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Problem Statement

Given is f (x) = 0, a polynomial system

f (x1, x2, . . . , xn) =




f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...
fN(x1, x2, . . . , xn) = 0

fi ∈ C[x]

N ≥ n.

The coefficients are in C: “computer numbers”.

Does f (x) = 0 have solution curves?
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Tropical Algebraic Geometry
an asymptotic view on varieties

Consider an ideal I in K{{t}}[x1, x2, . . . , xn].

K{{t}} is algebraically closed if K is algebraically closed,
by the theorem of Puiseux.

Trop(I), the tropicalization of I is defined as Trop(I) = { ω ∈ Qn | . . .
either

(1) . . . the ideal of initial forms defined by ω is monomial free }.
or

(2) . . . ω collects leading powers of series vanishing for f ∈ I }.

Fundamental Theorem of Tropical Algebraic Geometry: (1) ⇔ (2).

Implemented in tropical.lib, a SINGULAR library, using Gfan,
by Anders Jensen, Hannah Markwig, and Thomas Markwig.

Refined problem statement: numerical implementation?
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Solving the cyclic 4-roots System

f (x) =




x1 + x2 + x3 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x1x2x3 + x2x3x4 + x3x4x1 + x4x1x2 = 0
x1x2x3x4 − 1 = 0

One tropism v = (+1,−1,+1,−1) with inv(f )(z) = 0:

inv(f )(x) =




x2 + x4 = 0
x1x2 + x2x3 + x3x4 + x4x1 = 0

x2x3x4 + x4x1x2 = 0
x1x2x3x4 − 1 = 0




x1 = y+1
1

x2 = y−1
1 y2

x3 = y+1
1 y3

x4 = y−1
1 y4

The system inv(f )(y) = 0 has two solutions.
We find two solution curves:

(
t ,−t−1,−t , t−1

)
and

(
t , t−1,−t ,−t−1

)
.

Sparse Polynomial Systems have Sparse Solutions
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the cyclic 12-roots problem

J. Backelin: "Square multiples n give infinitely many cyclic n-roots".
Reports, Matematiska Institutionen, Stockholms Universitet, 1989.

Mixed volume is 500,352 and increases to 983,952
by adding one random hyperplane and slack variable.

Like for cyclic 4, v = (−1,+1,−1,+1,−1,+1,−1,+1,−1,+1,−1,+1)
is a tropism. Mixed volume of inv(f )(x, s) = 0 is 49,816.
One of the solutions is

x0 = t x1 = 0.5 − 0.866025403784439i
x2 = −1.0 x3 = −0.5 − 0.866025403784439i
x4 = −0.5 + 0.866025403784439i x5 = 0.5 + 0.866025403784439i
x6 = −1.0 x7 = −0.5 + 0.866025403784438i
x8 = 1.0 x9 = 0.5 + 0.866025403784438i
x10 = 0.5 − 0.866025403784439i x11 = −0.5 − 0.866025403784439i

It satisfies not only inv(f ), but also f itself.

Jan Verschelde (UIC) Searching for Solution Curves AMS San Francisco April 2009 6 / 21



An Exact Solution for cyclic 12-roots

For the tropism v = (−1,+1,−1,+1,−1,+1,−1,+1,−1,+1,−1,+1):

z0 = t−1 z1 = t
(

1
2 − 1

2 i
√

3
)

z2 = −t−1 z3 = t
(
−1

2 − 1
2 i
√

3
)

z4 = t−1
(
−1

2 + 1
2 i
√

3
)

z5 = t
(

1
2 + 1

2 i
√

3
)

z6 = −t−1 z7 = t
(
−1

2 + 1
2 i
√

3
)

z8 = t−1 z9 = t
(

1
2 + 1

2 i
√

3
)

z10 = t−1
(

1
2 − 1

2 i
√

3
)

z11 = t
(
−1

2 − 1
2 i
√

3
)

makes the system entirely and exactly equal to zero.
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An Illustrative Example
for a numerical irreducible decomposition

f (x1, x2, x3) =




(x2 − x2
1 )(x2

1 + x2
2 + x2

3 − 1)(x1 − 0.5) = 0

(x3 − x3
1 )(x2

1 + x2
2 + x2

3 − 1)(x2 − 0.5) = 0

(x2 − x2
1 )(x3 − x3

1 )(x2
1 + x2

2 + x2
3 − 1)(x3 − 0.5) = 0

f−1(0) = Z = Z2 ∪ Z1 ∪ Z0 = {Z21} ∪ {Z11 ∪ Z12 ∪ Z13 ∪ Z14} ∪ {Z01}
1 Z21 is the sphere x2

1 + x2
2 + x2

3 − 1 = 0,
2 Z11 is the line (x1 = 0.5, x3 = 0.53),
3 Z12 is the line (x1 =

√
0.5, x2 = 0.5),

4 Z13 is the line (x1 = −√
0.5, x2 = 0.5),

5 Z14 is the twisted cubic (x2 − x2
1 = 0, x3 − x3

1 = 0),
6 Z01 is the point (x1 = 0.5, x2 = 0.5, x3 = 0.5).
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The Illustrative Example
numerically computing positive dimensional solution sets

Used in two papers in numerical algebraic geometry:

first cascade of homotopies: 197 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical
decomposition of the solution sets of polynomial systems into irreducible
components. SIAM J. Numer. Anal. 38(6):2022–2046, 2001.

equation-by-equation solver: 13 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Solving polynomial
systems equation by equation. In Algorithms in Algebraic Geometry,
Volume 146 of The IMA Volumes in Mathematics and Its Applications,
pages 133–152, Springer-Verlag, 2008.

The mixed volume of the Newton polytopes of this system is 124.
By theorem A of Bernshteı̌n, the mixed volume is an upper bound on
the number of isolated solutions.
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Three Newton Polytopes

f (x1, x2, x3) =




(x2 − x2
1 )(x2

1 + x2
2 + x2

3 − 1)(x1 − 0.5) = 0

(x3 − x3
1 )(x2

1 + x2
2 + x2

3 − 1)(x2 − 0.5) = 0

(x2 − x2
1 )(x3 − x3

1 )(x2
1 + x2

2 + x2
3 − 1)(x3 − 0.5) = 0
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Looking for Solution Curves
The twisted cubic is (x1 = t , x2 = t2, x3 = t3).

We look for solutions of the form



x1 = tv1 , v1 > 0,

x2 = c2tv2 , c2 ∈ C∗,

x3 = c3tv3 , c3 ∈ C∗.

Substitute x1 = t , x2 = c2t2, x3 = c3t3 into f

f (x1 = t , x2 = c2t2, x3 = c3t3) =




(0.5c2 − 0.5)t2 + O(t3) = 0

(0.5c3 − 0.5)t3 + O(t5) = 0

0.5(c2 − 1.0)(c3 − 1.0)t5 + O(t7)

→ conditions on c2 and c3.

How to find (v1, v2, v3) = (1, 2, 3)?
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Faces of Newton Polytopes
Looking at the Newton polytopes in the direction v = (1, 2, 3):

Selecting those monomials supported on the faces

∂vf (x1, x2, x3) =




0.5x2 − 0.5x2
1 = 0

0.5x3 − 0.5x3
1 = 0

−0.5x2x3
1 − 0.5x3x2

1 + 0.5x3x2 + 0.5x5
1 = 0

Jan Verschelde (UIC) Searching for Solution Curves AMS San Francisco April 2009 12 / 21



Degenerating the Sphere

f (x1, x2, x3) =




(x2 − x2
1 )(x2

1 + x2
2 + x2

3 − 1)(x1 − 0.5) = 0

(x3 − x3
1 )(x2

1 + x2
2 + x2

3 − 1)(x2 − 0.5) = 0

(x2 − x2
1 )(x3 − x3

1 )(x2
1 + x2

2 + x2
3 − 1)(x3 − 0.5) = 0

As x1 = t → 0:

∂(1,0,0)f (x1, x2, x3)




x2(x2
2 + x2

3 − 1)(−0.5) = 0

x3(x2
2 + x2

3 − 1)(x2 − 0.5) = 0

x2x3(x2
2 + x2

3 − 1)(x3 − 0.5) = 0

As x2 = s → 0:

∂(0,1,0)f (x1, x2, x3)




−x2
1 (x2

1 + x2
3 − 1)(x1 − 0.5) = 0

(x3 − x3
1 )(x2

1 + x2
3 − 1)(−0.5) = 0

−x2
1 (x3 − x3

1 )(x2
1 + x2

3 − 1)(x3 − 0.5) = 0
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More Faces of Newton Polytopes
Looking at the Newton polytopes along v = (1,0,0) and v = (0, 1, 0):

∂(1,0,0)f (x1, x2, x3) =


x2(x2
2 + x2

3 − 1)(−0.5)

x3(x2
2 + x2

3 − 1)(x2 − 0.5)

x2x3(x2
2 + x2

3 − 1)(x3 − 0.5)

∂(0,1,0)f (x1, x2, x3) =


−x2
1 (x2

1 + x2
3 − 1)(x1 − 0.5)

(x3 − x3
1 )(x2

1 + x2
3 − 1)(−0.5)

−x2
1 (x3 − x3

1 )(x2
1 + x2

3 − 1)(x3 − 0.5)
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Faces of Faces

The sphere degenerates to circles at the coordinate planes.

∂(1,0,0)f (x1, x2, x3) =


x2(x2
2 + x2

3 − 1)(−0.5)

x3(x2
2 + x2

3 − 1)(x2 − 0.5)

x2x3(x2
2 + x2

3 − 1)(x3 − 0.5)

∂(0,1,0)f (x1, x2, x3) =


−x2
1 (x2

1 + x2
3 − 1)(x1 − 0.5)

(x3 − x3
1 )(x2

1 + x2
3 − 1)(−0.5)

−x2
1 (x3 − x3

1 )(x2
1 + x2

3 − 1)(x3 − 0.5)

Degenerating even more:

∂(0,1,0)∂(1,0,0)f (x1, x2, x3) =




x2(x2
3 − 1)(−0.5)

x3(x2
3 − 1)(−0.5)

x2x3(x2
3 − 1)(x3 − 0.5)

The factor x2
3 − 1 is shared with ∂(1,0,0)∂(0,1,0)f (x1, x2, x3).
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Representing a Solution Surface

The sphere is two dimensional, x1 and x2 are free:



x1 = t1
x2 = t2
x3 = 1 + c1t2

1 + c2t2
2 .

For t1 = 0 and t2 = 0, x3 = 1 is a solution of x3 − 1 = 0.

Substituting (x1 = t1, x2 = t2, x3 = 1 + c1t2
1 + c2t2

2 )
into the original system gives linear conditions on the coefficients
of the second term: c1 = −0.5 and c2 = −0.5.
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Asymptotics of Witness Sets

Getting generic points on a two dimensional surface:



f (x) = 0
c10 + c11x1 + c12x2 + c13x3 = 0
c20 + c21x1 + c22x2 + c23x3 = 0

→



f (x) = 0
c10 + c11x1 = 0
c20 + c22x2 = 0

Specializing the two planes more:



f (x) = 0
x1 = t1
x2 = t2

As t1 → 0 and t2 → 0, the leading powers of the Puiseux series
solution define a tropism.

If the solution after specialization is regular,
then we can extend to compute witness sets.

Jan Verschelde (UIC) Searching for Solution Curves AMS San Francisco April 2009 17 / 21



Computing a Series Expansion
a staggered approach to find a certificate for a regular solution curve

"tropicalization"

compute tropisms
�
�

��� no tropism
⇒ no root at ∞

solve initial forms
�
�

��� no root at ∞
⇒ no series

compute 2nd term
�
�

��� no series
⇒ no curve�

series
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Three Separate Stages

1 compute candidate tropisms
→ a tropism is perpendicular to a facet that is a sum of edges of
the Newton polytopes

2 find leading coefficient of Puiseux series:

1 change coordinates so one variable cancels
2 apply a solver to a much sparser system

3 get the second term of the Puiseux series
symbolic substitution and cancellation of lowest terms
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The second Term of a Puiseux Expansion
for a component of the cyclic 8-roots system

Because we find a nonzero solution for the yk coefficients,
we use it as the second term of a Puiseux expansion:




x0 = t1

x1 = ( 0.5 + 0.5i ) t0 + ( −0.5i ) t
x2 = ( 1 + i ) t0 + ( −i ) t
x3 = ( −i ) t0 + ( 1 − i ) t
x4 = ( −0.5 − 0.5i ) t0 + ( 0.5i ) t
x5 = ( −1 ) t0 + ( 0 ) t
x6 = ( i ) t0 + ( −1 + i ) t
x7 = ( −1 − i ) t0 + ( i ) t

i =
√
−1.

Substitute series in f (x): result is O(t2).

Note: exploitation of symmetry is immediate.
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Conclusions

An apriori certificate for a solution component consists of
1 a tropism: leading powers of a Puiseux series,
2 a root at infinity: leading coefficients of the Puiseux series,
3 the next term in the Puiseux series.

The certificate is compact and easy to verify with substitution.

For more, see http://www.math.uic.edu/∼jan:
Polyhedral methods in numerical algebraic geometry.
To appear in Contemporary Mathematics.
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