
Writing Shared Memory Parallel Programs in Ada
multitasked Newton’s method for power series

Jan Verschelde

University of Illinois at Chicago
Department of Mathematics, Statistics, and Computer Science

http://www.math.uic.edu/˜jan
janv@uic.edu

www.phcpack.org

Ada devroom, FOSDEM 2020, 1 February, Brussels, Belgium

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 1 / 10

Outline

1 Introduction
motivation and problem statement
Newton’s method to compute power series expansions
multithreading on multicore processors

2 Multitasking in Ada
launching a crew of workers
writing multitasked code
evaluation and differentiation at power series
a linear block triangular system

3 Computational Results
wall clock times and speedup

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 2 / 10

motivation: approximation of space curves
Viviani’s curve is a space curve defined by

f = (x2
1 + x2

2 + x2
3 − 4, (x1 − 1)2 + x2

2 − 1).

At the point (0,0,2), consider power series expansions:

Increased degrees of truncation give better approximations.

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 3 / 10

Newton’s method

We compute x(t) a power series solution to f(x) = 0,
starting at a point x(0) = z, x(t) = z + x1t + x2t2 + · · · .

Let Jf be the matrix of all partial derivatives of f, we compute the
update ∆x(t) to x(t) as the solution of a linear system

Jf(x(t))∆x(t) = −f(x(t)),

and then do x(t) := x(t) + ∆x(t).

Computational difficulties:
1 increasing number of equations and variables,
2 truncate the power series at increasing degrees,
3 multiprecision arithmetic needed for roundoff errors.

Goal: improve the efficiency by parallel computations.

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 4 / 10

multithreading on multicore processors

All computers have multicore processors.

Development on three different computers and operating systems:

1 Linux Microway workstation with two 22-core procesors.
Two 22-core 2.2 GHz Intel Xeon E5-2699, 256 GB RAM.

2 Windows MSI laptop with one 8-core processor.
Intel Core i9-9880H 2.30 GHz, 32 GB RAM.

3 MacOS X MacBook Pro laptop, with dual core processor.
Intel Core i7 3.10 GHz processor, 16 GB RAM.

On these three above computers, best speedups are achieved
with respectively 88, 16, and 4 threads.

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 5 / 10

starting worker tasks
procedure Workers is instantiated with a Job procedure,
executing code based on the id number.

procedure Workers (n : in natural) is
task type Worker (id,n : natural);
task body Worker is
begin

Job(id,n);
end Worker;
procedure Launch_Workers (i,n : in natural) is

w : Worker(i,n);
begin

if i < n
then Launch_Workers(i+1,n);

end if;
end Launch_Workers;

begin
Launch_Workers(1,n);

end Workers;

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 6 / 10

writing multitasked code

We consider memory and granularity when writing multitasked code.

1 memory

Threads each have a stack, all share the same heap.

Auxiliary vectors in a computation
I should not be local variables in a function or procedure,
I are work space data attributes.

To avoid race conditions, different tasks work on different data.
2 granularity

The parallel code defines how jobs are mapped to tasks.
I Decide on the size of the jobs.
I A directed acyclic graph defines the order of jobs.
I Synchronize with relaunching tasks.

3 there are always other issues ...

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 7 / 10

evaluation and differentiation at power series
For example, evaluate f = x1x2x3x4x5,
and compute all its partial derivatives, in three stages:

1) compute forward products : x1x2 = x1 ? x2
x1x2x3 = x1x2 ? x3

x1x2x3x4 = x1x2x3 ? x4
x1x2x3x4x5 = x1x2x3x4 ? x5

2) compute backward products : x5x4 = x5 ? x4
x5x4x3 = x5x4 ? x3

x5x4x3x2 = x5x4x3 ? x2
3) compute cross products : x1x3x4x5 = x1 ? x5x4x3

x1x2x4x5 = x1x2 ? x5x4
x1x2x3x5 = x1x2x3 ? x5

Every ? is a multiplication of truncated power series.

Every monomial can be evaluated and differentiated independently of
every other monomial⇒ straightforward parallelism.

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 8 / 10

a linear block triangular system

After evaluation and differentiation, we solve Jf(x(t))∆x(t) = −f(x(t)).

For example, if we truncate power series at degree 2:(
A0 + A1t + A2t2

)(
∆x0 + ∆x1t + ∆x2t2

)
= b0 + b1t + b2t2,

then in matrix notation, we obtain the block triangular linear system A0
A1 A0
A2 A1 A0

 ∆x0
∆x1
∆x2

 =

 b0
b1
b2

 .

A coarse grained parallel algorithm applies pipelining.

If the degree of the truncated power series equals d ,
using more than d threads will not increase the speedup.

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 9 / 10

wall clock times and speedup
Wall clock times and speedups are reported on a 10-dimensional system,
developing a power series at one cyclic 10-root, a known benchmark.

Running at most 8 steps with Newton’s method in quad double precision,
for increasing number p of tasks and degree d of truncation:

d = 16 d = 32 d = 64 d = 96
p seconds speedup seconds speedup seconds speedup seconds speedup

1 1.109s 2.304s 20.957s 46.030s
2 0.649s 1.708 1.376s 1.674 11.582s 1.810 25.491s 1.806
4 0.441s 2.514 0.863s 2.670 7.407s 2.829 16.150s 2.850
8 0.348s 3.186 0.677s 3.405 5.335s 3.928 11.709s 3.931

16 0.376s 2.948 0.727s 3.168 5.279s 3.970 11.684s 3.940

On Windows laptop, Intel Core i9-9880H 2.30 GHz, 8 cores, 32 GB RAM.

The code is available on github at
https://github.com/janverschelde/PHCpack/
in the folder src/Ada/Tasking.

Jan Verschelde (UIC) Shared Memory Parallel Programs FOSDEM 2020, 1 February 10 / 10

	Introduction
	motivation and problem statement
	Newton's method to compute power series expansions
	multithreading on multicore processors

	Multitasking in Ada
	launching a crew of workers
	writing multitasked code
	evaluation and differentiation at power series
	a linear block triangular system

	Computational Results
	wall clock times and speedup

