Homotopies for Real Polynomial Systems

Jan Verschelde

University of Illinois at Chicago Department of Mathematics, Statistics, and Computer Science http://www.math.uic.edu/~jan jan@math.uic.edu

AIM workshop on convex algebraic geometry Palo Alto, 21-25 Sep 2009

< ロ > < 同 > < 回 > < 回 > < 回 >

Outline

Problem Statement: Real Homotopy Continuation

2 Khovanskii-Rolle Continuation (Bates & Sottile)

- Gale Duality
- Khovanskii-Rolle Theorem
- Sweeping Algebraic Curves (Piret & Verschelde)
 - reconditioning singularities with deflation
 - detection and location of singular points
 - neural network model and symmetric Stewart-Gough platform

Morse-Like Representations (Lu, Bates, Sommese & Wampler)

- definition of data structures
- ingredients of the algorithms

イモトイモト

Homotopy Continuation Methods

One commonly used *homotopy* to solve $f(\mathbf{x}) = \mathbf{0}$:

$$h(\mathbf{x},t) = (1-t)g(\mathbf{x}) + tf(\mathbf{x}) = \mathbf{0}, \quad t \in [0,1],$$

where $g(\mathbf{x}) = \mathbf{0}$ is a good system with known start solutions. Paths $\mathbf{x}(t)$ defined by $h(\mathbf{x}(t), t) = \mathbf{0}$ are tracked by *continuation*. Solving over \mathbb{C} has several benefits:

- geometric interpretation: from generic to specific
- we avoid singularities except possibly at end of the paths
- algorithms for a numerical irreducible decomposition

For an introduction to **numerical algebraic geometry**: A. J. Sommese and C.W. Wampler: *The Numerical Solution of Systems of Polynomials Arising in Engineering and Science.* World Scientific, 2005.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Real Problems

Solving over $\mathbb R$ for given system with real coefficients means that we are mainly (or exclusively) interested in real solutions.

Some issues:

- #real solutions \ll #complex solutions
- no longer enough genericity to avoid singularities
- Solution examples like $x^2 y^2 z = 0$ complicate dimension count

Some answers:

- Khovanskii-Rolle continuation for real isolated solutions
- singularity detection and location when sweeping curves
- Morse-like representation of a real algebraic curve

a new continuation algorithm

D.J. Bates and F. Sottile: *Khovanskii-Rolle Continuation for Real Solutions.* arXiv:0908.4579v1 [math.AG] 31 Aug 2009

On input is a square Laurent system of *n* equations, with $n + \ell + 1$ distinct monomials.

Two steps in the new continuation algorithm:

- Set up master equations using Gale duality.
- Apply the Khovanskii-Rolle theorem.

Proof of concept implementation using Maple 13 and Bertini 1.1.1 for $\ell = 2$.

D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler: Bertini: Software for numerical algebraic geometry. Available at http://www.nd.edu/~sommese.

(日)

Gale Duality

$$\begin{cases} cd = \gamma_{10} + \gamma_{11}be^2 + \gamma_{12}a^{-1}b^{-1}e \\ bc^{-1}e^{-2} = \gamma_{20} + \gamma_{21}be^2 + \gamma_{22}a^{-1}b^{-1}e \\ ab^{-1} = \gamma_{30} + \gamma_{31}be^2 + \gamma_{32}a^{-1}b^{-1}e \\ c^{-1}de^{-1} = \gamma_{40} + \gamma_{41}be^2 + \gamma_{42}a^{-1}b^{-1}e \\ bc^{-2}e = \gamma_{50} + \gamma_{51}be^2 + \gamma_{52}a^{-1}b^{-1}e \end{cases}$$
 Laurent system with few monomials : $5 + 2 + 1 \\ \gamma_{ij} \in \mathbb{R} \setminus \{0\} \end{cases}$

 $a^{-1}b^{-1}e$ be^2 cd $bc^{-1}e^{-2}$ ab^{-1} $c^{-1}de^{-1}$ $bc^{-2}e$

$$\begin{array}{c} a \\ b \\ c \\ d \\ e \end{array} \begin{bmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 1 & -2 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 1 & 2 & 0 & -2 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -2 & -3 \\ 1 & 6 \\ -2 & -2 \\ -1 & 1 \\ 1 & 6 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

イロト イヨト イヨト イヨト 三日

Master Functions

$$\begin{array}{c} a \\ b \\ c \\ d \\ e \end{array} \begin{bmatrix} -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ -1 & 1 & 0 & 1 & -1 & 0 & 1 \\ 0 & 0 & 1 & -1 & 0 & 1 & -2 \\ 0 & 0 & 1 & 0 & 0 & -1 & 0 \\ 1 & 2 & 0 & -2 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -2 & -3 \\ 1 & 6 \\ -2 & -2 \\ -1 & 1 \\ 1 & 6 \\ 2 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$\begin{cases} (a^{-1}b^{-1}e)^{-1} (be^{2})^{-2} (cd)^{1} (bc^{-1}e^{-2})^{-2} (ab^{-1})^{-1} (c^{-1}de^{-1})^{1} (bc^{-2}e)^{2} = 1 \\ (a^{-1}b^{-1}e)^{1} (be^{2})^{-3} (cd)^{6} (bc^{-1}e^{-2})^{-2} (ab^{-1})^{1} (c^{-1}de^{-1})^{6} (bc^{-2}e)^{7} = 1 \end{cases}$$

Let $x = a^{-1}b^{-1}e$, $y = be^2$, then $cd = L_1(x, y)$, $bc^{-1}e^{-2} = L_2(x, y)$, $ab^{-1} = L_3(x, y)$, $c^{-1}de^{-1} = L_4(x, y)$, $bc^{-2}e = L_5(x, y)$.

イロト 不得 トイヨト イヨト 二日

An Equivalent System

$$\begin{cases} (a^{-1}b^{-1}e)^{-1} (be^2)^{-2} (cd)^1 (bc^{-1}e^{-2})^{-2} (ab^{-1})^{-1} (c^{-1}de^{-1})^1 (bc^{-2}e)^2 = 1 \\ (a^{-1}b^{-1}e)^1 (be^2)^{-3} (cd)^6 (bc^{-1}e^{-2})^{-2} (ab^{-1})^1 (c^{-1}de^{-1})^6 (bc^{-2}e)^7 = 1 \end{cases}$$

There is a bijection between (a, b, c, d, e) and (x, y).

$$\begin{cases} x^{-1} y^{-2} L_1^1 L_2^{-2} L_3^{-1} L_4^1 L_5^2 = 1 \\ x y^{-3} L_1^6 L_2^{-2} L_3^1 L_4^6 L_5^7 = 1 \end{cases} \quad \text{or} \quad \begin{cases} L_1^1 L_4^1 L_5^2 = x^1 y^2 L_2^2 L_3^1 \\ x L_1^6 L_3^1 L_6^4 L_5^7 = y^3 L_2^2 \end{cases}$$

Positive solutions lie inside

$$\triangle := \{ (x, y) \mid x > 0, y > 0, L_i(x, y) > 0 \}.$$

F. Bihan and F. Sottile: Gale duality for complete intersections. Ann. Inst. Fourier 58(3): 877-891, 2008.

Jan Verschelde (UIC)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Khovanskii-Rolle Theorem

Between any two zeroes of g along an arc of f, there is at least one zero of $det(df \land dg)$.

A.G. Khovanskii: Fewnomials, AMS 1991.

Jan	Verschelde (UIC)

A .

Khovanskii-Rolle Continuation

Let *f* and *g* be the system of master functions in *x* and *y*.

- Precomputation: solve the system f = 0 and J = 0, *J* is determinant of the Jacobian matrix.
- Starting at solutions of f = 0 and J = 0 inside \triangle and solutions of g = 0 at the boundary of \triangle , trace curves to solutions of f = 0 and g = 0.

Complexity of precomputation is less than whole problem. Every real solution is found twice.

Numerical difficulties:

- relatively high degree polynomials
- start solutions may be singular ...

a more extreme example

$$\begin{cases} 10500 - tu^{492} - 3500t^{-1}u^{463}v^5w^5 = 0\\ 10500 - t - 3500t^{-1}u^{691}v^5w^5 = 0\\ 14000 - 2t + tu^{492} - 3500v = 0\\ 14000 + 2t - tu^{492} - 3500w = 0 \end{cases}$$

mixed volume: 7,663 counts #solutions in $(\mathbb{C}^*)^4$ however: only six positive real solutions

On a 2.83 Ghz computer running CentOs:

- PHCpack takes about 40 minutes to solve the system.
- Proof of concept implementation of the new continuation algorithm takes 23 seconds.

ヨトィヨト

Sweeping Algebraic Curves

A homotopy h is a family of systems, depending on a parameter. With **continuation** methods we track solution paths defined by h. We distinguish between two types of parameters:

$$h(\lambda, \mathbf{x}) = \lambda^2 + \mathbf{x}^2 - \mathbf{1} = \mathbf{0}.$$

As λ varies we track the unit circle: $(\lambda, \mathbf{x}(\lambda)) \in h^{-1}(0)$.

2 an artificial parameter *t*, for example:

$$h(t,\lambda,\mathbf{x}) = \begin{cases} \lambda^2 + \mathbf{x}^2 - 1 = 0\\ (\lambda - 2)t + (\lambda + 2)(1 - t) = 0. \end{cases}$$

As *t* moves from 0 to 1, λ goes from -2 to +2and we **sweep** points ($\lambda(t), x(\lambda(t))$) on the unit circle.

Reconditioning Singularities via Deflation

restoring the quadratic convergence of Newton's method

A solution **z** to $f(\mathbf{x}) = \mathbf{0}$, $f = (f_1, f_2, ..., f_N)$, $\mathbf{x} = (x_1, x_2, ..., x_n)$, N > n, is **singular** if the Jacobian matrix $A(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix}$ has rank R < n at **z**.

Choose $\mathbf{c} \in \mathbb{C}^{R+1}$ and $\mathbf{B} \in \mathbb{C}^{n \times (R+1)}$ at random. Introduce R + 1 new multiplier variables $\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_{R+1})$. Apply the Gauss-Newton method to

Recurse if necessary, # deflations < multiplicity. An efficient implementation uses algorithmic differentiation.

A. Leykin, J. Verschelde, and A. Zhao: Newton's method with deflation for isolated singularities of polynomial systems. Theoretical CS 2006.

▲□▶▲□▶▲글▶▲글▶ 글 のQ @

Quadratic Turning Points

most common type of singularity

Detection: monitor orientation of tangent vectors. Two consecutive tangent vectors v(t₁) and v(t₂). Criterion: ⟨v(t₁), v(t₂)⟩ < 0 ⇒ v(t) ⊥ t − axis for t ∈ [t₁, t₂]. Tangents are simple byproduct of predictor-corrector path tracker.

Solution: shooting method for step size. Consider $\mathbf{x}(t) = \mathbf{x}(t_1) + h \mathbf{v}(t_1)$, find *h* and *t*: $\mathbf{v}(t) \perp t$ -axis. Overshot turning point for $h = h_2$, at $\mathbf{x}(t_2)$ path has turned back.

T.Y. Li and Z. Zeng: Homotopy continuation algorithm for the real nonsymmetric eigenproblem: Further development and implementation. SIAM J. Sci. Comput. 1999.

Jan Verschelde (UIC)

Sweeping a Circle

æ

Difficulties to Extend Approach

for any type of isolated singularity along a path

Detecting and locating quadratic turning points goes well.

Extending to any type of singularity has two difficulties:

- detection: flip of tangent orientation no longer suffices

 → the path tracker glides over the singularity
- location: higher order singularities may have corank > 1
 the path tracker fails to converge

Solutions for these difficulties:

- use a Jacobian criterion for detection, and
- algebraic higher order predictor for location.

K. Piret and J. Verschelde: Sweeping Algebraic Curves for Singular Solutions. To appear in Journal of Comput. and Appl. Math.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Neural Network Model

a family of polynomial systems for any dimension n

V.W. Noonburg. A neural network modeled by an adaptive Lotka-Volterra system. SIAM J. Appl. Math. 1989.

• Applying a sweep to the polynomial systems:

$$f(x,\lambda) = \begin{cases} x_1 x_2^2 + x_1 x_3^2 - \lambda x_1 + 1 = 0\\ x_2 x_1^2 + x_2 x_3^2 - \lambda x_2 + 1 = 0\\ x_3 x_1^2 + x_3 x_2^2 - \lambda x_3 + 1 = 0\\ (\lambda + 1)(1 - t) + (\lambda - 1)t = 0 \end{cases}$$

- As t goes from 0 to 1, λ goes from -1 to +1.
- The tangent does not flip at the origin.
 The path tracker does not detect the quadruple point for λ = 0.

The Plot of Solution Paths for Neural Networks

the solution paths are really straight

Jan Verschelde (UIC)

3 →

Jumping Over Singularities

Z. Mei: Numerical Bifurcation Analysis for Reaction-Diffusion Equations. Springer, 2000.

The shaded blue part is the region where Newton's method converges. On straight curves, the path tracker will never cut back its step size.

E 5 4 E

Detection Algorithm Specification

Input:
$$h(\mathbf{x}, t) = \mathbf{0}$$
;
 $(t_1, t_2, t_3), t_1 < t_2 < t_3$;
 $(\mathbf{z}_1, \mathbf{z}_2, \mathbf{z}_3)$: $h(\mathbf{z}_i, t_i) = \mathbf{0}, i = 1, 2, 3$;
 (d_1, d_2, d_3) : $d_i = \det(\partial_{\mathbf{x}} h(\mathbf{z}_i, t_i)), i = 1, 2, 3$;
 $\delta > 0$;
 $\epsilon > 0$.

a homotopy consecutive samples with solutions and determinants tolerance on $t_3 - t_1$ tolerance on det()

Output:
$$(t^*, \mathbf{z}^*, d^*), h(\mathbf{z}^*, t^*) = \mathbf{0};$$

 $d^* = \det(\partial_{\mathbf{x}}h(\mathbf{z}^*, t^*)), |d^*| < \epsilon;$
or \emptyset , updated $(t_i, \mathbf{z}_i, d_i), i = 1, 2, 3.$

a solution that is singular no singular solution

æ

イロト イボト イヨト イヨト

Detection Algorithm Implementation

while
$$(|d_1| > |d_2| < |d_3|)$$
 and $(t_3 - t_1 > \delta)$ do
 $t^* := \min \mathcal{P}((t_1, t_2, t_3), (d_1, d_2, d_3));$
 $(z^*, d^*) := \operatorname{Newton}(h, t^*, z_2);$
if $|d^*| < \epsilon$ then
return $(t^*, z^*, d^*);$
else if $|d^*| \ge |d_2|$ then
return $\emptyset;$
else
if $t^* < t_2$
then $(t_3, z_3, d_3) := (t_2, z_2, d_2);$
else $(t_1, z_1, d_1) := (t_2, z_2, d_2);$
end if;
 $(t_2, z_2, d_2) := (t^*, z^*, d^*);$
end while.

loop invariants parabolic minimum correct solution first stop test found singularity second stop test no singularity found continue loop adjust t_1 , t_2 , t_3 t_2 becomes right end t_2 becomes left end

d₂ remains minimum

< 回 > < 三 > < 三 >

Numerical Stability

For determinant values d_1 , d_2 , and d_3 , respectively at consecutive t_1 , t_2 , and t_3 , $t^* := \min \mathcal{P}((t_1, t_2, t_3), (d_1, d_2, d_3))$ is subject to roundoff error. t^* is computed via

$$T = \frac{t_1^2(d_3 - d_2) + t_2^2(d_1 - d_3) + t_3^2(d_2 - d_1)}{2d_1(t_2 - t_3) + 2d_2(t_3 - t_1) + 2d_3(t_1 - t_2)}.$$

We compute \overline{T} , replacing in $T d_1$, d_2 , and d_3 respectively by $d_1(1 + \epsilon_1)$, $d_2(1 + \epsilon_2)$, and $d_3(1 + \epsilon_3)$ for errors ϵ_1 , ϵ_2 , and ϵ_3 .

$$\frac{\widetilde{T}-T}{T}=\frac{2\epsilon_1d_1t_{23}+2\epsilon_2d_2t_{13}+2\epsilon_3d_3t_{12}}{P}.$$

with t_{23} , t_{13} , and t_{12} constants of magnitude $> \delta$ and $P = t_1^2(d_3 - d_2) + t_2^2(d_1 - d_3) + t_3^2(d_2 - d_1)$. \Rightarrow large relative errors only if $d_1 \approx d_2 \approx d_3$.

(日)

Numerical Conditioning

Worst case: straight path almost touches ellipses.

$$h(x,\lambda,t) = \begin{cases} (x-1-\epsilon)\left(\frac{\lambda^2}{4}+x^2-1\right) \\ \left(\frac{1}{4}(\lambda+1)^2+\frac{4}{9}(x+1/2)^2-1\right) &= 0 \\ (1-t)(\lambda+2)+t(\lambda-2) &= 0 \end{cases} \quad t \in [0,1].$$

Plots for $\epsilon = 0.05$:

Polynomial Systems

the number of solutions in C^n for generic choices of parameters

Polynomial Systems		#Solutions
Molecular Configurations		16
Neural Networks		21
Neural Networks		73
Neural Networks		233
Neural Networks		59049
Neural Networks		14,348,907
Symmetrical Stewart-Gough Platforms		28 (real)

Table: Polynomial Systems which have higher-order multiple points

Molecular Configurations

applying the sweep homotopy algorithm to this system

I.Z. Emiris and B. Mourrain: Computer algebra methods for studying and computing molecular conformations. Algorithmica 1999.

• Applying a sweep to molecular configurations:

$$f(\mathbf{x},\lambda) = \begin{cases} \frac{1}{2}(x_2^2 + 4x_2x_3 + x_3^2) + \lambda(x_2^2x_3^2 - 1) = 0\\ \frac{1}{2}(x_3^2 + 4x_3x_1 + x_1^2) + \lambda(x_3^2x_1^2 - 1) = 0\\ \frac{1}{2}(x_1^2 + 4x_1x_2 + x_2^2) + \lambda(x_1^2x_2^2 - 1) = 0\\ (\lambda - 1)(1 - t) + (\lambda + 1)t = 0. \end{cases}$$

The tangent flips at the higher-order turning point at the origin.

 For λ = ±0.866025403780023 on symmetrical curves of degree 6 and one of the eigenvalues of the Jacobian matrix changes signs.

3

Symmetrical Stewart-Gough platforms

nine quadratic polynomial equations

$$f(x, L_1) = \begin{cases} f_i = (x_i - x_{i0})^2 + (y_i - y_{i0})^2 + z_i^2 - L_i^2, i = 1, 2, \dots, 6\\ f_7 = (x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2 - 2R_1^2(1 - \beta))\\ f_8 = (x_1 - x_0)^2 + (y_1 - y_0)^2 + (z_1 - z_0)^2 - R_1^2\\ f_9 = (x_2 - x_0)^2 + (y_2 - y_0)^2 + (z_2 - z_0)^2 - R_1^2 \end{cases}$$
where
$$\begin{cases} x_i = w_1 x_0 + w_2^{m_1} w_3^{m_2} x_1 + w_2^{m_2} w_3^{m_1} x_2\\ y_i = w_1 y_0 + w_2^{m_1} w_3^{m_2} y_1 + w_2^{m_2} w_3^{m_1} y_2\\ z_i = w_1 z_0 + w_2^{m_1} w_3^{m_2} z_1 + w_2^{m_2} w_3^{m_1} z_2 \end{cases}$$

Yu Wang and Yi Wang: Configuration Bifurcations Analysis of Six Degree-of-Freedom Symmetrical Stewart Parallel Mechanism. Journal of Mechanical Design 2005.

Jan Verschelde (UIC)

Computational Results

on the symmetrical Stewart-Gough platforms

- Applying the Jacobian criterion globally leads to an augmented system with a mixed volume equal to 4,608.
 Tracking 4,608 paths in 16 variables is much more expensive than tracking 512 paths in 9 variables.
 Sweeping to find all critical points works in a more efficient setup: at most 28 paths in 9 variables.
- By fixing L_i , i = 2, 3, ..., 6, to 1.5, 2.0, and 3.0, the sweep yields four special values for the natural parameter L_1 for each L_i .
- We have replicated the results from Wang and Wang's paper with higher precision than what they reported.
 In addition, z₀ can be either positive or negative.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Morse-Like Representations of a Real Algebraic Curve

Given $f(\mathbf{x}) = \mathbf{0}$, a real polynomial system.

 $Z_1(f) = \{ all irreducible 1-dimensional solution sets in \mathbb{C}^n \}$

$$Z_{1\mathbb{R}}(f) = Z_1(f) \cap \mathbb{R}^n$$

= { isolated real points on complex curves }
 \cup { 1-dimensional real connected components }

In addition to computing $Z_{1\mathbb{R}}(f)$, algorithms and data structures solve the membership problem:

- does a solution belong to $Z_{1\mathbb{R}}(f)$?
- to which real connected component does it belong to?

Y. Lu, D.J. Bates, A.J. Sommese, C.W. Wampler: *Finding all real points of a complex curve*. Contemporary Mathematics 448: 183-206, 2007.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト … ヨ

Data Structure

A Morse-like representation of a real algebraic curve $C_{\mathbb{R}} \subset \mathbb{R}^n$ consists of

- **()** a generic linear projection $\pi : \mathbb{R}^n \to \mathbb{R}$;
- 2 a boundary point set $\mathcal{B}_{\mathbb{R}} = \{ B_1, B_2, \dots, B_m \}, B_i \in \mathbb{R}^n$ for all *i*;
- So an edge set *E* = { *E*₁, *E*₂, ..., *E_r* }, for all *k* ∈ {1, 2, ..., *r*}: $E_k = (\ell_k, r_k, \mathbf{x}_k) \in (\mathbb{Z} \cup \{-\infty\}) \times (\mathbb{Z} \cup \{+\infty\}) \times \mathbb{R}^n, \text{ where }$
 - B_{ℓ_k} and B_{r_k} are left and right end points of edge e_k , if e_k extends to infinity to the left and/or right, then $\ell_k = -\infty$ and/or $r_k = +\infty$;

2
$$\mathbf{x}_k \in \mathbf{e}_k$$
 over a point of $\pi(\mathbf{e}_k)$.

(日)

an illustration

$$f(x, y) = y^2 + x^2(x - 1)(x - 2) = 0$$

 $Z_{1\mathbb{R}}(f)$ consists of (0,0) and one bounded curve.

The bounded curve of $\mathbb{Z}_{1\mathbb{R}}(f)$ is represented by two edges.

Jan Verschelde (UIC)

æ

Ingredients of the Algorithms

assuming reduced complex curve

• $Z_1(f)$ is computed via the solutions of

$$\left\{egin{array}{l} f(\mathbf{x}) = \mathbf{0} \ c_0 + \mathbf{c}^\mathsf{T}\mathbf{x} = 0 \end{array}
ight. (c_0, \mathbf{c}) \in \mathbb{C}^{n+1}. \end{array}
ight.$$

The hyperplane defined by (c_0, \mathbf{c}) and the solutions of $f(\mathbf{x}) = \mathbf{0}$ on the hyperplane give *a witness set W* for $Z_1(f)$.

2 The boundary point set $\mathcal{B}_{\mathbb{R}}$ is obtained via global deflation

$$\begin{cases} f(\mathbf{x}) = \mathbf{0} & J_f = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}} \end{bmatrix} \\ J_f(\mathbf{x})Bz + \Lambda \begin{bmatrix} t_1 c_1 z \\ t_2 c_2 z \\ \vdots \\ t_{n-2} c_{n-2} z \end{bmatrix} = \mathbf{0} & \Lambda \in \mathbb{C}^{(n-1) \times (n-2)} \\ \gamma \in \mathbb{C} \\ cascade \ t_i = 1 \to 0 \end{cases}$$

ヨト・モト

computing Morse-like representations

Once boundary point set $\mathcal{B}_{\mathbb{R}}$ is computed, do

- Sort $\mathcal{B}_{\mathbb{R}} = \{ B_1, B_2, \dots, B_m \}$: $\pi(B_i) < \pi(B_{i+1}), i = 1, 2, \dots, m-1$.
- Starting at points in witness set W for $Z_1(f)$, compute points \mathbf{x}_k on edges e_k , with homotopy

$$\begin{cases} f(\mathbf{x}) = \mathbf{0} \\ (1-t)(c_0 + \mathbf{c}^T \mathbf{x}) + t(\pi(\pi_W(\mathbf{x})) - \mathbf{s}) = \mathbf{0}, \quad t \in [0, 1] \end{cases}$$

for all midpoints $s = (\pi(B_i) + \pi(B_{i+1}))/2, i = 1, 2, ..., m - 1.$

So For every \mathbf{x}_k on edge e_k , use homotopy to track to left and right end point to compute ℓ_k and r_k of E_k .

Applications and Extensions

Application to a special Griffis-Duffy platform.

- A Stewart-Gough platform with special positions of ball joints at base and end plate.
- Direct position problem described by a polynomial system of 7 homogeneous polynomial equations.
- Special scaled mechanism with multiple components.

For an extension to finding real points on surfaces, see Chapter 4 of Ye Lu: *Finding all real solutions of polynomial systems*. PhD Thesis, University of Notre Dame, 2006.

3

Conclusions

- computing real solutions involves searching for singularities
- many numerical challenges and complexity issues
- towards a numerical cylindrical algebraic decomposition?

< ロ > < 同 > < 回 > < 回 > < 回 >