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outline

Factoring Positive Dimensional Solution Sets

(Outline of the Talk)

1. Determine the number of irreducible factors and their degrees.

e.g: x2 + y2 − 1 is irreducible, while x2 − y2 = (x − y)(x+ y).

2. Monodromy certified by Linear Traces:

→ homotopy algorithms scale well as degrees grow.

3. Performance of a first Parallel Implementation

→ the algorithms are no longer embarrassingly parallel!

4. A Probabilistic Complexity Study

→ the study outlines future modifications of the algorithm.
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monodromy

The Riemann Surface of z3 − w = 0:
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Loop around the singular point (0,0) permutes the points.
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monodromy

Generating Loops by Homotopies

WL represents a k-dimensional solution set of f(x) = 0, cut out by

k random hyperplanes L. For k other hyperplanes K, we move WL

to WK , using the homotopy hL,K,α(x, t) = 0, from t = 0 to 1:

hL,K,α(x, t) =





f(x)

α(1 − t)L(x) + tK(x)



 = 0, α ∈ C.

The constant α is chosen at random, to avoid singularities, as t < 1.

To turn back we generate another random constant β, and use

h
K,L,β(x, t) =





f(x)

β(1 − t)K(x) + tL(x)



 = 0, β ∈ C.

A permutation of points in WL occurs only among points on the

same irreducible component.
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monodromy

Linear Traces as Stop Criterium

Consider f(x, y(x)) = (y − y1(x))(y − y2(x))(y − y3(x))

= y3 − t1(x)y
2 + t2(x)y − t3(x)

We are interested in the linear trace: t1(x) = c1x+ c0.

Sample the cubic at x = x0 and x = x1. The samples are

{(x0, y00), (x0, y01), (x0, y02)} and {(x1, y10), (x1, y11), (x1, y12)}.

Solve







y00 + y01 + y02 = c1x0 + c0

y10 + y11 + y12 = c1x1 + c0
to find c0, c1.

With t1 we can predict the sum of the y’s for a fixed choice of x.

For example, samples at x = x2 are {(x2, y20), (x2, y21), (x2, y22)}.

Then, t1(x2) = c1x2 + c0 = y20 + y21 + y22.

If 6=, then samples come from irreducible curve of degree > 3.
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monodromy

Monodromy Breakup certified by Linear Traces

Input: WL, d, N witness set, degree, #loops

Output: P partitioned witness set

0. initialize P with d singletons; done by master node

1. generate two slices L′ and L′′ parallel to L; broadcast data to nodes

2. track d paths for witness set with L′; executed in parallel

3. track d paths for witness set with L′′; executed in parallel

4. for k from 1 to N do

4.1 generate new slices K and a random α; broadcast K and α

4.2 track d paths defined by hL,K,α(x, t) = 0; executed in parallel

4.3 generate a random β; broadcast β to nodes

4.4 track d paths defined by hK,L,β(x, t) = 0; executed in parallel

4.5 compute the permutation and update P; done by master node

4.6 exit when linear trace test certifies P.
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performance

A Benchmark Example: cyclic 8-roots

The system

f(x) =















fi =
7
∑

j=0

i
∏

k=1

x(k+j)mod 8 = 0, i = 1, 2, . . . , 7

f8 = x0x1x2x3x4x5x6x7 − 1 = 0

has 1152 isolated solutions and a solution curve of degree 144,

which breaks up into 16 irreducible factors.

There are 8 factors of degree 16, and 8 quadratic factors.

Our equipment consists of one workstation with two dual 2.4Ghz

processors, running Linux, and serving two Rocketcalc clusters: one

with four and an other with eight 2.4Ghz processors. So we have a

total of 14 processors: a master node and 13 slave nodes.

page 8 of 13



performance

Computational Results

• Fluctuations in work loads and influence of number of loops needed:

#L 4 5 6 7 7 7 7 7 8 9

min 6.0 7.8 9.2 10.1 10.3 10.9 10.9 10.7 11.8 12.3

max 9.9 11.5 12.8 15.4 15.1 14.7 14.1 14.5 16.3 16.9

total 11.7 14.9 16.9 19.2 19.3 19.5 19.7 20.3 21.9 23.4

Results of 10 runs on 14 processors. #L = number of loops, min and max

are the minimal and maximal time (in seconds) spent by the slave nodes.

• Speedup:

NP 2 3 4 5 6 7 8 9 10 11 12 13 14

min — 68.7 47.4 31.5 25.8 21.5 20.0 18.0 14.8 12.1 11.7 11.2 10.9

max 144.3 69.2 48.6 33.6 28.0 25.3 22.0 20.1 18.8 17.6 16.2 14.7 14.1

total 150.9 77.1 56.5 41.4 35.7 32.5 29.1 27.3 25.9 22.3 21.7 20.2 19.7

Execution times for number of processors NP, from 2 to 14, using 7 loops.
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performance

Performance of a First Parallel Implementation
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Height of the bars = time expressed in seconds.

Shaded top area = time spent by master node.

Lowest horizontal bar = minimal time spent by slave.

Number of Processors
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complexity

Probabilistic Complexity Study on an Irreducible Set

Denote s = number of witness sets used;

Wi = d isolated solutions to
{

f(x) = 0, L(i)(x) = 0
}

, i = 1, 2, . . . , s;

νij = number of paths between Wi and Wj .

W1 on input
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Initialization of graph

with weights νij

As long as not all points are connected, do

1) pick a point of a minimal set in partition of W1;

2) pick a minimal edge νij ;

3) compute the probability of getting connected;

4) update partition after a coin toss.
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complexity

Results of a Simulation

The probability that p will get connected to q in tracking a path

from Wi to Wj is modeled by the formula

prob(i,j)(p, q) =
1

d(1 + r ln(1 + νij))
, r > 0.

NP \s 2 5 6 7 8 9

1 1.0 1.0 1.0 1.0 1.0 1.0

11 11.1 11.9 9.53 9.95 11.1 10.7

21 18.4 21.2 16.7 16.5 19.1 19.0

31 24.8 28.4 21.9 21.5 26.6 26.1

41 30.6 32.2 29.5 26.9 34.3 32.1

51 34.2 39.0 30.6 29.2 37.5 38.1

speedups for NP processors, s = #witness sets
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conclusions

Discussion and Conclusions

The performance of our first parallel implementation is okay for

medium sized degrees on our cluster of 14 processors.

Our probabilistic model shows the tradeoff between using more

witness sets (more work) and obtaining connections faster.

Hybrid approaches place greater emphasis on the application of

linear traces to group witness points along irreducible factors.
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