] to identify components. Evaluating those high degree components is
numerically unstable. Unless one knows the test points with a sufficiently
high accuracy, the result of the evaluation in the filtering polynomials cannot
be certified.

The membership test is a crucial component in treating solution sets
of different dimensions. To find generic points on all solution components
of all dimensions, we apply a sequence of homotopies, introduced in [34].
The decomposition starts at the top dimension. At each step, the sets of
generic points are partitioned, after removing superfluous points, using the
membership test. We explain this procedure in the next section.

7 A Numerical Blackbox Decomposer

So far we have discussed the following tools:

1. use of monodromy to partition the sets of generic points into subsets of
points that lie on the same irreducible solution component, or in more
general terms, to decompose pure dimensional varieties into irreducibles;
and

2. a homotopy membership test to separate isolated solutions from noniso-
lated points on solution components, or in general, to separate generic
points on one component from those on higher dimensional components.

We still have to explain how to obtain the sets of generic points as the solu-
tions of the original polynomial equations with additional linear constraints
representing the random hyperplanes. As above we explain by example:

f(x) =




(x1 − 1)(x2 − x2
1) = 0

(x1 − 1)(x3 − x3
1) = 0

(x2
1 − 1)(x2 − x2

1) = 0
(9)

From its factored form we see that f(x) = 0 has two solution components: the
two dimensional plane x1 = 1 and the twisted cubic { (x1, x2, x3) | x2 −x2

1 =
0, x3 − x3

1 = 0 }.
To describe the solution set of this system, we use a sequence of homo-

topies, the chart in Figure 3 illustrates the flow of data for this example.
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Because the top dimensional component is of dimension two, we add two
random hyperplanes to the system and make it square again by adding two
slack variables z1 and z2:

e(x, z1, z2) =




(x1 − 1)(x2 − x2
1) + a11z1 + a12z2 = 0

(x1 − 1)(x3 − x3
1) + a21z1 + a22z2 = 0

(x2
1 − 1)(x2 − x2

1) + a31z1 + a32z2 = 0
c10 + c11x1 + c12x2 + c13x3 + z1 = 0
c20 + c21x1 + c22x2 + c23x3 + z2 = 0

(10)

where all constants aij , i = 1, 2, 3, j = 1, 2, and ckl, k = 1, 2, l = 0, 1, 2, 3 are
randomly chosen complex numbers. Observe that when z1 = 0 and z2 = 0 the
solutions to e(x, z1, z2) = 0 satisfy f(x) = 0. So if we solve e(x, z1, z2) = 0
we will find the generic point on the two dimensional solution component
x1 = 1 as a solution with z1 = 0 and z2 = 0. Using polyhedral homotopies,
this requires the tracing of six solutions paths.

The embedding was proposed in [34] to find generic points on all positive
dimensional solution components with a sequence of homotopies. In [34] it was
proven that solutions with slack variables zi 6= 0 are regular and, moreover,
that those solutions can be used as start solutions in a homotopy to find
all generic points on lower dimensional solution components. We call those
solutions nonsolutions.

In the solution of e(x, z1, z2) = 0, one path ended with z1 = 0 = z2, the
five other paths ended in regular solutions with z1 6= 0 and z2 6= 0. These five
solutions are start solutions in the homotopy

h2(x, z1, z2, t)

=




(x1 − 1)(x2 − x2
1) + a11z1 + a12z2 = 0

(x1 − 1)(x3 − x3
1) + a21z1 + a22z2 = 0

(x2
1 − 1)(x2 − x2

1) + a31z1 + a32z2 = 0
c10 + c11x1 + c12x2 + c13x3 + z1 = 0

z2(1 − t) + (c20 + c21x1 + c22x2 + c23x3 + z2)t = 0

(11)

where t goes from one to zero, replacing the last hyperplane with z2 = 0.
Of the five paths, four of them converge to solutions with z1 = 0. Of those
four solutions, one of them is found to lie on the two dimensional solution
component x1 = 1, the other three are generic points on the twisted cubic.
As there is one solution with z1 6= 0 we have one candidate left for being an
isolated solution of f(x) = 0. This one solution with z1 6= 0 is used as start
solution in the homotopy

h1(x, z1, t) =




(x1 − 1)(x2 − x2
1) + a11z1 = 0

(x1 − 1)(x3 − x3
1) + a21z1 = 0

(x2
1 − 1)(x2 − x2

1) + a31z1 = 0
z1(1 − t) + (c10 + c11x1 + c12x2 + c13x3 + z1)t = 0

(12)

replacing the last hyperplane at t = 1 by z1 = 0 at t = 0. At t = 0, the solution
is found to lie on the twisted cubic, so there are no isolated solutions.
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The calculations are summarized in Figure 3.

WitnessGenerate

Path following

WitnessClassify

Filter Points Breakup into

Irreducibles�
�

�
�Homotopy + Start Solutions

?

�
�

�
�Filter = ∅

?l
e
v
e
l

2

6 paths - 0 at infinity

1 solutions

5 nonsolutions

?

-Ŵ2
1 to classify -W2

1 on x1 = 1 = W21

?

Append to Filter

l
e
v
e
l

1

5 paths - 0 at infinity

4 solutions

1 nonsolution

?

-Ŵ1
1 on x1 = 1 =J1

3 to classify -
W1

3 on cubic = W11

?

Append to Filter

l
e
v
e
l

0

1 path - 0 at infinity

1 solution -Ŵ0
0 on x1 = 1

0 on cubic

1 to classify -
W0

1 isolated = W01


 = J0

Fig. 3. Numerical Irreducible Decomposition of a system whose solutions are the
2-dimensional plane x1 = 1, the twisted cubic, and one isolated point. At level i, for
i = 2, 1, 0, we filter candidate witness point sets Ŵi into junk sets Ji and witness
point sets Wi. The sets Wi are partitioned into witness point sets Wij for the
irreducible components.

In making the transition to the benchmark applications section, we wish
to illustrate the importance of the membership test on the cyclic 9-roots
problem. This problem has besides six irreducible two dimensional cubic sur-
faces, 5,994 isolated regular solutions, also 648 roots of multiplicity four. After
application of the homotopy membership test, the multiplicity four was de-
termined by grouping clusters after refining the roots using Newton’s method
with multi-precision arithmetic (32 decimal places) until 13 decimal places
were correct.
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8 Benchmark Applications

To measure progress of our algorithms we executed the algorithms on a wide
variety of polynomial systems. The second author maintains at
http://www.math.uic.edu/~jan/demo a collection of 120 polynomial sys-
tems. We focus below on three of our most significant benchmarks. The sys-
tems come from relevant application fields and are challenging.

cyclic n-roots: This system is probably the most notorious benchmark,
popularized by Davenport in [9] and coming from an application involving
Fourier transforms [2,3]. Already for n = 4, the system


x1 + x2 + x3 + x4 = 0

x1x2 + x2x3 + x3x4 + x4x1 = 0
x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0

x1x2x3x4 − 1 = 0

(13)

is numerically troublesome when directly fed to traditional homotopy con-
tinuation methods because there are no isolated solutions and all paths
terminate close to points on the two quadratic solution curves.
Haagerup confirmed in [19] a conjecture of Fröberg (mentioned in [30]):

for n prime, the number of solutions is finite and equals
(2n − 2)!
(n − 1)!2

. Fröberg

furthermore conjectured that for a quadratic divisor of n, there are in-
finitely many solutions.
Progress with computer algebra methods is described for dimensions 7
in [4], 8 in [5] and 9 in [14]. Unpublished (mentioned in [19]) is the result
of Björck, who found all distinct isolated 184,756 cyclic 11-roots.
To solve this problem efficiently by numerical homotopy solvers, we need
fast polyhedral methods to bound the number of isolated solutions by
means of mixed volumes. These mixed volumes were computed for all
dimensions up to n = 11 by Emiris in [12]; see also [13].
With PHCpack, all isolated 35,840 isolated cyclic 10-roots were com-
puted. As reported earlier in the this paper, with the aid of the software
of T.Y. Li and Li Xing [27], PHC also found all 184,756 cyclic 11-roots.
While those cases are computationally very intensive, they are numeri-
cally “easy” to handle as all solutions are isolated. Recently, we found
in [37] the decomposition of the one dimensional solution component of
the cyclic 8-roots system into 16 pieces, 8 quadrics and 8 curves of de-
gree 16. There are also 1,152 isolated cyclic 8-roots. In addition to 6,642
isolated solutions, the cyclic 9-roots problem has a two dimensional com-
ponent of degree 18, which breaks up into six cubic surfaces.
As the technology for computing mixed volumes advances, (see [16,17]
and [41]), we may expect further cases to be solved. In particular, [8]
reports the approximation of all nonsingular cyclic 12-roots.
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adjacent minors: This application is taken from [11], where ideals are de-
composed to study the connectivity of certain graphs arising in a random
walks. One particular system in this paper is defined by all adjacent mi-
nors of a 2 × (n + 1)-matrix. For example, for n = 3 we have as matrix
and polynomial system:

[
x11 x12 x13 x14

x21 x22 x23 x24

] 


x11x22 − x21x12 = 0
x12x23 − x22x13 = 0
x13x24 − x23x14 = 0

(14)

In [11], it is proven that the ideal of adjacent 2 × 2-minors of a generic
2 × (n + 1)-matrix is the intersection of Fn prime ideals (where Fn is
the nth Fibonacci number), and that the ideal is radical. All irreducible
solution components have the same dimension are the sum of their degrees
equals 2n.
Applying the monodromy breakup algorithm of [37], we found the breakup
of a curve of degree 2048 into 144 irreducible components, as solution set
to a system defined by all adjacent minors of a general 2 × 12-matrix.
We have limited our calculations to the case of matrices with 2 rows,
see [11] for results on more general matrices. We expect methods exploit-
ing the binomial structure of the equations, like the ones in [20] to be
superior over general-purpose solvers.

Griffis-Duffy platform: In mechanical engineering we study the direct kine-
matics of a so-called parallel robot (also known as a Stewart-Gough plat-
form), consisting of two platforms attached to each other by six links.
The problem is to find all possible positions of the top platform for a
given position of the base platform and given lengths of the links. Nu-
merical continuation methods [31] first established that this problem has
40 isolated solutions. This result was later confirmed analytically in [24],
[33] and [49]. These parallel robots are an important area of study, see
for example [29].
In [18] a special type of the Stewart-Gough platform was proposed. In
[25], it was shown that this platform permits motion, i.e., instead of 40
isolated solutions we now find a solution curve. Following [25], we call
this type of platform a Griffis-Duffy platform.
Instead of 40 isolated solutions, we now have a one dimensional solution
curve of degree 40. We investigated two cases of this Griffis-Duffy plat-
form, see [37,38]. In both cases the curve of degree 40 contains twelve
degenerate lines. For general choices of the parameters we have an ir-
reducible curve of degree 28, while a more special case (also analyzed
in [25]) breaks up in several components of lower degree.
We note that for this system we took approximate coefficients of the input
polynomials.
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9 Conclusions

In this paper we gave a description of our software tools to decompose positive
dimensional solution sets of polynomial systems into irreducible components,
emphasizing the geometrical and numerical aspects.

We reported on the first steps to let the software interact with a com-
puter algebra system, such as Maple. This interaction is currently limited
to passing polynomials from Maple into PHCpack and passing results from
PHCpack (solution vectors or interpolating polynomials) back into Maple.
We experienced that efficient visualization requires more advanced commu-
nication protocols. These protocols will be built, using the C interface to
PHCpack.

Acknowledgment. The authors wish to thank Jean-Charles Faugère for
confirming the number of isolated cyclic 9-roots. The authors are grateful for
the comments of the referee.

References
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