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Outline of this Lecture

1. What does solving mean?

2. Numerical Polynomial Algebra

3. Numerical Algebraic Geometry

4. What is Symbolic-Numeric Computing?
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What does solving mean?

Two vastly different views on polynomial systems.

Computer algebra views the polynomials in a system as

generators of an ideal. A Gröbner basis allows to compute

with the ideal and solve the system.

Numerical analysis views a polynomial system as a system of

nonlinear equations. Newton’s method, often with

continuation, approximates the solutions.

Where and when do the algebra and analysis meet?
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Ideals generated by Polynomial Systems

P (x) = 0 polynomial system:

P = (p1, p2, . . . , pN ), pk ∈ C[x], x = (x1, x2, . . . , xn).

I = 〈P 〉 ideal generated by P :

I = { c1(x)p1 + c2(x)p2 + · · ·+ cN (x)pN | ck ∈ C[x] }.

Z[I] solution set:

Z[I] = { z ∈ Cn | p(z) = 0, ∀p ∈ I }.
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Ideals and Quotient Rings

The quotient ring R[I] of a ideal I allows to calculate modulo I:

R[I] = { [p]I | p ∈ C[x] } is the residue class ring,

with [p]I the residue class of p mod I:

[p]I = { r ∈ C[x] | p− r ∈ I }
= { r ∈ C[x] | p(z) = r(z), ∀z ∈ Z[I] }.

Theorem: If #Z[I] = m <∞, then dim(R[I]) = m.

I → R[I]: if dim(Z[I]) = 0, the residue classes of Lagrange

polynomials interpolating at Z[I] give a basis for R[I].

R[I]→ I: for some basis b of R[I]: Akb = xkb, k = 1, 2, . . . , n,

means xkb = Akb mod I, or xkb−Akb = 0 over Z[I], and

xkb− Akb ∈ I leads to a border basis for I.
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Example One

P (x, y) =







x2 + 4xy + 4y2 − 4 = 0
4x2 − 4xy + y2 − 4 = 0

we expect 2× 2
= 4 solutions

row reduction -
on coefficients







15x2 − 20xy − 12 = 0
20y2 + 20xy − 12 = 0

A natural basis for R[I] is b = (1, x, y, xy).

xb = x


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

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x2y





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


=










0 1 0 0

12
15 0 0 20

15

0 0 0 1

0 48
125

36
125 0



















1

x

y

xy










Observe: Axb = xb is an eigenvalue problem.
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Dual Spaces of Quotient Rings

The dual space of the quotient ring R[I]:

(R[I])∗ = { l : R[I]→ C : [p]I 7→ l(p) := l(r), r ∈ R[I], p− r ∈ I }.

The dual of I: D[I] = { l : C[x]→ C : l(p) = 0, ∀p ∈ I }. I → D[I]

Theorem: D[I] = (R[I])∗ and R[I] = (D[I])∗.

The ideal of the dual: D[I]→ I

I[D[I]] = ker(D[I]) = { p ∈ C[x] : l(p) = 0, ∀l ∈ D[I] } = I.

Note: more satisfactory than I[Z[I]] =
√
I.

The dual defines the multiplicity structure of a multiple zero.
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Multiplicity of an Isolated Zero

An isolated zero of multiplicity m occurs in numerical

analysis as a cluster of m (ill-conditioned) regular zeros.

Problem: geometrical significance for overdetermined systems?

→ perturbed overdetermined system has no zeros!

Analogy with Univariate Case: z0 is m-fold zero of f(x) = 0:

f(z0) = 0,
∂f

∂x
(z0) = 0,

∂2f

∂x2
(z0) = 0, . . . ,

∂m−1f

∂xm−1
(z0) = 0

︸ ︷︷ ︸

m = number of linearly independent polynomials annihilating z0

.

The dual space D0 at z0 is spanned by m linear independent

differentiation functionals annihilating z0.

D0 is the multiplicity structure of the m-fold zero z0.
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Example Two

Consider

f(x, y) =







x2 = 0

xy = 0

y2 = 0

z0 = (0, 0).

The multiplicity of z0 is 3 because

D0 = span{∂00[z0], ∂10[z0], ∂01[z0]}

with

∂ij [z0] =
1

i!j!

∂i+j

∂xi∂yj
f(z0).

Solving means to compute z0 and D0.
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Newton and Continuation Methods

Consider a family of systems hk(x(t), y(t), t) = 0, k = 1, 2.

By ∂
∂t
on hk:

∂hk

∂x
∂x
∂t
+ ∂hk

∂y

∂y

∂t
+ ∂hk

∂t
∂t
∂t
= 0, k = 1, 2.

Set ∆x := ∂x
∂t
, ∆y := ∂y

∂t
, and ∂t

∂t
= 1.

Increment t := t+∆t

Solve

[
∂h1

∂x
∂h1

∂y

∂h2

∂x
∂h2

∂y

][

∆x

∆y

]

= −
[

∂h1

∂t

∂h2

∂t

]

(Newton)

Update

{

x := x+∆x

y := y +∆y

fails when the Jacobian matrix is singular!
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An Application: cyclic 9-roots

The system

f(x) =







fi =
8∑

j=0

i∏

k=1

x(k+j)mod 9 = 0, i = 1, 2, . . . , 8

f9 = x0x1x2x3x4x5x6x7x8 − 1 = 0

has 333× 18 isolated regular zeros, 164 isolated 4-fold zeros,

and 6 cubic 2-dimensional irreducible solution components.

Newton’s method with 64 decimal places, tolerance is 10−60:

regular : 4 iterations (quadratic convergence)

4-fold : 79 iterations (> 1 step for one correct decimal place)

about 20 times slower to reach same magnitude of residual . . .
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Newton’s method for Overdetermined Systems

Singular Value Decomposition of N -by-n Jacobian matrix Jf :

Jf = UΣV T , U and V are orthogonal: UTU = IN , V
TV = In,

and singular values σ1 ≥ σ2 ≥ · · · ≥ σn as the only nonzero

elements on the diagonal of the N -by-n matrix Σ (N > n).

Moore-Penrose inverse: J+
f = V Σ+UT , with 1

σ1
, 1
σ2
, . . . , 1

σn
on

the diagonal of the n-by-N matrix Σ+.

Then ∆z = −Jf (z)+f(z) is the least squares solution.

The condition number cond(Jf (z)) =
σ1

σn
.

Rank(Jf (z)) = R⇐⇒ Σ = diag(σ1, σ2, . . . , σR, 0, . . . , 0).

At a multiple root z0: Rank(Jf (z0)) = R < n.

Close to z0, z ≈ z0 : σR+1 ≈ 0.
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Newton with Deflation – Example Two revisited

f(x, y) =







x2 = 0

xy = 0

y2 = 0

Jf (x, y) =







2x 0

1 1

0 2y







z0 = (0, 0),m = 3

Rank(Jf (z0)) = 1

A nontrivial linear combination of the columns of Jf (z0) is zero.

G(x, y, λ1, λ2) =







f(x, y) = 0






2x 0

1 1

0 2y










λ1

λ2



 =







0

0

0







c1λ1 + c2λ2 = 1, random c1, c2 ∈ C

The system G(x, y, λ1, λ2) = 0 has (0, 0, λ
∗
1, λ

∗
2) as regular zero!
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The Deflation Operator Dfl

Suppose Rank(Jf (z0)) = R for z0 an isolated zero of f(x) = 0.

Choose h ∈ CR+1 and B ∈ Cn×(R+1) at random.

Introduce R+ 1 new multiplier variables λ = (λ1, λ2, . . . , λR+1).

Dfl(f)(x,λ) :=







f(x) = 0

Jf (x)Bλ = 0

hλ = 1

Theorem (Anton Leykin, JV, Ailing Zhao):

The number of deflations needed to restore the

quadratic convergence of Newton’s method converging

to an isolated solution is strictly less than the

multiplicity.

page 15 of 22



Newton’s method with Deflation

º
¹

·
¸

Input: f(x) = 0 polynomial system;

x0 initial approximation for x∗.

?
J+

f
:= SVD(Jf (xk));

xk+1 := xk − J+

f
f(xk);

R := Rank(Jf );

?PPPPPPP

³³³³³³³

PP
PP

PPP

³³
³³

³³³
R = #columns(Jf )?

Yes-
º
¹

·
¸Output: f ;xk+1.

?No

f := Dfl(f)(x, � ) =

�
�

�

f(x) = 0

G(x, � ) = 0
;

�
� := LeastSquares(G(xk+1, � ));

k := k + 1; xk := (xk,

�
� );

-
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cyclic 9-roots revisited

Recall:

f(x) =







fi =
8∑

j=0

i∏

k=1

x(k+j)mod 9 = 0, i = 1, 2, . . . , 8

f9 = x0x1x2x3x4x5x6x7x8 − 1 = 0

has 164 solutions of multiplicity 4.

One deflation suffices to restore quadratic convergence.

The condition number drops from 1.8E+9 to 5.6E+2.

→ deflation reconditions the system
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Computing the Multiplicity Structure

following B.H. Dayton and Z. Zeng

Looking for differentiation functionals d[z0] =
∑

a

ca∂a[z0],

with ∂a[z0](p) =
1

a1!a2! · · ·an!

(
∂a1+a2+···+an

∂xa1

1 ∂xa2

2 · · · ∂xan
n
p

)

(z0).

Membership criterium for d[z0]:

d[z0] ∈ D0 ⇔ d[z0](pfi) = 0, ∀p ∈ C[x], i = 1, 2, . . . , N.

To turning this criterium into an algorithm, observe:

1. since d[z0] is linear, restrict p to x
k = xk1

1 xk2

2 · · ·xkn
n ; and

2. limit degrees k1 + k2 + · · ·+ kn ≤ a1 + a2 + · · ·+ an,

as z0 = 0 vanishes trivially if not annihilated by ∂a.
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Computing the Multiplicity Structure – An Example

f1 = x1 − x2 + x2
1, f2 = x1 − x2 + x2

2 following B.H. Dayton and Z. Zeng

|a|=0
��� � �

∂00

|a|=1

� � � �

∂10 ∂01

|a|=2

� � � �

∂20 ∂11 ∂02

|a|=3

� � � �

∂30 ∂21 ∂12 ∂03

f1

f2S1

x1f1

x1f2

x2f1

x2f2S2

x2
1f1

x2
1f2

x1x2f1

x1x2f2

x2
2f1

x2
2f2S3

0 1 –1 1 0 0 0 0 0 0
0 1 –1 0 0 1 0 0 0 0

0 0 0 1 –1 0 1 0 0 0
0 0 0 1 –1 0 0 0 1 0
0 0 0 0 1 –1 0 1 0 0
0 0 0 0 1 –1 0 0 0 1

0 0 0 0 0 0 1 –1 0 0

0 0 0 0 0 0 1 –1 0 0

0 0 0 0 0 0 0 1 –1 0

0 0 0 0 0 0 0 1 –1 0

0 0 0 0 0 0 0 0 1 –1

0 0 0 0 0 0 0 0 1 –1

Nullity(S2) = Nullity(S3) ⇒ stop algorithm
D0 = span{ ∂00, ∂10 + ∂01,−∂10 + ∂20 + ∂11 + ∂02 } ⇒ multiplicity = 3
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cyclic 9-roots once more

Recall:

f(x) =







fi =

8∑

j=0

i∏

k=1

x(k+j)mod 9 = 0, i = 1, 2, . . . , 8

f9 = x0x1x2x3x4x5x6x7x8 − 1 = 0

has 164 solutions of multiplicity 4.

Running the algorithm of Dayton and Zeng:

H[1] = 1, H[2] = 2, H[3] = 1, H[4] = 0,

with H[i] = Nullity(Si)−Nullity(Si−1), i > 0,

so we compute the multiplicity as 4.
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What is Symbolic-Numeric Computing?

A puristic point of view:

Computer algebra rewrites the problem, producing “easier”

equations of the ideal, but “easier” 6= numerically better.

Numerical analysis produces approximate numbers for a fixed

system of equations, but many problems are “ill-posed”.

The synergistic approach

Symbolic-Numeric Computing rewrites an ill-conditioned

numerical problem into a well-conditioned formulation.

works very well in Newton’s method with deflation
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