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Problem Statement

Given is f(x) = 0, a polynomial system

fl(Xl,Xz, e ,Xn) =0
fa(X1,X2,...,%X) =0

f(X1,X2,...,%Xn) =
fN(Xl,Xz,...,Xn) =0

The coefficients are in C: “computer numbers”.

Does f(x) = 0 have solution curves?
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Tropical Algebraic Geometry

an asymptotic view on varieties

Consider anideal | in K{{t}}[x1,X2,...,Xn].
K{{t}} is algebraically closed if K is algebraically closed,
by the theorem of Puiseux.

Trop(1), the tropicalization of | is defined as Trop(l) = {w e Q" |...
either

(1) ... the ideal of initial forms defined by w is monomial free }.
or

(2) ... w collects leading powers of series vanishing for f € 1 }.
Fundamental Theorem of Tropical Algebraic Geometry: (1) < (2).

Implemented int r opi cal . | i b, a SINGULAR library, using Gfan,
by Anders Jensen, Hannah Markwig, and Thomas Markwig.

Refined problem statement: numerical implementation?
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Solving the cyclic 4-roots System

X1+ Xo+X3+X4=0
X1X2 4 XoX3 + X3X4 + XaX1 = 0
X1X2X3 + X2X3Xgq + X3XgX1 + XgX1X2 =0
X1X2X3Xg —1 =0

One tropism v = (+1, —1, +1, —1) with in,(f)(z) = O:

f(x) =

X2 + X4 =0 X1 =y,
. X1 X2 + XoX3 + X3Xg + XgX1 = 0 Xo = yl_lyz
iny(f)(x) = _ _ ot
X2X3X4 + XgX1 X2 = 0 X3=Y,"Ys3
X1XoX3Xg —1 =0 X4 = yl—1y4

The system iny(f)(y) = 0 has two solutions.
We find two solution curves: (t, -t~ —t,t71) and (t,t7%, —t, —t™1).

Sparse Polynomial Systems have Sparse Solutions
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the cyclic 12-roots problem

J. Backelin: "Square multiples n give infinitely many cyclic n-roots".
Reports, Matematiska Institutionen, Stockholms Universitet, 1989.

Mixed volume is 500,352 and increases to 983,952
by adding one random hyperplane and slack variable.

Like for cyclic 4, v = (—1,+1,-1,+1, -1, +1, -1, +1,—-1,41,-1,+1)
is a tropism. Mixed volume of in, (f)(x,s) = 0 is 49,816.
One of the solutions is

Xo =t x1 = 0.5 — 0.866025403784439i
X =—-1.0 X3 = —0.5 — 0.866025403784439i
Xq4 = —0.5 + 0.866025403784439i x5 = 0.5 + 0.8660254037844309i
Xe = —1.0 x7 = —0.5 + 0.866025403784438i
Xg =1.0 Xg = 0.5 + 0.866025403784438i

X190 = 0.5 — 0.8660254037844391 X317 = —0.5 — 0.8660254037844309i

It satisfies not only iny(f), but also f itself.
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An Exact Solution for cyclic 12-roots

For the tropismv = (—1,+1,-1,+1,-1,+1,-1,+1,-1,4+1,-1,41):

zo=t"1 21:t<%—%i\/§)
z, =t 23:t<—%—%i\/§)
24 =t (-3 +4iv3) z5=t(}+4iv3)
zg = —t71 27:t<—%+%i\/§)
zg =t1 29:t<%+%i\/§

makes the system entirely and exactly equal to zero.
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An lllustrative Example

for a numerical irreducible decomposition

(x2 = x{)(xf +xF +x§ —1)(x1 — 0.5) =
f(X1,X2,X3) = (X3 — xl)(xl + x2 + x3 —1)(xo —0.5) =

(x2 = x?)(x3 = X{)(X{ + x5 + x5 — 1)(x3 — 0.5) =

0
0
0

f710)=Z =Z,UZ1 UZo = {Z51} U{Z11 UZ1, UZ13U Za} U {Zo1 }

© Z, is the sphere x? + x5 + x5 —1=0,

Q Zi,istheline (x; = 0.5,x3 = 0.5%),

© Zy,istheline (x; = v0.5,x, = 0.5),

Q Zjsistheline (x; = —v0.5,x, = 0.5),

@ Z,4 is the twisted cubic (x, — xZ = 0,x3 — x3 = 0),
@ Zy; is the point (x; = 0.5,x, = 0.5,x3 = 0.5).
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The Illustrative Example

numerically computing positive dimensional solution sets

Used in two papers in numerical algebraic geometry:

@ first cascade of homotopies: 197 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Numerical
decomposition of the solution sets of polynomial systems into irreducible
components. SIAM J. Numer. Anal. 38(6):2022—2046, 2001.

@ equation-by-equation solver: 13 paths
A.J. Sommese, J. Verschelde, and C.W. Wampler: Solving polynomial
systems equation by equation. In Algorithms in Algebraic Geometry,
Volume 146 of The IMA Volumes in Mathematics and Its Applications,
pages 133-152, Springer-Verlag, 2008.

The mixed volume of the Newton polytopes of this system is 124.
By theorem A of Bernshtein, the mixed volume is an upper bound on
the number of isolated solutions.
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Three Newton Polytopes

(Xo — XZ)(XZ + X2 + x5 —1)(xg — 0.5) =

0
f(X1,X2,%X3) = (Xs = XP)(x{ + %5 + %5 —1)(x2 — 0.5) =0
0

(Xo — x2) (X3 — X3)(X? + X2 + xZ — 1)(Xg — 0.5) =
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Looking for Solution Curves
The twisted cubic is (x; = t, Xy = t?,x3 = t3).

We look for solutions of the form

X1 = tV:L, vy > 0,
Xo = CotV2, c, € C*,
X3 = CatVs, c3 € C*.

Substitute X; = t, X, = c,t2, X3 = c3t3 into f
(0.5¢c; — 0.5)t2 +O(t3) =0
f(x; = t,xp = Cot? g = c3t®) = { (0.5¢c3 — 0.5)t3 + O(t°) =0
0.5(c, — 1.0)(c3 — 1.0)t° + O(t")
— conditions on ¢, and cs.
How to find (vi, vz, v3) = (1,2,3)?



Faces of Newton Polytopes
Looking at the Newton polytopes in the direction v = (1,2, 3):

7

Selecting those monomials supported on the faces

0.5x, —0.5x2 =0
ovf (Xl, X2,X3) = 0.5x3 — 05Xf =0
—0.5x%x3 — 0.5x3x? + 0.5X3Xz + 0.5x? =0

Jan Verschelde (UIC) Searching for Solution Curves AMS San Francisco April 2009 12/21



Degenerating the Sphere

(X2 — X2)(x2 +x2 +x2 — 1)(x;, —0.5) =0
f(X1,X2,X3) = (Xs = X?)(Xf + %5 + %5 —1)(x2 — 0.5) =0
(x2 = xf)(xg = x{)(X{ + x5 +x§ —1)(x3 — 0.5) =0

Asx; =t —0:

Xo(x2 +x2 — 1)(-0.5) =
9(1,0,0)f (X1, X2, X3) X3(XZ +x2 — 1)(xo — 0.5) =

XoX3(X2 + X2 — 1)(x3 — 0.5) =

Asx, =s — 0O:
—x{(¢ +x§ —1)(x1 — 0.5) =

90,1,0)f (X1, X2, X3) (x3 — x3)(x? +x2 — 1)(-0.5) =
—X2(Xg — X2)(x? + xZ — 1)(xg — 0.5) =
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More Faces of Newton Polytopes
Looking at the Newton polytopes along v = (1,0,0) and v = (0,1, 0):

9(1,0,0)f (X1, X2, X3) = 00,1,0f (X1, X2, X3) =
X2(x2 +x2 — 1)(—0.5) —x2(x2 +x2 — 1)(xq — 0.5)
X3(X3 +x3 — 1)(x, — 0.5) (x3 — x3)(xZ +x2 — 1)(—0.5)
XoX3(XZ 4+ x5 — 1)(x3 — 0.5) —xZ(x3 — x3)(xZ +x2 — 1)(xs — 0.5)
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Faces of Faces

The sphere degenerates to circles at the coordinate planes.

91,0,0)f (X1, X2, X3) = 900,1,0)f (X1, X2, X3) =
X2(x2 +x2 — 1)(—0.5) —x2(x2 +x2 — 1)(xq — 0.5)
X3(x2 + x2 — 1)(x, — 0.5) (X3 — x3)(xZ +x2 — 1)(—0.5)
XoX3(X2 + X2 — 1)(x3 — 0.5) —xZ(x3 — x3)(xZ +x2 — 1)(xs — 0.5)

Degenerating even more:

X2(x2 — 1)(—0.5)
9(0,1,0)9(1,0,0)f (X1, X2, X3) = x3(xZ — 1)(—0.5)
X2X3(x§ — 1)(x3 — 0.5)

The factor x§ — Lis shared with 01,0,0)9(0,1,0)f (X1, X2, X3).
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Representing a Solution Surface

The sphere is two dimensional, x; and x, are free:

X1 =1
Xo =1
X3 = 1+ Ct? + cot3.

Fort; =0andt, =0, X3 = 1 is a solution of x3 —1 = 0.

Substituting (Xl =11, X0 =1, Xg =1+ Cltf + C2t22)
into the original system gives linear conditions on the coefficients
of the second term: ¢; = —0.5and c, = —0.5.
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Asymptotics of Witness Sets
Getting generic points on a two dimensional surface:

f(x)=0 f(x)=0
C10 + C11X1 + C12Xo + C13X3 = 0 — Ci0 + C11X1 = 0
C20 + C21X1 + Co2X2 + Co3X3 = 0 Coo +Co2X2 =0

Specializing the two planes more:

f(x)=0
X1:t1
X2:t2

Ast; — 0 andt, — 0, the leading powers of the Puiseux series
solution define a tropism.

If the solution after specialization is regular,
then we can extend to compute witness sets.
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Computing a Series Expansion

a staggered approach to find a certificate for a regular solution curve

"tropicalization"

l

compute tropisms O

no tropism
= Nno root at co
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Computing a Series Expansion

a staggered approach to find a certificate for a regular solution curve

"tropicalization"

l

compute tropisms O

N no tropism
= no root at co
solve initial forms O

no root at oo
= No series
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Computing a Series Expansion

a staggered approach to find a certificate for a regular solution curve

"tropicalization"

l

compute tropisms O

no tropism
= no root at co
solve initial forms O

\ no root at oo
= No series

\ no series

= NO curve

compute 2nd term O

series
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Three Separate Stages

© compute candidate tropisms
— a tropism is perpendicular to a facet that is a sum of edges of
the Newton polytopes

@ find leading coefficient of Puiseux series:

@ change coordinates so one variable cancels
@ apply a solver to a much sparser system

© get the second term of the Puiseux series
symbolic substitution and cancellation of lowest terms
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The second Term of a Puiseux Expansion

for a component of the cyclic 8-roots system

Because we find a nonzero solution for the y\ coefficients,
we use it as the second term of a Puiseux expansion:

ontl

x1=(054+05 )t 4+ (-05i)t
Xp=(1+i)tO +(—i)t

Xz = (—i)t° +(1-i)t
xs=(—05-05i)t° +(05i)t I=+v-1
xs = (—1)t° +(0)t

xg = (i) t° +(—1+i)t

( x7=(—-1—i)t° + (i)t

Substitute series in f(x): result is O(t?).

Note: exploitation of symmetry is immediate.
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Conclusions

An apriori certificate for a solution component consists of
© atropism: leading powers of a Puiseux series,

© aroot at infinity: leading coefficients of the Puiseux series,
© the next term in the Puiseux series.

The certificate is compact and easy to verify with substitution.

For more, see htt p: // www. mat h. ui c. edu/ ~j an:
Polyhedral methods in numerical algebraic geometry.
To appear in Contemporary Mathematics.
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