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Plan of the Lecture

1. We factor in three stages:

(a) monodromy grouping of witness points;

(b) certification of grouping with linear traces;

(c) interpolation to get polynomials for the factors.

2. Special case: one single multivariate polynomial.

We remove multiplicies by differentation and use

a theorem of Marden and Walsh for bound on precision.

3. Applications:

(a) irreducible components of Griffis-Duffy platforms;

(b) study singularities of Stewart-Gough platforms.
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Recommended Background Literature

S.S. Abhyankar: Algebraic Geometry for Scientists and Engineers.

AMS, 1990.

E. Arbarello, M. Cornalba, P.A. Griffiths, and J. Harris: Geometry of

Algebraic Curves, Volume I. Springer, 1985.

J.E. Marsden: Basic Complex Analysis. W.H. Freeman and Company,

1973.

M. Mignotte and D. Ştefǎnescu: Polynomials. An Algorithmic

Approach. Springer, 1999.
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Factoring Solution Components

Input: f(x) = 0 polynomial system with a positive dimensional

solution component, represented by witness set.

coefficients of f known approximately, work with limited precision

Wanted: decompose the component into irreducible factors,

for each factor, give its degree and multiplicity.

Symbolic-Numeric issue: essential numerical information

(such as degree and multiplicity of each factor),

is obtained much faster than the full symbolic representation.
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Joint Work with A.J. Sommese and C.W. Wampler

A.J. Sommese, JV and C.W. Wampler: Using monodromy to decompose

solution sets of polynomial systems into irreducible components. In

Application of Algebraic Geometry to Coding Theory, Physics and

Computation, ed. by C. Ciliberto et al., Proceedings of a NATO Conference,

February 25 - March 1, 2001, Eilat, Israel. Pages 297–315, Kluwer AP.

A.J. Sommese, JV and C.W. Wampler: Symmetric functions applied to

decomposing solution sets of polynomial systems. SIAM J. Numer.

Anal. 40(6):2026–2046, 2002.

A.J. Sommese, JV and C.W. Wampler: Numerical Factorization of

Multivariate Complex Polynomials. Manuscript, 2002.

A.J. Sommese, JV and C.W. Wampler: Numerical irreducible decomposition

using PHCpack. In Algebra, Geometry, and Software Systems, edited by M.

Joswig and N. Takayama, pages 109–130, Springer-Verlag, 2003.
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The Riemann Surface of z3 − w = 0:
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R.M. Corless and D.J. Jeffrey: Graphing elementary Riemann surfaces.

SIGSAM Bulletin 32(1):11–17, 1998.
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Monodromy to Decompose Solution Components

Given: a system f(x) = 0; and W = (Z,L):

for all w ∈ Z : f(w) = 0 and L(w) = 0.

Wanted: partition of Z so that all points in a subset of Z

lie on the same irreducible factor.

Example: does f(x, y) = xy − 1 = 0 factor?

Consider H(x, y, θ) =







xy − 1 = 0

x+ y = 4eiθ
for θ ∈ [0, 2π].

For θ = 0, we start with two real solutions. When θ > 0, the

solutions turn complex, real again at θ = π, then complex until at

θ = 2π. Back at θ = 2π, we have again two real solutions, but their

order is permuted ⇒ irreducible.
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Connecting Witness Points

1. For two sets of hyperplanes K and L, and a random γ ∈ C

H(x, t,K, L, γ) =







f(x) = 0

γK(x)(1− t) + L(x)t = 0

We start paths at t = 0 and end at t = 1.

2. For α ∈ C, trace the paths defined by H(x, t,K, L, α) = 0.

For β ∈ C, trace the paths defined by H(x, t, L,K, β) = 0.

Compare start points of first path tracking with end points of

second path tracking. Points which are permuted belong to the

same irreducible factor.

3. Repeat the loop with other hyperplanes.
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Linear Traces – an example

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y
2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x+ c0.

Sample the cubic at x = x0 and x = x1. The samples are

{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve







y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.

For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.

Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.
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Linear Traces – example continued

f−1(0)
x0

s
y00

s
y01

s
y02

x1

s
y10

s
y11

s
y12

x2

s
y20

s
y21

s
y22

Use {(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}

to find the linear trace t1(x) = c0 + c1x.

At {(x2, y20), (x2, y21), (x2, y22)}: c0 + c1x2 = y20 + y21 + y22?
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Validation of Breakup with Linear Trace

Do we have enough witness points on a factor?

• We may not have enough monodromy loops to connect all

witness points on the same irreducible component.

• For a k-dimensional solution component, it suffices to consider

a curve on the component cut out by k − 1 random

hyperplanes. The factorization of the curve tells the

decomposition of the solution component.

• We have enough witness points on the curve if the value at the

linear trace can predict the sum of one coordinate of all points

in the set.

Notice: Instead of monodromy, we may enumerate all possible

factors and use linear traces to certify. While the complexity of this

enumeration is exponential, it works well for low degrees.
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Special case: one single polynomial

• Input: f(x) ∈ C[x], x = (x1, x2, . . . , xn).

coefficients known approximately, work with limited precision

• Wanted: write f as product of irreducible factors, as

f(x) =
N
∏

i=1

qi(x)
µi ,

N
∑

i=1

µi deg(qi) = deg(f),

every irreducible factor qi occurs with multiplicity µi.

E. Kaltofen: Challenges of symbolic computation: my favorite

open problems. J. Symbolic Computation 29(6): 891–919, 2000.
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Related Work

Y. Huang, W. Wu, H.J. Stetter, and L. Zhi: Pseudofactors of multivariate

polynomials. In Proceedings of ISSAC 2000, ed. by C. Traverso, pages

161–168, ACM 2000.

R.M. Corless, M.W. Giesbrecht, M. van Hoeij, I.S. Kotsireas and S.M. Watt:

Towards factoring bivariate approximate polynomials. In Proceedings of

ISSAC 2001, ed. by B. Mourrain, pages 85–92, ACM 2001.

A. Galligo and D. Rupprecht: Semi-numerical determination of irreducible

branches of a reduced space curve. In Proceedings of ISSAC 2001, ed. by

B. Mourrain, pages 137–142, ACM 2001.

A. Galligo and D. Rupprecht: Irreducible decomposition of curves. J.

Symbolic Computation 33(5):661–677, 2002.

T. Sasaki: Approximate multivariate polynomial factorization based on

zero-sum relations. In Proceedings of ISSAC 2001, ed. by B. Mourrain,

pages 284–291, ACM 2001.

R.M. Corless, A. Galligo, I.S. Kotsireas, and S.M. Watt: A geometric-numeric

algorithm for absolute factorization of multivariate polynomials. In

Proceedings of ISSAC 2002, ed. by T. Mora, pages 37–45, ACM 2002.

E. Kaltofen and J. May: On approximate irreducibility of polynomials in

several variables. To appear in Proceedings of ISSAC 2003.
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Dealing with Multiplicities

On a factor of degree d and multiplicity µ,

we find d clusters, each of µ witness points.

Choose v = (v1, v2, . . . , vn) and compute

g(x) :=

(

v1
∂

∂x1
+ v2

∂

∂x2
+ · · ·+ vn

∂

∂xn

)µ−1

f(x).

Then apply the techniques to the multiplicity one roots of g(x)

corresponding to the clusters.
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Using a theorem of Marden and Walsh

Assume d is the degree of f(z), f ∈ C[z];

µ is the multiplicity of a root of f ;

z0 is the center of the cluster around the multiple root;

∆r(z0) = { z ∈ C | |z − z0| ≤ r } contains the cluster;

r is the radius of the disk ∆r(z0);

R is largest such that { z ∈ C | |z − z0| ≥ R }

contains all other d− µ roots of f .

If R
r
≥

2(dµ)
d−µ+1 , then f

(k) has exactly µ− k roots in ∆r(z0),

for k = 1, 2, . . . , µ− 1.
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Applying the bound for R/r

Given a cluster of µ roots (and d− µ other roots), compute

• z0 as the average of the roots in the cluster;

• r as the largest distance of the roots in the cluster to z0;

• R as the smallest distance of the other d− µ roots to z0.

R

r
≥

2
(

d
µ

)

d− µ+ 1
⇒ r ≤ R

(

d− µ+ 1

2
(

d
µ

)

)

We obtain a bound on r, the precision of the roots in the cluster,

in order for the successive derivatives of f to be safe.
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Numerical Limitations

• Evaluation of high degree polynomials is numerically unstable:

f(x) = (x0 + tv)d =

d
∑

k=0

(

d

k

)

xd−k0 vktk = 0,

for example, d = 30 and k = 15: nine decimal places in
(

d
k

)

.

• Working precision determines accuracy of factorization:

f(x, y) = xy + 10−16

– will factor when working with double precision floats;

– will not factor as soon as precision is high enough.
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Application I: Architecturally Singular Platforms

Special Griffis-Duffy type

• Base and endplate are equilateral triangles.

• Legs connect vertices to midpoints.
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Results of Husty and Karger

Self-motions of Griffis-Duffy type parallel manipulators. In Proc. 2000

IEEE Int. Conf. Robotics and Automation (CDROM), 2000.

The special Griffis-Duffy platforms move:

• Case 1: Plates not equal, legs not equal.

– Curve is degree 20 in Euler parameters.

– Curve is degree 40 in position.

• Case 2: Plates congruent, legs all equal.

– Factors are degrees (4+ 4)+ 6+ 2 = 16 in Euler parameters.

– Factors are degrees (8 + 8) + 12 + 4 = 32 in position.

Question: Can we confirm these results numerically?
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Components of Griffis-Duffy Platforms

Solution components by degree

Husty & Karger SVW

Euler Position Study Position

General Case

20 40 28 40

Legs equal, Plates equal

6 8

4 8 6 8

4 8 6 8

6 12 6 12

2 4 4 4

16 32 28 40
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Griffis-Duffy Platforms: Factorization

Case A: One irreducible component of degree 28 (general case).

Case B: Five irreducible components of degrees 6, 6, 6, 6, and 4.

user cpu on 800Mhz Case A Case B

witness points 1m 12s 480ms

monodromy breakup 33s 430ms 27s 630ms

Newton interpolation 1h 19m 13s 110ms 2m 34s 50ms

32 decimal places used to interpolate polynomial of degree 28

linear trace 4s 750ms 4s 320ms

Linear traces replace Newton interpolation:

⇒ time to factor independent of geometry!
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Griffis-Duffy Platforms: an Animation
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Application II: three Stewart-Gough platforms

General platform,

fixed position

Planar base,

planar platform

Parallel base

and platform

J.P. Merlet: Parallel Robots. Kluwer Academic Publishers, 2000.
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Singularities of Stewart-Gough Platforms

At singularity, rigidity of device is lost, allowing finite motion

which cannot be controlled by leg lengths (disaster!).

Denote p ∈ C3 position of platform;

q ∈ P3 quaternion defines a rotation;

ai,bi ∈ C3 ball joints at platform and base, i = 1, 2, . . . , 6;

J ∈ C6×6 Jacobian matrix of mapping

from platform motion to leg lengths.

Then the condition on a singular configuration is detJ = 0.

detJ is a polynomial of degree 1728 in 43 variables: p, q, ai, bi.

Merlet. Int. J. Robotics Research 8(5):45–56, 1989.

Bayer St-Onge and Gosselin. Int. J. Robotics Research 19(3):271–288, 2000.
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first general case of a Stewart-Gough platform

General platform,

fixed position

• case of almost all manipulators

p, ai, and bi are randomly chosen

• deg(detJ) = 12, homogeneous in q

the expanded detJ has 910 terms

• detJ = F1(q)(F2(q))
3

q = (q0, q1, q2, q3) quaternion

deg(F1) = 6

F2(q) = q2
0 + q2

1 + q2
2 + q2

3

F2 has no physical significance
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Computational results for first platform

cluster r R R/r

one 1.7E-05 3.4E-01 2.0E+04

two 4.9E-06 1.7E-01 3.6E+04

Lower bound on R/r evaluates to 44.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 0h 6m 40s 469ms

2. linear traces certification : 0h 0m 30s 672ms

3. interpolation at factors : 1h 41m 53s 78ms

4. multiplication validation : 0h 0m 8s 156ms

total time for all 4 stages : 1h 49m 12s 391ms
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second case: planar base and platform

Planar base

and platform

• ball joints ai lie in planar platform

ball joints bi lie in planar base

• deg(detJ) = 12, homogeneous in q

the expanded detJ has 910 terms

• detJ = F1(q)(F2(q))
3

q = (q0, q1, q2, q3) quaternion

deg(F1) = 6 deg(F2) = 2
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Computational results for second platform

cluster r R R/r

one 6.2E-05 2.4E-01 3.8E+04

two 4.8E-05 6.0E-01 1.2E+04

Lower bound on R/r evaluates to 44.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 0h 17m 34s 735ms

2. linear traces certification : 0h 0m 27s 359ms

3. interpolation at factors : 1h 24m 45s 766ms

4. multiplication validation : 0h 0m 8s 172ms

total time for all 4 stages : 1h 42m 56s 32ms
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third case: parallel base and platform

Parallel base

and platform

• ball joints ai,bi in parallel planes,

position p is variable, q1 = q2 = 0

• deg(detJ) = 15, in (p,q)

expanded detJ has 24 terms,

much sparser, as 24 << 910

• detJ = ap3
3(q0 + bq3)(q0 + cq3)

(q0 + iq3)
5(q0 − iq3)

5

where the constants a, b, c

depend on the choice of ai,bi

29



'

&

$

%

Computational results for third platform

cluster r R R/r

one 5.1E-07 1.0E+00 2.0E+06

two 7.3E-04 3.4E-01 4.7E+02

three 4.0E-03 7.2E-01 1.8E+02

Lower bound on R/r evaluates to 546.

Elapsed user CPU times on 2.4Ghz WindowsXP

1. monodromy grouping : 1m 13s 656ms

2. linear traces certification : 0m 3s 891ms

3. interpolation at factors : 0m 4s 734ms

4. multiplication validation : 0m 1s 657ms

total time for all 4 stages : 1m 23s 938ms
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Monodromy Compared to the Enumeration Method

Enumeration of all possible factors certified by linear traces outperforms the

monodromy algorithm for our application:

User CPU times on 2.4Ghz Windows XP

case monodromy enumeration

1 6m 40s 460ms 40s 750ms

2 17m 34s 735ms 31s 657ms

3 1m 13s 656ms 3s 0ms

Random irreducible polynomials of five monomials:

User CPU times on 2.4Ghz Windows XP

degree monodromy enumeration

10 5s 484ms 312ms

15 8s 187ms 1s 453ms

16 16s 63ms 2s 875ms
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Exercises

• Apply phc -f to factor

x**6 - x**5*y + 2*x**5*z - x**4*y**2 - x**4*y*z+x**3*y**3

- 4*x**3*y**2*z + 3*x**3*y*z**2 - 2*x**3*z**3 + 3*x**2*y**3*z

- 6*x**2*y**2*z**2 + 5*x**2*y*z**3 - x**2*z**4 + 3*x*y**3*z**2

- 4*x*y**2*z**3 + 2*x*y*z**4+y**3*z**3 - y**2*z**4;

• Consider the adjacent minors of a general 2× 4-matrix:





x11 x12 x13 x14

x21 x22 x23 x24



 f(x) =















x11x22 − x21x12 = 0

x12x23 − x22x13 = 0

x13x24 − x23x14 = 0

Compute the irreducible decomposition of f−1(0).
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