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polynomial homotopy continuation methods

f (x) = 0 is a polynomial system we want to solve,
g(x) = 0 is a start system (g is similar to f ) with known solutions.

A homotopy h(x, t) = (1 − t)g(x) + t f (x) = 0, t ∈ [0,1],
to solve f (x) = 0 defines solution paths x(t): h(x(t), t) ≡ 0.

Numerical continuation methods track the paths x(t), from t = 0 to 1.

Problem statement: when solving large polynomial systems, the
hardware double precision may not be sufficient for accurate solutions.

Our goal: ccelerate computations with general purpose
Graphics Processing Units (GPUs) to compensate for the overhead
caused by double double and quad double arithmetic.

Our first results (jointly with Genady Yoffe) on this goal
with multicore computers are in the PASCO 2010 proceedings.
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quad double precision

A quad double is an unevaluated sum of 4 doubles,
improves working precision from 2.2 × 10−16 to 2.4 × 10−63.

Y. Hida, X.S. Li, and D.H. Bailey: Algorithms for quad-double
precision floating point arithmetic. In the 15th IEEE Symposium on
Computer Arithmetic, pages 155–162. IEEE, 2001. Software at
http://crd.lbl.gov/∼dhbailey/mpdist/qd-2.3.9.tar.gz.

Predictable overhead: working with double double is of the same
cost as working with complex numbers. Simple memory management.

The QD library has been ported to the GPU by
M. Lu, B. He, and Q. Luo: Supporting extended precision on
graphics processors. In the Proceedings of the Sixth International
Workshop on Data Management on New Hardware (DaMoN 2010),
pages 19–26, 2010.
Software at http://code.google.com/p/gpuprec/.
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one coordinate of a solution path
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Why is this difficult?

Tracking of one single path with the predictor-corrector method is a
strictly sequential process.

Although we compute many points on a solution path, we cannot
compute those points in parallel, independently from each other.

In order to move to the next point on the path,
the correction for the previous point must be completed.

This difficulty requires
a fine granularity in the parallel algorithm; and
a sufficiently high enough threshold on the dimension.
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polynomial evaluation and differentiation

We distinguish three stages:
1 Common factors and tables of power products:

xd1
1 xd2

2 · · · xdn
n = xi1xi2 · · · xik × x

ej1
j1

x
ej2
j2

· · · xej�
j�

The factor x
ej1
j1

x
ej2
j2

· · · xej�
j�

is common to all partial derivatives.
The factors are evaluated as products of pure powers of the
variables, computed in shared memory by each block of threads.

2 Evaluation and differentiation of products of variables:
Computing the gradient of x1x2 · · · xn with the reverse mode of
algorithmic differentiation requires 3n − 5 multiplications.

3 Coefficient multiplication and term summation.
Summation jobs are ordered by the number of terms so each
warp has the same amount of terms to sum.
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monomial evaluation and differentiation
Evaluating four monomials x0x1x2, x3x4x5, x2x3x4x5, x0x1x3x4x5.
The tidx in the tables below stands for thread index.

tidx 0 1 2 3
mtidx x0x1x2 x3x4x5 x2x3x4x5 x0x1x3x4x5

∂mtidx

∂xj

x0 x3 x2 x1
x0 � x1 x3 � x4 x2 � x3 x1 � x2

x2x3 � x4 x1x2 � x3
x1x2x3 � x4

the forward calculation, from the top to bottom row
tidx 0 1 2 3
mtidx x0x1x2 x3x4x5 x2x3x4x5 x0x1x3x4x5

∂mtidx

∂xj

x1 � x2 x3 � x4x5 x3 � x4x5 x2 � x3x4x5
x0 � x2 x3 � x5 x2 � (x4 � x5) x1 � (x3 � x4x5)
x0x1 x3x4 x2x3 � x5 x1x2 � (x4 � x5)

x2x3x4 x1x2x3 � (x5)
x1x2x3x4

backward and cross products, from bottom to top row
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arithmetic circuits in tree mode
First to evaluate the product:

x1 x2 x3 x4

x1 � x2

�
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�
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and (storing x1x2 and x3x4) then to compute the gradient:
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computing the gradient of x1x2 · · · x8

Denote by xi:j the product xi � · · · � xk � · · · � xj for all k between i and j .
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�
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The computation of the gradient of x1x2 · · · xn requires
2n − 4 multiplications, and
n − 1 extra memory locations.
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collaborating threads
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collaborating threads – continued
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accelerated predictor-corrector methods
A path tracker has three ingredients:

1 The predictor applies an extrapolation method for the next point.
Each coordinate is predicted independently, linear cost in n.

2 The corrector applies a couple of steps with Newton’s method.
Denote by Jf the matrix of all partial derivatives of f,

Jf(x)∆x = −f(x), x := x +∆x.

3 The adaptive step length control sets the value for the step size.

When tracking one path, the step length control can be done on the
host, as only some doubles are needed in the transfer.

The device computes ‖∆x‖ and ‖f(x)‖; and
then sends ‖∆x‖ and ‖f(x)‖ to the host.
The host computes a new value for the step size ∆t ; and
sends ∆t to device.
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accelerated tracking of one single path

Input: Inst , Polynomial Instructions
W , GPU Workspace
P, parameters for path tracker

Output: success or fail
W .x, solution for t = 1 if success

t = 0
∆t = P.max∆t
#successes = 0
#steps = 0
while t < 1 do

if (#steps > P.max#steps) then return fail
t = min(1, t +∆t)
copy t from host to GPU
launch kernel predict(W .x_array , W .t_array)
newton_success = GPU_Newton(Inst ,W ,P)
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adaptive step control

if (newton_success) then
update pointer of W .x in W .x_array
#successes = #successes + 1
if (#successes > 2) then

∆t = min(2∆t ,P.max∆t)
else

#successes = 0
∆t = ∆t/2

#steps = #steps + 1
return success
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accelerated Newton’s method

Input: Inst , Polynomial Instructions
W , GPU Workspace
P, parameters for Newton’s method

Output: success or fail
updated W .x

last_max_eq_val = P.max_eq_val
for k from 1 to P.max_iteration do

GPU_Eval(Inst ,W )
launch kernel Max_Array(W .eq_val , max_eq_val)

with single block
copy max_eq_val from GPU to host
if (max_eq_val > last_max_eq_val) then return fail
if (max_eq_val < P.tolerance) then return success
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accelerated Newton’s method continued

GPU_Modified_Gram_Schmidt(W )
launch kernel Max_Array(W .∆x, max_∆x)

with single block
copy max_∆x from GPU to host
launch kernel Update_x(W .x,W .∆x)
if (max_∆x < P.tolerance) then return success
last_max_eq_val = max_eq_val

return fail

A right-looking algorithm to implement the modified Gram-Schmidt
method provides the most thread parallelism.
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hardware and software

Our NVIDIA Tesla K20C, has 2496 cores with a clock speed of
706 MHz, is hosted by a Red Hat Enterprise Linux workstation of
Microway, with Intel Xeon E5-2670 processors at 2.6 GHz.

We implemented the path tracker with the gcc compiler and version 6.5
of the CUDA Toolkit, compiled with the optimization flag -O2.

The code is free and open source, at github.
The benchmark data were prepared with phcpy,
the Python interface to PHCpack.
The scripts backelin.py and pierisystems.py are in the
examples folder of the phcpy distribution.
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matrix completion with Pieri homotopies

The polynomial equations arise from minor expansions on

det(A|X ) = 0, A ∈ C
n×m,

and where X is an n-by-p matrix (m + p = n) of unknowns.

For example, a 2-plane in complex 4-space (or equivalently, a line in
projective 3-space) is represented as

X =




1 0
x2,1 1
x2,2 x3,2
0 x4,2


 .

To determine for the four unknowns in X we need four equations,
which via expansion results in four quadratic equations.
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Pieri homotopies

Sequences of homotopies build up the solution:



1 0
0 1
0 x3,2
0 0


 ,




1 0
0 1
0 x3,2
0 x4,2


 ,




1 0
x2,1 1
0 x3,2
0 x4,2


 ,




1 0
x2,1 1
x3,1 x3,2
0 x4,2


 .

Pieri homotopies are defined as, for k from 1 to m × p:

h(x, t) =
{

det(A(i)|X ) = 0, i = 1,2, . . . , k − 1,
t det(A(k)|X ) + (1 − t)det(SX |X ) = 0.

Tracking one single path, we start a a linear system and gradually,
the polynomials increase in degree and the cost of evaluation and
differentiation dominates.
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Pieri homotopies with double double arithmetic

n : dimension
m : number of predictor-corrector stages

Tracking one path of a 3-plane in 35-space,
with complex double double arithmetic, times are in seconds:

n m cpu gpu S n m cpu gpu S
32 25 0.05 0.05 1.1 68 239 50.0 3.2 15.8
36 36 0.40 0.21 1.9 72 89 41.8 1.8 23.2
40 19 0.39 0.15 2.6 76 246 136.0 4.6 29.8
44 23 0.61 0.19 3.2 80 226 158.0 5.5 28.7
48 53 1.69 0.45 3.8 84 69 59.2 2.0 29.6
52 79 2.97 0.71 4.2 88 36 37.3 1.2 30.2
56 28 1.37 0.29 4.7 92 90 98.0 3.2 30.3
60 111 5.70 1.13 5.1 96 64 67.2 2.2 30.8
64 63 3.36 0.62 5.4
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tracking a 4-plane in 36-space with double doubles
n : dimension

m : number of predictor-corrector stages

Tracking one path of a 4-plane in 36-space,
with complex double double arithmetic, times are in seconds:

n m cpu gpu S n m cpu gpu S
32 16 0.03 0.03 1.1 68 51 11.3 0.7 15.6
36 18 0.20 0.11 1.9 72 39 19.4 0.8 23.4
40 12 0.25 0.09 2.6 76 63 38.8 1.5 26.4
44 10 0.28 0.08 3.2 80 157 115.0 4.0 28.8
48 16 0.54 0.14 3.8 84 19 17.3 0.6 30.0
52 40 1.52 0.36 4.3 88 574 431.2 13.3 32.4
56 36 1.71 0.36 4.7 92 250 219.8 6.1 36.2
60 16 0.95 0.19 5.0 96 190 230.8 6.2 37.1
64 75 4.54 0.84 5.4 100 242 1367.2 23.0 59.4
65 83 7.93 0.96 8.3 101 809 4655.7 70.7 65.9
66 195 27.20 2.56 10.6 102 1016 5231.7 75.6 69.2
67 154 26.43 2.07 12.8 103 375 2923.2 44.0 66.5
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the speedups on the Pieri homotopies
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loops of solution paths

Consider a sequence of homotopies:

hα(x, t) =

{
f(x) = 0

α(1 − t)L(x) + tK(x) = 0 (1)

hβ(x, t) =

{
f(x) = 0

β(1 − t)K(x) + tL(x) = 0 (2)

where
K(x) = 0 is as L(x) = 0 another set of linear equations with
different random coefficients; and
α and β are different random complex constants.

One loop consists in tracking one path defined by hα(x, t) = 0 and
hβ(x, t) = 0. In both cases t goes from 0 to 1.

Jan Verschelde (UIC) GPU Accelerated Path Tracking PASCO 2015 31 / 38



visualization of monodromy on a quadratic set
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the cyclic n-roots problem

Denoted the system by f(x) = 0, f = (f1, f2, . . . , fn), with

f1 = x0 + x1 + · · ·+ xn−1,
f2 = x0x1 + x1x2 + · · ·+ xn−2xn−1 + xn−1x0,

fi =
n−1∑
j=0

j+i−1∏
k=j

xk mod n, i = 3,4, . . . ,n − 1,

fn = x0x1x2 · · · xn−1 − 1.

Observe the increase of the degrees: deg(fk ) = k .

High degrees are a likely cause of large roundoff errors.
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a tropical version of Backelin’s Lemma, CASC 2013

Lemma (Tropical Version of Backelin’s Lemma (Adrovic-V.))

For n = m2�, where � ∈ N \ {0} and � is no multiple of k2, for k ≥ 2,
there is an (m − 1)-dimensional set of cyclic n-roots, represented
exactly as

xkm+0 = uk t0
xkm+1 = uk t0t1
xkm+2 = uk t0t1t2

...
xkm+m−2 = uk t0t1t2 · · · tm−2

xkm+m−1 = γuk t−m+1
0 t−m+2

1 · · · t−2
m−3t−1

m−2

for k = 0,1,2, . . . ,m − 1, free parameters t0, t1, . . . , tm−2, constants
u = e

i2π
m� , γ = e

iπβ
m� , with β = (α mod 2), and α = m(m�− 1).
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positive dimensional cyclic n-roots
Backelin’s Lemma states that there are cyclic n-roots of
dimension m − 1 for n = �m2, where � is no multiple of k2, for k ≥ 2.

To compute the degree of the sets, we add to f as many linear
equations L (with random complex coefficients) as the dimension of
the set and count the number of solutions of the system f(x) = 0:

{
f(x) = 0
L(x) = 0.

The degree d = m for n = m2 and this result extends for n = �m2.

n 16 32 48 64 80 96 128 144 160 176
d 4 4 4 8 4 4 8 12 4 4
n 192 208 240 256 272 288 304 320 336 352
d 8 4 4 16 4 12 4 8 4 4
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times in seconds on tracking one cyclic n-roots path

complex double complex double double complex quad double
n s m cpu gpu S s m cpu gpu S s m cpu gpu S

16 1 32 0.00 0.03 0.14 1 20 0.04 0.06 0.65 1 32 0.48 0.52 0.92
32 1 100 0.06 0.16 0.35 1 79 1.03 0.41 2.53 1 100 12.66 3.62 3.50
48 1 103 0.17 0.24 0.72 1 78 3.23 0.61 5.29 1 103 39.46 5.39 7.32
64 0 987 4.48 4.15 1.08 1 225 22.94 2.57 8.92 1 987 229.99 17.93 12.83
80 1 99 0.73 0.42 1.74 1 75 14.96 1.15 13.01 1 99 180.37 10.13 17.81
96 1 95 1.23 0.52 2.36 1 69 23.17 1.34 17.26 1 95 289.38 12.64 22.90

112 1 171 3.42 1.17 2.92 1 121 68.07 2.98 22.86 1 171 813.91 28.36 28.70
128 1 162 5.66 1.47 3.85 1 123 102.94 3.88 26.54 1 162 1253.82 37.75 33.21
144 0 214 12.58 2.67 4.72 0 1500 1487.86 61.59 24.16 1 214 15898.67 479.18 33.18
160 1 68 4.84 0.87 5.53 1 49 83.11 2.84 29.31 1 68 998.43 23.96 41.67
176 1 160 15.65 2.52 6.21 1 118 259.80 8.06 32.24 1 160 3179.81 70.58 45.05
192 0 246 30.92 9.27 3.34 1 150 419.16 13.03 32.16 1 246 5054.70 105.69 47.83
208 1 231 39.51 5.22 7.57 1 168 628.46 16.33 38.48 1 231 7529.02 147.09 51.19
224 1 96 19.39 2.46 7.88 1 71 319.27 7.88 40.54 1 96 3925.33 73.76 53.22
240 1 140 34.04 4.04 8.42 1 96 531.01 12.49 42.50 1 140 6714.01 119.86 56.01
256 0 0 0.00 1.00 0.00 0 0 0.00 1.00 0.00 0 0 0.00 1.00 0.00
272 1 160 58.19 7.19 8.09 1 118 914.24 19.12 47.82 1 160 10829.36 183.12 59.14
288 0 0 0.00 1.00 0.00 0 0 0.00 1.00 0.00 0 0 0.00 1.00 0.00
304 1 142 81.04 8.05 10.07 1 103 1176.29 22.87 51.44 1 142 13992.60 226.78 61.70
320 0 0 0.00 1.00 0.00 0 0 0.00 1.00 0.00 0 0 0.00 1.00 0.00
336 1 157 105.30 11.12 9.47 1 114 1772.97 33.26 53.31 1 157 20807.27 327.25 63.58
352 1 121 93.89 9.78 9.60 1 90 1621.15 28.75 56.39 1 121 18881.13 290.36 65.03
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speedups on one path of cyclic n-roots

16 32 48 64 80 96 112128144160176192208224240 272 304 336352

tracking one path of cyclic n-roots, for n from 16 to 352
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speedups of accelerated path tracker on cyclic n-roots

double

double double

quad double

In double precision, the dimensions are too small for good speedups.
Double digits speedups in double double and quad double precision
are achieved once n = 64.
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conclusions

We can compensate for the cost of double double arithmetic
when tracking one solution path with GPU acceleration.

Double double and quad double arithmetic (using QD):
memory bound for double and (real) double double arithmetic,
compute bound for complex double doubles and quad doubles.

Double digit speedups ⇒ double the precision, compute twice as fast.

We achieve not only speedup, but also quality up, and in some hard
cases double precision is insufficient for a successful path tracking.

For many solution paths:
Tracking many solution paths of a polynomial homotopy on a graphics
processing unit with double double and quad double arithmetic.
(with X. Yu). Proceedings of HPCC 2015. arXiv:1505.00383
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