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Homotopy Continuation Methods

One commonly used homotopy to solve f (x) = 0:

h(x, t) = (1 − t)g(x) + tf (x) = 0, t ∈ [0, 1],

where g(x) = 0 is a good system with known start solutions.

Paths x(t) defined by h(x(t), t) = 0 are tracked by continuation.

Solving over C has several benefits:
1 geometric interpretation: from generic to specific
2 we avoid singularities except possibly at end of the paths
3 algorithms for a numerical irreducible decomposition

For an introduction to numerical algebraic geometry:
A. J. Sommese and C.W. Wampler: The Numerical Solution of Systems of
Polynomials Arising in Engineering and Science. World Scientific, 2005.
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Real Problems

Solving over R for given system with real coefficients
means that we are mainly (or exclusively) interested in real solutions.

Some issues:
1 #real solutions � #complex solutions
2 no longer enough genericity to avoid singularities
3 examples like x2 − y2z = 0 complicate dimension count

Some answers:
1 Khovanskii-Rolle continuation for real isolated solutions
2 singularity detection and location when sweeping curves
3 Morse-like representation of a real algebraic curve
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a new continuation algorithm

D.J. Bates and F. Sottile: Khovanskii-Rolle Continuation for Real
Solutions. arXiv:0908.4579v1 [math.AG] 31 Aug 2009

On input is a square Laurent system of n equations,
with n + � + 1 distinct monomials.

Two steps in the new continuation algorithm:
1 Set up master equations using Gale duality.
2 Apply the Khovanskiı̌-Rolle theorem.

Proof of concept implementation using Maple 13 and Bertini 1.1.1
for � = 2.

D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler:
Bertini: Software for numerical algebraic geometry.
Available at http://www.nd.edu/∼sommese.

Jan Verschelde (UIC) real homotopy continuation AIM, 25 Sep 2009 5 / 34



Gale Duality


cd = γ10 + γ11be2 + γ12a−1b−1e

bc−1e−2 = γ20 + γ21be2 + γ22a−1b−1e
ab−1 = γ30 + γ31be2 + γ32a−1b−1e

c−1de−1 = γ40 + γ41be2 + γ42a−1b−1e
bc−2e = γ50 + γ51be2 + γ52a−1b−1e

Laurent system
with few monomials :

5 + 2 + 1
γij ∈ R \ {0}

a−1b−1e be2 cd bc−1e−2 ab−1 c−1de−1 bc−2e

a
b
c
d
e


−1 0 0 0 1 0 0
−1 1 0 1 −1 0 1

0 0 1 −1 0 1 −2
0 0 1 0 0 −1 0
1 2 0 −2 0 −1 1





−1 1
−2 −3

1 6
−2 −2
−1 1

1 6
2 7


=


0 0
0 0
0 0
0 0
0 0


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Master Functions

a
b
c
d
e


−1 0 0 0 1 0 0
−1 1 0 1 −1 0 1

0 0 1 −1 0 1 −2
0 0 1 0 0 −1 0
1 2 0 −2 0 −1 1





−1 1
−2 −3

1 6
−2 −2
−1 1

1 6
2 7


=


0 0
0 0
0 0
0 0
0 0


{

(a−1b−1e)−1 (be2)−2 (cd)1 (bc−1e−2)−2 (ab−1)−1 (c−1de−1)1 (bc−2e)2 = 1

(a−1b−1e)1 (be2)−3 (cd)6 (bc−1e−2)−2 (ab−1)1 (c−1de−1)6 (bc−2e)7 = 1

Let x = a−1b−1e, y = be2, then cd = L1(x , y), bc−1e−2 = L2(x , y),
ab−1 = L3(x , y), c−1de−1 = L4(x , y), bc−2e = L5(x , y).
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An Equivalent System

{
(a−1b−1e)−1 (be2)−2 (cd)1 (bc−1e−2)−2 (ab−1)−1 (c−1de−1)1 (bc−2e)2 = 1

(a−1b−1e)1 (be2)−3 (cd)6 (bc−1e−2)−2 (ab−1)1 (c−1de−1)6 (bc−2e)7 = 1

There is a bijection between (a, b, c, d , e) and (x , y).

{
x−1 y−2 L1

1 L−2
2 L−1

3 L1
4 L2

5 = 1

x y−3 L6
1 L−2

2 L1
3 L6

4 L7
5 = 1

or

{
L1

1 L1
4 L2

5 = x1 y2 L2
2 L1

3

x L6
1 L1

3 L6
4 L7

5 = y3 L2
2

Positive solutions lie inside

� := { (x , y) | x > 0, y > 0, Li(x , y) > 0 } .

F. Bihan and F. Sottile: Gale duality for complete intersections.
Ann. Inst. Fourier 58(3): 877-891, 2008.
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Khovanskiı̌-Rolle Theorem

Between any two zeroes of g along an arc of f ,
there is at least one zero of det(df ∧ dg).

f g fg

dg

df df

dg

df

dg

A.G. Khovanskiı̌: Fewnomials, AMS 1991.
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Khovanskiı̌-Rolle Continuation

Let f and g be the system of master functions in x and y .

1 Precomputation: solve the system f = 0 and J = 0,
J is determinant of the Jacobian matrix.

2 Starting at solutions of f = 0 and J = 0 inside �
and solutions of g = 0 at the boundary of �,
trace curves to solutions of f = 0 and g = 0.

Complexity of precomputation is less than whole problem.
Every real solution is found twice.

Numerical difficulties:

relatively high degree polynomials

start solutions may be singular ...
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a more extreme example


10500 − tu492 − 3500t−1u463v5w5 = 0

10500− t − 3500t−1u691v5w5 = 0
14000 − 2t + tu492 − 3500v = 0
14000 + 2t − tu492 − 3500w = 0

mixed volume: 7,663 counts #solutions in (C∗)4

however: only six positive real solutions

On a 2.83 Ghz computer running CentOs:

PHCpack takes about 40 minutes to solve the system.

Proof of concept implementation of the new continuation algorithm
takes 23 seconds.
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Sweeping Algebraic Curves

A homotopy h is a family of systems, depending on a parameter.
With continuation methods we track solution paths defined by h.
We distinguish between two types of parameters:

1 a natural parameter λ, for example:

h(λ, x) = λ2 + x2 − 1 = 0.

As λ varies we track the unit circle: (λ, x(λ)) ∈ h−1(0).
2 an artificial parameter t , for example:

h(t , λ, x) =

{
λ2 + x2 − 1 = 0

(λ − 2)t + (λ + 2)(1 − t) = 0.

As t moves from 0 to 1, λ goes from −2 to +2
and we sweep points (λ(t), x(λ(t))) on the unit circle.
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Reconditioning Singularities via Deflation
restoring the quadratic convergence of Newton’s method

A solution z to f (x) = 0, f = (f1, f2, . . . , fN), x = (x1, x2, . . . , xn), N > n,

is singular if the Jacobian matrix A(x) =
[

∂fi
∂xj

]
has rank R < n at z.

Choose c ∈ C
R+1 and B ∈ C

n×(R+1) at random.
Introduce R + 1 new multiplier variables µ = (µ1, µ2, . . . , µR+1).
Apply the Gauss-Newton method to

f (x) = 0
A(x)Bµ = 0

cµ = 1

Rank(A(x)) = R
⇓

coRank(A(x)B) = 1

Recurse if necessary, #deflations < multiplicity.
An efficient implementation uses algorithmic differentiation.

A. Leykin, J. Verschelde, and A. Zhao: Newton’s method with deflation for
isolated singularities of polynomial systems. Theoretical CS 2006.
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Quadratic Turning Points
most common type of singularity

1 Definition: solution paths turn back
when the parameter increases past a quadratic turning point.
Properties: a double solution, corank of Jacobian equals one,

transition point: complex ↔ real.

2 Detection: monitor orientation of tangent vectors.
Two consecutive tangent vectors v(t1) and v(t2).
Criterion: 〈v(t1), v(t2)〉 < 0 ⇒ v(t) ⊥ t−axis for t ∈ [t1, t2].
Tangents are simple byproduct of predictor-corrector path tracker.

3 Location: shooting method for step size.
Consider x(t) = x(t1) + h v(t1), find h and t : v(t) ⊥ t−axis.
Overshot turning point for h = h2, at x(t2) path has turned back.

T.Y. Li and Z. Zeng: Homotopy continuation algorithm for the real
nonsymmetric eigenproblem: Further development and implementation.
SIAM J. Sci. Comput. 1999.
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Sweeping a Circle
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Difficulties to Extend Approach
for any type of isolated singularity along a path

Detecting and locating quadratic turning points goes well.

Extending to any type of singularity has two difficulties:
1 detection: flip of tangent orientation no longer suffices

→ the path tracker glides over the singularity
2 location: higher order singularities may have corank > 1

→ the path tracker fails to converge

Solutions for these difficulties:
1 use a Jacobian criterion for detection, and
2 algebraic higher order predictor for location.

K. Piret and J. Verschelde: Sweeping Algebraic Curves for Singular
Solutions. To appear in Journal of Comput. and Appl. Math.
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Neural Network Model
a family of polynomial systems for any dimension n

V.W. Noonburg. A neural network modeled by an adaptive Lotka-Volterra
system. SIAM J. Appl. Math. 1989.

Applying a sweep to the polynomial systems:

f (x , λ) =



x1x2
2 + x1x2

3 − λx1 + 1 = 0

x2x2
1 + x2x2

3 − λx2 + 1 = 0

x3x2
1 + x3x2

2 − λx3 + 1 = 0

(λ + 1)(1 − t) + (λ − 1)t = 0

As t goes from 0 to 1, λ goes from −1 to +1.

The tangent does not flip at the origin.
The path tracker does not detect the quadruple point for λ = 0.
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The Plot of Solution Paths for Neural Networks
the solution paths are really straight
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Jumping Over Singularities

Z. Mei: Numerical Bifurcation Analysis for Reaction-Diffusion
Equations. Springer, 2000.

The shaded blue part is the region where Newton’s method converges.
On straight curves, the path tracker will never cut back its step size.
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Detection Algorithm Specification

Input: h(x, t) = 0; a homotopy
(t1, t2, t3), t1 < t2 < t3; consecutive samples
(z1, z2, z3): h(zi , ti) = 0, i = 1, 2, 3; with solutions
(d1, d2, d3): di = det(∂xh(zi , ti)), i = 1, 2, 3; and determinants
δ > 0; tolerance on t3 − t1
ε > 0. tolerance on det()

Output: (t∗, z∗, d∗), h(z∗, t∗) = 0; a solution
d∗ = det(∂xh(z∗, t∗)), |d∗| < ε; that is singular

or ∅, updated (ti , zi , di), i = 1, 2, 3. no singular solution
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Detection Algorithm Implementation

while (|d1| > |d2| < |d3|) and (t3 − t1 > δ) do loop invariants
t∗ := minP((t1, t2, t3), (d1, d2, d3)); parabolic minimum
(z∗, d∗) := Newton(h, t∗, z2); correct solution
if |d∗| < ε then first stop test

return (t∗, z∗, d∗); found singularity
else if |d∗| ≥ |d2| then second stop test

return ∅; no singularity found
else continue loop

if t∗ < t2 adjust t1, t2, t3
then (t3, z3, d3) := (t2, z2, d2); t2 becomes right end
else (t1, z1, d1) := (t2, z2, d2); t2 becomes left end

end if;
(t2, z2, d2) := (t∗, z∗, d∗); d2 remains minimum

end if;
end while.
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Numerical Stability

For determinant values d1, d2, and d3, respectively at consecutive t1,
t2, and t3, t∗ := minP((t1, t2, t3), (d1, d2, d3)) is subject to roundoff error.
t∗ is computed via

T =
t2
1 (d3 − d2) + t2

2 (d1 − d3) + t2
3 (d2 − d1)

2d1(t2 − t3) + 2d2(t3 − t1) + 2d3(t1 − t2)
.

We compute T̃ , replacing in T d1, d2, and d3 respectively by
d1(1 + ε1), d2(1 + ε2), and d3(1 + ε3) for errors ε1, ε2, and ε3.

T̃ − T
T

=
2ε1d1t23 + 2ε2d2t13 + 2ε3d3t12

P
.

with t23, t13, and t12 constants of magnitude > δ
and P = t2

1 (d3 − d2) + t2
2 (d1 − d3) + t2

3 (d2 − d1).
⇒ large relative errors only if d1 ≈ d2 ≈ d3.
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Numerical Conditioning
Worst case: straight path almost touches ellipses.

h(x , λ, t) =


(x − 1 − ε)

(
λ2

4 + x2 − 1
)

(1
4(λ + 1)2 + 4

9(x + 1/2)2 − 1
)

= 0
(1 − t)(λ + 2) + t(λ − 2) = 0

t ∈ [0, 1].

Plots for ε = 0.05:
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Polynomial Systems
the number of solutions in C n for generic choices of parameters

Polynomial Systems n #Solutions
Molecular Configurations 3 16

Neural Networks 3 21
Neural Networks 4 73
Neural Networks 5 233
Neural Networks 10 59049
Neural Networks 15 14,348,907

Symmetrical Stewart-Gough Platforms 9 28 (real)

Table: Polynomial Systems which have higher-order multiple points
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Molecular Configurations
applying the sweep homotopy algorithm to this system

I.Z. Emiris and B. Mourrain: Computer algebra methods for studying
and computing molecular conformations. Algorithmica 1999.

Applying a sweep to molecular configurations:

f (x , λ) =



1
2(x2

2 + 4x2x3 + x2
3 ) + λ(x2

2 x2
3 − 1) = 0

1
2(x2

3 + 4x3x1 + x2
1 ) + λ(x2

3 x2
1 − 1) = 0

1
2(x2

1 + 4x1x2 + x2
2 ) + λ(x2

1 x2
2 − 1) = 0

(λ − 1)(1 − t) + (λ + 1)t = 0.

The tangent flips at the higher-order turning point at the origin.

For λ = ±0.866025403780023 on symmetrical curves of degree 6
and one of the eigenvalues of the Jacobian matrix changes signs.

Jan Verschelde (UIC) real homotopy continuation AIM, 25 Sep 2009 25 / 34



Symmetrical Stewart-Gough platforms
nine quadratic polynomial equations

f (x , L1) =



fi = (xi − xi0)
2 + (yi − yi0)

2 + z2
i − L2

i , i = 1, 2, . . . , 6

f7 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 − 2R2

1(1 − β))

f8 = (x1 − x0)
2 + (y1 − y0)

2 + (z1 − z0)
2 − R2

1

f9 = (x2 − x0)
2 + (y2 − y0)

2 + (z2 − z0)
2 − R2

1

where


xi = w1x0 + wm1

2 wm2
3 x1 + wm2

2 wm1
3 x2

yi = w1y0 + wm1
2 wm2

3 y1 + wm2
2 wm1

3 y2

zi = w1z0 + wm1
2 wm2

3 z1 + wm2
2 wm1

3 z2

Yu Wang and Yi Wang: Configuration Bifurcations Analysis of Six
Degree-of-Freedom Symmetrical Stewart Parallel Mechanism.
Journal of Mechanical Design 2005.
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Computational Results
on the symmetrical Stewart-Gough platforms

Applying the Jacobian criterion globally leads to an augmented
system with a mixed volume equal to 4,608.
Tracking 4,608 paths in 16 variables is much more expensive
than tracking 512 paths in 9 variables.
Sweeping to find all critical points works in a more efficient setup:
at most 28 paths in 9 variables.

By fixing Li , i = 2, 3, . . . , 6, to 1.5, 2.0, and 3.0, the sweep yields
four special values for the natural parameter L1 for each Li .

We have replicated the results from Wang and Wang’s paper with
higher precision than what they reported.
In addition, z0 can be either positive or negative.
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Morse-Like Representations of a Real Algebraic Curve

Given f (x) = 0, a real polynomial system.

Z1(f ) = { all irreducible 1-dimensional solution sets in C
n }

Z1R(f ) = Z1(f ) ∩ R
n

= { isolated real points on complex curves }
∪ { 1-dimensional real connected components }

In addition to computing Z1R(f ), algorithms and data structures
solve the membership problem:

1 does a solution belong to Z1R(f )?
2 to which real connected component does it belong to?

Y. Lu, D.J. Bates, A.J. Sommese, C.W. Wampler: Finding all real points
of a complex curve. Contemporary Mathematics 448: 183-206, 2007.
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Data Structure

A Morse-like representation of a real algebraic curve CR ⊂ R
n

consists of
1 a generic linear projection π : R

n → R;

2 a boundary point set BR = { B1, B2, . . . , Bm }, Bi ∈ R
n for all i ;

3 an edge set E = { E1, E2, . . . , Er }, for all k ∈ {1, 2, . . . , r}:
Ek = (�k , rk , xk ) ∈ (Z ∪ {−∞}) × (Z ∪ {+∞}) × R

n, where

1 B�k and Brk are left and right end points of edge ek ,
if ek extends to infinity to the left and/or right,
then �k = −∞ and/or rk = +∞;

2 xk ∈ ek over a point of π(ek ).
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an illustration

f (x , y) = y2 + x2(x − 1)(x − 2) = 0

Z1R(f ) consists of (0, 0) and one bounded curve.

The bounded curve of Z1R(f ) is represented by two edges.
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Ingredients of the Algorithms
assuming reduced complex curve

1 Z1(f ) is computed via the solutions of{
f (x) = 0

c0 + cT x = 0 (c0, c) ∈ C
n+1.

The hyperplane defined by (c0, c) and the solutions of f (x) = 0
on the hyperplane give a witness set W for Z1(f ).

2 The boundary point set BR is obtained via global deflation

f (x) = 0

Jf (x)Bz + Λ


t1c1z
t2c2z

...
tn−2cn−2z

 = 0

γz − 1 = 0

Jf =
[

∂f
∂x

]
B ∈ R

n×(n−1)

Λ ∈ C
(n−1)×(n−2)

γ ∈ C

cascade ti = 1 → 0
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computing Morse-like representations

Once boundary point set BR is computed, do

1 Sort BR = { B1, B2, . . . , Bm }: π(Bi) < π(Bi+1), i = 1, 2, . . . , m − 1.

2 Starting at points in witness set W for Z1(f ),
compute points xk on edges ek , with homotopy{

f (x) = 0
(1 − t)(c0 + cT x) + t(π(πW (x)) − s) = 0, t ∈ [0, 1]

for all midpoints s = (π(Bi) + π(Bi+1))/2, i = 1, 2, . . . , m − 1.

3 For every xk on edge ek , use homotopy to track to left and right
end point to compute �k and rk of Ek .
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Applications and Extensions

Application to a special Griffis-Duffy platform.

A Stewart-Gough platform with special positions
of ball joints at base and end plate.

Direct position problem described by a polynomial
system of 7 homogeneous polynomial equations.

Special scaled mechanism with multiple components.

For an extension to finding real points on surfaces, see Chapter 4 of
Ye Lu: Finding all real solutions of polynomial systems.
PhD Thesis, University of Notre Dame, 2006.
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Conclusions

computing real solutions involves searching for singularities

many numerical challenges and complexity issues

towards a numerical cylindrical algebraic decomposition?
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