Solving Polynomial Systems

Jan Verschelde

Email: jan@math.uic.edu

URL: http://www.math.uic.edu/~jan

Graduate Student Colloquium 11 March 2005

Outline of this Lecture

- 1. What does solving mean?
- 2. Numerical Polynomial Algebra
- 3. Numerical Algebraic Geometry
- 4. What is Symbolic-Numeric Computing?

What does solving mean?

Two vastly different views on polynomial systems.

- **Computer algebra** views the polynomials in a system as generators of an ideal. A **Gröbner basis** allows to compute with the ideal and solve the system.
- Numerical analysis views a polynomial system as a system of nonlinear equations. Newton's method, often with continuation, approximates the solutions.

Where and when do the algebra and analysis meet?

Ideals generated by Polynomial Systems

 $P(\mathbf{x}) = \mathbf{0}$ polynomial system:

$$P = (p_1, p_2, \dots, p_N), p_k \in \mathbb{C}[\mathbf{x}], \mathbf{x} = (x_1, x_2, \dots, x_n).$$

 $I = \langle P \rangle$ ideal generated by P:

 $I = \{ c_1(\mathbf{x})p_1 + c_2(\mathbf{x})p_2 + \dots + c_N(\mathbf{x})p_N \mid c_k \in \mathbb{C}[\mathbf{x}] \}.$

Z[I] solution set:

$$Z[I] = \{ \mathbf{z} \in \mathbb{C}^n \mid p(\mathbf{z}) = 0, \forall p \in I \}.$$

Ideals and Quotient Rings

The quotient ring R[I] of a ideal I allows to calculate modulo I:

 $R[I] = \{ [p]_I \mid p \in \mathbb{C}[\mathbf{x}] \}$ is the residue class ring,

with $[p]_I$ the residue class of $p \mod I$:

$$[p]_I = \{ r \in \mathbb{C}[\mathbf{x}] \mid p - r \in I \}$$
$$= \{ r \in \mathbb{C}[\mathbf{x}] \mid p(\mathbf{z}) = r(\mathbf{z}), \forall \mathbf{z} \in Z[I] \}$$

Theorem: If $\#Z[I] = m < \infty$, then dim(R[I]) = m.

- $I \rightarrow R[I]$: if dim(Z[I]) = 0, the residue classes of Lagrange polynomials interpolating at Z[I] give a basis for R[I].
- $R[I] \rightarrow I$: for some basis **b** of R[I]: $A_k \mathbf{b} = x_k \mathbf{b}, k = 1, 2, ..., n$, means $x_k \mathbf{b} = A_k \mathbf{b} \mod I$, or $x_k \mathbf{b} - A_k \mathbf{b} = 0$ over Z[I], and $x_k \mathbf{b} - A_k \mathbf{b} \in I$ leads to a border basis for I.

page 6 of 22

Example One

$$P(x,y) = \begin{cases} x^{2} + 4xy + 4y^{2} - 4 = 0 & \text{we expect } 2 \times 2 \\ 4x^{2} - 4xy + y^{2} - 4 = 0 & = 4 \text{ solutions} \end{cases}$$

$$\xrightarrow{\text{row reduction}} \quad \begin{cases} 15x^{2} - 20xy - 12 = 0 \\ 20y^{2} + 20xy - 12 = 0 \end{cases}$$

A natural **basis for** R[I] is $\mathbf{b} = (1, x, y, xy)$.

$$x\mathbf{b} = x \begin{pmatrix} 1 \\ x \\ y \\ xy \end{pmatrix} = \begin{pmatrix} x \\ x^2 \\ xy \\ x^2y \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ \frac{12}{15} & 0 & 0 & \frac{20}{15} \\ 0 & 0 & 0 & 1 \\ 0 & \frac{48}{125} & \frac{36}{125} & 0 \end{pmatrix} \begin{pmatrix} 1 \\ x \\ y \\ xy \end{pmatrix}$$

<u>Observe</u>: $A_x \mathbf{b} = x \mathbf{b}$ is an eigenvalue problem.

page 7 of 22

Dual Spaces of Quotient Rings

The **dual space** of the quotient ring R[I]:

$$(R[I])^* = \{ \ l : R[I] \to \mathbb{C} : [p]_I \mapsto l(p) := l(r), r \in R[I], p - r \in I \}.$$

The dual of $I: D[I] = \{ l: \mathbb{C}[\mathbf{x}] \to \mathbb{C} : l(p) = 0, \forall p \in I \}. I \to D[I]$

Theorem: $D[I] = (R[I])^*$ and $R[I] = (D[I])^*$.

The ideal of the dual:

D[I]
ightarrow I

$$I[D[I]] = \ker(D[I]) = \{ p \in \mathbb{C}[\mathbf{x}] : l(p) = 0, \forall l \in D[I] \} = I.$$

Note: more satisfactory than $I[Z[I]] = \sqrt{I}$.

The dual defines the multiplicity structure of a multiple zero.

Multiplicity of an Isolated Zero

- An isolated zero of multiplicity m occurs in numerical analysis as a cluster of m (ill-conditioned) regular zeros.
- **Problem:** geometrical significance for overdetermined systems? \rightarrow perturbed overdetermined system has no zeros!
- Analogy with Univariate Case: z_0 is *m*-fold zero of f(x) = 0: $f(z_0) = 0, \frac{\partial f}{\partial x}(z_0) = 0, \frac{\partial^2 f}{\partial x^2}(z_0) = 0, \dots, \frac{\partial^{m-1} f}{\partial x^{m-1}}(z_0) = 0$

m = number of linearly independent polynomials annihilating z_0

The dual space D_0 at \mathbf{z}_0 is spanned by \boldsymbol{m} linear independent differentiation functionals annihilating \mathbf{z}_0 .

 D_0 is the multiplicity structure of the *m*-fold zero \mathbf{z}_0 .

Example Two

Consider

$$f(x,y) = \begin{cases} x^2 = 0\\ xy = 0\\ y^2 = 0 \end{cases} \quad \mathbf{z}_0 = (0,0).$$

The multiplicity of \mathbf{z}_0 is 3 because

$$D_0 = \operatorname{span}\{\partial_{00}[\mathbf{z}_0], \partial_{10}[\mathbf{z}_0], \partial_{01}[\mathbf{z}_0]\}$$

with

$$\partial_{ij}[\mathbf{z}_0] = \frac{1}{i!j!} \frac{\partial^{i+j}}{\partial x^i \partial y^j} f(\mathbf{z}_0).$$

Solving means to compute \mathbf{z}_0 *and* D_0 .

page 10 of 22

Newton and Continuation Methods

Consider a family of systems
$$h_k(x(t), y(t), t) = 0, k = 1, 2.$$

By $\frac{\partial}{\partial t}$ on h_k : $\frac{\partial h_k}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial h_k}{\partial y} \frac{\partial y}{\partial t} + \frac{\partial h_k}{\partial t} \frac{\partial t}{\partial t} = 0, k = 1, 2.$
Set $\Delta x := \frac{\partial x}{\partial t}, \Delta y := \frac{\partial y}{\partial t}$, and $\frac{\partial t}{\partial t} = 1.$

fails when the Jacobian matrix is singular!

page 11 of 22

An Application: cyclic 9-roots

The system

$$f(\mathbf{x}) = \begin{cases} f_i = \sum_{j=0}^8 \prod_{k=1}^i x_{(k+j) \mod 9} = 0, & i = 1, 2, \dots, 8\\ f_9 = x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 - 1 = 0 \end{cases}$$

has 333×18 isolated regular zeros, 164 isolated 4-fold zeros, and 6 cubic 2-dimensional irreducible solution components.

Newton's method with 64 decimal places, tolerance is 10^{-60} :

- regular : 4 iterations (quadratic convergence)
 - 4-fold : 79 iterations (>1 step for one correct decimal place)

about 20 times slower to reach same magnitude of residual ...

Newton's method for Overdetermined Systems

Singular Value Decomposition of N-by-n Jacobian matrix J_f :

 $J_f = U\Sigma V^T$, U and V are orthogonal: $U^T U = I_N, V^T V = I_n$,

and singular values $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n$ as the only nonzero elements on the diagonal of the *N*-by-*n* matrix Σ (*N* > *n*).

Moore-Penrose inverse: $J_f^+ = V\Sigma^+ U^T$, with $\frac{1}{\sigma_1}, \frac{1}{\sigma_2}, \dots, \frac{1}{\sigma_n}$ on the diagonal of the *n*-by-*N* matrix Σ^+ .

Then $\Delta \mathbf{z} = -J_f(\mathbf{z})^+ f(\mathbf{z})$ is the least squares solution.

The condition number $\operatorname{cond}(J_f(\mathbf{z})) = \frac{\sigma_1}{\sigma_n}$. $\operatorname{Rank}(J_f(\mathbf{z})) = R \iff \Sigma = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_R, 0, \dots, 0).$

At a **multiple root** \mathbf{z}_0 : Rank $(J_f(\mathbf{z}_0)) = R < n$.

Close to \mathbf{z}_0 , $\mathbf{z} \approx \mathbf{z}_0 : \sigma_{R+1} \approx 0$.

Newton with Deflation – Example Two revisited

$$f(x,y) = \begin{cases} x^2 = 0 \\ xy = 0 \\ y^2 = 0 \end{cases} \quad J_f(x,y) = \begin{bmatrix} 2x & 0 \\ 1 & 1 \\ 0 & 2y \end{bmatrix} \quad \frac{\mathbf{z}_0 = (0,0), m = 3}{\operatorname{Rank}(J_f(\mathbf{z}_0)) = 1}$$

A nontrivial linear combination of the columns of $J_f(\mathbf{z}_0)$ is zero.

$$G(x, y, \lambda_1, \lambda_2) = \begin{cases} f(x, y) = 0 \\ \begin{bmatrix} 2x & 0 \\ 1 & 1 \\ 0 & 2y \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
$$c_1 \lambda_1 + c_2 \lambda_2 = 1, \qquad \text{random } c_1, c_2 \in \mathbb{C}$$

The system $G(x, y, \lambda_1, \lambda_2) = 0$ has $(0, 0, \lambda_1^*, \lambda_2^*)$ as regular zero!

page 14 of 22

The Deflation Operator Dfl

Suppose $\operatorname{Rank}(J_f(\mathbf{z}_0)) = R$ for \mathbf{z}_0 an isolated zero of $f(\mathbf{x}) = 0$. Choose $\mathbf{h} \in \mathbb{C}^{R+1}$ and $B \in \mathbb{C}^{n \times (R+1)}$ at random.

Introduce R + 1 new multiplier variables $\boldsymbol{\lambda} = (\lambda_1, \lambda_2, \dots, \lambda_{R+1}).$

$$Dfl(f)(\mathbf{x}, \boldsymbol{\lambda}) := \begin{cases} f(\mathbf{x}) &= \mathbf{0} \\ J_f(\mathbf{x})B\boldsymbol{\lambda} &= \mathbf{0} \\ \mathbf{h}\boldsymbol{\lambda} &= 1 \end{cases}$$

Theorem (Anton Leykin, JV, Ailing Zhao):

The number of deflations needed to restore the quadratic convergence of Newton's method converging to an isolated solution is strictly less than the multiplicity.

Newton's method with Deflation

page 16 of 22

cyclic 9-roots revisited

Recall:

$$f(\mathbf{x}) = \begin{cases} f_i = \sum_{j=0}^8 \prod_{k=1}^i x_{(k+j) \mod 9} = 0, & i = 1, 2, \dots, 8\\ f_9 = x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 - 1 = 0 \end{cases}$$

has 164 solutions of multiplicity 4.

One deflation suffices to restore quadratic convergence.

The condition number drops from 1.8E+9 to 5.6E+2.

 \rightarrow deflation $\underline{reconditions}$ the system

Computing the Multiplicity Structure

following B.H. Dayton and Z. Zeng

Looking for differentiation functionals
$$d[\mathbf{z}_0] = \sum_{\mathbf{a}} c_{\mathbf{a}} \partial_{\mathbf{a}}[\mathbf{z}_0],$$

with
$$\partial_{\mathbf{a}}[\mathbf{z}_0](p) = \frac{1}{a_1!a_2!\cdots a_n!} \left(\frac{\partial^{a_1+a_2+\cdots+a_n}}{\partial x_1^{a_1}\partial x_2^{a_2}\cdots \partial x_n^{a_n}} p \right) (\mathbf{z}_0).$$

Membership criterium for $d[\mathbf{z}_0]$:

 $d[\mathrm{z}_0]\in D_0 \Leftrightarrow d[\mathrm{z}_0](pf_i)=0, orall p\in \mathbb{C}[\mathrm{x}], i=1,2,\ldots,N.$

To turning this criterium into an **algorithm**, observe:

- 1. since $d[\mathbf{z}_0]$ is linear, restrict p to $\mathbf{x}^{\mathbf{k}} = x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$; and
- 2. limit degrees $k_1 + k_2 + \cdots + k_n \leq a_1 + a_2 + \cdots + a_n$, as $\mathbf{z}_0 = \mathbf{0}$ vanishes trivially if not annihilated by $\partial_{\mathbf{a}}$.

page 18 of 22

Computing the Multiplicity Structure – An Example

$$f_1 = x_1 - x_2 + x_1^2, f_2 = x_1 - x_2 + x_2^2$$

following B.H. Dayton and Z. Zeng

		a =0	a =1		a =2			a =3			
		∂_{00}	∂_{10}	∂_{01}	∂_{20}	∂_{11}	∂_{02}	∂_{30}	∂_{21}	∂_{12}	∂_{03}
	f_1	0	1	-1	1	0	0	0	0	0	0
S_1	f_2	0	1	-1	0	0	1	0	0	0	0
	x_1f_1	0	0	0	1	-1	0	1	0	0	0
	$x_1 f_2$	0	0	0	1	-1	0	0	0	1	0
	$x_2 f_1$	0	0	0	0	1	-1	0	1	0	0
S_2	$x_2 f_2$	0	0	0	0	1	-1	0	0	0	1
	$x_{1}^{2}f_{1}$	0	0	0	0	0	0	1	-1	0	0
	$x_{1}^{2}f_{2}$	0	0	0	0	0	0	1	-1	0	0
	$x_1 x_2 f_1$	0	0	0	0	0	0	0	1	-1	0
	$x_1 x_2 f_2$	0	0	0	0	0	0	0	1	-1	0
	$x_2^2 f_1$	0	0	0	0	0	0	0	0	1	-1
S_3	$x_2^2 f_2$	0	0	0	0	0	0	0	0	1	-1

Nullity(S₂) = Nullity(S₃) \Rightarrow stop algorithm $D_0 = \text{span}\{ \partial_{00}, \partial_{10} + \partial_{01}, -\partial_{10} + \partial_{20} + \partial_{11} + \partial_{02} \} \Rightarrow \text{multiplicity} = 3$

page 19 of 22

cyclic 9-roots once more

Recall:

$$f(\mathbf{x}) = \begin{cases} f_i = \sum_{j=0}^8 \prod_{k=1}^i x_{(k+j) \mod 9} = 0, & i = 1, 2, \dots, 8\\ f_9 = x_0 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 - 1 = 0 \end{cases}$$

has 164 solutions of multiplicity 4.

Running the algorithm of Dayton and Zeng:

$$H[1] = 1, H[2] = 2, H[3] = 1, H[4] = 0,$$

with $H[i] = \text{Nullity}(S_i) - \text{Nullity}(S_{i-1}), i > 0,$

so we compute the multiplicity as 4.

What is Symbolic-Numeric Computing?

A puristic point of view:

- **Computer algebra** rewrites the problem, producing "easier" equations of the ideal, but "easier" \neq numerically better.
- **Numerical analysis** produces approximate numbers for a fixed system of equations, but **many problems are "ill-posed"**.

 $The \ synergistic \ approach$

Symbolic-Numeric Computing rewrites an ill-conditioned numerical problem into a well-conditioned formulation.

works very well in Newton's method with deflation

Chronological List of References

- T. Ojika, S. Watanabe, and T. Mitsui: Deflation algorithm for the multiple roots of a system of nonlinear equations. J. Math. Anal. Appl., 96:463–479, 1983.
- B. Mourrain: Isolated points, duality and residues. Journal of Pure and Applied Algebra 117/118:469–493, 1997.
- H.J. Stetter and G.H. Thallinger: Singular Systems of Polynomials. In *ISSAC'98*, pages 9–16, ACM 1998.
- H.J. Stetter: Numerical Polynomial Algebra. SIAM, 2004.
- A. Leykin, J. Verschelde, and A. Zhao: Newton's Method with Deflation for Isolated Singularities of Polynomial Systems. Manuscript, 2004.
- B.H. Dayton and Z. Zeng: Computing the Multiplicity Structure in Solving Polynomial Systems. Manuscript, 2005.