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introduction

We want to solve a polynomial system f(x) = 0
with numerical homotopy continuation methods:

a homotopy h(x, t) = 0 is a family of polynomial systems,
with h(x,1) = f and we know solution(s) of h(x,0) = 0;

predictor-corrector methods apply Newton’s method
to track solution path(s) defined by the homotopy h(x, t) = 0.

Assumptions:

we have the “right” homotopy h(x, t) = 0,

there is one difficult path to track.

For this talk, “in parallel” means massively parallel

graphics compute processors have hundreds of cores; and

we needs thousands of threads to occupy the resources well.
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problem statement

A polynomial in n variables x = (x1, x2, . . . , xn) consists of a vector of
nonzero complex coefficients with corresponding exponents in A:

f (x) =
∑

a∈A

caxa, c ∈ C \ {0}, xa = xa1
1 xa2

2 · · · xan
n .

Given is a system f = (f1, f2, . . . , fn) and some point z ∈ C
n.

The problem is to evaluate f and its Jacobian matrix Jf at z,
i.e.: to compute the vector f(z) and the matrix Jf(z).

For large polynomial systems in many variables and high degrees:

the cost of polynomial evaluation and differentiation often
dominates the linear algebra of Newton’s method; and

the double precision as available in standard hardware is often
insufficient to guarantee accurate results.

Goal: offset the cost of extended precision by parallel computing.
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the complexity of partial derivatives

Theorem (Bauer & Strassen, TCS vol. 22, 1983)
Let L(f1, f2, . . . , fN) denote the minimal number of arithmetical
operations to compute f1, f2, . . . , fN from values for their inputs
x1, x2, . . . , xn, then:

L
(

f ,
∂f
∂x1

,
∂f
∂x2

, . . . ,
∂f
∂xn

)

≤ 3L(f ).

Our focus is on monomials, in particular: f = x1x2 . . . xn.

Evaluating x1x2 . . . xn and its gradient takes

n − 1 multiplications and n − 1 divisions, assuming all xi 6= 0,

3n − 5 multiplications, avoiding divisions.
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an arithmetic network for x1 ⋆ x2 ⋆ x3 ⋆ x4

In Evaluating Derivatives. Principles and Techniques of Algorithmic
Differentiation by Griewank and Walther, 2nd edition, SIAM 2008,
a product of variables is named Speelpenning’s product.

x1
HHj

⋆
HHj
-

x4
HHj

x1 ⋆ x2 - ⋆ - x4 ⋆ x1 ⋆ x2

x2
��*

x3
��*

⋆
HHj
- x1 ⋆ x2 ⋆ x3

x4
��*

HHj

⋆ - x1 ⋆ x2 ⋆ x3 ⋆ x4

x3
��*

⋆
HHj
-

x1
HHj

x4 ⋆ x3 - ⋆ - x1 ⋆ x3 ⋆ x4

x2
��*

⋆ - x4 ⋆ x3 ⋆ x2

Evaluating x1 ⋆ x2 ⋆ · · · ⋆ xn and its gradient takes 3n − 5 multiplications.
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quad double precision
A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/ ∼dhbailey/mpdist/qd-2.3.9.tar.gz .

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by

M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010. http://code.google.com/p/gpuprec/ .

At andrewthall.org/dist : float-float arithmetic Cg code by
Andrew Thall is good for GPUs with compute capability < 1.3.
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computers and compilers

Hardware:

HP Z800 workstation running Red Hat Enterprise Linux 6.1
The CPU is an Intel Xeon X5690 at 3.47 Ghz.

The processor clock of the NVIDIA Tesla C2050 Computing
Processor runs at 1147 Mhz. The graphics card has 14
multiprocessors, each with 32 cores, for a total of 448 cores.

As the clock speed of the GPU is a third of the clock speed of the CPU,
we hope to achieve a double digit speedup.

Compilers:

Code written in C++ using gcc version 4.4.6.

NVIDIA CUDA compiler driver nvcc , release 4.0, V0.2.1221.

A single float precision version of our massively parallel evaluation and
differentiation runs on the NVIDIA GeForce 9400M in a MacBook.
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CUDA device memory types
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monomial evaluation and differentiation

Polynomials are linear combinations of monomials xa = xa1
1 xa2

2 · · · xan
n .

Separating the product of variables from the monomial:

xa =
(

x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

)

⋆
(

xj1xj2 · · · xjℓ

)

,

for aim ≥ 1, m = 1,2, . . . , k , 1 ≤ i1 < i2 < · · · < ik ≤ n,
and 1 ≤ j1 < j2 < · · · < jℓ ≤ n, with ℓ ≥ k .

Evaluating and differentiating xa in three steps:

1 compute the common factor x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

2 compute xj1xj2 · · · xjℓ and its gradient
3 multiply the evaluated xj1xj2 · · · xjℓ and its gradient

with the evaluated common factor
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computing common factors x
ai1

−1
i1

x
ai2

−1
i2

· · · x
aik

−1
ik

To evaluate x3
1 x7

2 x2
3 and its derivatives, we first evaluate the factor

x2
1 x6

2 x3 and then multiply this factor with all derivatives of x1x2x3.

Because x2
1 x6

2 x3 is common to the evaluated monomial and all its
derivatives, we call x2

1 x6
2 x3 a common factor.

The kernel to compute common factors operates in two stages:
1 Each of the first n threads of a thread block computes sequentially

powers from the 2nd to the (d − 1)th of one of the n variables.
2 Each of the threads of a block computes a common factor for one

of the monomials of the system, as a product of k quantities
computed at the first stage of the kernel.

The precomputed powers of variables are stored in shared memory:
the (i , j)th element stores x i

j , minimizing bank conflicts.

The positions and exponents of variables in monomials are stored in
two one dimensional arrays in constant memory.
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common factor calculation

thread computes:

x5
1 ⋆ x4

3 ⋆ · · ·

constant
memory {

POSITIONS

. . . 1 3 . . .

EXPONENTS

. . . 5 4 . . .

J
J
J
J
Ĵ

PPPPPPPPPPPi

shared memory
POWERS

x2
1 x2

2 x2
3 . . . x2

n
x3

1 x3
2 x3

3 . . . x3
n

x4
1 x4

2 x4
3 . . . x4

n
. . .
. . .
xd−1

1 xd−1
2 xd−1

3 . . . xd−1
n
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memory locations
we illustrate the work done by one thread

To compute the derivatives of s = x1x2x3x4,

Q stores the backward product, and

the i th partial derivative of S is stored in memory location Li .

L1 L2 L3 L4 Q
x1

x1 x1 ⋆ x2

x1 x1x2 (x1x2) ⋆ x3

x1 (x1x2) ⋆ x4 x1x2x3 x4

x1 ⋆ (x3x4) x1x2x4 x1x2x3 x4 ⋆ x3

x2x3x4 x1x3x4 x1x2x4 x1x2x3 (x4x3) ⋆ x2

∂s
∂x1

∂s
∂x2

∂s
∂x3

∂s
∂x4

Only explicitly performed multiplications are marked by a star ⋆.
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the example continued

Given s = x1x2x3x4 and its gradient, with α = x2
1 x6

2 x3
3 x4

4 we evaluate
β = c x3

1 x7
2 x4

3 x5
4 and its derivatives, denoting γ = 1

cβ = x3
1 x7

2 x4
3 x5

4 .

L1 L2 L3 L4 L5

∂s
∂x1

⋆ α ∂s
∂x2

⋆ α ∂s
∂x3

⋆ α ∂s
∂x4

⋆ α

1
3

∂γ
∂x1

1
7

∂γ
∂x2

1
4

∂γ
∂x3

1
5

∂γ
∂x4

1
3

∂γ
∂x1

1
7

∂γ
∂x2

1
4

∂γ
∂x3

1
5

∂γ
∂x4

1
5

∂γ
∂x4

⋆ x4

1
3

∂γ
∂x1

1
7

∂γ
∂x2

1
4

∂γ
∂x3

1
5

∂γ
∂x4

γ

1
3

∂γ
∂x1

⋆ (3c) 1
7

∂γ
∂x2

⋆ (7c) 1
4

∂γ
∂x3

⋆ (4c) 1
5

∂γ
∂x4

⋆ (5c) γ ⋆ c

∂β
∂x1

∂β
∂x2

∂β
∂x3

∂β
∂x4

β

Note that the coefficients (3c), (7c), (4c), (5c) are precomputed.
Only explicitly performed multiplications are marked by a star ⋆.
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regularity assumptions on the input data

Graphics compute processors exploit data parallelism.

Every thread evaluates and differentiates one monomial.

On the one hand, to keep all 14 multiprocessors occupied
about 1,000 monomials are needed.

On the other hand, as monomials are stored as positions and
exponents in constant memory, the 65,536 bytes of constant
memory impose an upper bound on the number of monomials.

Let n be the number of polynomials in the system,
m be the number of monomials per polynomial,
k be the number of variables per monomial,

using one byte for a position and one byte for an exponent,
then we need n × m × k × 2 bytes.

As examples, we take n = m between 30 and 40, and k = n/2.
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limits of shared memory capacity

With double double precision coefficients, dimension 70 is okay.

1 (n/2+1)×2×sizeof(double double) ≤ (70/2+1)×2×16 = 1,152
bytes in shared memory. To handle 32 momomials by a block of
32 threads we would need then at most

32 × 1,152 = 36,864 bytes of shared memory.

2 For storing values of the variable we would need

n × sizeof( complex double double) ≤

70 × 2 × sizeof(double double) = 70 × 2 × 16 = 2,240.

3 Allocation both spaces in shared memory leaves
(49,152 − (36,864 + 2,240)) > 10,000 bytes of shared memory.
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computational experiments

We generate a system with random complex coefficients:

a system of 32 polynomials,

each monomial has 9 variables with nonzero power of at most 2,

a varying number of monomials per polynomial: 22, 32, and 48
lead to 704, 1024, and 1536 monomials in the system.

Wall clock times and speedups for 100,000 evaluations:

#monomials Tesla C2050 1 CPU core speedup
704 14.514 sec 1min 50.9 sec 7.60

1024 15.265 sec 2min 39.3 sec 10.44
1536 17.000 sec 3min 58.7 sec 14.04

At least 1000 monomials are needed for a modest speedup.
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monomials of higher degrees

We generate a system with random complex coefficients:

a system of 32 polynomials,

each monomial has 16 variables with nonzero power ≤ 10,

a varying number of monomials per polynomial: 22, 32, and 48
lead to 704, 1024, and 1536 monomials in the system.

Wall clock times and speedups for 100,000 evaluations:

#monomials Tesla C2050 1 CPU core speedup
704 19.068 sec 3min 16.9 sec 10.33

1024 20.800 sec 4min 43.3 sec 13.62
1536 21.763 sec 7min 05.8 sec 19.56

With higher degrees, we obtain higher speedups.
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increasing the precision

We generate a system with random complex coefficients:

a system of 32 polynomials,

the number of variables that appear in each monomial ≤ 12,

each variable appears of degree ≤ 5 in each monomial.

Comparing timings of 100,000 evaluations on the Tesla C2050:

#monomials double precision double double overhead
704 18.090 sec 38.405 sec 2.123

1024 17.983 sec 40.046 sec 2.227
1536 18.901 sec 1 min 14.115 sec 3.912

overhead =
time with double doubles
time in double precision

≤ 5
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conclusions

We obtained modest speedups with our first code for the evaluation
and differentiation of a polynomial system and its Jacobian matrix.

On randomly generated systems, preliminary experiments show that

for good occupancy at least 1000 monomials are needed,

the size of constant memory limits more than 2000 monomials,

speedups increase with higher degrees,

quality up: double the precision in double the time!

Published in the Proceedings of the 2012 IEEE 26th International Parallel and
Distributed Processing Symposium Workshops, pp. 1391-1399, IEEE 2012.

Ongoing and future work includes

adding a linear solver on the GPU implements Newton’s method,

integration in the polynomial system solver of PHCpack.
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