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solving polynomial systems numerically

Problem statement: when solving large polynomial systems, the
hardware double precision may not be sufficient for accurate solutions.

Our goal: accelerate computations with general purpose
Graphics Processing Units (GPUs) to compensate for the overhead
caused by double double and quad double arithmetic.

Our first results (jointly with Genady Yoffe) on pursuing this goal
with multicore computers are in the PASCO 2010 proceedings.

Our focus is on Newton’s method:
1 To evaluate and differentiate the polynomial systems,

we apply the reverse method of algorithmic differentiation.
2 To solve linear systems in the least squares sense,

we apply the modified Gram-Schmidt method.
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quad double precision

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/ ∼dhbailey/mpdist/qd-2.3.9.tar.gz .

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by

M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010.
Software at http://code.google.com/p/gpuprec/ .
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about large polynomial systems: how large?

The number of isolated solutions and/or the degrees of positive
dimensional solution sets may grow exponentially in the dimensions
of the input: degrees of the equations and number of variables.

Because of the exponential growth of the output (e.g. 20 quadrics
⇒ 220 solutions), global solving is limited to rather small dimensions.

In local solving, we focus on one solution and may increase the
dimension to several hundreds and even thousands.

One limitation is the storage needed for all exponent vectors and
coefficients of the monomials.

Most systems arising in applications are sparse, the number of
monomials grows modestly in the number of variables.
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some related work in algorithmic differentiation

M. Grabner, T. Pock, T. Gross, and B. Kainz. Automatic differentiation for
GPU-accelerated 2D/3D registration. In Advances in Automatic
Differentiation, pages 259–269. Springer, 2008.

G. Kozikowski and B.J. Kubica. Interval arithmetic and automatic
differentiation on GPU using OpenCL. In PARA 2012, LNCS 7782,
pages 489-503, Springer 2013.

some related work in polynomial system solving

R.A. Klopotek and J. Porter-Sobieraj. Solving systems of polynomial
equations on a GPU. In Preprints of the Federated Conference on
Computer Science and Information Systems, September 9-12, 2012,
Wroclaw, Poland, pages 567–572, 2012.

M.M. Maza and W. Pan. Solving bivariate polynomial systems on a GPU.
ACM Communications in Computer Algebra, 45(2):127–128, 2011.
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some related work in numerical linear algebra

M. Anderson, G. Ballard, J. Demmel, and K. Keutzer.
Communication-avoiding QR decomposition for GPUs.
In Proceedings of the IPDPS 2011, pages 48–58.
IEEE Computer Society, 2011.

T. Bartkewitz and T. Güneysu. Full lattice basis reduction on graphics
cards. In WEWoRC’11 Proceedings, LNCS vol. 7242, pages 30–44,
Springer, 2012.

J. Demmel, Y. Hida, X.S. Li, and E.J. Riedy. Extra-precise iterative
refinement for overdetermined least squares problems.
ACM Trans. Math. Softw., 35(4):28:1–28:32, 2009.

D. Mukunoki and D. Takashashi. Implementation and evaluation of triple
precision BLAS subroutines on GPUs. In Proceedings of PDSEC 2012,
pages 1372–1380. IEEE Computer Society, 2012.

V. Volkov and J. Demmel. Benchmarking GPUs to tune dense linear
algebra. In Proceedings of the 2008 ACM/IEEE conference on
Supercomputing. IEEE Press, 2008.
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hardware and software

Our main target: the NVIDIA Tesla K20C, with 2496 cores at
706 MHz, hosted by a RHEL workstation of Microway, with Intel
Xeon E5-2670 at 2.6 GHz. Used 4.4.7 of gcc and 5.5 of nvcc.

Our other computer is an HP Z800 RHEL workstation with 3.47
GHz Intel Xeon X5690, hosting the NVIDIA Tesla C2050 has 448
cores at 1147 Mhz. Used 4.4.7 of gcc and 5.5 of nvcc.

The C++ code for the Gram-Schmidt method to run on the host is
directly based on the pseudo code, compiled with -O2 flag.
Our serial C++ code served mainly to verify correctness.
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polynomial evaluation and differentiation

We distinguish three stages:
1 Common factors and tables of power products:

xd1
1 xd2

2 · · · xdn
n = xi1xi2 · · · xik × x

ej1
j1

x
ej2
j2

· · · x
ejℓ
jℓ

The factor x
ej1
j1

x
ej2
j2

· · · x
ejℓ
jℓ

is common to all partial derivatives.

The factors are evaluated as products of pure powers of the
variables, computed in shared memory by each block of threads.

2 Evaluation and differentiation of products of variables:
Computing the gradient of x1x2 · · · xn with the reverse mode of
algorithmic differentiation requires 3n − 5 multiplications.

3 Coefficient multiplication and term summation.
Summation jobs are ordered by the number of terms so each
warp has the same amount of terms to sum.
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arithmetic circuits
First to evaluate the product:
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and then to compute the gradient:
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computing the gradient of x1x2 · · · x8

Denote by xi:j the product xi ⋆ · · · ⋆ xk ⋆ · · · ⋆ xj for all k between i and j .
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The computation of the gradient of x1x2 · · · xn requires

2n − 4 multiplications, and
n − 1 extra memory locations.
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optimized parallel reduction
Evaluation and differentiation of 65,024 monomials in 1,024 doubles:

Times on the K20C obtained with nvprof (the NVIDIA profiler)
are in milliseconds (ms).
Dividing the number of bytes read and written by the time
gives the bandwidth.
Times on the CPU are on one 2.6GHz Intel Xeon E5-2670,
with code optimized with the -O2 flag.

method time bandwidth speedup
CPU 330.24ms
GPU one thread per monomial 86.43ms 3.82

one block per monomial 15.54ms 79.81GB/s 21.25
sequential addressing 14.08ms 88.08GB/s 23.45

unroll last wrap 10.19ms 121.71GB/s 32.40
complete unroll 9.10ms 136.28GB/s 36.29
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different sizes of monomials
Evaluation and differentiation of m monomials of different size n:

by 65,024 blocks with 512 threads per block for 1,024 doubles in shared
memory,
accelerated by the K20C with timings in milliseconds obtained by the
NVIDIA profiler.
Times on the CPU are on one 2.6GHz Intel Xeon E5-2670,
with code optimized with the -O2 flag.

n m CPU GPU speedup
1024 1 330.24ms 9.12ms 36.20

512 2 328.92ms 8.73ms 37.66
256 4 320.78ms 8.84ms 36.29
128 8 309.02ms 8.15ms 37.89
64 16 289.30ms 7.27ms 39.77
32 32 256.07ms 9.51ms 26.94
16 64 230.34ms 8.86ms 25.99

8 128 218.74ms 7.79ms 28.07
4 256 202.20ms 7.05ms 28.69

Jan Verschelde (UIC) GPU accelerated Newton’s method HPCC 2014 18 / 29



GPU accelerated Newton’s method

1 Solving Polynomial Systems Numerically
compensating for the cost of double doubles and quad doubles
how large? sizing up the problem dimensions

2 Polynomial System Evaluation and Differentiation
the reverse mode of algorithmic differentiation
arithmetic circuits
computational results

3 A Massively Parallel Modified Gram-Schmidt Method
implementing a right-looking algorithm

4 Computational Results
the Chandrasekhar H-Equation
the cyclic n-roots problem

Jan Verschelde (UIC) GPU accelerated Newton’s method HPCC 2014 19 / 29



modified Gram-Schmidt on the GPU

With Gram-Schmidt orthonormalization we solve linear systems in the
least squares sense, capable of handling overdetermined problems.

In [Volkov-Demmel, 2008], the left-looking scheme is dismissed
because of its limited inherent parallelism.

For thread-level parallelism, we implemented the right-looking version
of the modified Gram-Schmidt method.

Although left-looking is preferable for memory transfers,

our computations are compute bound for complex double double,
quad double, and complex quad double arithmetic.
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the discretization of an integral equation

Formulating a polynomial system for any dimension:

fi(H1, H2, . . . , Hn) = 2nHi−cHi





n−1
∑

j=0

i
i + j

Hj



−2n = 0, i = 1, 2, . . . , n,

where c is some real nonzero constant, 0 < c ≤ 1.

The cost to evaluate and differentiate grows linear in n . . .

⇒ the cost of Newton’s method is dominated
by the cost of solving a linear system which grows as n3.

The value for the parameter c we used in our experiments is 33/64.

Starting at Hi = 1 for all i leads to a quadratically convergent process.
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a benchmark problem

The problem was treated with Newton’s method in [1]
and added to a collection of benchmark problems in [2].
In [3], the system was studied with methods in computer algebra.

1. C.T. Kelley. Solution of the Chandrasekhar h-equation by
Newton’s method. J. Math. Phys., 21(7):1625–1628, 1980.

2. J.J. Moré. A collection of nonlinear model problems. In
Computational Solution of Nonlinear Systems of Equations,
volume 26 of Lectures in Applied Mathematics, pages 723–762.
AMS, 1990.

3. L. Gonzalez-Vega. Some examples of problem solving by using
the symbolic viewpoint when dealing with polynomial systems of
equations. In J. Fleischer, J. Grabmeier, F.W. Hehl, and
W. Küchlin, editors, Computer Algebra in Science and
Engineering, pages 102–116. World Scientific, 1995.
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experimental setup

for a number of iterations :
1. The host evaluates and differentiates the system at the

current approximation, stored in an n-by-(n + 1) matrix [A b],
with b = −f (H1, H2, . . . , Hn); print b1.

2. A∆x = b is solved in the least squares sense,
either entirely by the host; or
if accelerated, then

2.1 the matrix [A b] is transferred
from the host to the device;

2.2 the device does a QR decomposition on [A b]
and back substitution on the system R∆x = y;

2.3 the matrices Q, R, and the solution ∆x
are transferred from the device to the host.

3. The host performs the update x = x + ∆x
to compute the new approximation.
The first component of ∆x and x are printed.
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accelerating on the K20C
Running six iterations of Newton’s method in complex double double arithmetic
on one core on the CPU and accelerated by the K20C with block size equal to
128, once with the evaluation and differentiation done by the CPU (GPU1) and
once with all computations on the GPU (GPU2).

n mode real user sys speedup
1024 CPU 5m22.360s 5m21.680s 0.139s

GPU1 24.074s 18.667s 5.203s 13.39
GPU2 20.083s 11.564s 8.268s 16.05

2048 CPU 42m41.597s 42m37.236s 0.302s
GPU1 2m45.084s 1m48.502s 56.175s 15.52
GPU2 2m29.770s 1m26.373s 1m03.014s 17.10

3072 CPU 144m13.978s 144m00.880s 0.216s
GPU1 8m50.933s 5m34.427s 3m15.608s 16.30
GPU2 8m15.565s 4m43.333s 3m31.362s 17.46

4096 CPU 340m00.724s 339m27.019s 0.929s
GPU1 20m26.989s 13m39.416s 6m45.799s 16.63
GPU2 19m24.243s 11m01.558s 8m20.698s 17.52
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the cyclic n-roots problem

A system relevant to operator algebras is:


































x0 + x1 + · · · + xn−1 = 0

x0x1 + x1x2 + · · · + xn−2xn−1 + xn−1x0 = 0

i = 3, 4, . . . , n − 1 :
n−1
∑

j=0

j+i−1
∏

k=j

xk mod n = 0

x0x1x2 · · · xn−1 − 1 = 0.

The system is a benchmark problem in computer algebra.
The cost to evaluate and differentiate the system is O(n3).
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accelerating on the K20C
Evaluation and differentiation of the cyclic n-roots problem in complex double
(D), complex double double (DD), and complex quad double (QD) arithmetic.

Times in milliseconds are obtained with the NVIDIA profiler.

n CPU GPU speedup
D 128 16.39ms 1.13ms 14.87

256 136.26ms 6.97ms 19.55
384 475.94ms 21.59ms 22.05
448 747.44ms 32.68ms 22.87
512 1097.20ms 46.43ms 23.63

DD 128 144.27ms 6.45ms 22.36
256 1169.07ms 37.15ms 31.47
384 3981.07ms 120.48ms 33.04
448 6323.17ms 182.19ms 34.52
512 9411.55ms 267.39ms 35.20

QD 128 1349.55ms 29.45ms 45.82
256 10987.87ms 152.82ms 71.90
384 37323.08ms 513.78ms 72.64
448 59247.04ms 809.15ms 73.22
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conclusions

On a massively parallel implementation of Newton’s method
for large polynomial systems:

The cost of linear algebra dominates in case the cost to evaluate
and differentiate the system is linear in the dimension.

For systems where the cost to evaluate and differentiate is cubic
in the dimension, the computations

◮ are memory bound for double and double double arithmetic; and
◮ become compute bound for complex double double, quad double,

and complex quad double arithmetic.
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